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ABSTRACT 
 

Vascular Reactivity in Newly-Formed and Mature Arterialized Collateral Capillaries 

Sara Hellstrom 

Peripheral arterial occlusive disease (PAOD) is a globally-prevalent 
cardiovascular disease in which atherosclerotic plaques narrow arterial lumen diameters 
and restrict blood flow to downstream tissues. The impact of these occlusions can be 
mitigated by collateral vessels that connect parallel arterial branches and act as natural 
bypasses to maintain perfusion. In animal models that lack collateral arterioles, 
capillaries that connect terminal arteriolar segments can arterialize and form functional 
collaterals following an ischemic event; however, in the early stages of development, 
vasodilation is impaired. We explored the mechanism of impaired vasodilation in 
arterialized collateral capillaries (ACCs) and pre-existing collaterals (PECs) by 
evaluating endothelial-dependent vasodilation and endothelial-independent reactivity at 
day seven following the ischemic event. We also evaluated functional vasodilation in 
mature ACCs and PECs at day 21 by applying vasodilation inhibitors during the 
electrical stimulation of muscle contraction. Arterial occlusion was performed by ligating 
the cranial-lateral spinotrapezius feed artery in Balb/C mice, a strain that either lacks 
native arteriolar collaterals or contains a single collateral arteriole (~50% of mice), as 
opposed to the C57Bl/6 strain, which each contain 10 or more collateral arterioles. At 
seven days post-surgery, both vasodilation and vasoconstriction were impaired in ACCs 
when compared to terminal arterioles of similar size in unoperated limbs, but still 
exhibited significant changes when compared to baseline. The comparable reactivity in 
both endothelial-dependent and independent vasodilation at day-seven in ACCs indicates 
that vascular smooth muscle cells are likely responsible for the impairment, as they may 
still be developing, rearranging, or both, and are not yet fully capable of regulating 
diameter in immature ACCs. However, by 21 days post-ligation, ACCs regained the 
capacity to dilate in response to muscle contraction, and utilized similar vasodilation 
pathways as control vessels. At seven days post-ligation, PECs had impaired endothelial-
independent dilation, but successful endothelial-dependent dilation, indicating the use of 
alternative pathways to dilate. Unlike ACCs, the PECs never completely restored 
vasodilation capabilities by day 21, which may be due to a variation in smooth muscle 
phenotype, sensitivity to vasoactive agents, and/or limited growth factor expression. For 
future work, evaluating collateral formation and vasodilation in a diseased model and 
investigating molecular variations in the smooth muscle may yield additional knowledge 
that can improve therapies for patients during ischemic events. 

 
 

Keywords: arteriogenesis, arterialization, ischemia, peripheral arterial occlusive disease, 

vasodilation, spinotrapezius  
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Chapter I. INTRODUCTION 

Clinical Relevance  

Ischemia—an insufficient blood supply to tissue—impairs arterial function in the 

microcirculation (9). Specifically, chronic ischemia due to peripheral arterial occlusive 

disease (PAOD) impairs vasodilation in the limb skeletal muscles (Figure 1) (4, 9). In 

2012, approximately 8 million Americans had PAOD, a number that has been 

 

Figure 1. Atherosclerosis in PAOD. In PAOD, narrowed and hardened arteries reduce 
blood flow to limbs (47). 
increasing for the past decade (10). PAOD has three general causes: inflammation, 

atherosclerosis, and thrombus formation. Inflammation is a physiological response to 
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damaged tissue or cells in which cytokines and growth factors are released, and 

leukocytes are recruited to the area. When the influx of cells and heightened activity 

continue, the process transitions to chronic inflammation and can cause damage to the 

nearby tissue and leads to stenosis, or narrowing of the artery (29, 38). Atherosclerosis 

develops when the lipids, inflammatory cells, and extracellular matrix components 

accumulate under the endothelium of arteries (55). Low-density lipoproteins (LDLs) are 

oxidized and phagocytized by macrophages, which accumulate and form foam cells. 

Foam cells and smooth muscle cells migrate into the sub-endothelial space and can 

obtrusively shape the lumen, leading to stenosis (Figure 2) (55). Thrombus formation is 

often associated with atherosclerosis, as the foam cells collect and become a risk for 

embolism when the deposits develop the potential to burst into the lumen (38). 

Additionally, the endothelium becomes dysfunctional in atherosclerotic conditions and 

fails to maintain vascular homeostasis by releasing factors to regulate reactivity, smooth 

muscle proliferation and migration, fibrinolysis, and thrombogenesis, further contributing 

to the risk of thromboembolism (15). 

The most common symptom of PAOD is intermittent claudication, or hypoxic 

pain during locomotion, which is amplified during exercise (10, 64). Cramping and 

discomfort develop in the ischemic tissues from insufficient oxygen and nutrient 

exchange, resulting in metabolite accumulation (10, 54). In PAOD patients, this 

discomfort is extreme and prevents any further immediate exercise. 

Patients are diagnosed with PAOD by symptom assessment and measuring an 

ankle-brachial index (ABI) or vascular imaging, such as ultrasound, magnetic resonance 

angiography (MRA), and/or computed tomographic (CT) scan. ABI measures a 
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comparative blood pressure between ankle and arm while ultrasound, MRA, and CT are 

imaging tests that visualize plaque accumulation (10). Once PAOD has been diagnosed, 

initial treatments include lifestyle modifications such as cessation of smoking, integration 

of regular physical activity, and adjustments in diet. 

     
Figure 2. Neointimal formation during atherogenesis (72). Leukocytes infiltrate the 
intimal space and necrotic cells form fibrous cap to develop atherosclerotic plaque.  
 

If lifestyle modifications are ineffective, pharmacotherapy with anti-platelet 

medications such as aspirin can be administered to prevent thrombus formation on the 

atherosclerotic plaque(s). Antiplatelet medications reduce the risk of serious vascular 

events in patients with PAOD by 23% (21). Other medicines, like angiotensin-converting 

enzyme (ACE) inhibitors, slow atherogenesis and improve peripheral blood pressure to 

the extent that mortality, myocardial infarction, and stroke rates are reduced (21). In 

severe cases of PAOD, bypass surgery and percutaneous interventions, including 
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angioplasty, are used to restore blood flow downstream of the atherosclerotic plaque (10, 

21). Bypass is a relatively invasive surgery in which a section of a blood vessel is 

transferred from an artificial source or from another area of the body to provide an 

alternative route for blood to flow around the occlusion. Angioplasty, a less invasive 

surgery than bypass, pushes the occluded vessel radially outward via intraluminal 

catheter, restoring blood flow in the downstream vascular network. Unfortunately, not all 

patients are candidates for surgery, percutaneous interventions may fail due to restenosis, 

and current pharmacotherapy medications often have undesirable side effects such as 

diarrhea, neutropenia, and thrombotic thryombocytopenic purpura (21). Therefore, 

developing alternative methods to restore blood flow to ischemic zones is necessary to 

improve PAOD-patient prognosis and treatment.  

Previous Work 

Stimulating the development of collateral networks is a potential alternative for 

restoring blood flow in patients that are not candidates for bypass or percutaneous 

interventions. Collateral networks are natural bypasses that improve patient prognosis by 

redirecting blood flow in the event of arterial occlusion. With a collateral, or a vessel 

connecting two parallel arterial segments in series, nutrient-rich blood has an alternative 

path to reach downstream tissues that would, otherwise, become anoxic (62). When blood 

flow is redirected and shear stresses increase due to the occlusion, collateral vessels 

enlarge via arteriogenesis, in which vessels outwardly remodel and incorporate a thicker 

layer of smooth muscle cells (25). Historically, however, arteriogenesis was only thought 

to be possible in pre-existing collateral arterioles, and not all animal strains have robust 

collateral networks to support arteriogenesis by this definition. The variation in collateral 
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density between strains of mice can be extrapolated to humans such that some patients 

may be genetically more susceptible to ischemia when a low number of collateral 

networks are present.  

Two strains of mice that exemplify differences in collateral networks are C57Bl/6 

and Balb/C. C57 is a commonly used strain of mouse in research (60) and has a high 

density of collaterals, while the Balb/C strain has a lower or nonexistent density of 

collaterals, depending on the tissue. In Balb/C mice, upstream arterial occlusion induces 

outward remodeling – specifically, arterialization – of so-called “collateral capillaries” 

that anastomose terminal arterioles of two adjacent vascular trees. Although their high 

resistances prevent their initial function as true bypass collaterals, these capillaries recruit 

smooth muscle cells and outwardly remodel into arterioles (25, 58). The newly developed 

arterialized capillaries have a lower resistance to blood flow and can act as bypass 

collaterals to reperfuse ischemic tissues. Unfortunately, these new vessels are 

functionally impaired in their early stages, failing to dilate and increase flow in response 

to muscle contraction (12, 13). Regaining vasodilatory capabilities is important because, 

when they are impaired, these arterialized capillaries fail to meet the demands of 

downstream tissue when metabolism increases, for instance, during locomotion and 

exercise. Specifically, functional vasodilation is absent seven days after occlusion of an 

upstream feed artery in the spinotrapezius muscle of mice (13). Functional vasodilation is 

restored, however, 21 days following occlusion (13).  

 Because the impairment is temporary, the initial dysfunction may be attributed to 

immaturity of the vascular smooth muscle cells within the outward remodeling phase 

(42). The cause of early impairment in vessel wall function is unknown: whether it relates 
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to smooth muscle cell function, endothelial cell function, or both. Understanding the 

function of new collateral vessels may allow us to support their development and reduce 

the duration and scale of their impairment. Although these new vessels are seemingly 

mature at 21 days, three weeks may be too long for patients to recover effectively from 

an ischemic event, as in PAOD or coronary heart disease (CHD) (80). Thus, accelerating 

collateral development could mediate and resolve one of the most prevalent health issues 

in the world today; however, we first need to understand the mechanisms of vasodilation 

dysfunction to progress with such research. 

Specific Aims and Hypotheses 

The overall goal of this project is to determine the mechanisms of vasodilation 

and impaired vasodilation during the development of arterialized capillaries and 

remodeling of pre-existing collaterals. Understanding these mechanisms will provide a 

foundation for developing improved therapeutic agents for patients suffering from 

Peripheral Arterial Occlusive Disease (PAOD) with a dendritic, ischemia-prone 

vasculature, as seen in the Balb/C mouse strain. 

Specific Aim 1: To test the hypothesis that smooth muscle-dependent vascular reactivity 
is impaired in arterialized collateral capillaries and pre-existing collaterals at day-7 
following spinotrapezius feed artery ligation. 
 
Specific Aim 2: To test the hypothesis that functional vasodilation in mature arterialized 
collateral capillaries and pre-existing collaterals at day-21 following feed artery ligation 
utilize similar pathways as control vessels. 
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Chapter II. REACTIVITY AT DAY-7  

INTRODUCTION  

Collaterals are beneficial in the event of arterial occlusion by providing patient 

circulation with an alternative path to reach downstream tissue (62, 79). The 

spinotrapezius muscle within the Balb/C mouse strain serves as a model for an extreme 

case of low-density collateral networks within the vasculature (11, 12, 79). In this model, 

the capillaries connecting dendritic arterial branches arterialize when an upstream artery 

is occluded to support a circulatory bypass route (25). Seven days following 

spinotrapezius feed artery ligation, the arterialized collateral capillaries that have formed 

do not vasodilate in response to muscle contraction (13). This inability to dilate is likely 

due to the arrangement and immaturity of smooth muscle cells (26, 42). Smooth muscle 

is not typically present around capillaries, so it is possible that the cells require more than 

seven days to fully develop and orient themselves as the cells are either recruited from 

upstream arterioles or differentiate from existing perivascular cells (25, 48, 68).  

The purpose of this study was to test the hypothesis that smooth muscle-

dependent vascular reactivity is impaired in arterialized collateral capillaries (ACCs) at 

day-7, which required the optimization of reagent concentrations to elicit maximal 

responses for endothelial-dependent (acetylcholine), and endothelial-independent 

(sodium nitroprusside, norepinephrine, papaverine, sodium hydrogen sulfide) vasoactive 

agents. Additionally, pre-existing collaterals (PECs) were analyzed in the same manner 

as the ACCs to compare reactivity of collateral vessels that have a more established 

smooth muscle layer. We anticipated a generalized smooth muscle-based impairment in 

both vessel types, as the smooth muscle layer is adapting in both scenarios to 

accommodate the ischemic event by developing an alternative route for blood flow. 
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Smooth-muscle dependent vascular reactivity was determined by comparing the 

effects of endothelial-dependent and endothelial-independent vasodilators and an 

endothelial-independent constrictor. Equal or lesser responses with endothelial-

independent reagents, as compared to endothelial-dependent reagents, would imply 

smooth-muscle dependent impairment; whereas, a greater response to endothelial-

independent reagents would imply endothelial-based impairment. Optimum doses were 

empirically determined in unoperated mice to elicit a maximum vasodilatory or 

vasoconstrictive response with the lowest concentrations of respective reagents. These 

doses were then used to assess the reactivity of arterialized capillaries and pre-existing 

collaterals in operated animals. 

Endothelial Dependent and Independent Pathways 

To determine whether endothelial-dependent and/or endothelial-independent 

pathways are responsible for impaired vasodilation, the major components of the relevant 

cascades first need to be understood. Endothelial-dependent vasodilation is elicited by 

activating a G-protein coupled receptor (GPCR) cascade that stimulates endothelial nitric 

oxide synthase (eNOS) to produce nitric oxide (NO) and stimulates the endothelium to 

generate more endothelium-derived hyperpolarizing factors (EDHFs), such as 

epoxyeicosatrienoic acid (EET), an arachidonic acid metabolite (6, 7, 19, 40). NO binds 

to smooth muscle cell guanylyl cyclase receptors, which increases cyclic guanosine 

monophosphate (cGMP) production, thereby activating protein kinase G (PKG). PKG 

phosphorylation inhibits myosin light chain kinase and reduces intracellular calcium by 

decreasing the open probability of the calcium channels, ultimately inhibiting actin-

myosin cross-bridge cycling to relax the smooth muscle and cause vasodilation (5, 40, 
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75). Acetylcholine (ACh) can be applied directly over vessels and tissue to initiate the 

endothelial-dependent vasodilation cascade via GPCR cascade activation and also 

through hyperpolarizing effects (6, 36). Alternatively, sodium nitroprusside (SNP) breaks 

down into NO and leads to vasodilation by targeting receptors directly on the smooth 

muscle and bypassing the endothelium.  

Increasing the open probability of voltage-gated potassium channels, another 

action of EDHFs, also leads to hyperpolarization independent of the endothelium-

dependent GPCR cascade (24). Hydrogen sulfide (H2S) can be applied in the form of 

sodium hydrogen sulfide (NaHS) to initiate hyperpolarization for endothelial-independent 

vasodilation. The hyperpolarization closes voltage-gated calcium channels, which 

prevents influx of calcium and, thereby, decreases intracellular calcium levels. Less 

calcium is available to bind to calmodulin to create the calcium-calmodulin complex that 

would otherwise activate myosin light chain kinase (MLCK). Since less MLCK is 

activated and there is less intracellular calcium for cross-bridge cycling, the smooth 

muscle relaxes.  

Another way to relax the smooth muscle is through prostacyclin production in the 

endothelium, which can be mimicked with the application of papaverine, a 

phosphodiesterase inhibitor. Prostacyclin activates adenylyl cyclase (AC) by binding to 

prostaglandin I2 (IP) receptors and activating G-protein coupled receptors specific to AC. 

AC, then, leads to the elevation of cyclic adenosine monophosphate (cAMP) levels and 

activating protein kinase A (PKA) (14, 38, 40). PKA phosphorylates and inhibits MLCK, 

thereby relaxing the vascular smooth muscle by decreasing intracellular calcium levels 

and inhibiting contraction. The consequent reduction of cross-bridge cycling relaxes the 
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muscle to dilate the vessel. Phosphodiesterase inhibitors like papaverine mimic 

prostacyclin production by preventing cAMP hydrolysis and degradation to increase 

cAMP levels (14).  

To evaluate the ability for SMCs to dilate, we can apply endothelial-derived 

relaxing factors (EDRFs), such as nitric oxide, or compounds that mimic EDRFs to 

stimulate a particular pathway (7). When nitric oxide (NO) compounds are directly 

applied, the smooth muscle relaxes through direct activation of soluble guanylyl cyclase 

(Figure 3). Guanylyl cyclase increases cGMP to phosphorylate PKG, inhibit MLCK, and 

inhibit actin-myosin cross-bridge cycling, allowing the smooth muscle to relax. 



 11 

 

 

In addition to analyzing vasodilation, it is valuable to investigate the ability of 

vessels to vasoconstrict, as both actions are critical to properly regulating tissue perfusion 

(5). Norepinephrine (NE) is a neurotransmitter that activates alpha-1 adrenergic receptors 

Figure 3. Cell signaling in smooth muscle relaxation (53). With many potential initial 
stimuli, vascular smooth muscle ultimately dilates in response to nitric oxide (NO). 
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on the smooth muscle cells to increase intracellular calcium and constrict the vessel 

(Figure 4) (40). 

 

Figure 4. Cell signaling for smooth muscle contraction. Increasing intracellular 
calcium within the smooth muscle allows for increased cross-bridge cycling. 

 

The adrenergic receptors activate phospholipase C to hydrolyze phosphatidylinositol 4,5-

bisphosphate (PIP2) into inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 

increases intracellular calcium by binding to and opening the IP3-sensitive receptor on the 

endoplasmic reticulum. Increased intracellular calcium increases cross-bridge cycling in 

the smooth muscle and, thus, causes vasoconstriction. 

To confirm a generalized smooth muscle-based vasodilation impairment in 

immature arterialized collateral capillaries (ACCs), we exposed ACCs to endothelial-
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dependent (ACh) and endothelial-independent (SNP) vasodilators, prostacyclin-

mimicking (papaverine) and hyperpolarizing (sodium hydrogen sulfide) reagents in a 

physiological salt solution seven days post-ligation. The effects of the latter two reagents 

were assessed using sodium nitroprusside (SNP) as a control. In these ways, we tested the 

hypothesis that smooth muscle-dependent reactivity, including both the hyperpolarization 

and prostacyclin pathways of vasodilation, would be impaired within the vascular smooth 

muscle of arterialized capillaries as compared to that of terminal arterioles with 

equivalent baseline diameters, but that they will still significantly dilate. Impairment 

specific to the smooth muscle would materialize as equal vessel impairment in response 

to endothelial-independent reagents, as compared to the response to endothelial-

dependent reagents. 
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METHODS 

Animal Care and Housing 

Male Balb/C mice were housed in microisolator cages within temperature-

controlled rooms in the University Vivarium for the duration of the study on a 12-hour 

light/dark cycle. Male mice are used consistently to avoid variation in restoration 

capabilities due to genetic differences between genders, such as higher baseline VEGF 

and eNOS levels in females (49). All mice were provided food and water ad libitum, 

bedding, a plastic “mouse house,” and a plastic tube. Balb/C mice had no more than three 

other cage-mates. These mice were cared for and utilized under the guidelines specified 

by protocols that were approved by the Cal Poly State University SLO Institutional 

Animal Care and Use Committee.  

Vascular Reactivity with Intravital Microscopy – Dose Response 

To determine the optimum concentrations where there is a consistent response to 

ACh, SNP, NE, papaverine, and NaHS, dose response studies were performed in which 

increasing concentrations were applied for each reagent until additional doses did not 

result in an increase in vessel diameter. Evenly distributed doses by factors of ten were 

used because the vessels tend to respond in a sigmoid pattern such that there is consistent, 

low reactivity with the lower doses at the left of the curve, highly sensitive and 

exponential increases at the center, and a consistent plateau at the right with high 

reactivity in response to the higher doses. Vasoactive agents were delivered to the 

spinotrapezius preparation in a physiological salt solution (PSS), which was prepared 

daily and contained (in mM) 131.9 NaCl, 4.7 KCl, 1.17 MgSO4, 2 CaCl2, and 18 

NaHCO3. PSS was heated to 45 ºC, bubbled with 5% CO2-95% N2, maintained at a pH of 
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~7.4, and flowed over the preparation at 35 ºC and ~2 mL·min-1 to most closely replicate 

anaerobic and physiologic conditions. 

Each mouse was initially anesthetized with 4-5% isoflurane in oxygen in an 

induction chamber before being transferred to a preparation bench where the isoflurane 

was reduced to ~1-3% and maintained at ~0.5-1.0 L·min-1 via nose cone throughout the 

duration of the procedure. The hair on the anterior dorsal aspect of each mouse was 

removed with trimming clippers and depilatory cream. Following skin preparation, mice 

were transferred to a heat pad (CWE Inc., 08-13000) in the prone position. 

Internal temperatures were maintained at 35º C via heat pad controlled by a rectal 

thermistor. Following an initial skin incision at the caudal end of the spinotrapezius, the 

skin was retracted and superficial fascia gently removed to expose the muscle. The 

exposed tissue was continually irrigated with PSS, and any area not irrigated by the PSS 

was covered with plastic wrap to prevent desiccation and to minimize atmospheric 

oxygen exchange.  

Terminal arterioles in the spinotrapezius were identified on the intravital 

microscope and video was captured of the baseline diameters after a 30-minute 

stabilization period. Vasoactive agents were administered to the PSS at 10-7, 10-6, 10-5, 

and 10-4 M for SNP, ACh, and NE, at 10-6, 10-5, 10-4, 10-3.5, and 10-3 M for NaHS, and at 

10-6, 10-5, 10-4, and 10-3 M for papaverine. Videos of vessel diameter were captured 

during the final minute of a 5 to 15-minute waiting period and the procedure was 

repeated on the contralateral limb. 
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Spinotrapezius Lateral Feed Artery Ligation 

To stimulate the arterialization of collateral capillaries, the lateral spinotrapezius 

feed artery was ligated (Figure 5). Mice were anesthetized and prepared as described 

above. Buprenorphine analgesic (0.075 mg·kg-1) was subcutaneously administered and 

veterinary ophthalmic ointment was applied to the eyes of the mice to prevent corneal 

desiccation. A skin incision was made above the cranial, lateral edge of the 

spinotrapezius where it intersects with the fat pad. Sterile phosphate buffered saline 

(PBS) was frequently applied to prevent desiccation. The fat pad cranial and superficial 

to the spinotrapezius muscle was blunt dissected to expose the lateral edge. 

 

 
Figure 5. Spinotrapezius ligation surgery. A) The initial skin incision is made and the 
lateral edge of the spinotrapezius muscle is exposed via blunt dissection. B) The artery 
vein pair is exposed and (C) separated. D) The artery is isolated with free strands of silk 
suture and (E) ligated. F) The incision is closed with 7.0 prolene suture. 
Between the fat pad that lies deep to the spinotrapezius and the lateral edge of the muscle, 

the spinotrapezius artery/vein pair was identified and the artery was isolated and ligated 

with free strands of 6-0 silk suture. The skin incision was closed with 7-0 polypropylene 

suture, and an incision was made on the contralateral, or sham, side. The lateral edge of 

A    B    C 

D    E    F 
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the spinotrapezius was exposed, the area was blunt dissected, and the incision was closed 

with suture. Buprenorphine analgesic was subcutaneously administered immediately after 

the surgery to minimize discomfort as the animal recovered. For two days following the 

ligation, the mice received oral buprenorphine (0.01 mg·mL-1) mixed in with the water. 

Vascular Reactivity with Intravital Microscopy 

Seven days following each ligation surgery the spinotrapezius muscle was re-

exposed. The same protocol was followed as described above, but each vasodilator agent 

was only administered to the area once at 10-5 Molar (ACh, SNP, NE), 10-4 Molar 

(papaverine), or 10-3 Molar (NaHS) concentrations. Arterialized capillaries or pre-

existing collaterals were analyzed on the ligated side and equivalently-sized contralateral 

arterioles were analyzed on the sham side. Following the procedure, both the ligated and 

sham spinotrapezius muscles were also fixed in situ with topical application of 4% 

paraformaldehyde (pfa), removed, post-fixed overnight in 4% pfa, and stored in PBS at 4º 

C. 

Imaging and Statistical Analysis 

The images/videos were analyzed using AVA software to compare diameters 

before and after reagent application in the sham and arterialized collateral capillaries or 

pre-existing collaterals. Differences in resting and dilated/constricted diameters, and 

percent changes between control and ligated sides were evaluated by homoscedastic t-

tests and one-way ANOVA. Data are presented as averages ± standard error. 
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RESULTS 

The purpose of this study was to test the hypothesis that a generalized smooth 

muscle-based vasodilation impairment is present seven days following upstream arterial 

occlusion. Before testing this hypothesis, optimum concentrations were determined for 

the endothelial-dependent vasodilator, ACh (Figure 6), for the endothelial-independent  
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Figure 6. Endothelial dilator dosage response curves in unoperated animals. A) 
Terminal arteriole diameters (µm) pre and post exposure to 10-fold dilutions of ACh 
(n=7). B) Percent changes post ACh exposure. 
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vasodilators, SNP, papaverine, and NaHS (Figure 7), and for the endothelial-independent 

vasoconstrictor, NE (Figure 8).  

Vessels responded in a roughly sigmoid pattern to all vasoactive agents, such that 

maximal or near maximal vasodilation or vasoconstriction was attained where the 

sigmoid curves begin to plateau. Optimal concentrations were determined according to 
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the curves, relative responses in comparison to other reagents, and lab chemical safety to 

be 10-5 M in response to SNP (9.5 ± 0.5 µm vs. 17.5 ± 5.5 µm) and NE (13.5 ± 4.5 µm 

vs. 6.5 ± 1.5 µm), 10-5 M for ACh (9 ± 1 µm vs. 17.5 ± 5 µm) and papaverine (8 ± 1 µm 

vs. 15.5 ± 1 µm), and 10-3 M for NaHS (8.5 ± 0.5 µm vs. 17 ± 1 µm). 

 

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

16	
  

18	
  

Rest	
   10^-­‐7	
   10^-­‐6	
   10^-­‐5	
   10^-­‐4	
  

D
ia
m
et
er
	
  (u
m
)	
  

Dose	
  Concentrations	
  

-­‐0.6	
  

-­‐0.5	
  

-­‐0.4	
  

-­‐0.3	
  

-­‐0.2	
  

-­‐0.1	
  

0	
  
10^-­‐7	
   10^-­‐6	
   10^-­‐5	
   10^-­‐4	
  

Pe
rc
en
t	
  C
ha
ng
e	
  
in
	
  D
ia
m
et
er
	
  

Dose	
  Concentrations	
  

Figure 8. Vasoconstrictor dosage response curves in unoperated animals. A) 
Arteriole diameters (µm) pre and post exposure to 10-fold dilutions of NE (n=5). B) 
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Using the optimal concentrations calculated from the dose responses, I tested the 

hypothesis that the absence of functional vasodilation at day-7 following feed artery 

ligation is due to smooth muscle cell dysfunction. Arterialized collateral capillaries 

(ACCs), pre-existing collaterals, and equivalently sized contralateral arterioles were 

exposed to vasoactive reagents seven days following spinotrapezius feed artery ligation. 

Both the sham and ligated sides were exposed to an endothelial-dependent vasodilator, 

acetylcholine (ACh), an endothelial-independent vasodilator, sodium nitroprusside 

(SNP), and an endothelial-independent vasoconstrictor, norepinephrine (NE) via 

superfusion (Figures 9, 10).  

ACh (endothelial-dependent) and SNP (endothelial-independent) both 

significantly increased vessel diameters in the terminal arterioles of the sham side and 

arterialized capillaries in the ligated side; however, the terminal arterioles dilated 

significantly more than did the arterialized capillaries (Figure 9). In the ACCs, ACh 

dilated from 8.5 ± 0.5µm to 10 ± 0.5 µm, while SNP dilated from 8.5 ± 0.5 µm to 10.5 ± 

0.5 µm. NE (endothelial-independent) failed to significantly constrict the ACCs from 9 ± 

1 µm to 8 ± 1 µm. In the sham arterioles, ACh dilated from 8.0 ± 0 µm to 14 ± 1.5 µm 

and SNP dilated from 8 ± 0 µm to 15.5 ± 1 µm. NE decreased vessel diameters in the 

sham to a point at which luminal diameter was absent (13.5 ± 2 µm to 0 ± 0 µm) so that 

the terminal arterioles constricted significantly more than did the arterialized capillaries. 

In comparing the sham arterioles to ACCs, percent changes in diameter were less in 

response to ACh (69.5 ± 14 µm vs. 19 ± 3.5 µm), SNP (95.5 ± 9 µm vs. 20.5 ± 5 µm), 

and NE (-95.5 ± 4.5 µm vs. -16.5 ± 11.5 µm). The responses to ACh (endothelial-

dependent) and SNP (endothelial-independent) were similar within the respective vessels. 
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Reactivity in the PECs was similar to that in the ACCs at day seven (Figure 10) 

as PECs trended towards less vasodilation in response to both ACh and SNP. NE 

(endothelial-independent) significantly decreased vessel diameters in the sham and 

ligated sides, again, to approximately the same degree. In the PECs, ACh dilated from 9 

± 2.5 µm to 34 ± 3 µm, SNP dilated from 17.5 ± 2 µm to 34.5 ± 3 µm, and NE 

constricted from 24 ± 3 µm to 7 ± 2 µm. In the sham arterioles, ACh dilated from 15.5 ± 

2.5 µm to 30 ± 3.5 µm, SNP dilated from 15.5 ± 3 µm to 35 ± 4.5 µm, and NE 

constricted from 25 ± 3.5 µm to 11.5 ± 1.5 µm. Comparing the percent changes in 

diameter for sham and ligated, the responses were similar to ACh (100.5 ± 32.5 % vs. 

101 ± 33.5 %) and NE (-47.5 ± 16 % vs. -67 ± 9 %), but with an impaired response to 

SNP (145 ± 26.5 % vs. 98 ± 19.5 %). Because the vessels were not always allowed to 

return to their resting diameters prior to applying NE, the baseline values are higher for 

NE than they are for ACh and SNP. 
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Figure 9. Vascular reactivity in arterialized capillaries at day 7. Arterialized 
capillaries pre (A) and post (B) exposure to 10-5 M SNP, visualized with intravital 
microscopy. Diameters (µm) pre and post exposure to 10-5 ACh (n=7) (C), 10-5 M 
SNP (n=7) (D), and 10-5 M NE (n=6) (E). F) Percent changes of vessel diameter in 
response to ACh, SNP, and NE; * indicates p < .05 using a paired student’s t-test. 
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Figure 10. Vascular reactivity in pre-existing collaterals (PECs) at day 7. PECs 
pre (A) and post (B) exposure to 10-5 M ACh, visualized with intravital microscopy. 
Diameters (µm) pre and post exposure to 10-5 ACh (C), 10-5 M SNP (D), and 10-5 M 
NE (n=7 ligated, n=4 sham) (E). F) Percent changes of vessel diameter in response to 
ACh, SNP, and NE; * indicates p < .05 using a homoscedastic t-test. 
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With many pathways available for vasodilation within the smooth muscle, there 

are many possible sources for impaired reactivity. To identify which vasodilation 

pathways, in particular, are impaired within the smooth muscle cells of immature 

collaterals, arterialized collateral capillaries, pre-existing collaterals, and equivalently 

sized contralateral arterioles were exposed to additional endothelial-independent 

vasodilators seven days following spinotrapezius feed artery ligation. Both the sham and 

ligated sides were exposed to the phosphodiesterase inhibitor, papaverine, and to the 

hyperpolarizer, sodium hydrogen sulfide (NaHS), via superfusion. 

Following the same pattern as ACh and SNP, both papaverine and NaHS 

significantly vasodilated arterialized collateral capillaries (ACCs) and terminal arterioles 

(Figure 11). In the ACCs, papaverine dilated from 8.5 ± 0.5 µm to 11 ± 0.5 µm, and 

NaHS dilated from 8.5 ± 0.5 µm to 12 ± 1 µm. In the sham arterioles, papaverine dilated 

from 8.5 ± 0.5 µm to 18.5 ± 2.5 µm, and NaHS dilated from 8 ± 0.5 µm to 19.5 ± 2.5 µm. 

Though the ACCs dilated significantly from rest, the ACC percent increases were 

reduced when compared against the terminal arterioles in response to papaverine (32 ± 

5.5 % vs. 97 ± 16 %) and NaHS (40 ± 4.5 % vs. 86.5 ± 6 %). 

Interestingly, while SNP, papaverine, and NaHS all significantly increased vessel 

diameters in the arterioles of the sham side and PECs in the ligated side to a similar 

degree, the PECs only trended towards a lesser vasodilation in response to each reagent 

when compared to the sham (Figure 12). In the PECs, papaverine dilated from 32 ± 8 µm 

to 49 ± 9 µm, and NaHS dilated from 31.5 ± 7 µm to 49.5 ± 9 µm. In the sham arterioles, 

papaverine dilated from 23.5 ± 1 µm to 54 ± 9 µm, and NaHS dilated from 25.5 ± 2.5 µm 

to 56 ± 8 µm. PEC percent increases trended towards impairment when compared against 
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the contralateral arterioles in response to papaverine (59 ± 12 % vs. 127.5 ± 35 %) and 

NaHS (61.5 ± 10 % vs. 122.5 ± 37 %). 
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Figure 11. Modes of impaired SMC-based vasodilation in arterialized capillaries. 
Representative images pre (A) and post (B) exposure to 10-5 M SNP, visualized with 
intravital microscopy. Diameters (µm) pre and post exposure to 10-5 M papaverine 
(n=7) (C), and 10-3.5 M NaHS (n=6) (D). E) Percent changes of vessel diameter in 
response to ACh, SNP, and NE; * indicates p < .05 using a homoscedastic t-test. 
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Figure 12. Pre-existing collateral SMC-based vasodilation at day seven. 
Representative images pre (A) and post (B) stimulation. Exposure to 10-5 M SNP 
visualized with intravital microscopy. Diameters (µm) pre and post exposure to 10-4 

papaverine (n=3) (C) and 10-3 M NaHS (n=3) (D). E) Percent changes of vessel 
diameter in response to SNP control (n=7), papaverine, and NaHS; * indicates p < .05 
from rest using a homoscedastic t-test. 
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DISCUSSION 

Vasodilation is absent in arterialized collateral capillaries in response to electrode-

induced muscle contraction seven days following an occlusive event (13). To investigate 

the source of impairment, we tested the hypothesis that the dysfunction is smooth muscle-

dependent by assessing vasodilation in response to various endothelial-dependent (ACh) 

and endothelial-independent agents (NE, SNP, papaverine, NaHS). Because we found 

that the relative impairment in vasodilation did not vary between the vasodilators within 

the arterialized collateral capillaries (ACCs), it is reasonable to conclude that this 

impairment is due to smooth muscle cell dysfunction. Impaired reactivity in ACCs at 

seven days post-ligation could be explained in several ways, including smooth muscle 

cell phenotype, ECM remodeling, and lack of innervation. Endothelial cell impairment 

may contribute to the impaired vasodilation in the arterialized capillaries, as the 

functionality of both cell types is altered during arteriole remodeling; however, we cannot 

associate the impairment with dysfunctional endothelial cells because the necessary 

testing was not included in the study (17, 39, 45).  

At seven days, ACCs failed to dilate in response to a functional stimulation; 

however, they did significantly dilate in response to ACh, SNP, papaverine, and NaHS 

(13). This discrepancy can be explained by a more targeted vasodilation from the local 

application of dilators as compared to the electrode-induced muscle contraction. Local 

signals to dilate or constrict are typically conducted across the endothelial cells to change 

the diameter of upstream arterioles and effectively increase regional blood flow in 

response to a local stimulus (17, 31). Because they do not typically dilate or constrict, 

capillaries may not normally conduct these signals so that, even when the capillaries have 
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arterialized, they may not yet have the capacity to communicate the vasodilation signal 

stimuli at day seven (17). Although the impaired vasoconstriction is likely due to reduced 

smooth muscle cell function, it may also be explained by a lack of innervation of the 

arterialized capillaries, which could limit contractile abilities (26, 69).  

In addition to pharmacological evaluation of arterialized collateral capillaries 

(ACCs), we also sought to gain insight into the nature of impaired vasodilation of ACCs 

independent from genetic variation between strains by evaluating pre-existing collaterals 

(PECs), a more studied collateral vessel form (11, 43, 79). Because the smooth-muscle 

layer is already present within the PECs at the time of ligation, we anticipated that the 

vessels would undergo a less dramatic remodeling than the ACCs, and, therefore, provide 

insight into the role of cell rearrangement and proliferation versus cell recruitment as the 

primary impetus for smooth muscle-based dysfunction (11, 79). The anatomical 

differences in size and layout may also contribute to vessel function through varied shear 

stress, as the PECs tend to be large, tortuous, and singular, while ACCs tend to be 

smaller, less tortuous, and more numerous.  

  In a similar manner to the ACCs, PECs trended towards impaired vasodilation in 

response to the smooth muscle-based dilators (SNP, papaverine, and NaHS) at day-seven. 

Differently from the ACCs, however, the PECs had no impairment in response to the 

endothelial-dependent dilator (ACh) and endothelial-independent constrictor (NE). The 

likely explanations for smooth muscle impairment in PECs are similar to those for the 

ACCs, with the additional explanation of cell proliferation in arteriogenesis and without 

the possibility of a lack of innervation. It is also possible that there were too few 

replicates to accurately represent PEC reactivity, or that impairment in the PECs is 
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specific to the NO and prostaglandin pathways, with the endothelium-derived 

hyperpolarizing factor (EDHF) pathway and electrical signaling relatively intact. 

Smooth Muscle Cell Phenotype 

Although ACC dilation is possible seven days post-occlusion, it is severely 

reduced. It is likely that the development and recruitment of the smooth muscle cells 

(SMCs) contributes to this impairment because the cells are still remodeling at day-seven. 

Capillaries do not normally have smooth muscle cells as a part of their structure; 

however, the increased flow in the ischemic tree may stimulate an enhanced function of 

blood flow regulation via smooth muscle. The perivascular cells surrounding capillaries 

only stain positive for smooth muscle α-actin after they arterialize so that any present 

smooth muscle cells have either recently migrated to the area or recently differentiated, 

implying a potential need for an adjustment period (25). Perivascular cells can be 

recruited from nearby arterioles or from the immediately surrounding tissue to provide 

the capillaries with a smooth muscle layer (48, 68). Regardless of their origin, the cells 

will take time to arrange and may need time to mature into contractile SMCs. For 

example, if fibroblasts are developing into SMCs, they may not yet have sufficient levels 

of actin and myosin to properly contract or relax. Thus, the immaturity of the smooth 

muscle within arterialized capillaries would impair vascular reactivity. An immature 

phenotype could be identified through gene or protein expression of the vessel wall, or 

through further pharmacological interrogation of particular vasodilation/vasoconstriction 

pathways. Other vasodilation pathways can be evaluated via intravital microscopy, such 

as arachidonic acid synthesis (bradykinin) (46). Though it would not address cell origins, 

the presence of specific genes or proteins could be analyzed to indicate smooth muscle 
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phenotypes at the day-seven time-point (8, 25). Immaturity could also be evaluated by 

histological staining for the prevalence of myosin heavy chain, as the minimally-

contractile cells may have less or a varied isoform of myosin heavy chain (34, 57). 

Extracellular Matrix Remodeling 

 An overly stiff or flexible ECM may also contribute to the vessel dysfunction at 

seven days post-ligation. In addition to the rearrangement of smooth muscle cells, the 

extracellular matrix-integrin-cytoskeletal axis is activated in response to long-term 

exposure to increased shear stress, as experienced in arterializing capillaries and 

developing PECs (36, 42). In the axis, cell-cell and cell-extracellular matrix connections 

are strengthened to maintain vascular wall structural integrity; it is also dynamically 

involved in controlling vasoreactivity. In the presence of increased shear stress, integrins 

bind to ECM proteins to trigger a signal that activates receptor tyrosine kinases on the 

endothelium to induce vasodilation (32, 44). Proteases and matrix metalloproteinases 

(MMPs) are also activated to degrade and remodel the ECM and to modulate cell 

movement and morphogenesis, in attempts to make constriction and/or dilation more 

efficient (16, 67).  If the ECM is still responding to the increased shear stress seven days 

post-occlusion ECM-cell signaling, vascular wall flexibility, and surrounding cell 

orientation will not be optimal. Thus, dilation will not be fully efficient and it will be 

impaired in the early remodeling stages of ACCs and PECs. ECM composition could be 

identified through staining for collagen fiber density, integrin, and matrix 

metalloproteinase (MMP) presence. An increase in collagen fiber density and 

homogeneous cell orientation in the mature ACCs or PECs, for example, may indicate an 
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ECM that is optimized for vasodilation and constriction, and the opposite may be found 

in immature vessels. 

Lack of Innervation 

Although the impaired vasoconstriction observed at day-seven is likely due to 

generalized smooth-muscle dysfunction, it is possible that a lack of innervation 

contributes to an initial inability of ACCs to contract. Though sympathetic nervous 

stimulation can cause dilation through β-adrenergic receptors, it typically causes 

vasoconstriction in skeletal muscle arterioles by activation of α-adrenergic receptors on 

the smooth muscle (40, 50). Capillaries are not directly innervated so that, even though 

adrenergic receptors are expressed in the endothelium, a lack of integration of the ACC 

receptors into the neurovasculature could be displayed as insensitivity to vasoconstrictors 

like norepinephrine (NE) (41). As the ACCs develop, they may become innervated by 

sympathetic nervous system (SNS) fibers and integrate α-adrenergic receptors on the 

smooth muscle to, then, be more responsive at day 21. Staining the capillary walls and 

surrounding tissue before and after arterialization in unoperated and day-seven mice, 

respectively, could identify an initial lack of innervation to explain deficient 

vasoconstriction capabilities. 

Endothelial Communication Disruption 

At day seven, functional vasodilation was absent; however, dilation in response to 

superfused vasodilators was present, though impaired. This discrepancy may be 

explained by a lack or dysfunction of endothelial cell-cell communication (20). Because 

the vasodilating reagents were applied directly, they targeted the endothelial and smooth 

muscle cells within the arterialized capillaries, bypassing any endothelial-endothelial and, 
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in the case of endothelial-independent reagents, endothelial-smooth muscle 

communication pathways, to attain vasodilation. On the other hand, the functional 

protocol relies on the endothelial cell-cell conduction circuit to communicate a dilation 

signal upstream from the site of increased metabolism due to electrode stimulated muscle 

contraction. Capillaries may not naturally be included in the endothelial conduction 

circuit found in arteries and arterioles to propagate dilation/constriction along a vessel, 

initially lacking functional gap junctions between endothelial cells to communicate a 

signal within the circuit (2). If the endothelial gap junctions are still developing in the 

ACCs at day seven, it is possible that they mature with the rest of the vessel by day 21 to 

function normally. 

The incoordination of these junctions may also be explained by the disruption of 

smooth muscle and endothelial communication as the capillary arterializes. Vascular 

development revolves around the communication between endothelial and smooth 

muscle cells in regulating vascular formation, stabilization, remodeling, and function via 

factors such as hepatocyte growth factor (HGF) and angiopoietin-1 (Ang1), so that the 

proper formation of endothelial gap junctions is also dependent on proper communication 

between the endothelium and smooth muscle (39, 70). Ang1, which regulates genes in 

endothelial cells, is involved in recruiting the SMCs and maturing the vasculature, so that 

successful vascular development depends on paracrine communication with ECs and also 

on endocrine factor processing (39). In conjunction with underdeveloped paracrine and 

endocrine communication, myoendothelial junctions (MEJs) may still be forming 

between the ECs and SMCs. Vessel reactivity impairment at day-seven, which is 
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eventually restored at day 21, could be explained by temporary disruption of these 

heterocellular communications as the capillaries are arterializing. 

To evaluate the hypothesis that an interruption of endothelial cell communication 

is a source of impaired functional vasodilation, application of dilating agents must be 

isolated to very specific locations on the blood vessels via micropipettes. Dilators such as 

adenosine and acetylcholine can be applied locally or distant from the site of interest on 

the vessel, and the dilation response can be measured following each application (17). 

Endothelial activity and responses can be tracked with changes in calcium ion 

concentration via fluorescent dyes, along with luminal diameter measurement via 

intravital microscopy. Reduced activity, in the form of less calcium fluctuation and less 

diameter increase, in response to distant dilator exposure at seven days post occlusion 

would indicate a disruption in endothelial communication as a contributor to overall 

impaired vascular reactivity. Additionally, myoendothelial junction presence and function 

can be evaluated through movement of dye between specific proteins found within gap 

junctions, called connexins (70). Negative staining for gap junction-specific connexin 

isoform phosphorylation and a lack of dyed amide transfer between ECs and SMCs at 

day seven would also support disrupted endothelial communication as a contributor to 

vascular reactivity impairment. 

Pre-Existing Collateral Arteriogenesis 

Pre-existing collaterals (PECs) are present in the spinotrapezius muscle of the 

Balb/C strain approximately 50% of the time. While these PECs differ from arterialized 

collateral capillaries in their anatomical position and remodeling methods, they can 

provide insight into the physiology of ACCs, without the influence of genetic differences 
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between Balb/C mice and other strains with pre-existing collaterals (26, 27). Smooth 

muscle cells (SMCs) surround PECs prior to arterial occlusion, allowing for 

arteriogenesis, while the collateral capillaries lack SMCs until they arterialize. The 

presence of existing smooth muscle on the PECS allows the cells to proliferate and 

reorganize in response to increased shear stress, whereas ACC smooth muscle must be 

recruited, potentially varying the methods and capacities to vasodilate between the vessel 

types (39). Both ACCs and PECs undergo remodeling, but the key differences in size and 

recruitment versus proliferation support the potential variation in reactivity between the 

vessel types at day seven. 

Arteriogenesis involves vessel enlargement in response to changes in shear stress, 

for example, when blood supply is redirected as a result of an occlusion (26). When pre-

existing collateral vessels (PECs) are present, blood flow will follow the path of least 

resistance and travel through the existing collateral network, around the occlusion 

(Figure 13). The initial drop in pressure and redirection of blood flow post-ligation will 

increase shear stress and cause the release of vasoactive paracrine factors. These factors 

include growth factors and vasodilators, such as endothelium-derived hyperpolarizing 

factor (EDHF) and prostaglandins, all of which contribute to the function and structure of 

vascular smooth muscle cells (22, 36). In the chronic setting of increased shear, as occurs 

following an occlusion, smooth muscle cells proliferate and differentiate, allowing for 

outward remodeling (22, 63). Shear stresses also increase in the capillaries that connect 

arterial branches and similarly activate the endothelium, but the capillaries also require 

the recruitment of smooth muscle cells to function as resistance vessels. In either case, 

the remodeling process requires the division and phenotypic transition of ECs and SMCs, 
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likely impairing their ability to effectively relax and contract when they are not 

expressing their primary phenotypes. 

 

 
Figure 13. Blood flow and shear stress shift inducing collateral vessel 
development. Figure adapted from Schirmer (63). 
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While trending towards impaired vasodilation, the pre-existing collaterals did not 

dilate less than the sham arterioles, except in response to SNP. This lack of difference can 

be explained by insensitivity to nitric oxide and/or by an inequality in baseline diameters, 

as there were few to no contralateral arterioles that matched the large baseline diameter of 

the PECs. If the PECs developed a tolerance to nitrates following nitrate-mediated 

changes as the PEC develops in response to increased shear stress, NO-based 

vasodilation may be impaired and explain the lack of response (3). This could be 

supported if pharmacological evaluation with nitrates, like nitroglycerin and isosorbide-

dinitrate, reveals PEC tolerance and insensitivity to NO. Additionally, reactivity of 

vessels depends on vessel size, in that the larger-diameter and higher-order vessels are 

capable of attaining larger percent changes in vasodilation (8). Because the baseline 

diameters of the sham arterioles are smaller on average than the PECs, the vessels are 

likely not equivalent in vasodilatory capability, and the PECs appear more reactive when 

compared against the smaller percent increase in sham diameter than they would if they 

were compared against a larger percent increase in equivalently-sized sham diameters. 

PEC Vasodilation Via Electrical Signaling from EC to SMC 

Because vasodilation signaling is typically linear from the endothelium to the 

smooth muscle via NO, prostaglandin, and/or endothelium-derived hyperpolarizing factor 

(EDHF) pathways, it was unexpected to find impairment in response to an endothelial-

independent agent (SNP), but not in upstream endothelial-dependent agents (ACh), as 

occurred in the PECs at day seven. One explanation for the ability of the ACh-induced 

dilation to propagate despite an apparent impairment in NO signaling is that alternative 

pathways exist that bypass the dysfunction. One alternative that was not addressed in 
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isolation by the reagents is the direct evaluation of electrical coupling between 

endothelial cells (ECs) and smooth muscle cells (SMCs), which is capable of inducing 

dilation without the effects of NO, prostaglandins, and EDHFs in resistance microvessels 

(18). Electrical coupling can be measured directly with highly sensitive and precise 

receiving electrodes to detect any changes in membrane potential in the ECs or SMCs in 

accordance with reagent application. A high level of activity and membrane potential 

change following vasodilator application along with vasodilation inhibitors of the cellular 

pathways, would indicate electrical communication outside of the cellular cascades, and 

support electrical coupling in PECs as an alternative pathway. 

Summary 

Seven days following arterial occlusion, arterialized collateral capillaries (ACCs) 

and pre-existing collaterals (PECs) are capable of dilating and constricting in response to 

both endothelial-dependent dilators, endothelial-independent dilators, and an endothelial-

independent constrictor; however, this capacity is largely impaired with respect to the 

reactivity of contralateral equivalent arterioles on the unoperated sides. This impairment 

is likely smooth muscle-based and may be explained by a variation in smooth muscle cell 

phenotype, extracellular matrix (ECM) remodeling, lack of innervation, and endothelial 

cell communication disruption within the ACCs, and by varied smooth muscle 

phenotype, ECM remodeling, and arteriogenic remodeling within the PECs. The ability 

for PECs to dilate normally in response to endothelial-dependent agents but not in 

response to endothelial-independent agents is likely because the former initiates 

alternative pathways such as electrical coupling between the endothelium and smooth 

muscle. This electrical coupling can successfully propagate a vasodilation signal 
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independent of the more common cellular pathways such as NO, prostaglandin, and 

EDHF. These findings that the PECs may employ alternative pathways to dilate and that 

both ACCs and PECs are capable of dilation following ischemic events improve our 

understanding of collateral development. This knowledge can advance treatments of 

increasingly prevalent cardiovascular diseases by identifying and utilizing some of these 

alternatives as avenues to regain vessel reactivity. 
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 Chapter III. ACC AND PEC REACTIVITY AT DAY-21 

INTRODUCTION  

Summary 

At 21 days post-ligation, arterialized collateral capillaries (ACCs) and pre-

existing collaterals regain functionality and demonstrate vasodilation capabilities 

comparable to contralateral arterioles following muscle contraction (13). The ‘mature’ 

vessels have had more time to develop than those at seven days following ligation, and 

have likely overcome the limitations of successful dilation with fully differentiated and 

arranged smooth muscle cells, integrated ECM, and/or appropriate innervation. Because 

dysfunction was so prevalent at day seven, however, it is possible that these recently 

adapted collaterals are more or less dependent on certain pathways or utilize alternative 

pathways to dilate successfully (23, 37). To investigate ACC and pre-existing collateral 

(PEC) dependence on the prostaglandin and nitric oxide synthase (NOS) pathways for 

vasodilation, we applied vasodilation inhibitors indomethacin and L-NAME to the 

vessels 21 days post occlusion during electrode-induced muscle contraction. 

Indomethacin significantly reduces vasodilation in healthy terminal arterioles, L-NAME 

has no effect (61), and we predict the vessels will be mature at day 21. Thus, we 

hypothesize that ACCs and PECs will be at least partially dependent on the prostaglandin 

and not the NOS vasodilation pathways, such that dilation is impaired by indomethacin 

and unimpaired by L-NAME application to approximately the same degree as in the 

respective control vessels.  

Prostaglandin and NOS-Based Pathways 

Endothelial cells are involved in successful vessel dilation through purinergic 

receptor stimulation and an increase of local calcium ions (17). Thus, investigating 
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dysfunction in the prevalent endothelial-derived relaxing factor (EDRF) production 

pathways within the endothelium may reveal contributors to functional vasodilation 

impairment, as demonstrated at day seven. EDRFs primarily describe three vasodilatory 

signals that originate from the endothelium and include nitric oxide (NO), prostaglandin 

I2 (PGI2), and endothelium-derived hyperpolarizing factor (EDHF) (24). EDHF is more 

critical in smaller resistance vessels such as arterialized capillaries, while in larger pre-

existing collaterals, NO production may be more prevalent; however, PGI2 mediates 

endothelial-dependent vasodilation in both the smaller and larger arterial vessels (22, 73). 

EDHF hyperpolarizes the membrane by activating potassium channels on the smooth 

muscle to relax the cells, and PGI2 activates adenylyl cyclase (AC) by binding to 

prostaglandin I2 (IP) receptors and activating G-protein coupled receptors specific to AC. 

Adenylyl cyclase increases cAMP levels and activates PKA to, ultimately, decrease 

intracellular calcium levels and relax the vascular smooth muscle in vasodilation. The 

cyclooxygenase (COX) pathway is followed by members of the eicosanoid family, 

integrating oxygen as a major cosubstrate to induce vasodilation via prostacyclin (PGI2) 

synthesis (20). PGI2 then potentiates the signal by activating AC and leading to SMC 

relaxation. Alternatively, NOS converts L-arginine into nitric oxide (NO), which relaxes 

the smooth muscle by directly activating soluble guanylyl cyclase (30, 38, 71). Guanylyl 

cyclase produces cGMP, which activates PKG to inhibit myosin light chain kinase and 

reduce intracellular calcium (5, 40, 75). 

We hypothesized that the ACCs and PECs would be at least partially dependent 

on the prostaglandin pathway and not dependent on the NOS pathway at 21 days post-

occlusion. Dependence would manifest as a significantly decreased functional 
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vasodilation following application of prostaglandin and NOS dependent pathway 

inhibitors. An equal or varied dependence on these pathways as compared to arterioles on 

the unoperated sides will provide more insight on the development of the collaterals 

vessels in response to an ischemic event (37). With an improved understanding of what 

dilation pathways are impaired and what pathways function well in the early stages of 

ACC and PEC development, we may be able to identify factors to expedite and support 

the development and maturation of collaterals. Less time with dysfunctional collaterals 

will reduce tissue susceptibility to ischemia, as perfusion will more effectively meet 

tissue metabolic demand. As found in different strains of mice, there may be a distinct 

variation in human vasculature that affects our aptitude to respond to ischemia. 

Individuals with robust collateral networks are better equipped to redirect blood flow 

around an occlusion and avoid strokes and myocardial infarctions (58). By facilitating 

efficient development of these collateral networks, we may improve the prognosis of 

patients with less advantageous vasculature to cope with diseases like PAOD. 
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METHODS 

Animal Care and Housing 

Male Balb/C mice were cared for and utilized, as described in Chapter 2, under 

the guidelines specified and protocols approved by the Cal Poly State University SLO 

Institutional Animal Care and Use Committee. 

Spinotrapezius Lateral Feed Artery Ligation 

To stimulate the arterialization of capillaries, the lateral spinotrapezius feed artery 

was ligated following the same procedures as described in Chapter 2. 

Vasodilation Inhibition Testing 

To ensure the efficacy of the vasodilation inhibitors, dilators specific to their 

pathways were applied before and after inhibitor application. The two vasodilation 

pathways addressed were prostaglandin and nitric oxide synthase (NOS). Arachidonic 

acid (AA) metabolizes into hydroxyeicosatetraenoic acids (HETE), which, ultimately, 

increase voltage gated calcium channel sensitivity to reduce intracellular calcium levels 

and relax smooth muscle cells. This process utilizes the prostaglandin pathway, which 

can be inhibited by indomethacin downstream of AA activation to analyze the 

prostaglandin pathway more exclusively (56, 61). Indomethacin is a non-steroidal anti-

inflammatory drug (NSAID), which inhibits cyclooxygenase (COX) and prostaglandin 

synthesis (24, 71). 

Regarding nitric oxide (NO) dependent pathways, acetlycholine dilates the 

endothelium upstream of where L-NAME inhibits NO formation. Nω-Nitro-L-arginine 

methyl ester hydrochloride (L-NAME) binds to nitric oxide synthase (NOS) and inhibits 

nitric oxide (NO) production, thereby inhibiting endothelial-dependent vasodilation (36). 
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When used alone, L-NAME constricts the local blood vessels; however, when used 

together, sodium nitroprusside and L-NAME can prevent endothelial-dependent 

vasodilation while maintaining a pre-determined baseline vessel diameter. 

Appropriate concentrations of indomethacin and L-NAME were optimized to 

sufficiently inhibit vasodilation in the prostaglandin and NOS pathways by applying 

increasing amounts of either vasodilation inhibitor until the effects of the respective 

dilators were minimized. The superfusion protocol from Chapter 2 was used with 2x10-4 

M arachidonic acid and 10-5 M acetylcholine to stimulate the prostaglandin and NO based 

dilations, inhibited respectively by 2x10-4 M indomethacin and 2x10-5 M L-NAME. 

Testing was also performed to confirm consistent functional vasodilation in response to 

repetitive electrode stimuli throughout the duration of the experiment (Appendix A). 

Vessel diameter was continuously monitored along with post-wait dilation capability to 

determine stabilization and confirm 30 minutes as a sufficient waiting period. 

Vascular Reactivity with Intravital Microscopy - Functional 

Twenty-one days following each ligation surgery, the spinotrapezius muscle was 

re-exposed. The same superfusion protocol was followed, as described in Chapter 2, with 

an added element of functional stimulation and each of the following inhibitory agents 

were independently administered to the area via superfusion: 2x10-4 M indomethacin and 

2x10-5 M L-NAME. SNP was added as necessary to maintain baseline diameters with L-

NAME exposure in 10-7 M aliquots. Muscle-stimulating electrodes were placed on the 

caudal end of the spinotrapezius muscle, where a test contraction was detected at 1 Hz, 2 

mA, and 200 µs duration to confirm placement onto the stimulus site. Once the stimulus 

site was located, as determined by consistent muscle twitching, stimulation ceased, the 
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electrodes were left in place, and the superfusion equipment was positioned to allow 

physiological salt saline (PSS) to flow over the muscle (Figure 14).  
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Figure 14. Superfusion preparation with intravital microscope and 
electrodes. Electrodes placed at caudal end of spinotrapezius to stimulate 
contractions and exercise-induced vasodilation with simultaneous 
superfusion delivery of reagents. A) Microscope, B) stimulating electrodes, 
C) rectal temperature probe, D) wick to remove excess fluid, E) flow 
regulator and tubing, F) syringe heater, G) 60 mL syringe filled with 
physiological salt solution (PSS). 
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With the equipment in position, electrode-induced muscle contraction was tested again. 

The vessel(s) of interest were imaged after a 30-minute equilibration period to record 

baseline diameters, and the muscle was stimulated for 90 seconds at 8 Hz, 2 mA, and 200 

µs duration. Vessels were imaged again immediately following stimulation to record a 

control dilation response. 

During the following 30-minute wait period between stimuli, 2x10-5 M L-NAME, 

2x10-4 M indomethacin, or both were applied via superfusion for a minimum of 15 

minutes. L-NAME and indomethacin were applied in random order, followed by both 

applied simultaneously. Vessels were imaged pre and post-stimulation for each 

combination of vasodilation inhibitors, and the functional stimulation with superfusion 

was repeated on the contralateral limb. Arterialized capillaries or pre-existing collaterals 

were analyzed on the ligated side, and equivalently-sized arterioles were analyzed on the 

sham side. Both the ligated and sham spinotrapezius muscles were also removed, fixed 

overnight in 4% paraformaldehyde, and stored in PBS. 

Imaging and Statistical Analysis 

The images/videos were analyzed using AVA software to compare diameters 

before and after reagent application in the sham and arterialized collateral capillaries or 

pre-existing collaterals. Differences in resting and dilated/constricted diameters and 

percent changes were evaluated by homoscedastic t-tests and one-way ANOVA. Data are 

presented as means ± standard error. 
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RESULTS 

To test the hypothesis that the mature arterialized collateral capillaries (ACCs) 

and pre-existing collaterals (PECs) are at least partially dependent on the prostaglandin 

and not on the nitric oxide synthase based pathways within the endothelium, we analyzed 

reactivity in the more developed vessels at 21 days following ligation. The spinotrapezius 

muscles were functionally stimulated with electrodes to prompt exercise-induced 

vasodilation while the vessels were simultaneously exposed to vasodilation inhibitors, 

indomethacin and L-NAME. These reagents are specific inhibitors of the prostaglandin 

and nitric oxide synthase pathways so that a significant decrease in ACC or PEC 

reactivity, as compared to the control vessels, would indicate a greater dependence on the 

inhibited pathway for proper dilation.  

L-NAME and indomethacin successfully prevented acetylcholine and arachidonic 

acid-induced vasodilation, respectively, in healthy arterioles (Figure 15).  

 
Figure 15. Inhibition of ACh and AA induced vasodilation. Percent changes of vessel 
diameter in response to dilators ACh (n=6) and AA (n=4) with and without inhibitors L-
NAME and indomethacin, respectively * indicates p < .05 using a homoscedastic t-test. 
 

0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 
1.8 

ACh AA 

Pe
rc

en
t C

ha
ng

e 
in

 D
ia

m
et

er
 

Without Inhibitor 

With Inhibitor 

*	
  
*	
  



 49 

L-NAME reduced the percent increase in diameter in response to acetylcholine (ACh) 

from 108.5 ± 14.5 % to 10 ± 5.5 %. Indomethacin reduced the percent increase in 

diameter in response to arachidonic acid (AA) from 153.5 ± 12.5 % to 21 ± 6.5 %. 

 Vasodilation was not inhibited in the arterialized collateral capillaries (ACCs) nor 

in the contralateral arterioles in response to all combinations of L-NAME and 

indomethacin with functional stimulation (Figure 16). ACC diameters increased from 9 ± 

0.5 µm to 19 ± 1.5 µm in response to functional stimulation, from 8 ± 0.5 µm to 15.5 ± 

2.5 µm with L-NAME applied, from 8.5 ± 1 µm to 19.5 ± 2 µm with indomethacin 

applied, and from 9 ± 0.5 µm to 17.5 ± 2 µm with both L-NAME and indomethacin 

applied. Sham arteriole diameters increased from 8.5 ± 0.5 µm to 19.5 ± 1.5 µm in 

response to functional stimulation, from 8.5 ± 0.5 µm to 16.5 ± 1.5 µm with L-NAME 

applied, from 9 ± 0.5 µm to 21.5 ± 2 µm with indomethacin applied, and from 8.5 ± 0.5 

µm to 19 ± 1.5 µm with both L-NAME and indomethacin applied.  

The percent increases in diameter were comparable between the sham and ligated 

sides and also between every reagent. Diameters in the ACCs increased 124 ± 27 % with 

no reagent applied, 90 ± 25 % with L-NAME applied, 119.5 ± 28 % with indomethacin 

applied, and 94.5 ± 14.5 % with both applied. Similarly, diameters in the sham arterioles 

increased 105 ± 18 % with no reagent applied, 81.5 ± 19 % with L-NAME applied, 119.5 

± 20 % with indomethacin applied, and 111 ± 15.5 % with both applied. This lack of 

response in both the sham and ligated sides is interesting considering the strong 

inhibitory effects of L-NAME and indomethacin on acetylcholine and arachidonic acid-

induced vasodilation in healthy arterioles. 
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Figure 16. Arterialized capillary reactivity at day 21. Diameters (µm) pre and post 
exposure to functional stimuli with no reagent (A), 2x10-5 L-NAME (n=7) (B), 2x10-4 

indomethacin (n=7) (C), or both 2x10-5 L-NAME and 2x10-4 indomethacin (D) added. 
E) Percent changes of vessel diameter in response to functional stimuli with and 
without reagents; * indicates p < .05 using a homoscedastic t-test. 
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To analyze the pre-existing collaterals (PECs) as a basis for comparing ACC 

reactivity to a more studied vessel type, the functional superfusion protocol was applied 

with the two vasodilation inhibitors, L-NAME and indomethacin, at 21 days post-ligation 

(Figure 17). At the later time-point, the PEC midzones trended towards lower percent 

increases in diameter with no reagent, L-NAME, and both L-NAME and indomethacin 

applied. PEC midzone diameters increased from 24.5 ± 6 µm to 41 ± 5 µm in response to 

functional stimulation, from 20.5 ± 4 µm to 38.5 ± 7 µm with L-NAME applied, from 

33.5 ± 8.5 µm to 43.5 ± 5.5 µm with indomethacin applied, and from 23 ± 4.5 µm to 39.5 

± 7 µm with both L-NAME and indomethacin applied. Sham arteriole diameters 

increased from 15 ± 2.5 µm to 37.5 ± 6 µm in response to functional stimulation, from 18 

± 5.5 µm to 46 ± 9.5 µm with L-NAME applied, from 19 ± 4 µm to 46.5 ± 7 µm with 

indomethacin applied, and from 18 ± 4.5 µm to 43 ± 10.5 µm with both L-NAME and 

indomethacin applied. 

Indomethacin application led to the only significant decrease in percent change at 

the PEC midzone as compared to the arterioles on the sham side. Diameters in the PECs 

increased 81.5 ± 35 % with no reagent applied, 80 ± 18 % with L-NAME applied, 23 ± 

21.5 % with indomethacin applied, and 107 ± 48 % with both applied. Alternatively, 

diameters in the sham arterioles increased 162 ± 25 % with no reagent applied, 158.5 ± 

34 % with L-NAME applied, 151.5 ± 15.5 % with indomethacin applied, and 148 ± 7 % 

with both applied. 
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Figure 17. Pre-existing collateral reactivity at day 21. Diameters (µm) pre and post 
exposure to functional stimuli with no reagent (A), 2x10-5 L-NAME (n=7) (B), 2x10-4 

indomethacin (n=7) (C), or both 2x10-5 L-NAME and 2x10-4 indomethacin (D) applied. 
E) Percent changes of vessel diameter in response to functional stimuli with and 
without reagents; * indicates p < .05 using a homoscedastic t-test. 
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The three main portions of each pre-existing collateral were also measured and 

analyzed to observe any variation within the vessels themselves (Figure 18). Location of 

diameter measurements could be critical to accuracy if the reactivity or baselines are 

different between the regions of the PECs. All three regions – reentry, midzone, and stem 

– significantly dilated in response to functional stimulation, as seen in Table I.  

Table I. Responses at Various Locations along PEC at Day 21 

  Reentry (µm) Midzone (µm) Stem (µm) 

No Reagent Pre 27.4 ± 4 24.5 ± 6 21.5 ± 4.5 
Post 57 ± 7 41 ± 5 38.5 ± 5 

L-NAME Pre 26.5 ± 4 20.5 ± 4 17.5 ± 3.5 
Post 55.5 ± 9 38.5 ± 7 32.5 ± 7.5 

Indomethacin Pre 38.5 ± 10.5 33.5 ± 8.5 25 ± 4 
Post 54 ± 9.5 43.5 ± 5.5 42 ± 4.5 

Both L-NAME 
+ Indomethacin 

Pre 29 ± 4 23 ± 4.5 19.5 ± 3 
Post 52.5 ± 10.5 39.5 ± 7 36.5 ± 7.5 

 

 Only the reentry and stem regions dilated in response to functional stimulation with L-

NAME applied, only the stem region dilated in response to functional stimulation with 

indomethacin applied, and only the reentry and stem regions dilated in response to 

functional stimulation with both L-NAME and indomethacin applied. There was a trend 

in decreasing maximum diameter reached from the reentry to the stem of the preexisting 

collateral, though each portion of the PEC had the capacity to significantly dilate. 

Indomethacin trended towards reducing the percent increase in diameter throughout the 

length of the PECs as compared to the other conditions of functional vasodilation. 
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Figure 18. Pre-existing collateral component reactivity. Diameters (µm) pre and post 
exposure to functional stimuli at the stem, midzone, and reentry regions with no reagent 
(A), 2x10-5 L-NAME (n=7) (B), 2x10-4 indomethacin (n=7) (C), or both 2x10-5 L-
NAME and 2x10-4 indomethacin (D) applied. E) Percent changes of vessel diameter in 
response to functional stimuli with and without reagents; * indicates p < .05 from rest 
using a homoscedastic t-test. 
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ACCs and PECs both have the potential to remodel; however, ACCs must first 

recruit the smooth muscle cells before they can proliferate, whereas PECs can initiate this 

process immediately in response to increased shear stress. To further compare ACCs and 

PECs in their development and remodeling processes, the progression of baseline 

diameters was compared between arterialized collateral capillaries and pre-existing 

collaterals at zero days (unligated), seven days, and 21 days post-ligation (Figure 19).  

  
Figure 19. Baseline diameter progression of ACCs and PECs. Progression of 
arterialized collateral capillary (ACC) baseline diameters from day 0 (n=7), day 7 (n=16), 
and day 21 (n=10), along side pre-existing collateral (PEC) baseline diameters at day 0 
(n=1), day 7 (n=10), and day 21 (n=5); * indicates p < 0.001. 
Baseline diameters for the PECs remained relatively constant from day seven to day 21 

(23 ± 3.5 µm to 24.5 ± 6 µm); however, arterialized capillary diameters significantly 

increased from pre to seven days post-ligation (4 ± 0.5 µm to 9 ± 0.5 µm). PEC baseline 

diameters were not collected at day zero, so parallels cannot be drawn at that time point. 
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DISCUSSION 

Arterialized collateral capillaries (ACCs) and pre-existing collaterals (PECs) 

provide alternative routes for blood flow in the event of an occlusion and can reperfuse 

the otherwise ischemic tissue (25, 79). Although significantly impaired at day seven, 

ACCs regained their ability to vasodilate in response to functional stimulation by 21 days 

post-ligation when compared to their equivalently-sized counterparts on the unligated 

limb (13, 26). PECs were impaired at day seven, but seem to continue the trend at day 21. 

The capacity to respond to this stimulus is crucial to maintain sufficient blood flow to 

areas when exercising, for example (29). It is possible that, because these vessels have 

developed from capillaries, they may utilize alternative vasodilation pathways than do 

normal arterioles (23, 37). We fail to reject the hypothesis that these seemingly mature 

collaterals depend on the same vasodilation pathways in comparison to arterioles on the 

contralateral side.  

Mature Arterialized Collateral Capillary Responses 

The ACCs and sham vessels responded equally to electrode-induced muscle 

contraction with and without various combinations of vasodilation inhibitors, with 

diameters increasing 124 ± 27% in ACCs and 105 ± 18% in sham arterioles with no 

reagents applied. The renewed ability to dilate suggests that ACCs are fully mature at day 

21 and function with the same capacity as healthy arterioles; however, the lack of 

response to the inhibitors by either vessel type was unexpected. An explanation for the 

lack of response to the reagents is that the concentrations were insufficient to block the 

dilation pathways within the functional stimulation context. The doses were calculated to 

be strong enough to block potent, though specific, dilators arachidonic acid (AA) and 
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acetylcholine (ACh) for indomethacin and L-NAME, respectively, though, this might not 

be sufficient to overcome the other pathways triggered by the muscle contractions (20). 

In the future, increasing doses of inhibitors or inhibitors of alternative pathways could be 

used to investigate any increased efficacy in reducing functional vasodilation capabilities 

in healthy vessels. Once the effective inhibitors are potent enough to have a significant 

impact on functional vasodilation in control arterioles, we can move forward with 

evaluating the developed collateral vessels. 

The vessels may also use alternative pathways outside of the prostanoid and NOS 

pathways to dilate successfully (1). Though it is still possible that arterialized collateral 

capillaries utilize alternative vasodilation pathways that were not evaluated in this study, 

our hypothesis that arterialized collateral capillaries would be partially dependent on the 

prostaglandin and nitric oxide synthase pathways is supported. 

Mature Pre-Existing Collateral Responses 

 In efforts to correlate the reactivity and development of ACCs with that of the 

more studied pre-existing collaterals (PECs), PECs were analyzed whenever present in 

every experiment (63). PECs trended towards impaired vasodilation at day seven in 

response to endothelial-independent dilators, but had a normal response to endothelial-

dependent dilators. The trend of impairment continues in response to functional 

stimulation and to the prostaglandin and nitric oxide synthase (NOS) based pathways at 

21 days following ligation. This continued trend indicates that, though the PECs may be 

mature, their capacity to dilate may be inherently lower than native arterioles. 

Alternatively, the impairment is not significant, and the unequal percent changes could be 

explained by PEC baseline diameters being larger than resting. The inaccurately high 
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resting diameter would reduce the percent change to maximal dilation and indicate 

impairment that may not exist. A trend in impaired dilation may be due to a variation in 

smooth muscle phenotype, which has varied compositions of actin and myosin that are 

not as effective at relaxing and contracting (57). A variation in phenotype could be 

identified through histological analysis of resected samples of the PECs. Staining for 

specific markers, such as through immunostaining with smooth muscle α-actin, within 

the PECs and sham arterioles may reveal differences between the two vessel types (26). 

The inhibited dilation in response to indomethacin indicates dependency on the 

prostaglandin pathway in all three PEC regions; however, this may be explained by an 

offset baseline. PEC diameters increased from 24.4 ± 6.2 µm without any reagents to 

33.7 ± 8.7 µm with indomethacin exposure. Thus, the decreased percent increase in 

diameter may be the result of increased sensitivity to cyclooxygenase (COX) derivatives, 

as COX and nitric oxide synthase (NOS) have been linked in expression and activity 

(71). If COX is inhibited by indomethacin, it has the potential to interfere with those 

interactions and increase NOS activity, thereby, relaxing the smooth muscle cells, 

elevating baseline diameters, and reducing the percent increase required to reach a 

maximum diameter. The PEC diameter responses were also highly variable, with 

standard errors as high as 48%; thus, a more accurate evaluation of PEC reactivity may 

be achieved by lowering response variability through measuring PEC regions with more 

similar baseline diameters. Starting with the same diameter implies that the vessels will 

have the same capacity for dilation, allowing for more consistent responses to the same 

amount of reagent and/or electrode stimulation.  
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Other ways to reduce variability in vascular reactivity include measuring at the 

same area along the vessel consistently with all reagents on each side, to be gentle when 

exposing and probing the muscle tissue, and to maintain clean equipment and pure 

reagents. Measuring at alternative locations is acceptable in consecutive experiments as 

the relative reactivity should be consistent throughout the reagents; however, measuring 

at different locations within the same data set may result in high diameter variability as 

each zone or vessel level may have a greater or weaker capacity to respond (8). 

Aggressive probing or damage during exposure and analysis leads to a response from the 

tissue, whether it be vasodilation or constriction. This external stimulation could confuse 

and diversify the results with either exaggerated or inhibited reactivity. Occasionally, 

impurities within the superfusion tubing line or in the PSS would lead to vascular 

responses independent of the reagents or electrode stimulation. Thus, maintenance of 

clean tubing and fresh solutions may eliminate responses to contaminants as a variable 

and allow for more consistent diameter measurements. 

In both ACCs and PECs, baseline diameters are generally unchanging from seven 

to 21 days post-ligation; though, diameters increase from pre-ligation to seven days post-

ligation in the ACCs. The initial outward remodeling resulting in diameter increases 

seems to occur in the first seven days, followed by a plateau of relatively stable 

diameters. If the diameter changes are associated with vessel maturity, the restored 

capability of ACCs to dilate at day 21 in response to electrode-induced muscle 

contraction would also be expected in the PECs (8). The impaired capacity for PECs to 

dilate may correlate with an impaired ability to remodel, as supported by collateral 

vessels having impaired function in the Balb/C strain, potentially due to a lower 
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expression of VEGF-A (11, 52). VEGF-A is a critical cytokine in vascular development 

and is linked with TNF-α levels, which are specifically important to remodeling in 

collateral vessels (11, 74, 76). When present, VEGF-A may prompt arteriogenesis and 

enhance collateral blood flow by stimulating monocyte migration (74). VEGF-A levels 

could be identified through tissue processing, RNA extraction, PCR, and electrophoresis. 

If the PECs had a relatively lower expression as compared to arterioles of equivalent size 

and ACCs, this explanation would be supported. PECs in the Balb/C are very distinct 

post-ligation, as they tend to connect the cranial and caudal feeds and follow the vein 

pairs closely, but with a very large and tortuous form. Alternatively, ACCs tend to branch 

in an angled or perpendicular fashion and connect the same feeds with smaller, less 

tortuous, and more numerous vessels. The anatomical differences further suggest a 

variation in growth factor prevalence, as their balance is crucial in the development of the 

vessels (76). 

The trend towards increased maximum diameters from the reentry, through the 

midzone, and to the stem may be indicative of increased remodeling along the vessel 

from the stem to the reentry. Shear flow not only increases throughout the PECs, but the 

direction of flow changes for the mid and reentry zones, as blood flows upstream towards 

the occlusion site. Shifts in shear stress encourage remodeling, so that the re-entry, which 

experiences the largest directional shift in flow, may have also remodeled the most (8). 

This increased remodeling, however, is not supported by the similar reactivity within 

each region at the mature time-point of 21 days post-ligation. It may be the case that there 

is no difference in reactivity along the length of the PECs, as the changes in diameter are 
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not statistically different. This would indicate that measurements could be taken at any 

point on the PEC for analyzing vessel reactivity.  
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Chapter IV. DISCUSSION 

The arterialization of collateral capillaries in animals lacking pre-existing 

collateral arterioles can re-establish blood flow to an ischemic vascular tree (13, 25); 

however, to match blood flow with tissue demand in the reperfused areas, collaterals 

and/or arterialized collateral capillaries (ACCs) need to vasodilate. Although the ACCs 

acquire smooth muscle cells within seven days following the spinotrapezius lateral feed 

artery ligation, functional vasodilation is absent at this time point (13, 21, 25). We 

observed impairment in vessel reactivity at day seven; however, the arterialized 

capillaries maintained a capacity to dilate and constrict in response to the vasoactive 

agents. This discrepancy can be explained by an absence or impairment of endothelial 

communication, as capillaries are not normally a part of the conduction circuit. The direct 

application of reagents bypasses this communication and relaxes or contracts smooth 

muscle on-site. 

The impairment that does exist in ACCs at day seven can be explained by vessel 

immaturity through variation in smooth muscle phenotype, ECM remodeling, and/or a 

lack of innervation; however, by day 21, the ACCs regain their ability to dilate and can 

be considered mature. Capillaries do not naturally have smooth muscle cells or 

innervation from the sympathetic nervous system, as dilation and constriction to regulate 

blood flow are not capillary functions, so that any smooth muscle is inherently new to the 

area or new altogether and may require an adjustment period. The specific time-point 

between seven and 21 days post-occlusion at which the vessels gain these functions is 

unknown.   

 When a pre-existing collateral (PEC) existed in the vasculature, blood flow 

presumably redirected through it immediately post-ligation, and robust arterialized 
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capillaries were consequently absent. With blood flow traveling the path of least 

resistance, it would exert increased shear stresses on the PECs rather than the capillaries, 

minimizing the stimulus for them to arterialize. PECs maintained a trend towards an 

inability to dilate or constrict effectively at day seven and day 21; however, only the NO 

and prostaglandin pathways were significantly impaired at day seven and 21, 

respectively. The impairment at day seven may be explained by ECM remodeling, as 

proposed for arterialized capillaries, and arteriogenesis, where the smooth muscle cells 

are in an adaptive phase and limited in their ability to dilate and constrict. On the other 

hand, endothelial-dependent dilation and constriction were normal at day seven, possibly 

because the vessels were able to utilize alternative pathways, such as electrical coupling, 

to dilate. If the PECs can dilate with these alternative pathways, this would indicate that 

the prostaglandin and hyperpolarization pathways, as evaluated through reagent 

application, also contribute to the dysfunction. The trend towards continued impairment 

at day 21 may be due to the nature of Balb/C mice in lacking robust collaterals with high 

levels of VEGF-A, and the significant decrease in functional response with indomethacin 

exposure is potentially instigated by interactions between COX derivatives and NOS 

elevating baseline diameters. 

Limitations and Future Work 

Because vasculature is less reactive when co-morbidities are present, our model of 

cardiovascular disease that utilizes young and healthy mice is limited (35, 59, 78). The 

arterialized collateral capillaries that formed in this study are likely more robust and 

functional than they would be in, for example, a mouse with diabetes (74). A more 

clinically accurate and relevant representation of vessel reactivity and development 
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would be in a diseased model of diabetes or hypertension, as these are prevalent 

byproducts and causes of cardiovascular disease in the world (28, 66). While no perfect 

model exists, hypertensive and diabetic mice can be developed through diet adjustment 

and/or genotyping in house or through a vendor, so that they can closely mimic human 

symptoms (33, 59). For example, hypertension can be induced with 

intracerebralventricular (ICV) sodium infusion in telemetered Nedd4-2 knockout mice, 

and the db/db mouse strain carries a mutation that naturally results type II diabetes when 

placed on an energy-rich diet (33, 59). Understanding any varied mechanisms in the 

diseased setting would be advantageous for evaluating the efficacy of naturally 

remodeled vessels or of exogenous treatment to enhance arteriogenesis. Thus, the 

proposed next study involves analysis of vascular reactivity in a diseased model utilizing 

similar evaluation methods and time-points of smooth muscle and endothelial 

interrogation via functional stimulation and superfusion at day seven and 21.  

Although follow-ups for human clinical trials for cardiovascular disease and 

collateral monitoring are often six months or more, the shorter lifespan and genetic 

manipulability of rodents allows for accelerated and relatively accurate models to see 

significant changes at time-points in the days and weeks range (59, 65, 77). Additionally, 

the collateral remodeling processes begin immediately following the occlusion in 

response to the changes in shear stress, such that changes in wall area and blood flow are 

present within the first few days (25, 52). The seven-day time-point, in particular, is used 

in this study because it is a convenient date for to follow-up regarding experimental 

logistics, and it is a common date for collateral analysis (25, 48, 52). After approximately 

three weeks, these changes level off, supporting 21-days as an appropriate time-point to 
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analyze developed collaterals. Future work to expand on this research could also entail 

investigating some of the other time-points not analyzed within the study to track 

arterialized collateral capillary development. For example, ACCs and PCEs at day 14 

may be at their final luminal diameters, but the intracellular and cellular vessel wall 

constituents may not be optimally arranged. Histological examination of the arterialized 

capillaries and pre-existing collaterals could also determine their precise cellular 

constituents throughout the process. Actin and myosin isoforms could be stained within 

the smooth muscle, along with collagen fiber density, integrin, and matrix 

metalloproteinase (MMP) presence in the ECM. Observing vascular wall components of 

the vessels before, during, and after the remodeling process would provide a more clear 

depiction of how the cells are arranging and changing. Once we better understand the 

vascular development process, we may be able to stimulate or control it in a clinical 

setting. 

By understanding the mechanisms behind the early impairment in arterialized 

capillaries and the consistent impairment in pre-existing collaterals, we may be able to 

minimize the duration and extent of ischemia by effectively increasing perfusion to 

downstream tissues. On the clinical front, the success of collateralization could be 

evaluated through local application of vasodilators and vasoconstrictors similar to those 

used in this study via catheterization and angiograms (51, 65). The changes in collateral 

flow index and luminal diameter would indicate reactivity or lack thereof within the 

vessels. Manipulating the arterialization of capillaries may improve PAOD patient 

prognosis by more quickly and appropriately providing blood flow to ischemic tissues 

downstream of an occlusion.  
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Summary 

Vascular reactivity in arterialized collateral capillaries (ACCs) is impaired in their 

developmental stages, likely due to smooth muscle cell immaturity described by 

phenotype variation and abnormal actin and myosin levels. By 21 days post-occlusion, 

the ACCs reached a capacity to dilate and constrict equal to unoperated arterioles of 

equivalent size. At both seven and 21 days, pre-existing collaterals maintained a trend of 

impaired reactivity, as supported by smooth muscle dysfunction, weak remodeling 

capabilities, and low VEGF-A expression in the Balb/C mouse strain (11). Despite this 

smooth muscle-based impairment trend, PECs may utilize electrical coupling or 

alternative pathways to dilate or constrict in response to endothelial-dependent agents. 

While early impairment at day seven and recovery by day 21 are expected and consistent 

with current collateral research, the alternative pathways and responses of the ACCs and 

PECs in the Balb/C strain in particular have, previously, been largely unexplored (8, 25, 

48, 52, 63). 

The ability of capillaries to arterialize provides many possibilities for individuals 

lacking pre-existing collaterals to reperfuse ischemic tissues in the event of an arterial 

occlusion. These developed capillaries provide new bypass routes for blood to travel 

around an occlusion and reach downstream tissues. Further understanding of the 

mechanisms of arterialized collateral capillary development may expose specific 

elements that are involved; these elements could be exogenously introduced to elicit or 

quicken the collateral development process. The sooner blood returns to an ischemic area, 

the less time the tissues lack oxygen, nutrients, and the potential for necrosis, overall 

improving patient prognosis (43). 
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Figure 20. Responses to repetitive functional vasodilation in unoperated 
animals. A) Arteriole diameters pre and post stimulation for four repetitions of 90s 
electrode-induced contraction with 30 minutes between each repetition. B) Percent 
changes of diameters at each stimulation; * indicates p < 0.05. 
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Figure 21. Efficacy of vasodilation inhibitors in unoperated animals. Arteriole 
diameters (µm) pre and post exposure to vasodilators, as well as post exposure to 
vasodilators in combination with vasodilation inhibitors using 10-5 Molar acetylcholine 
(ACh) as a dilator and 2x10-5 L-NAME as an inhibitor (A), and using 2x10-4 Molar 
arachidonic acid (AA) as a dilator and 2x10-4 Molar indomethacin as an inhibitor (B). C) 
Percent changes in diameter in response to the respective dilators and inhibitors; * 
indicates p < 0.05. 
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