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ABSTRACT 

A Set Union Based Formulation for Course Scheduling and Timetabling 

Jesse Paul Bukenberger 

 

The Course Timetabling Problem is a widely studied optimization problem where 

a number of sections are scheduled in concert with the assignment of students to 

sections in order to maximize the desirability of the resulting schedule for all 

stakeholders. This problem is commonly solved as a linear program with variables 

for each student or group of students with identical schedules. In this paper we 

explore an alternative formulation that aggregates binary student variables into 

integer variables denoting the number of students enrolled in a course. Our 

solution method assumes decomposition of the general schedule into time blocks, 

and applies a unique set theory based, integer linear programming formulation that 

seeks to maximize the total number of students enrolled in their desired sections 

across the time blocks. Once the problem has been solved, the simpler problem 

of disaggregating the solution is resolved. This approach can be used to find exact 

solutions, given sufficient computing power, or simplified to quickly find solutions 

within calculable bounds of optimality. Case studies with a local elementary school 

and a local high school show that the new formulation is significantly faster and 

can be made to be reasonably accurate. 

 

Keywords: Operations Research, Integer linear programming, Scheduling, Couse 

timetabling, Blocking 
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I. Introduction 

 

Course Timetabling is a difficult problem faced by many academic institutions. The 

problem requires a scheduler to assign course sections to times, and students to 

sections, to maximize the desirability of the resulting schedule for all stakeholders. 

What makes a schedule desirable is a complex issue; it is often defined as a 

schedule that maximizes the number of students enrolled in the courses they have 

requested while meeting as many system constraints as possible. Other definitions 

of desirability focus on easing the burden on teachers and administrators, but 

these models are less common and often less complex. In this paper, we will use 

focus on student enrolment as the main contributor to desirability.  

 

The problem is solvable when it is formulated into a linear program with binary 

variables that correspond to the assignment of resources to a time, an objective 

function that relates to the desirability of the schedule, and constraints that 

represent resource limitations. Many constraints are common to nearly all Course 

Timetabling Problems; for example, students are prevented from enrolling in two 

courses at the same time in all problems that track individual students. We will 

discuss the details of the problem more in the body of this paper. 

 

When creating a timetable, the problem is commonly decomposed into blocks. 

Blocks partition the time available for courses to be offered into discrete periods, 

so a course offered in a given block will only conflict with other courses offered in 
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that same block. Blocking greatly reduces the complexity of the problem from the 

scheduler’s perspective, and because the majority of secondary schools require 

the schedule be partitioned into periods, blocking will not result in an inferior 

schedule at these institutions (Boland et al., 2006). 

 

Despite the simplification afforded by blocking, the traditional model still takes far 

too long to reach optimal solutions to be useful for schedulers, particularly at large 

institutions. These institutions are forced to rely on manual or computerized 

heuristics to find solutions that are acceptable. Thus, there is a need for 

formulations that can reach optimal solutions quickly, or at least formulations that 

can reach more accurate solutions than the available heuristics in a similar 

timeframe (Boland et al., 2006). 

 

In this paper we will explore a new and unique formulation that, instead of using 

binary variables for each student-course-block combination, aggregates student 

data from courses with one section into integer variables that represent the number 

of students taking a course at a specific time. The formulation uses set union 

principles to constrain the problem to the desired degree; the problem must be far 

more constrained to find exact solutions, but it may be more practical to relax some 

constraints to find a balance between speed and accuracy. We will make the 

assumption of blocking in all models and we will define desirability as the total 

number of students that can be enrolled in their desired courses across all time 

blocks without violating any hard constraints. 
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The structure of this paper is as follows: in section II we will review the existing 

literature on this topic and outline the contribution this work will make to the field, 

in section III we will explain the Course Timetabling Problem in detail and discuss 

our proposed formulation, in section IV we will fully explain our formulation in 

mathematical notation, section V we will create a small example to better illustrate 

the formulations, in section VI we will compare our new formulation to the pure 

binary programming formulation with two case studies at local schools, and in 

section VII we will make our conclusions and make suggestions for future 

research. 
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II. Literature Review 

 

Overview 

There are many approaches to solving the Course Timetabling Problem, and there 

are several problems that are similar enough to warrant mentioning here; we will 

discuss several relevant surveys of the literature and comment on many specific 

publications that are applicable to this problem. MirHassani & Habibi (2013) 

provide a survey of the recent work on Course and Examination Timetabling; they 

provide a comprehensive list of common hard and soft constraints, as well as 

common objective functions. The hard constraints generally focus on preventing 

the misappropriation of resources such as students taking two courses at the same 

time or two courses being offered in the same room while the soft constraints focus 

on superfluous benefits like balancing the number of students in each class or not 

having sections scheduled early in the morning. They mention student preferences 

as one of the more common objective functions that appears in the literature, but 

there are many others that are frequently used as well; however, many of these 

objective functions, such as making the timetable as compact as possible, are only 

applicable at institutions where each student is already guaranteed a full schedule 

and it is therefore a hard constraint in the model. Because we are dealing with a 

large number of non-required elective courses, it is not guaranteed that students 

will get every course they requested. 

Qu et al. (2009) provide an extensive survey of recent work in the related problem 

of Examination Timetabling. Approaches range from the most theoretical graph 
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coloring problem applications, to mixed integer programming (MIP) mathematical 

modeling. Recently, work has focused on a variety of heuristic approaches that are 

used to search the solution space in MIP models or even hyper heuristics that 

search for heuristics that may be effective. While Examination Timetabling is not 

identical to Course Timetabling, it is very similar and many breakthroughs for one 

carry over into the other. As such, they list a number of hard and soft constraints 

that are very similar to the others mentioned earlier. 

 

Schaerf (1999) provides another survey that explores both course and exam 

timetabling while breaking course timetabling into two subsections: School 

Timetabling and Course Timetabling, where course timetabling is specifically for 

university applications. Schaerf focuses more on the automation and intractability 

of timetabling systems because it is uncommon for a scheduler and all the 

stakeholders to accept a schedule after the first run; thus, the formulation must 

be changed and run through several iterations. With this in mind, it is even more 

important for a formulation to run quickly, because it will probably need to be run 

several times before a schedule is accepted. Being able to easily make changes 

in the formulation is also an interesting new focus that has arisen, most 

commercial scale optimization platforms are not very easy to adjust, but that is 

beyond the scope of this work (Rudová et al., 2011). Schaerf (1999) also points 

to several areas that need additional research in the field. The estimation of how 

optimal different techniques are is notably uncommon, so we will make an effort 

to quantify our methods here. Additionally, the combination of different methods 
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was suggested as an area for more work to be done, although this survey is 

slightly dated, there still seems to be plenty of opportunities in combining several 

of the methods we will discuss below.  
 

Graph Theoretical Applications 

The simplest scheduling problems can be thought of as graph coloring problems 

where each node is an event and each edge between nodes indicates some 

conflict. The nodes are then assigned colors in such a way that no nodes of the 

same color are connected by an edge (Lewis, 2008; Qu et al., 2009). This 

approach is very abstracted and it is difficult to apply a complete problem to a 

graph coloring model. It is; however, possible to use this approach to find the 

chromatic number of a graph which is equivalent to finding the number of time 

blocks needed to assign every student to their desired courses without conflicts 

(McDiarmid, 1979). 

 

There is a significant body of work dealing with graph theory and how it applies to 

scheduling; however, many of the researchers are focused on determining the 

qualities that different solution spaces possess. The work is often strictly 

theoretical and does not apply any work to actual data (Burke et al. 2010). 

Meanwhile, researchers working with both MIP models and heuristics question the 

credibility of sources that do not demonstrate their findings either with actual 

institutions or with standardized data sets (Qu et al., 2009). 
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Mixed Integer Programming Models 

When the problem is approached more directly, a Mixed Integer Program is usually 

the result. These models consist of numerous variables that are constrained by the 

requirements at a specific institution and utilize various optimization techniques to 

maximize or minimize some objective function. The objective functions usually 

seek to enroll as many students as possible, while violating as few constraints as 

possible. There are often soft and hard constraints, with the difference being hard 

constraints cannot be violated or the solution is considered infeasible, while soft 

constraints can be broken with some penalty applied to the objective function 

(MirHassani & Habibi, 2013). 

 

This combination of soft and hard constraints is often called a Lagrangean 

relaxation. This method gives more power to the scheduler to weight the factors 

they find important more heavily. The hard constraints will not be violated by the 

system but the soft constraints can be violated at an arbitrary cost that the 

scheduler decides. These models are attractive because they are often much 

simpler than methods that seek to optimize enrollment and they allow the user to 

decide what is important and focus on many performance metrics at once. The 

problem with this method is that it will require significant validation to demonstrate 

that an optimal result in the computer corresponds to a similar result in practice. 

These models also require significant balancing, and they will generally not 
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optimize anything; rather, they provide feasible solutions with an emphasis on 

performance goals (Tripathy, 1980). 

 

MIP aggregated models and Lagrangean relaxations are popular because, as 

computers get more advanced, more realistic models can be solved in real time. 

Competitions are held where identical data are given to the competitors and the 

different formulations are compared on the basis of solve speed and number of 

soft constraints violated (Qu et al., 2009; Van den Broek et al., 2012). 

 

These models have been applied over the decades in many different ways. The 

problems are often considered too large to be solved completely, so they are 

frequently simplified in a variety of ways. At many institutions, there is a large 

amount of symmetry in student course requests; this arises from students in the 

same year or program of study requiring the same courses. Many MIP models take 

advantage of this symmetry and aggregate student data into groups of students 

taking similar programs; this simplifies the problem considerably at institutions with 

large amounts of symmetry, but is not likely to be applicable to institutions where 

this is not the case. We did not find many MIP aggregations that did not require a 

significant amount of symmetry, which is one of the points addressed in this paper 

(Boland et al., 2006; Tripathy, 1984). 

 

Additionally, the most straight-forward MIP model, which we will discuss below, is 

often alluded to but seldom constructed (Burke et al., 2012). It is referred to in 
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nearly every MIP paper with varying degrees of depth and then the researchers 

proceed to make their changes to it without ever running it as a baseline (Rudová 

et al., 2011). Schaerf (1999) pointed out that very few researchers make an 

optimal baseline model to compare to. If researchers do compare methods, it is 

typically with standardized data sets, often the University of Toronto benchmark 

data or the Udine Course Timetabling Problem, and researchers only run their 

model and compare the speed and accuracy to others who have used that 

dataset (Burke et al., 2012; Qu et al., 2009). This practice is especially 

questionable because the differences in the computers’ memory and processor 

are likely to contribute significantly to the variability in run time. 

 

Heuristic Search Strategies 

Most recent work on the Course Timetabling Problem has been focused on various 

heuristic search strategies, and many of these strategies have been very 

successful. Heuristics in this area are typically methods of exploring the vast 

solution space quickly and intelligently according to a few coded rules. Heuristics 

are typically much faster at finding good solutions than MIP models but the 

disadvantage is that the error cannot always be accurately estimated. Heuristics 

often have several parameters that need to be tuned to the specific model, so they 

require a greater investment at the beginning stages of the model; eventually, if 

the model stays similar from term to term a well-developed heuristic can be very 

effective. 
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Tabu search methods are possibly the most popular heuristic used today; Tabu 

searches are a type of local search that avoids getting stuck in local optima by 

remembering recently visited solutions and marking these locations as forbidden. 

The algorithm will not consider forbidden solutions and will move on to a new part 

of the solution space (Aladag et al., 2005). 

 

Simulated Annealing is a method that similarly explores the solution space with a 

gradually decreasing temperature parameter. At high temperatures, the search is 

more likely to accept a move to an inferior solution, but as the temperature 

decreases, the algorithm becomes more selective and will prefer moving to more 

optimal solutions until the algorithm is essentially a local search (Abramson et al., 

1999). 

 

Genetic Algorithms attempt to mimic the natural phenomenon of evolution by 

starting with a number of solutions, termed individuals, which are deemed ‘fit’ if 

their objective function is higher than most of their competitors. The population of 

individuals is iterated through a number of generations where the fit individuals 

are mated and produce offspring with a similar solution makeup to their parents. 

There are different variations of this algorithm that include a probability of 

mutations occurring in offspring and eventually solutions that are close to optimal 

should arise (Beligiannis et al., 2009; Rudová et al., 2011). 
 



11 
 

Some studies have found that combinations of different search strategies perform 

better than either strategy individually; such combinations are sometimes known 

as hybrid search heuristics (Jat & Yang, 2011). Because of the success different 

heuristics have had, many researchers have turned to this area of the field; 

however, different methods perform better with different problems, and all methods 

have parameters that require a good deal of tuning before they become efficient. 

The problem of choosing and tuning an appropriate algorithm for a specific 

problem has led to the development of Hyper-Heuristics, which are designed to 

analyze the solution space and recommend search heuristics and parameters that 

are well suited to solving the problem effectively (Burke et al., 2003). 

 

Our Contribution 

In recent years, the focus of the Course Timetabling Problem has shifted 

extensively to the study of various heuristic search algorithms. Studies developing 

complete or slightly simplified models had largely concluded that the solution 

space was too large to solve efficiently at the student level with the available 

computer power; however, advances in computer hardware continually make 

larger problems feasible to solve with mixed binary-integer programs. With this 

paper, we intend to provide a formulation that can be solved in a reasonable time 

limit, but still provides accurate data at the student level; additionally, the 

formulation discussed below is believed to be compatible with other MIP 

aggregations and search heuristics, so there is room for further improvements to 

be made. Specifically, the work of Burke et al. (2006) is very similar to our model; 
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they use a similar baseline formulation and aggregate students who are taking the 

same courses into integer variables, while we aggregate students who are in a 

single section, following some other rules, into integer variables. While the two 

models are very similar, they are completely distinct and likely compatible at some 

level. We believe that our models can be combined in future work. 
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III. Problem Definition and Solution Approaches 

 

Terminology 

There is some variation in the terminology used in academic timetabling, and some 

terms have different meanings when used in an academic context than they do 

when used within educational institutions. We will begin our problem definition by 

defining the terms that are frequently used in this paper. Because we are working 

within the context of secondary schools, we will use language appropriate to that 

setting, but the methods discussed here can be applied to other settings such as 

universities or even institutions not related to education where timetabling is 

practiced. For example, conferences often have several speakers at one time and 

attendees must choose which of the conflicting tracks they will go to, and music 

festivals with several stages will have several bands performing at any time; these 

events would be more valuable if the events were scheduled to optimize the 

desirability of the schedule. 

 

In the scheduling research community, blocks refer to partitions of the available 

time into discrete elements that are repeated throughout the time being scheduled. 

In a school setting, the term for period is what a scheduler would call a block. Block 

scheduling, at educational institutions, refers to a type of schedule where students 

take fewer classes each day for a longer period of time, and the classes taught 

each day rotate on some sort of cycle. One of the schools we worked with had this 

type of schedule, where each student was enrolled in 8 classes, and these classes 
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were scheduled on a two-day cycle, so students took 4 classes each day.  We will 

use the term blocking the way it is used in scheduling research, and we will attempt 

to avoid referring to block scheduling as it is known at educational institutions from 

this point on. 

 

Courses will be defined here as a distinct subject at a specific level; for example,  

Beginning Choir, Advanced Choir and Beginning Dance would all be different 

courses. Sections will be defined here as an offering of a course. Some courses, 

due to limited demand or resources, will only have one section offered and others 

with more demand and resources will have several sections. 

 

A timetable will be defined as a feasible assignment of sections to the blocks that 

constitute one cycle of the school’s schedule. By populating all the blocks that 

make up one cycle, the term’s entire schedule can be generated by repeating the 

same section assignments in each ensuing cycle. 

 

Problem Definition 

There are many factors that must be considered when creating a timetable, and 

this is part of what makes the problem so difficult to solve. Here we will explain 

some of the constraints that are enforced at the schools we worked with; the 

restrictions outlined here are among the most common in most timetabling works 

but this is by no means an exhaustive list of all impositions that are made on 

timetabling problems in general. 
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First, the courses that will be offered, and the number of sections that will be 

offered for each of these courses, must be declared. This is generally a function of 

teacher availability and student demand. Teacher availability is generally known 

and students are interviewed individually so their demand is known as well. At each 

of the schools we worked with, this was decided by the administration based on a 

complete tally of student requests, so we will not make recommendations in this 

area, and we will assume that student demand is known exactly. 

 

Next, the sections that are being offered must be assigned several resources 

including: a room, a teacher, a time, and students who will enroll in the class. This 

assignment of resources is the main focus of most timetabling research because 

these resources are usually of limited availability so their assignment is somewhat 

competitive. The teachers at the schools we worked with had their own permanent 

rooms, so incorporating the room assignment into our model was unnecessary. 

However, we still needed to incorporate constraints for the teachers, times, and 

students that are assigned to each section. 

 

The resource assignments are limited in many ways; the constraints we 

encountered are among the most commonly faced in the Course Timetabling 

Problem. A desirable timetable will allow as many students as possible to enroll in 

courses that they requested and will not violate any of the following restrictions: 

 A course can only appear in a timetable once for each section of that course 
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 A course must have a section offered in a block for students to enroll in that 

course at that time 

 Each section has a capacity and the student enrollment for that section 

cannot exceed this capacity 

 Students can only take each course a specific number of times in a term, 

this number is usually one, but we did encounter some special cases where 

students could enroll in two sections of a course 

 Students can only enroll in one class at a time 

 Teachers can only teach one class at a time 

 

After a feasible timetable is generated, it is presented to the stakeholders who will 

decide if the schedule is acceptable and what needs to be changed if it is 

undesirable in some way. The stakeholder suggestions are incorporated into the 

model and a new schedule is generated. For example, one institution we worked 

with wanted to experiment with scheduling all math teachers with a common break 

period. This required the formulation to be modified and run again to compare the 

resulting difference in enrollment. The process is repeated until everyone is 

sufficiently satisfied, and the final schedule is then used for the next term. This 

process usually takes some time and many schedules are often generated before 

everyone agrees that a schedule is acceptable, so the time required for a model 

to run is of considerable importance. In the following subsections we will explain 

the two formulations that we used to generate timetables. 
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Complete Binary Programming Model 

The Complete Binary Programming Model (CBPM) uses binary variables to keep 

track of both course and student assignments. There is a binary variable for each 

course-block combination and for each student-desired course-block combination; 

these variables will be explained in more detail later in this paper. 

 

The CBPM is a straightforward approach to solving the problem; it is clear from the 

variables when each course is being offered and which students are taking what 

course at what time. This transparency makes enforcing the constraints above 

fairly simple, as will be seen in the constraints section of this paper. 

 

Because building a timetable is an NP-Complete problem (Qu et al., 2009), and 

the CBPM has so many variables, it takes a relatively long time to run; with the 

computing power available today, it could take several years to find the optimum 

solution at larger institutions. But when a solution is found, it is exact and known 

to be optimal. Most models studied today, including ours, are decompositions of 

the CBPM or heuristic search strategies that are tuned to quickly find solutions on 

the CBPM. As such, the CBPM will provide a good benchmark to compare the 

Aggregated Student Model against. 

Aggregation of Student Variables into Sets 

The Aggregated Student Model (ASM) is similar to the CBPM in that there is a 

binary variable for each course-block combination, but the two differ slightly in the 



18 
 

creation of student variables. The ASM attempts to aggregate students into integer 

variables that do not track exactly which student can enroll in a course at a given 

time, but only how many students can enroll in a course at that time. This replaces 

many binary student variables, with a single integer aggregated student variable. 

This simplifies the solution of the problem computationally so an optimal timetable 

can be generated quickly. Once an optimal timetable is found, the problem of 

disaggregating student data and providing individual enrollment assignments can 

be easily resolved.   

 

The ASM approaches most constraints in the same way the CBPM does, but the 

constraints concerning individual students are now not possible because of the 

removal of individual student variables. This poses a problem for courses with 

multiple sections because it becomes difficult to track which students have already 

been enrolled in a different section of the same course. To avoid this problem, we 

chose to only aggregate student variables for courses with a single section, and 

model courses with multiple sections in the same way the CBPM does. 

 

Aggregated variables also confound section capacity with the constraint that 

students cannot take multiple courses at the same time. For example, if 5 students 

want to take Dance and 5 students want to take Ceramics, but 3 of these students 

want to take both, then only 7 students would be able to enroll if both were offered 

at the same time; however, the ASM will attempt to enroll ten students in this 
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situation unless a new constraint is introduced. A diagram illustrating this is shown 

in Figure 1 below.  

 

Figure 1: Enrollment when conflicting courses are given in the same block 

 

To properly enforce the two confounded constraints, we must incorporate a new 

constraint that limits the possible enrollment in concurrent courses to the total 

number of students who want at least one of the courses. To ensure exact 

solutions, there must be such a constraint for each combination of multiple 

courses. Conceptually, it helps to refer to these constraints as belonging to disjoint 

tiers, where the first tier is the course capacity, the second tier covers all the 

combinations of two courses, the third tier covers all combinations of three 

courses, and so on. For large institutions, there will be many tiers each with a 

number of constraints that grow in a hypergeometic fashion. This will eventually 

become an unreasonable requirement; however, with each tier of constraints that 

are included, the solution will be bounded closer to the true optimal solution. We 

therefore recommend relaxing the upper tiers of this constraint, which will reduce 
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the ability of the model to find optimal solutions while decreasing the time required 

to build and read the model.  

 

Disaggregation into a Complete Solution 

Once an optimal timetable is found in the ASM, the data needs to be disaggregated 

to determine exactly how many students can be enrolled in their desired courses 

and which students are to be enrolled in each section. To accomplish this, we 

exported the timetable from the ASM to the CBPM, and found that this bounded 

the solution space so sufficiently that an optimal solution was found in a time that 

was negligible when compared to the full computing time of either model. 

Therefore, we did not develop additional algorithms or formulations to 

disaggregate the solutions, but there likely exist superior methods of 

accomplishing this task. 
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IV. Formulation 

 

Variable Definition 

This section details the specifics of the formulation in mathematical notation. We 

will fist describe the variables that are used, then we will give equations for the two 

objective functions for the CBPM and the ASM, and finally we will detail equations 

for all the constraints used in the formulations. The exact details for the variables 

are seen in equations (1), (2) and (3) below and; after that, Table 1 contains a 

summary of the sets, variables, subscripts, and parameters that are used in the 

formulation. Please note that the variables indicated in equation (3) only appear in 

the ASM. 

 

 𝑠𝑛 𝑐 𝑏 = {
1 if student 𝑛 takes course 𝑐 at time 𝑏
0 otherwise                                                 

  (1) 

 

 𝑦 𝑐 𝑏 = {
1 if course 𝑐 is offered at time 𝑏
0 otherwise                                      

  (2) 

 

 𝑥 𝑐 𝑏 = number of students taking course 𝑐 at time 𝑏  (3) 
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Table 1: Table of Symbols 

Symbol Description 

n∈ N = {1,…,N} Set of all students, n is an individual student 

c∈ C = {1,…,C} Set of all courses, c is a specific course 

b∈ B = {1,…,B} Set of all time blocks, b is a specific time block 

t∈T = {1,…,T} Set of all teachers, t is an individual teacher 

(c, t) ∈τ Set of course-teacher assignments, (c, t) exists if 

course c is taught by teacher t 

c∈Ct = {c ∈ C: (c, t) 

∈τ} 

Set of courses taught by teacher t, c is a specific 

course 

c∈CM
 = {c ∈ C: γc > 1 } Set of courses with more than one section available 

Dc⊆ N Set of students who wish to enroll in course c 

P∈ℙ(C) Power set of C, ℙ(C) consists of every subset of C 

sn c b Binary variable indicating that student n is enrolled in 

course c at time b 

y c b Number of sections of course c offered at time b 

x c b Number of students enrolled in course c at time b 

λ c Capacity (number of students) of course c 

γ c Number of sections of course c that can be offered 

α c Number of times course c can be taken by a single 

student 

 

Objective Function 

As mentioned above, we define the desirability of the timetable as the number of 

students that can enroll in a desired course summed across all blocks. For the 

CBPM this simply requires us to sum each student variable as seen in equation 

(4) below. 

 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ ∑ 𝑆𝑛 𝑐 𝑏

𝑛∈𝑁𝑐∈𝐶𝑏∈𝐵

 (4) 
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For the ASM; however, there are not binary student variables for each of the 

classes that are offered. Instead, there are variables that represent the number of 

students taking a class at a given time. For each class with more than one section, 

there are binary student variables, and for classes with only one section, there are 

aggregated student variables; this objective function is shown below in equation 

(5). It is worth noting that this function does not necessarily provide exact numbers 

on enrollment unless the problem is fully constrained as shown in the Appendix; 

what we gain from the new formulation is the timetable that can be used to 

constrain the CBPM which will provide an exact number on enrollment. 

 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ ∑ 𝑠𝑛 𝑐 𝑏

𝑛∈𝑁𝑐∈𝐶𝑀𝑏∈𝐵

+ ∑ ∑ 𝑥𝑐 𝑏

𝑐∈𝐶𝑏∈𝐵

 (5) 

 

Constraints 

In this section we express the constraints on the model mathematically. Each of 

these constraints appears in both the CBPM and the ASM except for the equations 

containing any x c b variables; these constraints are only in the ASM. 

 

A course can only be offered a number of times given by γc. This is represented in 

equation (6) below. 

 

 ∑ 𝑦𝑐 𝑏

𝑏∈𝐵

≤  𝛾𝑐          ∀𝑐 ∈ 𝐶 (6) 
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Equation (7) below captures two separate impositions on the model: students 

cannot enroll in a course at a given time unless it is being offered in that same time 

block, and the course’s enrollment is capped at a specific number given by λc. 

Equation (8) represents the same capacity constraints for courses with only one 

section in the ASM. 

 

 ∑ 𝑠𝑛 𝑐 𝑏

𝑛∈𝑁

− 𝜆𝑐 ∗ 𝑦𝑐 𝑏 ≤ 0           ∀𝑐 ∈ 𝐶       ∀𝑏 ∈ 𝐵 (7) 

 

 𝑥𝑐 𝑏 − 𝜆𝑐 ∗ 𝑦𝑐 𝑏 ≤ 0           ∀𝑐 ∈ 𝐶       ∀𝑏 ∈ 𝐵 (8) 

 

Students cannot enroll in the same course multiple times. Normally students 

cannot enroll more than once in any course, but we did encounter special cases 

where students could enroll in the same course over several blocks; thus, a student 

may not enroll in the same course more than a number of times given by α c which 

is shown in equation (9) below. 

 

 ∑ 𝑠𝑛 𝑐 𝑏

𝑏∈𝐵

≤  𝛼𝑐           ∀𝑛 ∈ 𝑁       ∀𝑐 ∈ 𝐶  (9) 

 

Students may not enroll in more than one class at a time and teachers may not 

teach more than one class at a time. These constraints are represented for 

students and teachers in equation (10) and equation (11) respectively. Note that 

to avoid the inclusion of teacher variables, we constrain classes that are taught by 
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the same teacher; this will not be possible at every institution and teacher variables 

will be necessary. 

 

 ∑ 𝑠𝑛 𝑐 𝑏

𝑐∈𝐶

 ≤ 1          ∀𝑛 ∈ 𝑁       ∀𝑏 ∈ 𝐵 (10) 

 

 ∑ 𝑦𝑐 𝑏

𝑐∈𝐶𝑡

≤  1          ∀𝑏 ∈ 𝐵       ∀𝑡 ∈ 𝑇 (11) 

 

Equation (12) represents the major distinction between the CBPM and the ASM; 

this constraint determines how many students can enroll in one of their preferred 

courses when there are several courses being offered at the same time. The exact 

number of students that can enroll in at least one course is not fully constrained by 

this equation until the union extends to a tier past the maximum number of courses 

that are offered in a block, which is not known before the problem is solved. 

However, even if the model is not fully constrained, the constraint provides a very 

close estimate for how many students can enroll in one of their desired courses 

each block. For those unfamiliar with this notation, the equation roughly states that 

the sum of all students who can enroll in a collection of courses with only one 

section must be less than or equal to the number of students who want to take at 

least one of the courses for all time blocks and all subsets of courses with one 

section. 
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∑ ∑ 𝑠𝑛 𝑐 𝑏

𝑛∈𝑁𝑐∈𝐶𝑀

+ ∑ 𝑥𝑐 𝑏

𝑐∈𝑃

≤ |⋃ 𝐷𝑐

𝑐∈𝑃

|            ∀𝑏 ∈ 𝐵       ∀𝑃 ∈ ℙ(𝐶) (12) 

 

Additionally, all variables are constrained to be non-negative and are restricted to 

either binary or integer values; all student variables are binary, the aggregated 

student variables all integers, and the course variables are binary if there is only 

one section of the course and integer if there are multiple sections. 
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V. Example 

 

Overview 

In this section, we will create an example to better illustrate how the two models 

function. Imagine a small school with only eight students; this school has four 

classes: Art, Band, Ceramics, and Dance. Art, Band, and Ceramics are offered 

once, while Dance is offered twice. The school only has two time blocks for these 

classes to be offered. The details of the school are shown in Table 2 below. 

Table 2: Example Course Details 

ID Course Sections 

1 Art 1 

2 Band 1 

3 Ceramics 1 

4 Dance 2 

 

Each of the eight students has submitted requests to be enrolled in their two most 

preferred classes as shown below in Table 3 below. 

Table 3: Example Student Preferences 

ID Student Requested Classes 

1 Aly Art Band 

2 Ben Band Ceramics 

3 Cole Art Dance 

4 Dan Art Dance 

5 Emma Art Dance 

6 Fay Band Dance 

7 Gail Ceramics Dance 

8 Hal Ceramics Dance 
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Complete Binary Programming Model 

The CBPM for this school results in 32 student enrollment variables and 8 course 

variables for a total of 40 variables. Table 4 below shows these variables in more 

detail. The Objective function for the CBPM is then to maximize the sum of the 

student variables. 

Table 4: Complete Binary Programming Model Example Variables 

Student Variables    

𝑠𝐴𝑙𝑦 𝐴𝑟𝑡 1 𝑠𝐴𝑙𝑦 𝐴𝑟𝑡 2 𝑠𝐴𝑙𝑦 𝐵𝑎𝑛𝑑 1 𝑠𝐴𝑙𝑦 𝐵𝑎𝑛𝑑 2 

⋮ ⋮ ⋮ ⋮ 

𝑠𝐻𝑎𝑙 𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 1 𝑠𝐻𝑎𝑙 𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 2 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 1 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 2 

Course Variables    

𝑦𝐴𝑟𝑡 1 𝑦𝐵𝑎𝑛𝑑 1 𝑦𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 1 𝑦𝐷𝑎𝑛𝑐𝑒1 

𝑦𝐴𝑟𝑡 2 𝑦𝐵𝑎𝑛𝑑 2 𝑦𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 2 𝑦𝐷𝑎𝑛𝑐𝑒 2 

 

Equation (13) constrains the number of sections offered for each course, so all 

courses will have at most one section except for Dance, which can have two. There 

is one formula for each course offered, so in this example 4 constraints are added 

to the formulation. 

 

 𝑦𝐴𝑟𝑡 1 + 𝑦𝐴𝑟𝑡 2 ≤  1  

 ⋮ (13) 

 𝑦𝐷𝑎𝑛𝑐𝑒 1 + 𝑦𝐷𝑎𝑛𝑐𝑒 2 ≤  2  
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Equation (14) enforces the capacity of each course and also prevents students 

from being enrolled in a course that is not being offered; for this example, each 

section has an enrollment capacity of four students per section offered. Because 

there is a constraint for each course at each time block, there are a total of 8 

constraints added to manage the capacity of the sections. 

 

 𝑠𝐴𝑙𝑦 𝐴𝑟𝑡 1 + 𝑠𝐶𝑜𝑙𝑒 𝐴𝑟𝑡 1 + 𝑠𝐷𝑎𝑛 𝐴𝑟𝑡 1 + 𝑠𝐸𝑚𝑚𝑎 𝐴𝑟𝑡 1 − 4 ∗ 𝑦𝐴𝑟𝑡  1 ≤ 0             

 ⋮ (14) 

 𝑠𝐶𝑜𝑙𝑒 𝐷𝑎𝑛𝑐𝑒 2 + 𝑠𝐷𝑎𝑛 𝐷𝑎𝑛𝑐𝑒 2 … + 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 2 − 4 ∗ 𝑦𝐷2 ≤  0             

 

Equation (15) prevents students from being enrolled in a course several times in 

different blocks. Because there is a constraint for each course each student is 

taking, there are 16 of these constraints in this model; however, the courses with 

only one section will never be bounded by these constraints, so we could safely 

remove all but the Dance class constraints here for a total of just 6 constraints. For 

simplicity, we will only show the necessary constraints in Equation (15) below.  

 

 𝑠𝐶𝑜𝑙𝑒 𝐷𝑎𝑛𝑐𝑒 1 + 𝑠𝐶𝑜𝑙𝑒 𝐷𝑎𝑛𝑐𝑒 2 ≤  1  

 ⋮ (15) 

 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 1 + 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 2 ≤  1  
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Equation (16) prevents students from being enrolled in several courses in the same 

block, because there is a constraint for each block by the number of students, there 

are 16 of these constraints in this model. 

 

 𝑠𝐴𝑙𝑦 𝐴𝑟𝑡 1 + 𝑠𝐴𝑙𝑦 𝐵𝑎𝑛𝑑 1 ≤  1  

 ⋮ (16) 

 𝑠𝐻𝑎𝑙 𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 2 + 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 2 ≤  1  

 

The last constraint that is needed for the CBPM is shown in Equation (17) and it 

prevents a teacher from teaching two sections at the same time. In this example, 

there is only one teacher for Art and Ceramics, so these courses must not be 

offered at the same time. We could also include a constraint to prevent dance from 

being offered twice in one block, but because the dance variable is binary, this 

constraint is not needed. There is one constraint needed for each teacher for each 

block, so we only need 2 constraints in this model. 

 

 𝑦𝐴𝑟𝑡 1 +  𝑦𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 1 ≤  1  

 𝑦𝐴𝑟𝑡 2 +  𝑦𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 2 ≤  1 (17) 

 

Some inspection reveals that there are multiple solutions to this model, one of 

which is found by offering Art and Dance first, and then offering Band, Ceramics 

and Dance in the second block. Every student can be enrolled in the second block, 
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and only Ben cannot be enrolled in the first block, giving an optimal enrollment 

number of 15. The specific solution chosen is shown in Table 5. 

Table 5: Complete Binary Programming Model Example Solution 

Block 1   Block 2  

Courses Students  Courses Students 

Art: Aly  Band: Aly 

 Cole   Ben 

 Dan   Fay 

 Emma    

   Ceramics: Gail 

Dance: Fay   Hal 

 Gail    

 Hal  Dance: Cole 

    Dan 

    Emma 

 

Aggregated Student Model 

The ASM eliminates the need for many of the student variables needed in the 

CBPM; the ASM requires 12 student variables, 6 aggregated student variables, 

and 8 course variables for a total of 26 variables, shown in Table 6 below. The 

objective function is to maximize the sum of both the individual student variables 

and the aggregated student variables. 
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Table 6: Aggregated Student Model Example Variables 

Student Variables    

𝑠𝐶𝑜𝑙𝑒 𝐷𝑎𝑛𝑐𝑒 1 𝑠𝐷𝑎𝑛 𝐷𝑎𝑛𝑐𝑒 1 𝑠𝐸𝑚𝑚𝑎 𝐷𝑎𝑛𝑐𝑒 1  

𝑠𝐹𝑒𝑦 𝐷𝑎𝑛𝑐𝑒 1 𝑠𝐺𝑎𝑖𝑙 𝐷𝑎𝑛𝑐𝑒 1 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 1  

𝑠𝐶𝑜𝑙𝑒 𝐷𝑎𝑛𝑐𝑒 2 𝑠𝐷𝑎𝑛 𝐷𝑎𝑛𝑐𝑒 2 𝑠𝐸𝑚𝑚𝑎 𝐷𝑎𝑛𝑐𝑒 2  

𝑠𝐹𝑒𝑦 𝐷𝑎𝑛𝑐𝑒 2 𝑠𝐺𝑎𝑖𝑙 𝐷𝑎𝑛𝑐𝑒 2 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 2  

Aggregated Student Variables 

𝑥𝐴𝑟𝑡 1 𝑥𝐵𝑎𝑛𝑑 1 𝑥𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 1  

𝑥𝐴𝑟𝑡 2 𝑥𝐵𝑎𝑛𝑑 2 𝑥𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 2  

Course Variables    

𝑦𝐴𝑟𝑡 1 𝑦𝐵𝑎𝑛𝑑 1 𝑦𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 1 𝑦𝐷𝑎𝑛𝑐𝑒1 

𝑦𝐴𝑟𝑡 2 𝑦𝐵𝑎𝑛𝑑 2 𝑦𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 2 𝑦𝐷𝑎𝑛𝑐𝑒 2 

 

The ASM has the same constraints as the CBPM for the sets shown in (13), (15) 

and (17) with no changes. Equation (18) shows the capacity constraints for the 

ASM; for courses with only one section, such as Art, the variable denoting how 

many students can enroll is all that is needed, but for courses with several sections, 

such as Dance, we must use the variables for individual students. 

 

 𝑥𝐴𝑟𝑡 1 − 4 ∗ 𝑦𝐴𝑟𝑡  1 ≤ 0             

 ⋮ (18) 

 𝑠𝐶𝑜𝑙𝑒 𝐷𝑎𝑛𝑐𝑒 2 + 𝑠𝐷𝑎𝑛 𝐷𝑎𝑛𝑐𝑒 2 … + 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 2 − 4 ∗ 𝑦𝐷2 ≤  0             

 

The constraints given by Equation (16) are still needed in the ASM but only with 

the individual student variables that still exist in the ASM. However, because the 
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only student variables that exist are for enrolling in Dance, there is no way to 

schedule a student in two classes at once, and these constraints are not needed.  

 

The last set of constraints needed for the ASM is the union constraints. Figure 2 

shows the value of Dc for several combinations of courses, and Equation (19) 

shows how these are programmed into the model. Parts a and c of Figure 2 show 

the standard union with sections of two courses offered just once. Part b shows 

the union where one course is offered once and the other course is offered multiple 

times. We must use the individual student variables here, but we only need the 

student variables for students who want to take both courses.  

 

Figure 2: Aggregation Constraint Examples 
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Because Art and Ceramics cannot be taught at the same time, we only need 7 

constraints for each block. All 7 of the constraints needed for the first block are 

shown in Equation (19), and another identical set is needed for the second block. 

 

𝑥𝐴𝑟𝑡 1 +  𝑥𝐵𝑎𝑛𝑑 1 ≤ 6  

𝑥𝐴𝑟𝑡 1 +  𝑠𝐶𝑜𝑙𝑒 𝐷𝑎𝑛𝑐𝑒 1 +  𝑠𝐷𝑎𝑛 𝐷𝑎𝑛𝑐𝑒 1 + 𝑠𝐸𝑚𝑚𝑎 𝐷𝑎𝑛𝑐𝑒 1 ≤ 4  

𝑥𝐵𝑎𝑛𝑑 1 +  𝑥𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 1 ≤ 5  

𝑥𝐵𝑎𝑛𝑑 1 +  𝑠𝐹𝑎𝑦 𝐷𝑎𝑛𝑐𝑒 1 ≤ 3 (19) 

𝑥𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 1 +  𝑠𝐺𝑎𝑖𝑙 𝐷𝑎𝑛𝑐𝑒 1 + 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 1 ≤ 3  

𝑥𝐴𝑟𝑡 1 +  𝑥𝐵𝑎𝑛𝑑 1 +  𝑠𝐶𝑜𝑙𝑒 𝐷𝑎𝑛𝑐𝑒 1 +  𝑠𝐷𝑎𝑛 𝐷𝑎𝑛𝑐𝑒 1 +  𝑠𝐸𝑚𝑚𝑎 𝐷𝑎𝑛𝑐𝑒 1 +  𝑠𝐹𝑎𝑦 𝐷𝑎𝑛𝑐𝑒 1 ≤ 6  

𝑥𝐵𝑎𝑛𝑑 1 + 𝑥𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 1 +  𝑠𝐹𝑎𝑦 𝐷𝑎𝑛𝑐𝑒 1 +  𝑠𝐺𝑎𝑖𝑙 𝐷𝑎𝑛𝑐𝑒 1 +  𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 1 ≤ 5  

 

As mentioned earlier, there are several optimal solutions for this example. The 

solution given by the ASM is when Art and Dance are offered in the first block and 

Band, Ceramics, and Dance are offered in the second block. The aggregated 

solution is shown in Table 7 and the disaggregated solution, which is found by 

constraining the CBPM to the timetable found in the ASM, is found to be the same 

as the solution of the CBPM alone, but with the two blocks switched, which was 

shown in Table 5. 
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Table 7: Aggregated Student Example Solution 

Student Variables    

𝑠𝐶𝑜𝑙𝑒 𝐷𝑎𝑛𝑐𝑒 1 = 0 𝑠𝐷𝑎𝑛 𝐷𝑎𝑛𝑐𝑒 1 = 0 𝑠𝐸𝑚𝑚𝑎 𝐷𝑎𝑛𝑐𝑒 1 = 0   

𝑠𝐹𝑒𝑦 𝐷𝑎𝑛𝑐𝑒 1 = 1 

 

𝑠𝐺𝑎𝑖𝑙 𝐷𝑎𝑛𝑐𝑒 1 = 1 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 1 = 1  

𝑠𝐶𝑜𝑙𝑒 𝐷𝑎𝑛𝑐𝑒 2 = 1 𝑠𝐷𝑎𝑛 𝐷𝑎𝑛𝑐𝑒 2 = 1 𝑠𝐸𝑚𝑚𝑎 𝐷𝑎𝑛𝑐𝑒 2 = 1  

𝑠𝐹𝑒𝑦 𝐷𝑎𝑛𝑐𝑒 2 = 0 𝑠𝐺𝑎𝑖𝑙 𝐷𝑎𝑛𝑐𝑒 2 = 0 𝑠𝐻𝑎𝑙 𝐷𝑎𝑛𝑐𝑒 2 = 0  

Aggregated Student Variables 

𝑥𝐴𝑟𝑡 1 = 4 𝑥𝐵𝑎𝑛𝑑 1 = 0 𝑥𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 1 = 0  

𝑥𝐴𝑟𝑡 2 = 0 𝑥𝐵𝑎𝑛𝑑 2 = 3 𝑥𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 2 = 2  

Course Variables    

𝑦𝐴𝑟𝑡 1 = 1 𝑦𝐵𝑎𝑛𝑑 1 = 0 𝑦𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 1 = 0 𝑦𝐷𝑎𝑛𝑐𝑒 1 = 1 

𝑦𝐴𝑟𝑡 2 = 0 𝑦𝐵𝑎𝑛𝑑 2 = 1 𝑦𝐶𝑒𝑟𝑎𝑚𝑖𝑐𝑠 2 = 1 𝑦𝐷𝑎𝑛𝑐𝑒 2 = 1 
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VI. Application to Local Schools 

 

Atascadero Fine Arts Academy 

The first school we worked with was a relatively small institution that schedules its 

elective courses separately from its core courses. The school is small enough that 

the core courses are not particularly difficult to schedule, but there is a significant 

amount of diversity in the demand for elective courses. What we mean by diversity 

is that very few students want exactly the same combination of courses, as 

opposed to symmetry, where many students want the same course combination. 

Demand diversity makes it far more difficult to create desirable schedules 

manually, so we were asked to survey student demand, and schedule only the 

elective courses. 

 

We surveyed 186 students’ desire to enroll in 19 courses, 13 of which have only 

one section. There were a total of 31 sections that needed to be timetabled over 4 

blocks. There were no students who wanted all the same courses so the model 

proposed by Boland et al. (2006) would not simplify the formulation; however the 

ASM managed to remove 1,260 variables. We constructed the CBPM and the ASM 

with the constraint represented by equation (12) enforced to the fourth tier. Both 

models were built in Gurobi (2014), and the results are summarized in Table 8 

below. 
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Table 8: Atascadero Fine Arts Academy Comparison of CBPM vs. ASM 

 Complete Binary 

Programming Model 

Aggregated 

Student Model 

Number of Variables 2,760 1,500 

Number of Constraints 1,193 2,652 

Solve Time (s) 12.98 7.37 

% Solve Time of CBPM 100% 56.78% 

Number of Students-Sections Enrolled 624 621 

% Student Enrollment of CBPM 100% 99.52% 

 

This output is encouraging for several reasons; the ASM greatly reduced the 

number of variables in the model, and while the number of constraints also rose 

substantially, the solve time for the ASM was roughly half that of the CBPM. 

Additionally, the quality of the final solution is nearly identical between the two 

models; the ASM fails to enroll three students in one block that the CBPM 

successfully enrolls, and this could likely be amended by enforcing the fifth tier of 

the constraint represented by equation (12). 

 

Templeton High School 

Next, we worked with a much larger school that required both core and elective 

classes to be scheduled. This school is large enough that computers are required 

to find good solutions, and even with the aid of computers, optimal solutions may 

not be found in times that are considered reasonable. Because core courses are 

being scheduled, there is a large amount of symmetry involved in the solution 

space, but there are still many classes that are only offered once so the diversity 

of student demand is also high. 
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Data on 782 students was provided for 101 courses, 72 of which have only one 

section. There were a total of 183 sections that needed to be timetabled over 8 

blocks. We constructed the CBPM and the ASM with the constraint represented 

by equation (12) enforced to the first tier. The models were both built in Gurobi 

(2014), and the results, summarized in Table 9 below, show a larger disparity in 

the quality of the solutions but a dramatically improved run time from the CBPM to 

the ASM. 

 

Table 9: Templeton High School Comparison of CBPM vs. ASM 

 Complete Binary 

Programming Model 

Aggregated 

Student Model 

Number of Variables 55,456 35,184 

Number of Constraints 14,201 15,283 

Solve Time (s) 10,231 366 

% Solve Time of CBPM 100% 3.58% 

Number of Students-Sections Enrolled 5,294 5,137 

% Student Enrollment of CBPM 100% 97.0% 

 

These results demonstrate that even with the ASM running at its most inaccurate 

setting, the results are still reasonable. The Constraint represented by equation 

(12) was only enforced to the first tier, which is essentially only using course 

capacity as a guideline for when to schedule courses, but the quality of the solution 

is only 3% worse. It is likely that most of this disparity would be eliminated with the 

enforcement of the second or third tier of constraints. Because the complete 

generation of a hypergeometic constraint takes quite some time, it is expected that 
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the ASM will take longer to generate and read than the CBPM, but this is expected 

to be comparatively small when the entire process is considered. 

 

Another noteworthy aspect of these results is the run time; the ASM ran in less 

than 4% of the time that the CBPM. Reduction in run time was the primary 

motivation for creating a new formulation, and it is possible that once the model is 

more constrained, it will run even faster because the size of the solution space will 

be reduced. 
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VII. Conclusions 

 

Analysis of Results 

We have seen that by aggregating student data, with a method independent of 

symmetry, it is possible to considerably reduce the time required to find a solution 

to the Course Timetabling Problem. We believe that optimal solutions can still be 

found with the Aggregated Student Model, but the focus of this study was to reduce 

the run time of the ASM while maintaining comparable results to the Complete 

Binary Programing Model. 

 

We found that the ASM is successful when employed at both small and mid-sized 

institutions; the run time advantage of the ASM appears to be better as the 

institution grows in size, and the error appears to increase as the model is less 

constrained. Because some of these variables are confounded though, it is 

possible that the size of the institution or the degree to which the model is 

constrained do not have the expected impact. Furthermore, we only have data 

from two institutions, so we cannot be entirely confident in any of our findings 

because it is possible that unexpected factors had an influence on our results. 

 

We were unable to determine if constraining the model further reduces the run time 

or extends it, so a follow up study will be needed. As has been seen in other 

studies, the bounds of error for this problem are too large and variable to be useful. 

Practically, we have shown that the error at the least accurate setting is around 
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3% but a more exact analysis with several data sets, and theoretical proofs would 

be needed for any confident conclusions here. 

 

The ASM, like most solution strategies to the Course Timetabling Problem, is 

better equipped to deal with some problems than others. Specifically, the ASM is 

ideal for institutions with many courses that have a single section and a diverse 

range of course demand. But it seems to be an improvement from the CBPM 

whenever speed is a primary factor.  

 

Scalability 

The scalability of the problem is difficult to estimate because the size of the 

models, and thus the solution time, is dependent on a number of factors that are 

different from institution to institution. Because the timetabling problem presented 

in this paper is NP-Complete (Qu et al., 2009), the time required to find an 

optimal solution at large institutions would take several years with the computing 

power available today. As the number of courses offered, blocks used, and 

students grows, the solution space grows in an exponential manner, so the 

solution time will also grow at a similar rate. Both the CBPM and the ASM will 

take an unreasonable time to solve at large institutions, but the ASM will always 

solve faster than the CBPM as long as there is at least one course with only one 

section. The ASM will take longer to load into the computer than the CBPM, but 

so far, this time has been insignificant compared to the actual solve time. 
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Potential for Future Research 

Most work on the Course Timetabling Problem focuses on heuristic search 

strategies applied to the CBPM; however there are many possibilities for search 

algorithms to be applied to decomposed models. It is likely that heuristics or hyper-

heuristics tuned to decomposed models will run much faster than a decomposed 

model or a heuristic alone, so there is potential for such work to be done on the 

ASM. Additionally, we would like to see our work combined with that of Boland and 

Hughes [5]; they have developed a model that benefits from symmetry in the 

solution space while the ASM is well suited to demand diversity. We believe that 

the ASM is compatible with their model, and together they would compose a more 

robust program than either individually, benefiting from both demand diversity and 

symmetry where present. 

 

In this paper, we chose not to aggregate student data for all courses with multiple 

sections to avoid the need to track which students have already enrolled in a 

previous section of the course, but this simplification is not inherently necessary 

and it may be possible to constrain aggregated data for these courses. This would 

make the ASM efficient when working with large institutions that offer several 

sections for most courses. 

 

Finally, the speed and accuracy of the ASM may depend largely on the tier to which 

the union constraints on enrolment are enforced. The model can find accurate 

solutions quickly if the model is constrained to the right degree, but it is difficult to 
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know where that is. This paper has set up the basics for analytically determining 

the range of optimality the solution is bounded within, but additional work is needed 

to determine the relationship between solution time and accuracy of solution. 
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Appendix 

 

Theorem:  

Let b ∈ B be the block with the largest number of courses offered in a schedule, let 

the number of courses offered during b be |Cb| = r. Let the sum of all xc be 

constrained so that 

 

∑ 𝑥𝑐

𝑐∈𝐶𝑏

≤  | ⋃ 𝐷𝑐

𝑐∈𝐶𝑏

| 

 

Therefore, 

 

𝑀𝐴𝑋 [∑ ∑ ∑ 𝑆𝑛 𝑐 𝑏

𝑛∈𝑁𝑐∈𝐶𝑏∈𝐵

] =  𝑀𝐴𝑋 [∑ ∑ 𝑥𝑐 𝑏

𝑐∈𝐶𝑏∈𝐵

] 

 

and the objective function of the ASM is equivalent to that of the CBPM. 

 

 

Proof:  

Since the definition of the Desirability set is the subset of students who want to 

take course c, the cardinality of the union of the desirability set across all courses 

offered this block Cb is the sum of all students who want to take at least one course 

c ∈ Cb 
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𝑀𝐴𝑋 [ ∑ ∑ 𝑆𝑛 𝑐

𝑛∈𝑁𝑐∈𝐶𝑏

]  =  | ⋃ 𝐷𝑐

𝑐∈𝐶𝑏

| 

 

Because xc is upward bounded by the union of the desirability set, the maximum 

of xc is of course 

 

𝑀𝐴𝑋 [ ∑ 𝑥𝑐

𝑐∈𝐶𝑏

]  =  | ⋃ 𝐷𝑐

𝑐∈𝐶𝑏

| →   𝑀𝐴𝑋 [ ∑ ∑ 𝑆𝑛 𝑐

𝑛∈𝑁𝑐∈𝐶𝑏

] =  𝑀𝐴𝑋 [ ∑ 𝑥𝑐

𝑐∈𝐶𝑏

] 

 

Now because b is the block with the largest number of courses offered, all other 

blocks have at most r courses offered; thus, we can repeat the above procedure 

for each block and the union of the Desirability set will sufficiently constrain the 

sum of all xc. Therefore, 

 

𝑀𝐴𝑋 [∑ ∑ ∑ 𝑆𝑛 𝑐 𝑏

𝑛∈𝑁𝑐∈𝐶𝑏∈𝐵

] =  𝑀𝐴𝑋 [∑ ∑ 𝑥𝑐 𝑏

𝑐∈𝐶𝑏∈𝐵

] 

 

and the objective function of the ASM is equivalent to that of the CBPM. ■ 


