
REGEN: OPTIMIZING GENETIC SELECTION ALGORITHMS FOR

HETEROGENEOUS COMPUTING

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Scott Winkleblack

June 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32434342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c� 2014

Scott Winkleblack

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: ReGen: Optimizing Genetic Selection Al-

gorithms for Heterogeneous Computing

AUTHOR: Scott Winkleblack

DATE SUBMITTED: June 2014

COMMITTEE CHAIR: Assistant Professor Chris Lupo, Ph.D.,

Department of Computer Science

COMMITTEE MEMBER: Professor Bruce Golden, Ph.D.,

Department of Dairy Science

COMMITTEE MEMBER: Associate Professor John Seng, Ph.D.,

Department of Computer Science

iii

ABSTRACT

ReGen: Optimizing Genetic Selection Algorithms for Heterogeneous Computing

Scott Winkleblack

GenSel is a genetic selection analysis tool used to determine which genetic

markers are informational for a given trait. Performing genetic selection related

analyses is a time consuming and computationally expensive task. Due to an

expected increase in the number of genotyped individuals, analysis times will

increase dramatically. Therefore, optimization e↵orts must be made to keep

analysis times reasonable.

This thesis focuses on optimizing one of GenSel’s underlying algorithms for

heterogeneous computing. The resulting algorithm exposes task-level parallelism

and data-level parallelism present but inaccessible in the original algorithm. The

heterogeneous computing solution, ReGen, outperforms the optimized CPU im-

plementation achieving a 1.84 times speedup.

Heterogeneous computing, Bayes methods, Bioinformatics

iv

ACKNOWLEDGMENTS

I would like to especially thank my parents and family for their love and

support.

v

TABLE OF CONTENTS

List of Tables viii

List of Figures ix

1 Introduction 1

2 Motivation 3

3 Background 5

3.1 Bayesian Inference . 5

3.2 Gibbs Sampling . 6

3.3 Markov Chain Monte Carlo . 7

3.4 Heterogeneous Computing . 8

3.4.1 CPU Based Computing . 8

3.4.2 GPU Based Computing 9

3.5 CUDA . 9

4 Related Works 12

5 Methodology 15

6 Algorithm 17

6.1 Overview . 17

6.2 Identifying Regions of Parallelism 18

6.3 Refactoring the Original Algorithm 19

6.4 Complexity Analysis . 23

7 Implementation 25

7.1 Multi-Threading . 25

7.2 Dot Product Computation . 26

7.3 Pre-computing Dot Products . 27

7.4 Hiding Memory Transfers . 27

vi

7.5 Circular Data Bu↵ering . 28

7.6 Pipelining Kernel Calls . 29

7.7 Multiple GPU Support . 30

8 Experimental Setup 31

8.1 Testing Environment . 31

8.2 Test Data . 31

8.3 Validation . 32

9 Results 33

9.1 Tuning . 36

9.2 Scalability . 39

10 Conclusions 41

11 Future Work 42

Bibliography 44

vii

LIST OF TABLES

9.1 Runtimes for 500 marker data set 34

viii

LIST OF FIGURES

6.1 Overview of algorithm . 17

7.1 GPU memory layout demonstrating striping paradigm 30

9.1 Overall speedup with varied number of markers 35

9.2 E↵ect of di↵erent bu↵er sizes on speedup 37

9.3 E↵ect of di↵erent chunk sizes on speedup 38

9.4 E↵ect of ECC memory on speedup 39

9.5 E↵ect of scaling the number of GPUs utilized on speedup 40

ix

CHAPTER 1

Introduction

GenSel is a genetic selection analysis tool used to determine which genetic mark-

ers are informational for a given trait. It can also be used to determine the

genetic estimated breeding value of a particular individual. To determine this

information, Bayesian methods are applied to genotypic (genetic markers) and

phenotypic (observable traits) information collected from a set of individuals. For

example, this tool could be used in breeding turkeys with larger breasts.

Performing this form of analysis on a large group of individuals is very com-

putationally expensive and, as a consequence, time consuming. Historically, this

process has been performed by a single CPU thread. This presents a substan-

tial opportunity for performance improvement by realizing untapped potential

parallelism. This thesis focuses on reengineering the existing algorithm to take

advantage of the many opportunities for parallelism that exist within the hetero-

geneous computing environment.

Recently, the scientific community has moved to embrace heterogeneous com-

puting as the technological base for high performance computing. Heterogeneous

computing is the use of multiple types of processors in a single system, typically

CPUs and GPUs. The di↵erent strengths of the various processors allow for dif-

fering levels of data and task level parallelism to be more readily exploited. In

1

addition, they are an economical way of providing a large amount of computing

power and scale easily.

This thesis presents a heterogeneous computing version, named ReGen, of

the genetic selection analysis tool, GenSel. ReGen attempts to e�ciently exploit

both task-level parallelism (TLP) and data-level parallelism (DLP) for perfor-

mance benefits. Using a combination of CPU threads, GPU threads, and parallel

programming best practices a speedup of up to 1.84 times over the original, highly

optimized CPU based implementation is achieved.

Chapter 2 presents the motivation behind this thesis. Chapter 3 presents

the necessary background information as well as introducing the algorithm of

interest. Related works are detailed in Chapter 4. The methodology behind the

optimizations performed is outlined in Chapter 5. The algorithm is discussed at

length in Chapter 6. Implementation details are presented in Chapter 7. The

experimental setup and results are discussed in Chapters 8 and 9, respectively.

Finally, Chapters 10 and 11 present conclusions and future work.

2

CHAPTER 2

Motivation

Runtimes for GenSel are strongly dependent on the number of markers and the

number of observations per marker. Currently, a typical analysis involves hun-

dreds of thousands of observations for tens of thousands of genetic markers. For

the foreseeable future, the number of genetic markers is likely to stay the same.

However, recent technological advances are driving down the cost of genotyping

individuals. This is expected to cause the number of observations to climb as

high as 1,000,000 per marker for a single analysis [10].

While the increase in observations will likely lead to better knowledge of what

genetic markers are informational it will come at the cost of time. As it stands,

GenSel is simply not equipped to perform an analysis at that scale; runtimes

would be measured in days, potentially weeks! It is therefore imperative that

GenSel be optimized to accommodate the expected load.

Optimizing this tool is not as straightforward as it would seem. The statistical

basis from which GenSel makes its predictions is Bayesian inference, implemented

as Gibbs sampler. Gibbs sampling is a Markov chain Monte Carlo (MCMC)

algorithm that is often employed in the field of bioinformatics. MCMC based

algorithms are notoriously di�cult to optimize, especially using parallelization

as an optimization technique. However, recent successes have shown that by

applying parallelization principles within the context of heterogeneous computing

3

environments it is possible to achieve speedups in excess of 10 times in certain

cases [13, 21, 22].

Taking inspiration from the mentioned success stories, this thesis represents

the first step in incorporating heterogeneous computing ideas into GenSel. The

major contribution of this thesis is the redesign of the algorithm used by GenSel.

The resulting algorithm exposes TLP and DLP present but inaccessible in the

original algorithm. Using this algorithm as a foundation, ReGen, a heterogeneous

compute solution for optimized genetic selection analysis was created.

4

CHAPTER 3

Background

3.1 Bayesian Inference

Bayesian inference is a form of statistical inference. In this form of inference,

unknowns are expressed as probabilities, which are continuously refined as new

evidence emerges. Bayes’ rule provides the framework by which new evidence

is incorporated. Bayes’ rule is expressed in Equation 3.1 where | stands for

conditional probability, H for hypothesis, and E for evidence.

P (H|E) =
P (E|H) · P (H)

P (E)
(3.1)

In this equation, the probability of the original hypothesis, P (H), is known as

the prior distribution. A likelihood function, P (E|H), indicates if the evidence

is coherent with the current belief. This information is combined resulting in

the probability of the hypothesis given the evidence, expressed as P (H|E). This

probability is known as the posterior.

There are several important ideas that come out of Equation 3.1. First, beliefs

are updated not only on the probability of the evidence but also on the probability

of the belief itself. Secondly, Bayes rule can easily be applied iteratively. To do

so, the posterior derived after observing a piece of evidence is simply treated as

5

the prior for the piece of evidence that follows. These important properties allow

estimated parameters to be continuously refined.

Bayesian inference is a powerful tool that has a wide number of applications

in fields ranging from law to computer science. In computer science, Bayesian

inference is used in artificial intelligence [4, 11] and spam filtering [5]. It has

also increasingly appealed to and been utilized by the bioinformatics community,

specifically in the area of phylogenetics [21].

3.2 Gibbs Sampling

Directly implementing Bayesian inference is problematic. More specifically, the

problem comes down to computing the posterior. The problem is twofold. First,

there is not guaranteed to be a closed form solution for computing the posterior.

Secondly, in the cases where a closed form solution does exist, it may be compu-

tationally infeasible requiring the integration of high-dimensional functions.

Gibbs samplers o↵er a solution to this problem for certain classes of Bayesian

problems. By repeatedly drawing sampling from the posterior and employing a

technique called Monte Carlo integration, an approximate posterior distribution

can be created. In essence, Monte Carlo integration works by simply averaging

the randomly selected points [6, 23]. This avoids the problems with exponential

growth in complexity associated with integrating over high-dimensions. Gibbs

samplers provide a practical, feasible method for generating the posterior.

6

3.3 Markov Chain Monte Carlo

Gibbs samplers belong to a class of algorithms referred to as Markov chain Monte

Carlo (MCMC) methods. MCMC methods get their name from the two algo-

rithms that comprise them, Monte Carlo methods and Markov chains. Monte

Carlo methods rely on random sampling to estimate numeric results, as men-

tioned in Section 3.2.

A Markov chain defines a set of states and the probability of transitioning be-

tween states. This process is memoryless as the transitional probabilities are only

a function of the current state. Repeated transitions define the chain. Markov

chains are good for modeling nonrandom events. For example, how traits relate

to genetic markers.

Taken together, MCMC methods allow a Markov chain to be constructed

whose equilibrium represents the desired integral needed for Bayesian inference.

To arrive at the correct distribution, enough iterations of the chain must pass for

the probability distribution to converge. This task proves to be non-trivial [15].

Also, adding to the problem, the beginning of the chain is loosely correlated

with the starting position. This presents a problem as this algorithm relies on

randomness for success. Discarding the first portion of the chain, a technique

known as burn in, is used to mitigate this problem. Due to the amount of

iterations needed for burn in and to achieve convergence MCMC algorithms are

very compute intensive.

Besides being compute intensive, MCMC based algorithms are notoriously

di�cult to optimize, especially by leveraging parallelism. This stems from the

serial, undeterministic nature of Markov chains. Despite the challenges, there

have been some significant successes in optimizing this class of algorithm [22].

7

3.4 Heterogeneous Computing

Heterogeneous computing refers to a computing platform composed of multiple

types of processors, typically CPUs and GPUs. The idea being each type of

processor is designed with a particular type of task in mind. By making di↵erent

types of processors available and using them as intended it is possible to reap

the benefits of improved performance and power consumption. In addition, using

GPUs as accelerators has proven to be an economical way of obtaining a large

amount of computing power [7, 19].

3.4.1 CPU Based Computing

CPUs are optimized to minimize latency and o↵er high clock speeds. This makes

them very e�cient at handling sequential tasks. Their ability to quickly switch

contexts makes them very good at multitasking. However, clock rate increases

have stalled in recent years leading to, among other things, more parallelism

concepts being incorporated in CPUs [1].

The availability of more threads, multiple cores, and even multiple CPUs on

one system are some of the ways CPU parallelism is manifesting itself. CPU

threads operate independently from one another, unlike GPU threads. This

makes it very easy to exploit TLP.

Parallelism constructs are also helping CPUs handle DLP more e�ciently.

Modern CPU instruction sets often support vectorized instructions. These in-

structions are often referred to as single instruction multiple data (SIMD) in-

structions. These instructions make the CPU more e↵ective at computing math

intensive tasks, such as multimedia.

8

3.4.2 GPU Based Computing

GPUs were originally designed for rendering 3D computer graphics. As such,

GPUs are optimized for throughput not latency. They feature lower clock speeds

than CPUs but make up for it with massive amounts of parallelism. GPUs provide

thousands of cores that allow them to exploit large amounts of DLP.

GPUs’ unique architecture allows them to outperform CPUs when performing

certain types of mathematical calculations on very large data sets. Additionally,

GPUs can deliver these capabilities at much lower power consumption relative

to CPUs. Leveraging GPUs makes computational power not possible in multi-

core and unfeasible in distributed computing solutions not only possible but also

accessible.

Building applications around GPU computing paradigms requires a very dif-

ferent mindset than CPU computing. General purpose GPU (GPGPU) comput-

ing follows the single program, multiple data (SPMD) model. Developing the

necessary skills to unlock the power of the GPU can be time consuming but

advances in tools such as CUDA, are lowering this barrier.

3.5 CUDA

Compute Unified Device Architecture (CUDA) is the parallel computing plat-

form developed by NVIDIA [16]. It allows developers to easily perform GPGPU

processing on NVIDIA GPUs. The CUDA toolkit extends the C, C++, and

Fortran languages for ease of use.

CUDA provides powerful ways to interact with GPU threads by abstracting

thread organization. Threads are organized into blocks composed of up to three

9

dimensions. Blocks in turn make up the grid, which may be organized into up to

two dimensions.

Threads are organized into groups called warps by the GPU. When execut-

ing a kernel (GPU function call) every thread in a warp executes on a single

streaming multiprocessor (SM). SMs are capable of executing multiple warps at

once. Threads in a warp execute instructions in lock step. Thread divergence

within an SM is undesirable as it causes very poor performance in CUDA. When

divergence occurs, all threads in the warp must execute all relevant branches.

Thus, programmers must take extreme care to organize threads in such a way as

to achieve warp level execution path agreement [16].

There are three types of memory available to the programmer for general pur-

pose computing: global memory, shared memory, and registers. Global memory

is by far the most abundant but also the slowest. Shared memory and registers

can both be accessed in one clock cycle. All threads in a block can access the

same shared memory. Registers are the least available form of memory and are

associated with SMs. The GPU is composed of many SMs.

In CUDA, there is a concept of a stream. Streams are a way of organizing

kernel calls in a way that indicates call dependency and allows for the exploita-

tion of concurrent execution of kernels. When called, every kernel is associated

with a stream either explicitly by the caller or implicitly by CUDA. Each stream

essentially acts like an independent queue. Within a stream kernels are guaran-

teed to execute in the order they were called. However, there is no guarantee

of ordering between streams. The GPU will run kernels from di↵erent streams

as concurrently as possible. As SMs become available, the next kernel pending

immediately fills them as long it does not violate ordering guarantees. This helps

achieve higher occupancy of the GPU and leads to a pipelining e↵ect.

10

Equally as important as allowing concurrent execution of kernels, streams

allow transfer to and from the GPU to occur simultaneously, in devices of compute

capability 2.x and higher with two copy engines. If memory that cannot be

swapped out, known as page-locked or pinned memory, is used the transfer can

even occur asynchronously. Using this technique, data can be transferred to the

GPU during preparatory phases on the CPU, results can be transferred back to

the CPU so they are ready when needed, and data that is no longer needed on

the GPU can be replaced at any time, even while execution is occurring. This has

very powerful performance implications. It can significantly reduce or eliminate

the amount of time the GPU or CPU is waiting for data. Thus, both the CPU

and GPU can always be performing work reducing idle time.

Data transfer across the bus is the Achilles heel of GPGPU computing.

GPGPU computing is only useful if the performance gain is not dwarfed by

the cost of moving the data to and from the GPU. By intelligently designing

algorithms around heterogeneous computing principles it is possible to lessen the

impact of transfer times.

11

CHAPTER 4

Related Works

As MCMC based algorithms have become more prevalent in many fields they have

drawn a lot of attention due to their computational intensity and serial nature.

This has led to many attempts at optimizations [2,13,14,21,22]. These attempts

can be broadly classified under two optimization strategies. One attempts to

increase performance by breaking the chain into many smaller pieces and running

them concurrently; the other seeks to parallelize a single MCMC run by shrinking

the links of the chain [3].

In the first strategy, the chain is essentially split into smaller pieces. Each

chain is then run independently. Determining the point of convergence can be

more di�cult with this method. Nonetheless, convergence can be determined

by comparing between and within sequence variance [2]. The performance boost

from this method is due to the smaller chain lengths and because each chain

is independent, they can be computed concurrently. There are some drawbacks

associated with this approach. The burn in period, which must be discarded, is

repeated across multiple processes. Additionally, to increase the randomness of

the process a practice known as thinning is often used. When thinning, after an

iteration is kept a set number of iterations immediately following that iteration

are discarded [8]. Some implementations have managed to achieve near linear

speed ups using this approach [18].

12

The second strategy does not attempt to break up the chain. Instead it

recognizes that by shrinking the individual links the overall length of the chain

can be reduced. This strategy can be more finely broken down into two sub-

strategies associated with exploiting TLP and DLP within the chain.

The more successful strategy exploits DLP by utilizing GPU technology to

parallelize general sampling methods [13] or the evaluation of likelihoods [21].

The results reported in research performing this type of optimization saw speed

ups of 10’s to 100’s of times [13, 21,22].

In general, exploiting TLP turns out to be less successful than DLP for MCMC

based algorithms. This is largely due to the fact that there is a dependence

between each chain link which incurs major communication overhead due to the

need for global model parameter updates, if a distributed approach is taken [22].

The algorithm employed by the heterogeneous solution presented in this the-

sis, ReGen, follows the second strategy. It combines both of the sub-strategies,

exploiting both TLP and DLP. By correctly identifying regions of code that ex-

hibit parallelism and associating these regions with the correct parallel program-

ming paradigm based on system architecture considerations. This idea is set

forth in [8] which mainly focuses more e�cient matrix operations on the CPU.

The work presented in this thesis expands the spectrum of parallelizable code

and utilizes di↵erent technologies. Furthermore, it presents a method for break-

ing sporadic loop carried dependencies that allows for still more parallelism to be

exploited.

Leveraging GPU technology as a complete solution, as in [13] or [22], proves to

be problematic because of an additional data dependence between markers within

each chain link. The same issue that causes the additional data dependency

13

leads to problems with thread divergence. Divergent algorithms do not map well

into the GPGPU computing paradigm. Pre-computing the data responsible for

control flow has the potential to solve the problems with divergence. But, pre-

computing this data substantially reduces the amount of parallelizable code to

the point that communication overhead between the host and device overshadows

any performance improvement. Instead, use of GPU technology is limited to

performing large matrix operations, which still provides a sizable speedup for

very large matrices.

14

CHAPTER 5

Methodology

To achieve better performance, ReGen embraces parallelism in all its forms.

Choosing parallelism as an optimization strategy is ideal when changing the fun-

damental process of an algorithm is undesirable. It relies on identifying indepen-

dent tasks and duplicated processes that can be performed concurrently. After

identifying areas of parallelism it may be necessary to reorganize and restructure

the original algorithm to expose them and make them accessible. It is critically

important to the success of such optimizations to correctly map parallelizable

regions to the correct parallel programming practice.

All parallelizable regions of code do not exhibit the same levels of parallelism.

Parallelism exists on a spectrum. Very coarse-grained parallelism can easily be

exploited by paradigms such as MPI, which allows for work to be easily spread

across a cluster. Tasks that fit well into this form of parallelism generally exhibit

large amounts of TLP and have a large compute to communication ratio. Slightly

finer grained parallelism is more suited to local parallelism constructs as opposed

to distributed parallelism principles. Local CPU threads are more suited to tasks

that exhibit large amounts of TLP due to the design of the CPU. However,

because many threads can reside on the same device communication overhead is

much less of an issue than in a distributed system. Local parallelism can also take

the form of multiple GPUs, these devices may collaborate and perform peer to

peer communication. Even finer levels of parallelism can exist within threads in

15

the form of vector constructs. Vector constructs allow threads to take advantage

of DLP.

Due to the large number of data dependencies present in the MCMC based

algorithm used by GenSel very coarse grained parallelism, such as distributed

computing, o↵ers no help in terms of performance. The massive communication

cost rapidly exceeds the benefits of distributing computation. The rest of the

parallelism spectrum is present in GenSel in one form or another waiting to be

capitalized on.

The heterogeneous computing environment provides the needed tools to ex-

ploit the spectrum of parallelism present, due to the di↵erent types of processors.

In general, the CPU is the best choice for highly divergent code or when compute

time is low enough that bus transfer times prevent the GPU from being e↵ective.

The GPU is the most e↵ective choice for highly parallel tasks, such as math oper-

ations, that can be organized so that threads within warps rarely follow divergent

branches of code or when dealing with very large sets of data. For smaller sets

of data, vectorized instructions allow the CPU to fill the gap between traditional

CPU and GPU computing.

It is necessary when designing a high performance computing solution to

know and understand the limitations of the system the process will be run on.

Engineering decisions may not hold across systems; they depend on the particular

CPU, GPU, and type of interconnects involved. Unfortunately, this leads to

custom tailored solutions and the loss of some flexibility seen in deploy anywhere

systems. The details of the environment ReGen was optimized for can be found

in Chapter 8.

16

CHAPTER 6

Algorithm

6.1 Overview

GenSel is used to infer the e↵ects of genetic markers on a desired trait or to

determine the genomic estimated breeding value (GEBV) of genotyped individu-

als. As previously mentioned, GenSel employs Bayesian inference to make these

predictions. In this application, the contribution of every genetic marker to the

desired trait can be seen as a variable. A statistical model represents the mean ef-

fect of all markers on the desired trait. Another distribution captures an estimate

of the error associated with these predictions.

Genotypic and phenotypic information is provided by the user and used to

construct the original models. Afterwards, during each iteration of the chain,

each marker is evaluated to determine if it shall be included or excluded in the

current model. A very high level overview of the algorithm is presented in Figure

6.1.

Figure 6.1: Overview of algorithm

17

6.2 Identifying Regions of Parallelism

In GenSel, the same process is repeated every iteration of the chain. The sta-

tistical model modified in iteration i is then used in iteration i + 1. This data

dependency makes optimizing GenSel technically challenging. In fact, this is the

same issue experienced by all MCMC algorithms. Luckily, optimizing GenSel

does not depend on breaking this data dependence.

The search for regions of parallelism continues within each iteration of the

chain. Algorithm 1 presents a high level overview of the original algorithm that

is executed within each chain link. It is here that many opportunities can be

found for exploiting parallelism.

Algorithm 1 Initial Bayes Algorithm

1: for each marker do

2: compute probability marker is included in model

3: if P model(marker) < threshhold then

4: compute mean genetic e↵ect

5: compute error prediction variance

6: include marker in model

7: else

8: remove marker from model

9: end if

10: end for

The pseudo code does not make it apparent but there is an additional data

dependence that occurs within each chain link. The BayesC algorithm presented

in [12], which forms the basis of this thesis, contains another data dependence

that occurs between markers when building the model in each chain link. A very

18

important aspect of this data dependence is that it is conditional. The data

dependence is only present between adjacent markers when the first marker is

chosen to be included in the current model or is excluded but was included in

the model of the previous iteration. Because the data dependence only occurs

some of the time it is possible to work around but it does limit the amount of

parallelism possible.

Computing the probability a marker is included in the model is a based on

linear algebra that the GPU excels at. Moreover, the size of the matrices involved

scales with the number of observations in the analysis. This makes for a prime

target for GPGPU acceleration, especially when the matrices become very large.

The challenge becomes hiding the memory transfers to and from the GPU. For

more details on what defines the threshold and how the probability of a marker

being included is determined refer to [12] and [20].

There are several small-scale matrix operations present within this algorithm

as well. For these operations any communication overhead proves to be pro-

hibitively expensive and taking advantage of SIMD instructions on the CPU is

the best choice.

6.3 Refactoring the Original Algorithm

Algorithm 2 presents the restructured algorithm that has been refactored to ex-

pose additional parallelism, some of which is mentioned above. This algorithm

forms the basis of the heterogeneous computing solution for genetic selection

related analyses, ReGen. In Algorithm 2, the for loops on Lines 2 and 10 are

performed concurrently using CPU threads, Lines 3, 12-14, and 16 leverage SIMD

instructions, and Lines 3, 8-9, and 19 involve steps on or using the GPU.

19

Algorithm 2 New Bayes Algorithm

1: while markers processed < total number of markers do

2: for each marker in chunk do

3: compute probability marker is included in model

4: if P model(marker) < threshhold then

5: set as terminating marker for chunk

6: end if

7: end for

8: begin precomputing next chunk’s dot products

9: initiate observation data transfer to GPUs

10: for each marker before terminal marker do

11: if marker is to be included in model then

12: compute mean e↵ect

13: compute error prediction variance

14: include marker in model

15: else

16: remove marker from model

17: end if

18: end for

19: update markers processed

20: advance chunk to terminal marker

21: end while

20

In the first for loop, everything that is needed to determine which markers

from the chunk are going to be included in the model is computed. The first

marker that triggers the loop carried dependence is marked as the terminating

marker of the chunk and the computed values of all following markers are dis-

carded; they are no longer valid because they are based on the old model as

opposed to the updated model. In the best case scenario, the entire chunk is

valid and no computations are wasted, and in the worst case scenario, only one

marker in the chunk is valid and the rest must be discarded. The optimal chunk

size for a given system is determined partially on the statistics behind GenSel

and partially on the system itself. The number of GPUs available is a large con-

tributing factor in the latter. Properly selecting a chunk size results in upwards

of 85% of the computations being valid. This keeps runtimes much closer to the

best case than the worst case by keeping wasted computation down.

The loop carried dependency was determined empirically to only occur on

average every 10 iterations. This means those 10 iterations exhibit TLP, which

can be exploited by threads to obtain a performance advantage. To realize the

performance advantage, speculative execution of c iterations of the for loop are

performed concurrently. The results are validated to see if the data dependence

occurred in any of the loops before the results are incorporated into the statistical

model. The speculative execution performed adds very little overhead because the

computations are executed concurrently. The value c is referred to as the chunk

size and can be set by the user. The chunking method allows TLP to be exploited

despite the presence of a sporadic data dependence. Chunking e↵ectively reduces

the amount of iterations required to build the model within each chain link. This

has a big performance impact. The overall speedup o↵ered by the heterogeneous

21

solution is a product of the per marker speedup and the average number of

markers that are parallelized by this method.

Next, the bottom for loop is executed for every marker in the chunk up to and

including the terminating marker. This is responsible for updating the current

model. There is no wasted computation associated with the second for loop. The

GPU is not leveraged for this portion of the algorithm. The inability to predict

which marker will be the terminal marker and transfer times associated with

moving the necessary data to the GPU makes the CPU more suited for the tasks.

To increase e�ciency for the matrix operations involved SIMD instructions are

leveraged via the Eigen library [9].

Finally, the chunk is adjusted to the marker immediately following the termi-

nating marker. The process is repeated until all the markers have been processed.

The algorithm is structured to leverage the heterogeneous computing envi-

ronment to the fullest. The structure is crafted around one simple idea: never be

idle. Eliminating idle time means keeping all processors working full time. This

is a very powerful idea that is easy to say and much more di�cult to achieve.

It requires going beyond common tactics such as taking advantage of TLP via

CPU threads and DLP via GPU threads. Often times one processor will get

stuck waiting for another processor’s result. All data dependencies need to be

removed, if possible, or structured in a way that they minimize waiting. Elim-

inating all data dependencies from this algorithm is not possible. However, by

starting computation as early as possible wait times can be minimized. Sections

7.2, 7.3, and 7.5 describe optimizations aimed at reducing wait time. Everything

should be as overlapped as much as possible including data transfers and compu-

tation. Section 7.4 describes this process in detail. This algorithm also overlaps

GPU computation by taking advantage of TLP on the GPU. One way this occurs

22

is by pipelining kernel calls, discussed in Section 7.6. Additionally, ReGen o↵ers

multi-GPU support, covered briefly in Section 7.7.

6.4 Complexity Analysis

The computational complexity for Algorithm 2 is technically worse from that

of Algorithm 1. For all computational complexity presented in this paper, n

represents the input size in markers and c represents the chunk size, which is

a constant defined by the user. The for loop in Algorithm 1 executes for each

marker and is therefore O(n) algorithm.

The analysis for Algorithm 2 is slightly more complex. The worst case occurs

when every marker is included in the model for every iteration. In this case, the

first marker in the chunk is the terminating marker but computation is performed

on all other markers. This leads to a lot of wasted computation in the upper for

loop. The second for loop only executes one iteration in this case. The amount of

wasted computation is determined by c which can range from 1 to n. This leads

to a worst case computational complexity shown in Equation 6.1. In practice,

c << n (i.e. 6 vs. 50,000) causing performance to to be closer to the original

O(n).

O(n(c+ 1)) ! O(n2) (6.1)

In the best case, the terminating marker in every chunk is the last marker.

This occurs when no marker in the chunk causes the data dependence or the final

marker causes the data dependence. In this case, the upper and lower for loops

23

execute c times and enclosing while loop is executed dn/ce times. This leads to

a best case computational complexity shown in Equation 6.2.

O(
ln
c

m
(c+ c)) ! O(n) (6.2)

The slight degradation in terms of computational complexity between Algo-

rithm 1 and Algorithm 2 indicates that any performance gains observed are a

result of the application of parallel paradigms and not algorithmic change.

24

CHAPTER 7

Implementation

7.1 Multi-Threading

Using the refactored algorithm presented in Algorithm 2 it is easy to take advan-

tage of task level parallelism. Each iteration of the two for loops is associated

with a separate marker and can be viewed as a separate task. The tasks in the

upper for loop can only be considered to be independent when the conditions

discussed in Section 6.2 are satisfied. This means that a group of tasks may be

executed concurrently but they must be checked for correctness and results from

any markers after a data dependence issue occurs must be discarded. This creates

a chunking e↵ect as the total number of tasks remaining is decreased by all or

some portion of the original group of tasks.

The size of the chunk ran concurrently is a parameter of the system. It is

chosen based on hardware constraints and easily determined experimentally, see

Section 9.1 for more details. After the size of the chunk is known threading

concepts are easy to apply. One strategy would be to assign one task per thread.

This works well if the tasks assigned to the CPU and the GPU have approximately

the same runtime. This is not the case for larger data sets, which are the target

area of this thesis. In the upper for loop, the amount of GPU compute time is

proportional to the number of observations while the CPU compute time stays

relatively constant. This is true even with all the optimizations discussed above.

25

As a result, in practice, one CPU thread per GPU is capable of managing several

tasks.

7.2 Dot Product Computation

The statistics involved in performing a genetic analysis rely heavily on linear

algebra. For example, the dot product computation performed to determine if a

marker should be included or excluded from the current model. This is computed

every iteration of the chain, for each marker. The size of the computation grows

proportionally with the number of observations. Together, these factors make this

operation one of the most time consuming portions of the algorithm. Luckily, it is

also one of the easiest and most e↵ectively parallelized portions of the algorithm.

Dot products are very math intensive operations composed of many small,

identical, independent operations. GPUs excel at this sort of problem. Their

large number of cores allows the GPU to take advantage of DLP within the

problem and compute the smaller operations concurrently.

The cuBLAS linear algebra library provides an optimized set of linear algebra

operations [17]. The downside of GPU computing is that data must be explicitly

transferred to and from the device. This adds additional overhead costs creating

a threshold that must be met before GPU computing is advantageous over CPU

computing. For this application it was generally observed that the GPU was

superior at performing this calculation when the number of observations exceeded

150,000.

26

7.3 Pre-computing Dot Products

Except when bound by data dependence issues, the GPU and the CPU operate

independently from one another. This o↵ers another opportunity to exploit par-

allelism, by overlapping computation on the GPU and CPU. By doing so, the

idle time of the processors is decreased and the overall performance increases.

If possible, work should be done ahead of time, before it’s needed. By working

ahead, wait times due to data dependencies can be decreased or eliminated.

An example of this method in action occurs after the first for loop in Algo-

rithm 2. At this point in the algorithm, all the information necessary for com-

puting the next chunks worth of data is known. By beginning computation on

line 8, the GPU has a head start calculating the results the CPU will need at the

beginning of the next iteration of the algorithm. The sets of observations needed

to carry out this calculation are made possible by the optimization discussed in

Section 7.5.

7.4 Hiding Memory Transfers

Decreasing the amount of time spent waiting on data transfers to and from GPU

helps to amortize the cost of GPU computing. In ideal cases, this cost can be

completely removed. The most basic technique is to simply use asynchronous

memory transfers between the CPU and GPU. Asynchronous memory transfers

are a fire-and-forget form of memory transfer. Unlike ordinary data transfers,

once kicked o↵ control returns immediately to the caller, instead of waiting for

the transfer to complete. Both the CPU and GPU can perform work while the

transfer is happening. If done in separate streams and the GPU has two copy

27

engines, data transfer to and from the GPU can occur simultaneously. The catch

is the data transfer can only happen to and from page locked memory.

To hide memory transfers as much as possible data flow patterns that exist

within the process must be analyzed. Ideally, all the data required by the CPU or

GPU for its current calculation would be available without delay. By beginning

transfers as soon as data becomes available, instead of immediately before it is

needed, idle times can be minimized.

In this application, the set of observations needed on the GPU is constantly

changing. But, as soon as the first for loop executes in Algorithm 2 how many

markers are valid is known. This indicates how many sets of observations must be

replaced on the GPU. Splitting the old for loop in two allows for the next set of

observations to begin transferring before it is needed. All the while, computation

is performed on the GPU and CPU. The CPU updates the statistical model to

reflect for the current chunk and the GPU begins computing the dot products

for the next chunk. This is shown in lines 8 and 9 of Algorithm 2.

7.5 Circular Data Bu↵ering

As discussed previously, bus transfer times are one of the biggest killers of GPU

computing performance and all data needed by the GPU would be transferred

before any calculations began. However, due to memory capacity limitations on

GPUs this is not always feasible. Instead a subset of data needed for the next

n iterations can be kept on the GPU. If n is large enough it can e↵ectively hide

the fact that the necessary data is constantly being transferred to the GPU.

By ensuring the data necessary for the next iteration is available, this bu↵ering

28

technique prevents the GPU from sitting idle and allows for the pre-computing

of dot products.

For this application, the maximum number of observation sets that must be

replaced is set by the user supplied chunk parameter. Due to the data dependence

issues in ReGen the number of observation sets that must be replaced varies. A

circular bu↵er was selected to store the observation sets as it naturally lends itself

to the problem.

In this implementation, n is a configurable value. A su�cient value for n can

easily be empirically determined. The n value used throughout this thesis is 4.

7.6 Pipelining Kernel Calls

Besides o↵ering large amounts of DLP the GPU also o↵ers a limited amount of

TLP. Achieving TLP on the GPU involves executing multiple kernels at once.

This can be accomplished by calling kernels in separate streams. Recall that this

indicates to the GPU that there is no dependence between the two kernels. As

a result, hardware permitting, the kernels can be run concurrently. The limiting

factor becomes the number of SMs available on the GPU. This can lead to a

kernel pipelining e↵ect and helps reduce the latency of each kernel call.

Taking advantage of TLP on the GPU has the added advantage of making

sure the GPU is saturated with work. Higher occupancy, the ratio of active

warps to the maximum possible number of active warps, often lead to better

performance. Yet, this is not always the case [24]. ReGen takes advantage of this

form of parallelism by executing all dot product kernel calls in separate streams.

29

Figure 7.1: GPU memory layout demonstrating striping paradigm

7.7 Multiple GPU Support

Adding more hardware can increase parallelism and performance. Utilizing more

GPUs allows the workload to be spread around, reducing the time to compute

independent tasks, such as computing a chunk of dot products. Placing the GPUs

on di↵erent buses can remove bus contention, which can lower performance.

Each GPU is not required to hold all the observation sets. Data is striped

across all the GPUs to decrease bus transfer times. To ensure an even workload,

the index of the set of observations is divided by the total number of GPUs and

the remainder is used to index into the set of GPUs. Figure 7.1 illustrates how

observations are divided among the GPUs.

ReGen has been designed to seamlessly scale to accommodate additional

GPUs. It can be instructed to use all or a subset of the GPUs available on

the system.

30

CHAPTER 8

Experimental Setup

8.1 Testing Environment

All performance measurements were taken on a single machine. This machine

contains two physical CPUs and four GPUs. Only three GPUs were used for

testing, leaving one to drive the display. Both of the CPUs are Intel Xeon E5-

2650 8-core CPUs. These CPUs have support for hyper-threading and run at

2.00 GHz. The system has 64 GB of RAM available.

The GPUs used for testing consisted of one NVIDIA Tesla K40 and two

NVIDIA K20Xs. The Tesla K40 has 2880 cores, 12 GB of memory, and run at a

speed of 745 MHz. The Tesla K20Xs have 2688 cores, 6 GB of memory, and run

at a speed of 732 MHz.

At the time that tests were conducted, the machine was running Arch Linux

containing version 3.14.0 of the Linux kernel. CUDA 6.0 and gcc version 4.8.2

were used to compile and link source code. The NVIDIA driver version was

334.21.

8.2 Test Data

The purpose behind the optimizations presented in this thesis is to enable GenSel

to scale and accommodate the dramatic increase in genotypic information that is

31

expected to occur in the near future. Testing with real data sets is problematic

because data sets of the magnitude needed are not currently available. Conse-

quently, in order to conduct relevant tests, simulated genotypic and phenotypic

data was used. A tool was created that allowed the creation of data sets contain-

ing an arbitrary number of markers and observations. For the tests performed

in this thesis the number of markers were limited to 10,000 markers in order to

keep runtimes manageable.

8.3 Validation

All test data sets were run on the original algorithm as well as the refactored

algorithm. To confirm correctness, the results were compared between the two

implementations. Timing data was also recorded during these runs. All timing

data reported in the results section includes only compute time, not I/O time.

I/O time is common to both the heterogeneous and original solutions and can

therefore be removed without distorting the results.

It should be noted that the original algorithm is highly optimized for single

thread CPU computing. It leverages highly optimized libraries, such as the Eigen

library [9] for math operations. This library makes use of vectorized instructions,

loop unrolling, and cache optimizations. In addition, the entire program is com-

piled using the most aggressive optimization flags.

32

CHAPTER 9

Results

The results presented in this section compare the results of the heterogeneous

computing solution against the optimized CPU based solution. Runtimes and

performance comparisons are based o↵ timing data that does not include I/O

times. The I/O times are present in both systems and not of interest. The

reported timing data does include data transfer times for the heterogeneous so-

lution, both to and from the GPU.

Unless specifically noted, ReGen configuration parameters were consistent

across the various tests performed. ReGen was configured to use 3 GPUs. The

GPUs had error-correcting code memory (ECC) enabled. Each GPU contained

a circular bu↵er that held 4 chunks worth of data. One chunk of data is defined

as the data necessary to process 6 markers.

The e↵ects of individual optimizations were not measured. The heteroge-

neous computing solution was intended to work as a system. On their own, the

optimizations are out of place with the rest of the solution leading to perfor-

mance decreases. Taken together, the optimizations perform quite well against

the highly optimized CPU based implementation.

Figure 9.1 depicts the performance data for ReGen over a wide range of

markers and observations. In the interest of time the number of markers was

capped at 10,000. Runtimes for larger marker sets can easily be approximated

33

Number of Observations CPU Runtime (s) GPU Runtime (s) Speedup

1,000 14 1,284 0.01

50,000 797 1,692 0.47

100,000 1,579 2,493 0.63

200,000 3,184 3,316 0.96

300,000 4,761 3,855 1.24

400,000 6,375 4,678 1.36

500,000 7,920 5,435 1.46

1,000,000 15,653 9,850 1.59

Table 9.1: Runtimes for 500 marker data set

as runtimes scale linearly with marker count. For example, the 10,000 marker

case takes about two times as long to run as the 5,000 marker case if all else is

held constant. Table 9.1 presents the runtimes for the 500 marker case to provide

perspective.

As expected, the CPU based implementation outperforms the heterogeneous

solution when the number of observations is small. High clock speeds and limited

DLP capabilities, in the form of SIMD instructions, allows the CPU to outperform

GPU based computing for the lower end of the observation range.

Closer inspection of Figure 9.1 reveals that the crossover point at which het-

erogeneous computing becomes beneficial is not constant and is dependent on

both the number of markers and observations. The crossover point can be con-

sidered to be approximately 150,000 observations for the data presented. At this

point, only analyses with a small number of markers (< 1, 000) are not faster.

The runtimes associated with such analyses are significantly smaller than the

34

Figure 9.1: Overall speedup with varied number of markers

larger analyses causing small performance di↵erences to be negligible in terms of

the overall runtime.

The optimizations presented in this thesis are aimed at assisting in the han-

dling of the increasingly large amount of data GenSel is expected to handle. The

heterogeneous solution succeeds in this endeavor. In all cases tested, the heteroge-

neous solution consistently outperforms the CPU based solution as optimizations

grow large. The largest speedup achieved was 1.84.

The best predictor of potential speedup is the number of observations. For a

given number of observations, the speedup associated with di↵ering marker totals

is largely clustered with larger marker sets tending to see a slightly higher per-

formance improvement. This is promising and indicates that the current solution

will scale well to higher marker counts. Observations are much more informative

about performance because the success of ReGen is predicated on the increas-

ingly large amount of DLP GPGPU computing can exploit as data sets grow.

35

This computational advantage is amplified by the chunking method as discussed

previously.

9.1 Tuning

ReGen was designed to be highly configurable. This allows the solution to be

tailored to the computing environment it finds itself in leading to greater flex-

ibility in deployment. Proper tuning can result in significantly faster runtimes

at the cost of increased complexity and time invested in setup. The number of

chunks bu↵ered on each GPU and chunk size are the parameters with the most

significant e↵ect on performance.

The number of chunks bu↵ered on each GPU is the least interesting param-

eter. From a performance perspective the GPU should never sit idle and should

always have the data it needs for the next set of computations. To ensure this

happens the bu↵er must meet or exceed the minimal size that allows work to al-

ways be readily available to the GPU. Falling below the minimum size negatively

impacts GPU performance. Exceeding the minimum bu↵er size can also have a

negative performance impact. This is due in a large part to the amount of time

spent in setting up the initial bu↵er exceeding the time necessary to perform

other setup routines, delaying the start of computation. Figure 9.2 illustrates the

e↵ect of bu↵er size on performance.

Determining the optimal chunk size can be extremely di�cult. Every aspect

of the system has an e↵ect from the number of GPUs to the underlying statistics

that enable the analysis. For simplicity and accuracy, it is best to determine

empirically. This process can be done relatively quickly. The e↵ect of di↵erent

size chunks on the overall speedup is shown in Figure 9.3.

36

Figure 9.2: E↵ect of di↵erent bu↵er sizes on speedup

37

Figure 9.3: E↵ect of di↵erent chunk sizes on speedup

38

Figure 9.4: E↵ect of ECC memory on speedup

Enabling or disabling ECC memory on the GPUs has the potential to e↵ect

ReGen’s runtimes as well. ECC memory protects against data corruption but

in turn may lower performance due to additional overhead costs. For this appli-

cation, enabling or disabling ECC memory was not found to have a significant

e↵ect on performance. Figure 9.4 shows the performance di↵erence between two

analyses, one performed with ECC memory enabled and the other disabled.

9.2 Scalability

ReGen was designed to scale easily and use all computing resources available.

One of the most impactful improvements on performance can be achieved by

adding more GPUs to the system. As the number of observations increases the

39

Figure 9.5: E↵ect of scaling the number of GPUs utilized on speedup

GPU computing load increases much faster than the CPU computing load. This

imbalance can lead to ine�ciency. By spreading the load across multiple GPUs

this imbalance can be mitigated. Figure 9.5 shows the e↵ect of adding additional

GPUs to the system. The GPUs that compose the system have a priority assigned

to them. So, in this test the K40 was always used due to its high priority. As the

number of GPUs was increased the K20Xs were added.

40

CHAPTER 10

Conclusions

The heterogeneous computing environment o↵ers many advantages for high per-

formance compute problems. It opens up a whole new world of parallel computing

possibilities. Leveraging this technology is a non-trivial task. A paradigm shift

in the design and implementation of solutions is required.

ReGen illustrates how even notoriously di�cult to parallelize algorithms can

benefit from the heterogeneous compute environment. By carefully restructuring

the original algorithm found in GenSel, ReGen embraces the parallel computing

paradigms to the fullest. Concepts of TLP and DLP are taken to extreme mea-

sures to make sure work is always being performed on the CPU and GPU, results

are computed as early as possible to reduce wait times, transfer times are hidden,

and kernels are pipelined. ReGen is able to achieve a 1.84 times speedup over the

highly optimized CPU implementation. This performance gain will ensure that

genetic analyses continue to be performed in a reasonable timeframe as the size

of data sets increases.

41

CHAPTER 11

Future Work

The current implementation of ReGen o↵ers significant improvement over the

original implementation but there remain several areas that could be improved

or explored. In its current state, ReGen relies heavily on hand configuration to

achieve optimal performance. This limits ReGen’s usability in two ways. First,

it makes learning to use the tool significantly more di�cult and time consuming.

Second, the lack of an automated method for setting configuration parameters

makes setting up ReGen on a new system very time consuming. Ideally, ReGen

should be able to detect the configuration of the system and choose the best pa-

rameters by default while still maintaining the ability to be manually overridden.

Taking this a step further, ReGen should also choose the optimal computation

strategy between CPU and heterogeneous computing. These modifications would

significantly improve the usability and flexibility of the system.

ReGen is currently a very greedy application. When running on large data

sets it has a very large memory footprint. Much of this memory is page locked

to allow for asynchronous data transfer. This can be problematic because it can

negatively impact other users on the system and if the data set is truly massive

can cause the system to grind to a halt. If data sizes increase faster than the

memory capacity of the systems ReGen is being run on these problems may

occur in the future. To prevent this, the existing solution should be enhanced to

42

e�ciently predict what data needs to be transferred and swap data in and out of

a small portion of pinned memory as necessary.

Several alternative algorithms for performing Bayesian inference could pro-

vide significant speedups. Block Gibbs sampling builds upon the basic idea of

current algorithm and seeks to shrink the individual links of the chain. Block

Gibbs sampling enables larger chunks of data to be processed at once leading to

increased parallelism.

Another potential avenue to squeeze performance out of is through generating

more e�cient machine code. The use of industrial compilers, such as PGI, should

be explored. It would be interesting to see how much, if at all performance is

a↵ected.

43

BIBLIOGRAPHY

[1] Vikas Agarwal, MS Hrishikesh, Stephen W Keckler, and Doug Burger. Clock

rate versus IPC: The end of the road for conventional microarchitectures,

volume 28. ACM, 2000.

[2] Anton A Béguin and Ceec AW Glas. MCMC estimation and some model-fit

analysis of multidimensional IRT models. Psychometrika, 66(4):541–561,

2001.

[3] Stephen Brooks. Markov chain Monte Carlo method and its applica-

tion. Journal of the royal statistical society: series D (the Statistician),

47(1):69–100, 1998.

[4] Gregory F Cooper. The computational complexity of probabilistic inference

using bayesian belief networks. Artificial intelligence, 42(2):393–405,

1990.

[5] Gordon V Cormack and Thomas R Lynam. Online supervised spam fil-

ter evaluation. ACM Transactions on Information Systems (TOIS),

25(3):11, 2007.

[6] Michael Evans, Tim Swartz, et al. Methods for approximating integrals

in statistics with special emphasis on Bayesian integration problems.

Statistical Science, 10(3):254–272, 1995.

[7] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. GPU

cluster for high performance computing. In Proceedings of the 2004

44

ACM/IEEE conference on Supercomputing, page 47. IEEE Computer

Society, 2004.

[8] James E Gentle, Wolfgang Härdle, and Yuichi Mori. Handbook of computa-

tional statistics. Springer, 2004.

[9] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,

2010.

[10] David Habier, Rohan L Fernando, Kadir Kizilkaya, and Dorian J Garrick.

Extension of the bayesian alphabet for genomic selection. BMC bioin-

formatics, 12(1):186, 2011.

[11] Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural

guide. International Journal of Approximate Reasoning, 15(3):225–263,

1996.

[12] K Kizilkaya, RL Fernando, and DJ Garrick. Genomic prediction of simu-

lated multibreed and purebred performance using observed fifty thou-

sand single nucleotide polymorphism genotypes. Journal of animal sci-

ence, 88(2):544–551, 2010.

[13] Anthony Lee, Christopher Yau, Michael B Giles, Arnaud Doucet, and

Christopher C Holmes. On the utility of graphics cards to perform mas-

sively parallel simulation of advanced Monte Carlo methods. Journal of

Computational and Graphical Statistics, 19(4):769–789, 2010.

[14] Anthony O’Hagan, Jonathan Forster, and Maurice G Kendall. Bayesian

inference. Arnold London, 2004.

[15] Adrian E Raftery, Steven Lewis, et al. How many iterations in the Gibbs

sampler. Bayesian statistics, 4(2):763–773, 1992.

45

[16] NVIDIA Corporation. CUDA C programming guide. http://docs.nvidia.

com/cuda/cuda-c-programming-guide/, February 2014.

[17] NVIDIA Corporation. CUDA toolkit documentation – cuBLAS. http:

//docs.nvidia.com/cuda/cublas/, February 2014.

[18] Fredrik Ronquist and John P Huelsenbeck. Mrbayes 3: Bayesian phyloge-

netic inference under mixed models. Bioinformatics, 19(12):1572–1574,

2003.

[19] Shane Ryoo, Christopher I Rodrigues, Sara S Baghsorkhi, Sam S Stone,

David B Kirk, and Wen-mei W Hwu. Optimization principles and appli-

cation performance evaluation of a multithreaded GPU using CUDA. In

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and

practice of parallel programming, pages 73–82. ACM, 2008.

[20] Mahdi Saatchi, Mathew C McClure, Stephanie D McKay, Megan M Rolf,

JaeWoo Kim, Jared E Decker, Tasia M Taxis, Richard H Chapple,

Holly R Ramey, Sally L Northcutt, et al. Accuracies of genomic breed-

ing values in american angus beef cattle using k-means clustering for

cross-validation. Genet Sel Evol, 43:40, 2011.

[21] Marc A Suchard and Andrew Rambaut. Many-core algorithms for statistical

phylogenetics. Bioinformatics, 25(11):1370–1376, 2009.

[22] Marc A Suchard, Quanli Wang, Cliburn Chan, Jacob Frelinger, Andrew

Cron, and Mike West. Understanding GPU programming for statistical

computation: Studies in massively parallel massive mixtures. Journal of

Computational and Graphical Statistics, 19(2), 2010.

46

[23] Luke Tierney. Markov chains for exploring posterior distributions. the Annals

of Statistics, pages 1701–1728, 1994.

[24] Vasily Volkov. Better performance at lower occupancy. In Proceedings of the

GPU Technology Conference, GTC, volume 10, 2010.

47

