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ABSTRACT 

Microcosm Study of Natural Attenuation, Biostimulation, and Bioaugmentation of Soils 

Contaminated with PCBs, Dioxins, PAHs, and Petroleum Hydrocarbons  

Mackenzie L. Billings 

The potential for bioremediation of weathered petroleum hydrocarbons, 

polycyclic aromatic hydrocarbons (PAHs), dioxins, and polychlorinated biphenyls 

(PCBs) was assessed using laboratory-scale microcosms with contaminated soils from the 

Santa Susana Field Laboratory (SSFL) in southern California.  These contaminants of 

interest (COIs) have persisted in these soils for over 40 years in some cases. The 

objective of this United States Department of Energy (DOE)-funded study was to 

determine the potential of natural attenuation, in-situ biostimulation, and/or 

bioaugmentation remediation methods to reduce COI concentrations in soil and estimate 

potential biodegradation rates of COIs in SSFL soils.  

Several types of soil microcosms were established: one set of microcosms was run 

without amendments to estimate natural attenuation rates at the site; biostimulation was 

tested by addition of nitrogen and phosphorus, rice hulls, and/or biosurfactant (soya 

lecithin), another set was augmented with the white-rot fungus Phanerochaete 

chrysosporium, and gamma-irradiated microcosms served as sterilized controls.  Soil 

samples were collected and analyzed for dioxins, PCBs, PAHs, and extractable fuel 

hydrocarbons (EFH) after 0, 4, and 8 months of incubation.  Soil contamination in the 

microcosms initially consisted of primarily heavily chlorinated dioxins and PCBs, longer-

chain petroleum hydrocarbons (21-40 equivalent carbon chain length), and PAHs with 4-

6 aromatic rings.   
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Small decreases in PAH, PCB, and dioxin soil concentrations were observed, but 

these decreases were not statistically significant over the time period of the microcosm 

experiments.  EFH concentrations were inflated at the final sampling event, but they 

appeared to reduce for two of three soils tested at the second sampling (4 months).  

Because petroleum hydrocarbons were primarily longer-chain hydrocarbons in the C21 to 

C40 EFH range, it is likely that lighter hydrocarbons had been preferentially degraded, 

leaving the more recalcitrant longer-chain hydrocarbons in the soil. Larger PAHs (4-6 

rings) comprise the majority of residual PAH soil contamination in the soils collected 

from the field site.  These PAH concentrations did not decrease significantly during this 

8-month long study; it is likely that these larger PAH compounds are somewhat 

recalcitrant and will take a long time to biodegrade.  Similarly, little or no PCB 

biodegradation was observed, which is not surprising because the PCBs are heavily 

chlorinated, and bacterial biodegradation of these highly chlorinated compounds is 

reported to occur only under anaerobic conditions which were not observed in the field or 

in microcosms.  Dioxin concentrations appeared to decrease in some cases, but these 

reductions were not statistically significant at the 95% confidence level.  The primary 

dioxin congener present in soils was octachlorodibenzodioxin (OCDD), which is the 

heaviest-chlorinated dioxin congener. Like PCBs, this compound requires anaerobic 

conditions for reductive dechlorination, and these are not present at the site.  Total dioxin 

concentrations decreased in the microcosms amended with Phanerochaete 

chrysosporium, although this decrease was not statistically significant due to variability 

of dioxin concentrations measured in the soil.  No decrease in tetrachlorodibenzodioxin 
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(TCDD) toxicity equivalence (TEQ) was observed with P. chrysosporium 

bioaugmentation, and this parameter is important in terms of dioxin toxicity.   

Soil vapor analyses performed at the site indicate highly aerobic soil conditions.  

To mimic site conditions as closely as possible, experimental microcosms were also 

maintained under aerobic conditions. Although fungi have been reported to degrade 

PCBs and dioxins under aerobic conditions, the microcosms augmented with 

Phanerochaete chrysosporium did not show statistically significant biodegradation of 

PCBs.   

Contaminant sequestration in the soil may also have contributed to the lack of 

observed biodegradation because the COIs at this site are highly weathered. However, 

even microcosms augmented with a surfactant (soya lecithin), which would be expected 

to solubilize sequestered COIs, did not show significant biodegradation. 
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GLOSSARY 
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1.0 INTRODUCTION 

Santa Susana Field Laboratory (SSFL) is a historic rocket fuel, nuclear reactor, 

and liquid metals testing site.  The Department of Energy (DOE) is one of three parties 

(Boeing, DOE, and the National Aeronautics and Space Administration, or NASA) 

responsible for mitigating soil contamination resulting from historic SSFL activities.  

Contamination includes dioxins, herbicides, metals, petroleum hydrocarbons (PHCs), 

polycyclic aromatic hydrocarbons (PAHs), perchlorate, pesticides, PCBs, and 

radionuclides.  In 2010, the OE signed an Administrative Order on Consent (AOC) with 

the California Environmental Protection Agency that requires DOE to reduce 

contamination levels to background levels specified in a Chemical Look-Up Table 

(Look-Up Table) provided in a May 21, 2013 technical memorandum by the Department 

of Toxic Substances Control. 

 Sandia recommended five soil remediation technologies to assess in future 

studies: bioremediation, natural attenuation, phytoremediation, soil partitioning, and 

mercury volatilization. For the bioremediation study, Sandia recommended the following 

treatment study tasks: determine what biota/microbiota are currently present in Area IV 

soils; the rate of biologic degradation, if any, for the various contaminants in the affected 

soils; what nutrients/additives can be used to stimulate/increase native biota/microbiota 

degradation rates (i.e. biostimulation); and what non-native biota/microbiota could be 

used to degrade existing contaminants without interfering with native biota.  

Following the recommendation of Sandia National Laboratories, this study 

investigated the rates of biologic degradation of dioxins, PAHs, PCBs, and PHCs 

observed in laboratory microcosm experiments.  Natural attenuation rates were 
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investigated by incubating two different soils from the site without amendments. 

Biostimulation was tested on another soil from the site through nutrient, biosurfactant, 

and bulking agent amendment of soils.  Bioaugmentation was explored by amending one 

set of microcosms with the white-rot fungi Phanerochaete chrysosporium, which has 

been shown to facilitate biodegradation of PCBs and dioxins under aerobic conditions.  

To observe changes in soil concentrations due to abiotic factors, control microcosms 

were sterilized using Cobalt-60 gamma irradiation.   

 Site conditions and soil quality assessments provide indispensable information 

that can shed light on the biodegradability limitations of contaminants at a given site.  

These data can be used in conjunction with microcosm sampling data to determine 

whether or not biodegradation of contaminants is occurring at a given site.  Soil 

temperature and gas data were collected and mimicked during microcosm incubation. 

 Three different soils were collected from the site, homogenized, and placed in 4-L 

glass microcosms with amendments.  Microcosms consisted of 4-L glass jars sealed with 

Teflon-lined lids, soil at 15% moisture, and soil amendments.  The microcosms were 

incubated at temperatures representative of the field site under aerobic conditions.  Soils 

were sampled at 0, 126, and 244 days after experiment startup to observe any changes in 

soil contaminant concentrations.  A companion study characterized the microbial 

communities in SSFL soils and revealed that SSFL soils contain significant populations 

of microbes that can degrade PHCs aerobically (Croyle 2014).  Several strains of fungi 

were identified which have been reported to mediate cometabolic biodegradation of 

PAHs, PCBs, and dioxins, but bacteria associated with biodegradation of these 

compounds were not detected (Croyle 2014).   
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2.0 BACKGROUND 

2.1 Site Background 

SSFL was established in 1947 for liquid propulsion rocket engine testing by both 

the Department of Defense and NASA for the manned-space program.  The portion of the 

site that is of interest in this study, Area IV, was designated for energy research in 1954 

by North American Aviation’s Atomics International (AI).  A 90-acre subarea of Area IV 

was leased to the Atomic Energy Commission and then to DOE for other research 

including nuclear energy.  This 90-acre subarea came to be known as the Energy 

Technology Engineering Center (ETEC).  

Several chemicals were used to support the research conducted at Area IV, 

including PCBs in electrical components and hydraulic fluids, fuels to run auxiliary 

generators and heat water for steam, solvents to clean components, metals such as 

mercury for energy transfer applications, and silver for photograph development.  Waste 

from transformers, storage tanks, drums in storage areas, and leach fields was combusted 

onsite which released PCBs, metals, fuels and lubricants, and solvents.  These 

combustion activities and the 2005 Topanga Wildfire also resulted in the generation of 

dioxins and furans.   

The DOE led some of the research conducted in Area IV, and they are now 

responsible for addressing soil and groundwater contamination resulting from historic 

research activities.  The most recently published estimate of SSFL soil volume with 

contaminants at levels exceeding the DTSC’s Look Up Table (LUT) values is 

approximately 1,070,220 cubic yards (Collins, Sherwin, and Hambrick 2013).  
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This bioremediation study was performed in conjunction with natural attenuation, 

phytoremediation, soil partitioning, and mercury volatilization studies to determine the 

course of action to best minimize the amount of contaminated requiring excavation and 

transport to proper disposal.  Eventually, DOE would like to turn this site into a park.  

Although there are several types of contaminants at the site, those addressed in this study 

include PAHs, PCBs, petroleum hydrocarbons, and dioxins.  Groundwater contamination 

was not addressed in this study. 

2.2 Site Contamination Characterization 

Extensive site assessment indicates that contaminant concentrations in soil span a wide 

range (Table 1).  

Table 1: Historic Area IV contaminant concentrations vary widely across the site. 

Contaminant Type Contaminant Low Concentration High Concentration 

TPH (ppm) 

Heavy lube oil 170 82,000 

Diesel (31-40 

carbons) 

5.9 5,100 

Diesel (20-30 

carbons) 

31 1,300 

Gasoline 3 6.6 

Kerosene (15-20 

carbons) 

0.44 350 

SVOC/PAH (ppb) SVOC/PAH 6.3 351,600 

Dioxins 

(TCDD TEQ, ppt) 

Dioxins 2.68 650 

PCBs (ppb) 

Aroclor 1242 392  

Aroclor 1248 34 24,000,000 

Aroclor 1254 19 9,100 

Aroclor 1260 4.2 49,000 

 

There are significantly higher concentrations of longer equivalent carbon chain 

hydrocarbons than their shorter counterparts (Table 1).  This indicates that lighter 

hydrocarbons have mostly degraded (a preferential substrate to microorganisms).  The 

longer equivalent carbon chain hydrocarbons that are left behind are highly weathered 
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and likely bound to soil particles, reducing their bioavailability (Smith et al. 2007).   

 Most of the site’s PAH contamination is comprised of compounds with 4-6 

aromatic rings (Appendix C, Bar Graphs of Individual PAH Compounds in Soils A, B, 

and C, illustrates this point).  This fact agrees with the majority of papers cited in 

literature which indicate that PAH degradability becomes more difficult as the number of 

aromatic rings increases. 

PCB contamination consists primarily of heavily chlorinated Aroclor mixtures 

(Aroclors 1254, 1260, and 5460).  These Aroclors are 54%, 60%, and 59% chlorine by 

weight, respectively.  These heavily chlorinated PCB mixtures’ dominant presence at the 

site compared to their lighter chlorinated counterparts and the site’s aerobic soil gas data 

support the well-cited literature hypothesis that more heavily chlorinated PCBs require 

anaerobic conditions to degrade to lighter-chlorinated compounds.  Initial site data 

indicates that lesser-chlorinated PCBs either were not used at the site or have been 

aerobically degraded (Appendix D, Bar Graphs of Aroclor Concentrations in Soils A, B, 

and C), and more heavily chlorinated PCBs remain in soil because of the aerobic 

conditions.  It is unlikely that the site will achieve anaerobic conditions because of the 

low rainfall in Simi Valley (13.8 inches) (Simi Valley, CA Weather) and the soil 

characteristics.  In addition, groundwater at the site is being pumped and treated, 

eliminating the potential for saturated conditions.   

The majority of contamination at the site is composed of the 

octachlorodibenzodioxin (OCDD) congener, which is the most heavily chlorinated 

dioxin.  The next most common dioxin is 1,2,3,4,6,7,8 heptachlorodibenzo-p-dioxin 

(HpCDF), but it is present at levels less than 10% of OCDD concentrations soils used in 
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these experiments (Appendix B, Bar Graphs of Individual Dioxin Congeners in Soils A, 

B, and C).  These two compounds have a fairly low toxic equivalent factor (TEF): 

OCDD’s TEF is 0.0003, and HpCDD’s is 0.01 (EPA 2013a).  Clearly, individual 

compounds’ TEF and the resulting dioxin toxicity equivalence (TEQ) must be understood 

when assessing mitigation of site contamination. 

2.3 Contaminants 

2.3.1 Petroleum Hydrocarbons 

Hydrocarbon contaminants are present in the environment in two main forms: 

aliphatics and aromatics.  Aliphatics may be saturated (alkanes), unsaturated (alkenes 

and/or alkynes), or may form cyclic ring structures.  Hydrocarbons containing one or 

more aromatic ring structures are referred to as aromatic hydrocarbons; some of these are 

more readily degraded by indigenous microbes than others (Tyagi, da Fonseca, and de 

Carvalho 2011).  Alkanes are typically quickly degraded, while polycyclic aromatic 

hydrocarbons are very recalcitrant (Van Hamme, Singh, and Ward 2003).  Reported 

efficiencies of biodegradation for soil fungi and bacteria and marine bacteria vary (Table 

2):  
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Table 2: Minimum and maximum biodegradation rates reported for soil and marine 

organisms 

Organism type Minimum reported 

biodegradation (%) 

Reference Maximum reported 

biodegradation (%) 

Reference 

Soil fungi 6 (Jones, 

Knight, and 

Byron 1970) 

82 (Pinholt, Struwe, 

and Kjoller 

1979) 

Soil bacteria 0.13 (Jones, 

Knight, and 

Byron 1970) 

50 (Pinholt, Struwe, 

and Kjoller 

1979) 

Marine bacteria 0.003 (Hollaway, 

Faw, and 

Sizemore 

1980) 

100 (Mulkins Phillips 

and Stewart 

1974) 

It is clear that reported degradation rates vary widely.  In addition, because 

hydrocarbon mixtures in soil and water are complex, mixed populations with broad 

enzymatic capacities are needed for their degradation (Das and Chandran 2010).  

Fortunately, several bacteria are known to feed exclusively on hydrocarbons (Yakimov, 

Timmis, and Golyshin 2007).  In particular, Gordonia, Brevibacterium, Aeromicrobiom, 

Dietzia, Burkholderia, and Mycobacterium were identified as potential organisms for 

hydrocarbon degradation when isolated from petroleum-contaminated soil (Chaillan, 

Fleche, and Bury et al. 2004). 

Petroleum hydrocarbon degradation rates are dependent on several environmental 

factors (Brusseau 1998).  A compound’s structure and biodegradability are two of the 

most prominent considerations when assessing remedial options (Das and Chandran 

2010).  Temperature also plays an important role, affecting pollutant chemistry and 

microbial physiology and diversity (Das and Chandran 2010).  Typically, biodegradation 

rates decrease as temperature decreases (Das and Chandran 2010).  Bartha, Bossert, and 

Cooney (Bartha and Bossert 1984; Cooney 1984) showed that the highest degradation 

rates occur at 30-40°C in soil, 20-30°C in some freshwater environments, and 15-20°C in 

marine environments. In addition, nutrient availability (especially nitrogen, phosphorus, 
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and even sometimes iron) is essential for hydrocarbon degradation (Cooney 1984).  If 

degradation is nutrient-limited, biodegradation may be impeded.  However, excessive 

nutrients can also be detrimental to degradation (Chaillan et al. 2006).  In fact, high NPK 

levels’ detrimental effects on biodegradation are well-cited (Oudot, Merlin, and Pinvidic 

1998; Chaineau et al. 2005; Carmichael and Pfaender 1997). 

Aerobic conditions offer the most rapid and complete degradation of petroleum 

hydrocarbons (Das and Chandran 2010).  The main mechanism by which hydrocarbons 

are aerobically degraded is straightforward (Figure 1). 

2.3.2 Polycyclic Aromatic Hydrocarbons 

PAHs are just one class of aromatic hydrocarbons that contain two or more fused 

aromatic rings arranged in linear, angular, or cluster formations (Cerniglia 1992).  In 

Figure 1: Major hydrocarbon biodegradation pathway 

(Fritsche and Hofrichter 2000) 
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general, PAHs are relatively stable, recalcitrant in soils, and notoriously more difficult to 

degrade than several other organic compounds (Seo, Keum, and Li 2009)  They are not 

easily removed using soil remediation methods that are traditionally used to clean soils 

contaminated with volatile compounds (Pitter and Chudoba 1990).  As the molecular 

weight of PAHs increases, aqueous solubility and volatility decrease, and PAH 

recalcitrance increases as a result. There are 16 PAHs identified by the U.S. EPA as 

priority pollutants, some of which are possible or probable carcinogens (EPA 2013b). 

According to Ouvrard et al., a contaminant’s availability is the primary factor 

determining its biodegradability (2013).   They conducted a 100-month study assessing 

the capacity of PAHs to naturally attenuate in loamy sand, loam to sandy loam, sandy 

clay loam, and sandy loam.  Soil type used in this study is significant because these soil 

types are prevalent at the SSFL site.  PAH concentrations in soil ranged from 380 mg/kg 

to 2,077 mg/kg, and contamination at the site was predominantly 3 and 4 aromatic-ringed 

compounds typical of weathered contamination from coke origin.  Study findings indicate 

that natural attenuation can be used to remediate PAH-contaminated soils while 

increasing or preserving soil fertility and biological functions.  This suggests that SSFL’s 

soils may be amenable using natural attenuation.  

Another factor worth considering when assessing contaminant biodegradability is 

soil organic carbon content.  In fact, PAH compounds’ fate and transport in the 

environment is largely limited by their tendency to sorb to organic carbon.  Dissolved 

organic carbon and water PAH concentrations appeared to be the most relevant factors in 

PAH degradation rates in one study (Ouvrard et al. 2013).  This is likely because the 

organic composition of soils at a site may act as a long-term PAH sink (Doick and 
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Semple 2004).  Soil organic carbon content should be considered when assessing PAH 

transport and degradation in the environment. 

PAHs are degraded by at least two mechanisms: one uses the cytochrome P-450 

system, and the other uses soluble extra-cellular lignin catabolism enzymes (Yadav, 

Doddapaneni, and Subramanian 2006).  These enzymes include lignin peroxidase, 

manganese peroxidase (Steffen 2003), and laccase (Andreoni et al. 2004).  Cometabolism 

is essential for biodegradation of some high-molecular-weight PAHs that are not used as 

a sole carbon or energy source.  For example, benzo[a]pyrene is mineralized by microbial 

cultures when pyrene, oil, or oil fractions are used as a co-substrate (Baboshin and 

Golovleva 2012).  In addition, a study conducted by Hwang and Cutright indicated 

pyrene biodegradation was enhanced due to cometabolism in the presence of 

phenanthrene (Sangchul Hwang and Cutright 2004).  In 2001, Yuan et al. also found that 

phenanthrene enhanced the biodegradation of anthracene, fluorine, and pyrene (Yuan et 

al. 2001).  Boldrin et al. reported that fluorine, a compound that could not be used as a 

sole carbon source, was cometabolically degraded with other PAHs present as growth 

substrates (Boldrin, Tiehm, and Fritzsche 1993). 

 Unlike eukaryotes, bacteria can utilize PAHs as a sole carbon and energy source 

(Johnsen, Wick, and Harms 2005).  Typically, aerobic bacterial systems facilitate 

dioxegynase-catalyzed oxidation of arenes.  Early byproducts created by a 

multicomponent enzyme system include vicinal cis-dihydrodiols that are cleaved by intra 

or extradiol ring-cleaving dioxygenases through either an ortho- or meta-cleavage 

pathway.  Central intermediates include protocatechuates and catechols, and they are 
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converted to tricarboxylic acid cycle intermediates (Cerniglia 1992; Eaton and Chapman 

1992; Gibson and Parales 2000). 

2.3.3 Polychlorinated Biphenyls 

The term PCBs encompasses 209 possible PCB congeners with anywhere from 2-10 

chlorine atoms bonded to a biphenyl molecule (Center for Disease Control).  PCBs were 

historically manufactured to be inert, stable, flame-resistant, and oxidation-resistant 

products and used as coolants and dielectric fluids in electrical equipment.  They are 

hydrophobic and partition to organic particles in the environment.  Because of these 

properties, currents and wind can carry PCBs long distances from their original sources.  

PCBs’ chemical properties made them useful in the electrical industry, but their stability 

also made them compounds termed persistent organic pollutants by the Environmental 

Protection Agency (Environmental Protection Agency 2014).  They were manufactured 

and sold as Aroclor mixtures primarily by Monsanto Corporation from 1933 to 1977.  

Aroclor mixtures are identified by a 4-digit numbering code: the first two digits indicate 

the mixture type, and the last two digits indicate the approximate chlorine content by 

weight percent.  They were banned in the United States in 1979 and globally in 2001 as 

their environmental and health effects were better understood (Center for Disease 

Control).   

Because of their significant health risk, cost-effective and sustainable methods of 

in-situ PCBs remediation have long been sought after (Fagervold et al. 2011). Highly 

chlorinated PCBs like those in Aroclors resist aerobic degradation and must first be 

partially dechlorinated by anaerobic microbes (Kjellerup et al. 2012).   
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2.3.3.1 Reductive Dechlorination 

Anaerobic dechlorination was first observed as a change in congener patterns 

downstream of a capacitor plant that released Aroclor 1242 into the Hudson River 

(Kjellerup et al. 2012).  Since then, it has been shown to occur in the environment before 

aerobic degradation of lesser chlorinated PCB congeners (Waller et al. 2005).  During 

reductive dechlorination, preferential removal of chlorines proceeds from para to meta to 

ortho position (Tiedje et al. 1993).  Over time, this order of preferential degradation 

leaves a larger proportion of PCBs with chlorines in the ortho position.  Anaerobic 

Dehalococcoides bacteria have been shown to degrade heavily chlorinated Aroclor 1260; 

in fact, one study found that the Dehalococcoides population nearly doubled in 

magnitude its presence (Bedard, Ritalahti, and Loffler 2007).  Unfortunately, it is 

unlinkely that Dehalococcoides populations do or will ever thrive in SSFL soils under 

current conditions.  Results from two soil gas sampling events suggest that the site is 

aerobic which would prevent proliferation of anaerobic microbes.  

2.3.3.2 Aerobic Oxidative Processes 

 After anaerobic dechlorination, aerobic degradation of lightly chlorinated PCB 

occurs.  During this process, PCBs are converted to chlorobenzoic acids.  Indigenous 

bacteria can degrade the chlorobenzoic acids, producing carbon dioxide, water, chloride, 

and biomass (Field and Sierra-Alvarez 2008b). 

2.3.3.3 Combining Anaerobic and Aerobic Processes 

Some studies have explored the coupling of anaerobic and aerobic PCB 

dechlorination to accelerate PCB degradation. One such study indicated that a PCB-

contaminated sediment in an anaerobic PCB dehalorespiring enrichment that was 
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transferred into an aerobic culture containing Burkholderia xenovorans LB400 

effectively degraded Aroclors by as much as 70% (Payne, May, and Sowers 2011).  In 

theory, alternating between anaerobic and aerobic conditions to achieve complete PCB 

dechlorination is ideal, but all anaerobic-aerobic studies have been conducted in closed 

microcosms that do not accurately represent in-situ conditions (Kjellerup et al. 2012).  

Soil gas data presented in the Results section 4.1.1 (Site Conditions, Soil Gas 

Composition) indicates that SSFL is overwhelmingly aerobic and is unlikely to resemble 

these fluctuating conditions.  

2.3.4 Dioxins 

Dioxins are introduced to the environment by both natural and industrial 

processes (i.e. forest fires, waste incineration, and chlorinated phenol production).  

Chlorinated dioxins are naturally formed through catalysis of the coupling of 

chlorophenols into dioxins by enzymes such as peroxidase (Oberg and Rappe 1992; 

Wittsiepe et al. 2000).  The term ‘chlorinated dioxins’ encompasses two families of 

tricyclic, planar, aromatic compounds.  One family is comprised of 75 congeners and is 

referred to as polychlorinated dibenzo-p-dioxins (PCDD), and the other, polychlorinated 

dibenzofurans (PCDF), is comprised of 135 congeners.  PCDD/Fs are stable, have low 

volatility, are very hydrophobic, and their low bioavailability is the main reason they 

persist in the environment.  They are quite prone to adsorption onto soils and sediments 

and bioaccumulation in organisms (Field and Sierra-Alvarez 2008a). 

Toxicity of dioxin congeners varies.  Those with chlorine atoms in the 2, 3, 7, and 

8 positions, such as 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (2378-TeCDD), are highly 

toxic to mammals and other organisms (Landers and Bunce 1991; Pohjanvirta and 
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Tuomisto 1994; Boening 1998).  Because only isomers with chlorine groups in the 2, 3, 7, 

8 positions are considered toxic to higher organisms, only 17 PCDDs and 10 PCDFs are 

toxicologically significant (Field and Sierra-Alvarez 2008a).   

Studies have produced conflicting results regarding dioxins’ biodegradation in 

soil.  The overwhelming consensus is that biodegradation is most often successful for 

monochloro- or dichloro-congeners which collectively account for 84% of the reported 

cases of aerobic bacterial chlorinated dioxin degradation (Field and Sierra-Alvarez 

2008a).  Another microcosm study reported 37-44% reduction of 2,3,7,8-TeCDD when at 

initial concentrations ranging from 1-100 ppm (Kearney, Woolson, and Ellingto 1972).  

On a more pessimistic note, one 260-day study indicated no dioxin degradation in soil 

(Wilson et al. 1997).   

In aerobic environments, microbes can aerobically metabolize dioxin by cleaving 

its aromatic rings.  Non-chlorinated and monochlorinated dibenzofurans and dibenzo-p-

dioxins can serve as the sole carbon and energy sources for some aerobic bacteria that 

can completely mineralize the non-chlorinated aryl ring (Wilkes et al. 1996).  

Pseudomonas and Sphingomonas have been shown to be the most efficient PCDD 

oxidizers (Field and Sierra-Alvarez 2008a).   

In contrast, di- to tetra-chlorinated congeners are attacked co-metabolically during 

growth of bacteria on another utilizable substrate.  Often, this cometabolism results in 

accumulation of salicyclic acid or chlorocatechols as intermediates (Habe et al. 2001; 

Hong et al. 2002).  This accumulation can be avoided if the compounds are converted 

through co-cultivation with a chlorosalicylate-degrading bacteria such as Burkholderia 



16 

that can degrade the chlorosalicylate excreted by known PCDD/F degraders (Arfmann, 

Timmis, and Wittich 1997).   

Unfortunately, not all dioxins are accessible by bacteria.  PCDD/F congeners with 

greater than five chlorine atoms are most often inaccessible by aerobic bacteria (Urbaniak 

2013). This may be due to several factors including low bioavailability, steric hindrance 

of angular and ring-cleaving dioxygenase by multiple chlorine substituents, and limited 

active catalytic site space (Wilkes et al. 1996).  

Although no single organism has yet to be identified as capable of degrading all 

dioxins, Fagervold et al. (2011) hypothesized that collaborated actions of different 

aerobic microbial groups like fungi and bacterial communities that partake in angular 

hydroxylation and degrade chlorinated monoaromatic compounds can ultimately break 

down highly chlorinated dioxins.  This publication also stated that anaerobic reductive 

dehalogenation is the only known biological process able to convert PCDD/Fs and 

speculated that anaerobic bacteria can remove halogen atoms from di- to octachlorinated 

PCDD/Fs through co-metabolic bacterial activity with unspecific enzymes.  

Dehalorespiration, is one process in which PCDD/Fs can serve as a terminal electron 

acceptor.  

2.3.4.1 Reductive Dechlorination 

Highly chlorinated dioxins can be microbially degraded through anaerobic 

reductive dechlorination (Johnson et al. 2008).  During anaerobic reductive 

dechlorination, a chlorine atom is removed and replaced with a hydrogen atom.  

Dehalococcoides save energy during dechlorination by using chlorinated compounds as 

terminal electron acceptors.  The rate of dechlorination depends on the degree of 
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chlorination; as the number of chlorines increases, the dechlorination rate decreases.  

Complete dechlorination by bacteria has yet to be observed (Johnson et al. 2008).  

2.3.4.2 Angular Dioxygenation 

Once dibenzo-p-dioxin and dibenzofuran are dechlorinated, they may be degraded 

aerobically via angular dioxygenation (Johnson et al. 2008).  Angular dioxygenase 

catalyzes dibenzo-p-dioxin and dibenzofuran degradation by oxidizing one oxygen-

bonded carbon and its adjacent carbon.  Dibenzofuran and dibenzo-p-dioxin are 

spontaneously converted to 2,2’,3-Trihydroxybiphenyl and 2,2’,3-Trihydroxydiphenyl 

ether, respectively (Nojiri, Habe, and Omori 2001).  Dibenzofurans are then cleaved at 

the meta position and converted to salicylic acid or 2-Hydroxypenta-2,4-dienoic acid via 

hydrolysis.  For dibenzo-p-dioxins, angular dioxygenation may be followed by either 

meta or ortho cleavage followed by spontaneous conversion to either a catechol or 2-

pyrone-6-carboxylate (Nojiri, Habe, and Omori 2001).  If degradation proceeds to 

completion, compounds react with one or more enzymes, are eventually metabolized by 

aerobic respiration, and produce cell biomass, carbon dioxide, and water. 

2.4 Bioremediation Technologies 

2.4.1 Monitored Natural Attenuation 

Monitored natural attenuation (MNA) is used to monitor or test the progress of 

natural attenuation processes that can degrade contaminants in soil and groundwater.  It is 

useful if degradation rates are fast enough to protect both human health and the 

environment (US EPA 2013).   
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In some cases, natural attenuation is as effective as more complex bioremediation 

technologies.  Couto et al. conducted a study in 2010 that showed natural attenuation was 

as efficient as bioaugmentation, surfactant addition, and nutrient supplementation at 

remediating turbine oil-contaminated soils (Couto, Monteiro, and Vasconcelos 2010).  

Soil aeration did not have a significant effect on biodegradation rates either.  Couto et al. 

contributed this to the fact that the petroleum hydrocarbon contamination was old, and 

native microorganisms were able to efficiently degrade the contaminants present.  This is 

promising for SSFL because site contamination is decades old and native microbes may 

already be able to degrade the contaminants present.  

A companion study characterized SSFL’s microbial communities consist of 

significant populations of microbes that can aerobically degrade PHCs (Croyle 2014).  

No bacteria associated with biodegradation of PAHs, PCBs, and dioxins were detected, 

but several strains of fungi reported to mediate cometabolic biodegradation of these 

compounds were identified (Croyle 2014).   

2.4.2 Biostimulation 

The term biostimulation umbrellas several remedial technologies used to enhance 

biodegradation in the field by supplementing soils with growth substrates/co-substrates.  

Popular biostimulation agents include bulking agents, nutrient supplementation, 

halogenated priming compounds (halopriming), and surfactants (Rastegarzadeh, Nelson, 

and Ririe 2006; Richardson et al. 2012; Harkness et al. 1993; Couto, Monteiro, and 

Vasconcelos 2010; Krumins et al. 2009; Lawniczak, Marecik, and Chrzanowski 2013; 

Mukherjee and Das 2010; Mulligan, Yong, and Gibbs 2001; Neu 1996; P. K. S. M. 

Rahman and Gakpe 2008; Rust and Wildes 2008; Fava et al. 2004; Kobayashi et al. 2012; 
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Llado et al. 2013; Providenti et al. 1995; Tiehm et al. 1997a; Soeder et al. 1996; 

Rodriguez-Escales et al. 2013; Aronstein and Paterek 1995; Yong-lei et al. 2011; 

Viisimaa et al. 2013; Inakollu, Hung, and Shreve 2004; Whang et al. 2009; K. S. M. 

Rahman et al. 2002; Gorna et al. 2011).  

Addition of bulking agents promotes aeration of soils (Rastegarzadeh, Nelson, 

and Ririe 2006).  One such bulking agent is rice hulls.  For example, Rastergarzadeh et al. 

added rice hulls at 10% w/w 1:1 mixture of soil:drill cuttings.  Unamended soils 

experienced biodegradation of TPH to 91% from 24% degradation without rice hulls 4 

months.  

Nutrient supplementation can be a very effective stimulation method when 

biodegradation of contaminants is nutrient-limited.  A review of the literature indicated 

that nutrient supplementation effectively enhances biodegradation of PCBs (lightly 

chlorinated congeners), petroleum hydrocarbons, and PAHs (Harkness et al. 1993; Couto, 

Monteiro, and Vasconcelos 2010; Richardson et al. 2012).  However, even if a carbon 

source is readily available, microbial growth may be inhibited by limited microelement 

availability (Lawniczak, Marecik, and Chrzanowski 2013).  

Halopriming, a method by which halogenated compounds are added to soils 

already contaminated with halogenated compounds, has been shown to improve 

bioremediation of PCBs.  Through addition of pentachloronitrobenzene to PCB-

contaminated soils, concentrations of lesser-chlorinated PCB congeners (2-4 chlorines 

per biphenyl) increased by 20 ± 1.9% after 415 days of incubation (Krumins et al. 2009). 
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2.4.3 Bioaugmentation 

Bioaugmentation involves the addition of microorganisms known to biodegrade one 

or more of the contaminants of concern (COCs) present at a site.  Several 

microorgansims have been cited in the literature as known degraders of compounds at 

SSFL.  More specifically, several species of white-rot fungi have been shown to degrade 

multiple contaminants found at the site.  White-rot fungi are a promising class of fungi 

that have been shown to degrade the recalcitrant compounds found at SSFL.  For 

example, Takada et al. conducted the first study of its kind in which results indicated that 

a microorganism, Phanerochaete sordida substantially degraded both tetra- to octa-

chlorodibenzo-p-dioxins (PCDDs) and tetra- to octa-chlorodibenzofurans (PCDFs) 

(1996).  Dechlorination of molecules chlorinated at 2-, 3-, 7-, and 8-positions was 

significant: tetrachloro and hexachloro PCDDs were degraded at approximately 40% and 

76%, respectively; tetrachloro and hexachloro PCDFs were degraded at 45% and 70%, 

respectively.  Pleurotus ostreatus, another white-rot fungus, degraded PCBs in a study 

using wood chip as the primary fungus growth substrate (Zeddel et al.1993).  After five 

weeks, a PCB-congener mixture of primarily tri- and tetra-chlorinated biphenyls at 2500 

ppm was degraded more than 95%.  Penta- and hexa-chlorobiphenyls were found to be 

degradable by 50%, and the only congener resistant to degradation was 2,2’,4,2’,5,5’-

hexachlorobiphenyl.  Unfortunately, the same study indicated that Phanerochaete 

chrysosporium was unable to degrade any PCBs except mono- and di-chlorobiphenyl at 

atmospheric oxygen levels.   

Fungi show promise in their abilities to degrade SSFL contaminants, but bacteria 

have also been shown to degrade PCBs.  In-situ treatment of PCB-contaminated soils has 
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not been shown to be successful in many studies, but a few promising study indicates that 

it may be possible through bioaugmentation with dehalogenating organisms.  One study 

concluded that a critical cell mass was required for reductive dechlorination of Aroclor 

1260; study authors proposed that low populations of dehalorespiring bacteria might be 

the root cause of insubstantial PCB degradation in the environment (Bedard, Ritalahti, 

and Loffler 2007).  Another study indicated that bioaugmentation with D. ethenogenes 

and stimulation with haloprimers pentachloronitrobenzene and tetrachlorobenzene 

effectively accelerated PCB degradation, while stimulation with electron donors did not 

(Krumins et al. 2009). 

Total penta-chlorinated and higher chlorinated PCBs were reduced by 56% by 

mass in open mesocosms containing weathered Aroclor 1260 at 1.3 ppm (Payne, May, 

and Sowers 2011).  This was done through augmentation with D. chlorocoercia DF1.  D. 

chlorocoercia was sustained within the local microflora population within 120 days of 

initial inoculation, meaning that initial bioaugmentation may lead to self-sustaining a 

remedial method in the field.   

One study indicated that the collaborated use of the bacteria Sphingomonas sp. and 

Pseudomonas sp. increased degradation rates of PCBs to exceed those of the organisms 

individually, and degradation of more highly chlorinated PCBs was enhanced (Yong-lei 

et al. 2011).   

Consideration should be taken prior to amending soils with foreign microorganisms, 

though.  One study showed that antagonistic effects were observed for native soil 

microbiota when PAH-contaminated soils were augmented with non-native white-rot 

fungi (Llado et al. 2013). 
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Bioaugmentation can also be used to accelerate degradation of dioxins in soil.  In 

particular, white-rot fungi have been shown to degrade several low to highly chlorinated 

dibenzo-p-dioxins (Takada et al. 1996).  Takada et al. compared the percent degradation 

of tetra- to octa-chlorinated dibenzo-p-dioxins and dibenzofurans by glucose-

supplemented P. chrysosporium and P. sordida.  Glucose-supplemented P. 

chrysosporium consistently degraded all congeners but 2, 3, 7, 8, TeCDF more efficiently 

than P. sordida at rates ranging from 27.3 to 64.9% over 7 days.  P. sordida’s 

degradation rates of the same contaminants ranged from 14.2 to 50.4% in the same time 

period.  P. sordida’s ability to degrade tetra- and octa-chlorinated dibenzo-p-dioxins was 

supported by identification of a corresponding metabolite from the contaminants.  This is 

significant for environmental contamination because it typically consists of multiple 

dioxin congeners.  Takada et al. also stated that both P. sordida and P. chrysosporium 

showed no structural dependence for PCDD/F degradation and that it may be a free-

radical process with little specificity.  Degradation by the free-radical process may be 

more favorable in the presence of the oxygen molecule on PCDD/Fs: unlike the little 

specificity outlined in Takada et al.’s article outlining PCDD/F degradation, Yadav et al. 

showed in 1995 that PCB (biphenyl molecules lack the oxygen molecules that dioxins 

and furans contain) degradation becomes more difficult with increasing number of 

chlorine substitutions around the biphenyl nucleus. 

A review conducted by Habe et al. indicates that 32-100% of mono- to tri-chloro-

dibenzodioxins/dibenzofurans (DD/DF) at concentrations of 1 – 10 ppm in artificially 

contaminated soils were degraded in one week by bacterial strains added to soils (Habe et 



23 

al. 2001).  Actual contaminated soils that were inoculated with dioxin-degrading bacteria 

resulted in 8.3-10% removal of dioxins after the same incubation time. 

The success of bioaugmentation in degrading petroleum hydrocarbons has also 

been fairly successful.  Although one study indicated that biostimulation was more 

effective than bioaugmentation (Abdulsalam et al. 2011).  Again, bioaugmentation 

proved the most effective remediation method for diesel-contaminated soil in a study 

using Rhodococcus sp. EH831 (Lee, Kang, and Cho 2011).  In another study, 

bioaugmentation resulted in biodegradation rates two to four times higher than intrinsic 

biodegradation rates (Malina and Zawierucha 2007).  In this study, application of 

indigenous bacteria resulted in more efficient degradation than that of an exogenous 

culture. 

Bioaugmentation has produced mixed results for PAH degradation as well.  In 

one study, bioaugmentation increased biodegradation of pyrene and phenanthrene by 

68% and 86%, respectively, in aged soils compared to biostimulation (S. Hwang and 

Cutright 2002).  Another study indicated that native soil microbiota hampered augmented 

microorganisms’ growth in petroleum hydrocarbon and high-molecular weight PAH-

contaminated soil (Llado et al. 2013). 

2.4.4 Surfactant Addition 

Surfactants are molecules that can increase bioavailability of hydrophobic and/or 

recalcitrant compounds that are embedded in the soil matrix.  They work by increasing 

compounds’ solubility in the aqueous phase (Lawniczak, Marecik, and Chrzanowski 

2013; Inakollu, Hung, and Shreve 2004; Whang et al. 2009).  They may also change cell 

membrane properties and increase microbial adherence, increasing the likelihood of 
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direct substrate uptake when two immiscible phases are present (Neu 1996; Franzetti et al. 

2009).  As amphiphilic compounds, surfactants tend to deposit at the oil/water interface 

(Lawniczak, Marecik, and Chrzanowski 2013).  The hydrophobic and lipopholic 

components of biosurfactant molecules are easily distinguishable and vital to their 

contribution to bioremediation. 

Both synthetic (petrochemical) and natural (oleochemical) surfactant sources are 

available.  Primary petrochemical surfactant feedstocks are crude oil derivatives such as 

ethylene and benzene.  Typical oleochemical surfactant feedstocks are seed oils (palm, 

soybean, and coconut oils), but plant carbohydrates and animal fats may be used as well.  

There are four types of surfactants available: anionic, nonionic, cationic, and amphoteric.  

The largest group, anionic surfactants, has superior wetting and emulsifying properties 

and tends to be constituted of higher-foaming materials (Rust and Wildes 2008).  

Nonionic surfactants are known to be the least toxic.  Amphoteric surfactants behave as 

either mild cationic or anionic surfactants depending on pH (Rust and Wildes 2008). 

Biosurfactants are known to rival their synthetic counterparts’ efficiency while 

being more biodegradable and less toxic to contaminant-degrading microorganisms 

(Lawniczak, Marecik, and Chrzanowski 2013).  They may either be added to soils 

externally (most common) or produced on-site.  For on-site production, soils must either 

contain or be augmented with microorganisms capable of biosurfactant production 

(Lawniczak, Marecik, and Chrzanowski 2013). 

Some types of biosurfactants have become more popular than others.  For 

example, rhamnolipids often serve as a model biosurfactant for experiments (Rahman et 

al. 2002).  Use of rhamnolipid surfactants has accelerated degradation of petroleum 
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hydrocarbons (Inakollu, Hung, and Shreve 2004).   It is important to note that Inakollu et 

al.’s study indicated that the use of biosurfactants enhanced biodegradation of all 

hydrocarbons except phenanthrene and naphthalene, perhaps because surfactant 

solubilization is influenced by contaminant molecular size and structure.  

The largest volume of soy-based surfactants is constituted by soy lecithin, an 

anionic surfactant (Rust and Wildes 2008).  It has been shown to improve biodegradation 

of both PCBs and PAH (Fava et al. 2004; Soeder et al. 1996).   

Perhaps the most important considerations to take into account when applying 

biosurfactants for bioremediation of contaminants include bio-compatibility between the 

pollutants, microorganisms, and biosurfactants.  Native microflora may also impact in-

situ biosurfactant treatment.  Rhamnolipids can sometimes be biodegraded preferentially 

over contaminants (Chrzanowski et al. 2012).  For example, Lin et al. (2011) showed 

initial enhanced biodegradation diesel oil through addition of biosurfactants, but the 

biodegradation rate in latter stages of the study was similar to that in the absence of 

biosurfactants.  In this study, hydrocarbon availability was likely the limiting factor in the 

beginning of the degradation process.  Degradation in the later stage was likely limited by 

desorption and mass transfer of hydrocarbon in the soil matrix (Lin et al. 2011), or they 

may simply serve as an alternative carbon source (an undesired outcome if metabolized 

before target contaminants).  One way to solve this issue is to apply microorganisms that 

do not preferentially degrade biosurfactants, a trait commonly observed in biosurfactant 

producers (Providenti et al. 1995). 

Biological and chemical surfactants are very promising remedial amendments for 

PCB-contaminated soils: addition of biological and chemical surfactants resulted in 47-
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50% PCB removal in one study (Viisimaa et al. 2013), biosurfactant amendment reduced 

concentrations of hexa- to nona-chlorinated congeners by 10-20% in another study (with 

no significant change in overall PCB concentrations) , and the biosurfactant soya lecithin, 

specifically, resulted in 40% degradation of all PCBs in one year (Federici et al. 2012). 

Literature review yielded no published studies in which biosurfactant was used 

for remediation of soils contaminated with dioxins.    

Surfactants have also been confirmed to enhance mobilization and biodegradation 

of PAHs in soils (Tiehm et al. 1997b).  Some nonionic surfactants were able to enhance 

degradation of naphthalene and phenanthrene as observed by Aronstein et al (1991).   

Before surfactants are applied in the field, several factors must be considered: 

cost, effectiveness at low concentrations (generally less than 3%), low toxicity, low 

adsorption to soil, low soil dispersion, and low surface tension.  All of these factors shold 

be considered prior to surfactant selection (Mulligan, Yong, and Gibbs 2001). 

2.4.5 Combined Treatments 

Biostimulation and bioaugmentation can be combined with each other and other 

technologies to successfully accelerate contaminant degradation even more than for one 

treatment alone.  For example, one study assessed both bioaugmentation and 

biostimulation (with 1,2,3,4-tetrachlorobenzene and 2’,3’,4’-trichloroacetophenone) to 

accelerate dechlorination of PCDDs (Bedard, Ritalahti, and Loffler 2007).  Using 

denaturing gradient gel electrophoresis, this study found that sites with more 

contamination were associated with more indigenous dechlorinators.  Interestingly, 

biostimulation and bioaugmentation did not greatly enhance dechlorination at heavily 

contaminated sites, but it did at less contaminated sites.  Another study indicated that the 
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combination of biostimulation and bioaugmentation in a silty-loam soil with 60,600 mg 

kg−1 of a complex mixture of TPH (comprised of 40% aliphatic hydrocarbons and 21% 

PAHs) was more effective than biostimulation alone (Mancera-López et al. 2008).  In this 

study, Rhizopus sp., Penicillium funiculosum and Aspergillus sydowii resulted in 36%, 

30% and 17% more PAH compared to biostimulation alone, respectively.  Another 120-

day study indicated that a combined treatment using biostimulation, biosurfactant, and 

bioaugmentation resulted in the highest hydrocarbon degradation rate of the five 

treatments assessed (biostimulation, biosurfactant addition, bioaugmentation, natural 

attenuation, and the combined treatment) (Bento et al. 2005).  Similar results were 

obtained in another study where bioaugmentation combined with nutrient and surfactant 

amendments resulted in 50% TPH degradation, while natural attenuation resulted in just 

30% TPH degradation (Couto, Monteiro, and Vasconcelos 2010).   
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3.0 METHODS 

3.1 Soil Sampling Site Selection and Prescreening Soil Collection 

Soils used in the microcosm study were collected from SSFL on January 16, 2014.  

To choose soil collection locations, historical COI concentration data was analyzed with 

the following considerations in mind:  

● Soils needed to be contaminated with moderate COI concentrations, meaning 

contaminant concentrations fell within a range determined using best professional 

judgment (Table 3): 

● Soils needed to have minimal concentrations of metals to prevent potential 

toxicity to microbes, and 

● Ideally, all soil collection sites would be in historic site drainages to maximize 

soil homogeneity.  Two of the three sampling locations were within historic 

drainages (Drainage East of 4015 Field and 17th Street Pond and Drainage).  

Table 3: Total target soil contaminant concentrations 

Contaminant Total concentration 

EFH 44,000 mg/kg 

PAHs 300,000 µg/kg 

PCBs 500,000 µg/kg 

Dioxins 100,000,000 ng/kg 

 

Once potential soil collection sites were identified, the sites were prescreened for total 

organic vapors using a calibrated photoionization detector.  Background readings were 

recorded prior to the start of sampling, and additional readings were taken during 
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sampling.  Collection sites were also prescreened for residual radiation using a MicroR 

gamma detector and Dual Phosphor Alpha Scintillator (alpha/beta detector).   Gamma, 

alpha, and beta measurements were collected approximately 0.5-1 inch above the ground 

surface of the sample area.  Measurements were taken for at least one minute.  Once sites 

were determined to be free of radiation, pre-screening soil samples were also collected to 

ensure that treatability study samples were not taken from soils with COI concentrations 

exceeding federal or state regulatory levels for hazardous wastes and to compare actual 

soil concentrations to target concentrations.  Soil sample collection was conducted by 

Hazardous Waste Operations and Emergency Response (HAZWOPER)-certified field 

personnel per 29 CFR 1910.120.  Once soil samples were collected and analyzed, data 

was analyzed to determine whether or not contaminant concentrations at the selected 

locations met the aforementioned criteria.  Based on analysis of prescreening soil samples, 

COI concentrations were lower than target values, so other locations were selected for 

soil collection.   

3.2 Bulk Soil Sample Collection 

During soil collection, 68 kg of soil was collected from historic sampling sites 

5C_DG-516, 5C_DG-755, and PUBS1044.  Soils were collected using stainless steel 

shovels and placed in Teflon-lined 5-gallon buckets for transport to Cal Poly (Figures 2 

and 3). 

A total of 68 kg of soil was collected from the following locations (Figure 4):  

● 52 kg were collected from 4-5.5 feet (ft) beneath ground surface (bgs) at 5C_DG-

516 (“Soil A”), 

● 8 kg were collected from 1-4 ft bgs at PUBS1044 (“Soil B”), and 
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● 8 kg from 1-4 ft bgs at 5C_DG-755 (“Soil C”). 

Soil gas data and soil temperature were collected from the site in the summer of 2014.  

Soil properties including total organic carbon (TOC), total nitrogen, pH, and moisture 

were also measured and recorded during the first and second microcosm sampling events.  

Figure 2: Stainless steel shovels 

and bulk soil collection buckets 

(Teflon liners not shown) 
Figure 3: Organic vapor and 

radiation levels were monitored 

throughout sample collection 
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Figure 4: Bulk Soil Sample Collection Locations 
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3.3 Soil Processing 

Soils collected from the aforementioned locations were sieved through a No. 4 sieve 

(4.76 mm) (Figure 5).  After sieving, soil was homogenized in 5-gallon increments in an 

acid-washed (10% weight by 

weight, w/w, HNO3 solution 

followed by triple-rinsing with DI 

water) 10-gallon UNS S30400 

stainless steel drum.  Soils were 

rolled in a well-ventilated area for 

five minutes and replaced in their 

respective Teflon-lined 5-gallon 

buckets.  The drum was rinsed and air-dried between uses.   

After sieving and homogenization, soil moisture of soils from all three sampling 

sites was determined using ASTM International Method D2216 (ASTM Standard D2216, 

“Standard Test Methods for Laboratory Determination of Water (Moisture) Content of 

Soil and Rock by Mass” 2010).  Soil samples were placed in a clean, dry, labeled 

container.  A balance was used to determine the mass of the moist soil and container.  

This value was recorded.  The moist soil was then placed in a drying oven at 105° 

overnight.  Once dry, the soil was removed from the oven and reweighed using the same 

balance.  This oven-dried mass was recorded and used to determine the water content of 

the sample.  Water content was used to determine the amount of water required to amend 

soils to 15% w/w water content.  

Figure 5: Soil sieving 
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3.4 Microcosm Preparation 

In total, 45 4-L Fisher Scientific™ glass jars and the Teflon™-lined lids to be 

used in the experiment were acid washed in a 10% w/w nitric acid solution composed of 

nitric acid and milli-Q water.  The 45 jars and lids were then triple rinsed in milliQ water 

and air dried. 

Following soil homogenization (outlined above), 1.4 kilograms (kg) of soil was 

placed in each 4-L acid-washed glass jar.  Amendments were added to microcosms as 

described in Table 4 and thoroughly mixed using a stainless steel spatula.   

Amendments were added to each microcosm as shown in Table 3, and the 

moisture content was adjusted to 15%.  Based on results of soil moisture testing, moisture 

content was adjusted to the desired water content of 15% w/w.  After moisture and 

amendments were added to each microcosm, they were thoroughly mixed with a stainless 

steel trowel, sealed with a Teflon-lined lid, and shaken to evenly distribute soil.   

Five of the microcosms containing soil from collection location 5C_DG-516 and 

milliQ water (for 15% moisture) were transported to Sterigenics, a sterilization facility, 

located in Gilroy, California.  Microcosms were dosed with 25 kilograys using Cobalt-60 

irradiation to ensure adequate sterilization (Abo-El-Seoud et al. 2004). 
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Table 4: Microcosm soil locations and sampling frequency (5 replicates per Microcosm ID) 

Microcosm 

ID 
Description Amendments Abbreviation 

Amount Amendment 

Added 
Sterile? 

Collection 

Location 

Sampling 

Times 

A1 Fertilized Nutrient solution NUTRIENT 

0.1g KH2PO4 

0.015g MgSO4·7H2O 

0.02g CaCl2·2H2O 

0.29g NaNO3 

No 5C_DG-516 0, 4, 8 mos. 

A2 Surfactant Soya lecithin SURFACT 1.5% w/w No 5C_DG-516 0, 4, 8 mos. 

A3 Bulking agent Rice hulls RICEHULL 10% w/w No 5C_DG-516 0, 4, 8 mos. 

A4 Bioaugmented 

Rice hulls, 

Nutrient solution, 

Malt extract, 

P. chrysosporium 

BIOAUGM 

10% w/w rice hulls  

0.1g KH2PO4 

0.015g MgSO4·7H2O 

0.02g CaCl2·2H2O 

0.29g NaNO3 

0.15g malt extract 

P. chrysosporium 

No 5C_DG-516 0, 4, 8 mos. 

A5 
Combined 

Amendments 

Rice hulls, 

Nutrient solution, 

Malt extract, 

P. chrysosporium, 

Soya lecithin 

COMB 

10% w/w rice hulls  

0.1g KH2PO4 

0.015g MgSO4·7H2O 

0.02g CaCl2·2H2O 

0.29g NaNO3 

0.15g malt extract 

P. chrysosporium 

1.5% soya lecithin 

No 5C_DG-516 0, 4, 8 mos. 

A6 Unamended A None UNAMENDA None No` 5C_DG-516 0, 4, 8 mos. 

A7 Sterilized Gamma irradiation STERILE 
25 kilograys of gamma 

irradiation 
Yes 5C_DG-516 0 and 8 mos. 

B6 Unamended B None UNAMENDB None No PUBS1044 0, 4, 8 mos. 

C6 Unamended C None UNAMENDC None No 5C_DG-755 0, 4, 8 mos. 
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3.5 Microcosm Incubation 

 Microcosms were incubated in a U-Line stainless steel cabinet lined with 

polyisocyanurate foam board insulation.  Temperature was kept constant in this cabinet 

using a temperature-controlled water bath with tubing routed throughout the shelving.  

Microcosm temperature was measured and recorded weekly using a HDE high accuracy 

non-contact Fluke infrared IR thermometer gun with laser sight.  Soil temperature was 

also measured and recorded directly with a standard thermometer in an extra microcosm 

that contained no amendments.  This temperature reading confirmed that the infrared 

thermometer’s measurements were representative of actual soil temperature.  

3.6 Sample Collection and Analysis 

 Samples were collected from each microcosm at experiment startup and 126 and 

Figure 7: Soil sample collection 

Figure 6: Soil sample processing: 

labeling and completing the chain of 

custody 
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244 days after the start of incubation (Figures 6 and 7).  Sampling was conducted using a 

stainless steel shovel that was washed with Alconox and triple-rinsed with ASTM Type II 

Water (reagent grade water defined by American Standards for Testing and 

Measurements that is used in the final rinse of surfaces of contaminated equipment) 

between microcosm types.  Table 3 describes experimental design and sampling 

frequency.  All non-disposable sampling equipment used was decontaminated using a 

decontamination line that progressed from “dirty” to”clean” (equipment entered the 

decontamination line as dirty and exited as clean).  The line consisted of three buckets: 

one for scrubbing Alconox solution on the equipment with a stiff bristle brush (to remove 

particulate matter and surface films), one for rinsing off dirt and Alconox with ASTM 

Type II Water.  Equipment was not set down between decontamination and sample 

collection.  If there was a break in sampling, equipment was decontaminated prior to 

resuming sampling activities.  Any equipment that was not reusable was stored for 

disposal after all sampling activities were complete.  At the end of sampling activities, all 

laboratory-derived waste was collected, labeled as such, and transported back to SSFL for 

proper disposal.   

Samples were transported to EMAX and Lancaster laboratories for analysis using 

analytical methods listed in Table 4.  
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Table 5: Analytical methods used for soil sample analysis 

Analyte Analytical Methods for Soil Laboratory (sampling date) 

PCBs EPA Method 8082A Gas 

Chromatograph/Electron Capture 

Detector 

EMAX (0, 126 days) 

Lancaster (244 days) 

Dioxins EPA Method 1613B Gas 

Chromatograph/High Resolution 

Mass Spectroscopy 

Lancaster (0, 126, 244 days) 

PAHs EPA Method 8270C/D SIM Gas 

Chromatograph/High Resolution 

Mass Spectroscopy 

EMAX (0, 126 days) 

Lancaster (244 days) 

TPH EPA Method 8015B/C/D Gas 

Chromatograph/Flame Ionization 

Detector 

EMAX (0, 126 days) 

Lancaster (244 days) 

Metals EPA Method 6010C/6020A/7471B 

Inductively Coupled Plasma-Atomic 

Emission Spectrometry, Inductively 

Coupled Plasma-Mass Spectrometry 

Mercury in Solid or Semisolid Waste 

(Manual Cold-Vapor Technique) 

EMAX (0, 126 days) 

Mercury Cold vapor atomic absorption 

spectroscopy EPA Method 7471B 

EMAX (0, 126 days) 

Percent Moisture ASTM D2216 

Standard Test Methods for 

Laboratory Determination of Water 

(Moisture) Content of Soil and Rock 

by Mass 

Lancaster (0, 126, 244 days) 

Nitrogen  ASTM D5373 

Standard Test Methods for 

Determination of Carbon, Hydrogen 

and Nitrogen in Analysis Samples of 

Coal and Carbon in Analysis 

Samples of Coal and Coke 

Lancaster (0, 126 days) 

Organic Carbon SM 5310B  

Total Organic Carbon 

Lancaster (0, 126 days 

3.7 Data Analysis 

Following sample collection and soil analysis, the resulting data were checked for 

quality control by CDM personnel.  Statistical analyses were performed using Minitab.  

Average, standard deviation, and standard error of contaminant concentrations (both 
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summations of individual compounds within a contaminant type and individual 

compounds) were calculated.  Any lab data with a “U” qualifier was assumed to be 

nondetect, and the chemical concentration was assumed to be zero.   

3.8 Statistical Analysis 

Statistical analysis of data included a general linear model with the response 

variable being either chemical concentration, log(concentration), or the square root of 

concentration.  The log(concentration) and square root of concentration were calculated 

in an attempt to normalize data if fanning of residuals was observed.  The general linear 

model used for this analysis analyzed the statistical significance of treatment’s effect on 

contaminant concentration at the three different sampling events.  Residual plots provided 

a helpful visual representation of data normality.  The general linear model was used to 

compare three different sets of data:  

 Effect of treatment on changes in contaminant concentrations in soil A 

 Effect of gamma irradiation on changes in contaminant concentrations in soil A 

(using only beginning and end time points to include gamma irradiated samples 

were not analyzed at the sampling midpoint), and  

 Effect of different soil type (A, B, or C) on changes in contaminant concentrations 

over time. 
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4.0 RESULTS AND DISCUSSION 

This chapter describes first the site conditions (Section 4.1) and then the results of 

the microcosm experiments (Section 4.2).  Characterization of the soil collected for the 

microcosms is described in the beginning of Section 4.2 (4.2.1). 

4.1 Site Conditions 

4.1.1 Soil Gas Composition 

Soil gas data collected in June and July of 2014 indicate that average oxygen 

concentrations at 1-foot intervals in soil vapor ranged from 10.1% to 20.0%, and the 

lowest average concentration was detected at 20-21 feet below ground surface (bgs) 

(Table 5; raw data is presented in Appendix L).  The fact that oxygen is available as a 

terminal electron acceptor down to the deepest sampling point (20 ft bgs) indicates that 

aerobic conditions prevail and it is unlikely that there are any anaerobic subsurface 

conditions at the test sites.  There could however be small anaerobic zones on soil 

particles, but it is unlikely that conditions are favorable for much reductive 

dehalogenation of chlorinated compounds present at the site. 

The maximum carbon dioxide concentration (6.3%) was detected at 20 ft bgs.  

The high carbon dioxide concentrations are an indicator of extensive biological 

respiration – either of contaminants or natural organic material.  
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Table 6: June 2014 Soil Gas Data 

Depth Interval (ft 

bgs) 

Carbon Dioxide (%) Oxygen (%) 

Average 

Standard 

Deviation Average 

Standard 

Deviation 

5-6 1.8 2.4 18.3 3.5 

6-7 2.0 1.5 16.9 5.0 

7-8 2.1 1.4 17.4 3.9 

8-9 1.5 1.4 18.4 1.2 

9-10 2.9 2.5 17.2 3.3 

10-11 3.0 3.2 15.5 6.2 

11-12 2.5 1.7 17.5 1.6 

12-13 3.2 2.2 13.9 8.1 

13-14 1.2 1.6 18.4 1.5 

14-15* 1.0 N/A 15.9 N/A 

15-16 4.0 4.5 14.5 6.9 

16-17* 1.6 N/A 19.0 N/A 

17-18* 0.0 N/A 20.0 N/A 

18-19 2.4 1.1 16.6 0.1 

19-20* 4.6 N/A 16.2 N/A 

20-21 6.3 3.8 10.1 7.7 

*only one measurement taken at this depth interval 

4.1.2 Soil Temperature 

Site soil temperatures were measured in May and June of 2014.  Overall average 

site temperature was 30ºC with a standard deviation of 7ºC (Table 6).  These temperature 

data were collected in summer months.  Soil temperature varied greatly with vegetative 

cover because of shading and also follow a logical trend of decreasing temperature with 

increasing depth.  

4.2 Microcosms 

4.2.1 Characterization of Soils used for Microcosms 

Soil pH, TOC, total nitrogen, and moisture content were all measured during February 

and June microcosm sampling events in 2014.  Due to budget constraints, these soil 

parameters were not analyzed during the final sampling event in October.   
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4.2.1.1 Soil pH 

The pH of the microcosm soils was within the range of 5.8-7.4 (Table 7 and 

Figure 8).  Two microcosm sets (A2 and A5) had an initial pH outside of the EPA’s 

specified acceptable pH region for optimal bioremediation (6-8).  These two microcosm 

types included soya lecithin as an amendment which may have caused the reduced pH.  

This indicates that soy lecithin could have an adverse effect on initial degradation.  Over 

time, though, the pH in soy lecithin-amended microcosms increased to within the 

acceptable range (Figure 8).  This suggests that soya lecithin was degraded over time; it is 

likely that it was preferentially degraded before other compounds.   
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Table 7: Soil Temperature Data (Summer 2014) 

Location ID Depth (ft)  Time  Temp (degrees C) Date 

STS-18_CB_A 0 8:15 23 6/2/2014 

STS-06_PG_C 0 8:28 23 6/4/2014 

STS-01_BE_D 0 8:47 26 6/2/2014 

STS-04_MF_B 0 9:33 26 6/3/2014 

STS-17_NM_C 0 9:45 26 6/4/2014 

STS-02_LS_B 0 10:22 30 6/3/2014 

STS-04_MF_D 0 10:55 29 6/2/2014 

STS-01_BE_C 0 11:35 31 6/4/2014 

STS-23_YS_C 0 12:50 34 6/3/2014 

STS-06_PG_D 0 13:40 37 6/2/2014 

Average     29   

Standard Deviation   5   

STS_35_NG_C 0.1 7:30 22 5/28/2014 

STS_08_SM_CC 0.1 8:10 22 5/29/2014 

STS-01_BE_A 0.1 8:30 23 5/29/2014 

STS_17_NM_BB 0.1 8:45 24 5/28/2014 

STS-23_YS_D 0.1 8:50 25 5/30/2014 

STS-18_CB_D 0.1 9:35 27 5/30/2014 

STS_08_SM_D 0.1 9:36 35 6/2/2014 

STS_08_SM_BB 0.1 9:50 28 5/28/2014 

STS_35_NG_A 0.1 10:30 26 5/27/2014 

STS-23_YS_A 0.1 10:50 37 5/29/2014 

STS-02_LS_D 0.1 11:00 30 5/30/2014 

STS-17_NM_D 0.1 12:15 49 5/30/2014 

STS-02_LS_C 0.1 12:40 35 5/28/2014 

STS_35_NG_B 0.1 13:30 37 5/27/2014 

STS-06_PG_B 0.1 14:15 44 5/29/2014 

STS_35_MG_D 0.1 14:25 36 5/28/2014 

Average     31   

Standard Deviation   8   

STS-18_CB_A 1.5 8:15 24 6/3/2014 

STS-01_BE_D 1.5 8:47 27 6/2/2014 

STS-23_YS_D 1.5 8:50 30 5/29/2014 

STS-23_YS_A 1.5 10:50 29 5/29/2014 

STS-04_MF_D 1.5 10:55 25 6/2/2014 

Average     27   

Standard Deviation 

 

3   

Overall Average   30   

Overall Standard Deviation 7   
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Table 8: Microcosm Soil pH 

 
Average Standard Deviation Standard Error 

Microcosm Type 0 days 126 days 0 days 126 days 0 days 126 days 

nutrient 6.53 6.28 0.04 0.06 0.02 0.03 

soya lecithin 5.87 6.31 0.03 0.19 0.01 0.08 

rice hulls 6.60 6.24 0.07 0.17 0.03 0.08 

nutrients+ 

rice hulls+ 

P. chrysosporium 6.44 6.35 0.06 0.18 0.03 0.08 

nutrients+ 

soya lecithin+ 

rice hulls+ 

P. chrysosporium 6.03 6.18 0.03 0.09 0.01 0.04 

unamended site A 6.64 6.30 0.03 0.02 0.01 0.01 

unamended site B 6.84 6.68 0.03 0.05 0.01 0.02 

unamended site C 7.35 7.33 0.05 0.05 0.02 0.02 

gamma-irradiated 

unamended site A 6.676 N/A 0.038471 N/A 0.017205 N/A 
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Figure 8: Soil pH in microcosms during incubation 
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4.2.1.2 Soil TOC 

TOC concentrations in microcosm soils varied for the different microcosm sets 

(Table 15 and Figure 69, Appendix I).  The initial TOC in Site B soils was much greater 

than that in Site A and Site C soils.  TOC decreased slightly in almost all of the 

microcosms suggesting some biodegradation, but there was a large amount of variability, 

particularly during the initial sampling event and for both sampling events in the 

unamended Site B soils.  

4.2.1.3 Soil Nitrogen 

Total nitrogen concentrations in the microcosm soils varied significantly among 

microcosm sets (Table 16 and Figure 69, Appendix I).  During incubation, nitrogen 

concentrations eitherremained unchanged or slightly increased.  This indicates that there 

were sufficient nitrogen nutrients in the soil, and contaminant degradation was not 

nitrogen-limited.  Phosphorus concentrations were not measured, so it is not known if 

phosphate was limiting biodegradation.  

4.2.1.4 Soil Moisture 

Target experimental soil moisture in the microcosms was 15% based on previous 

research (Rastegarzadeh, Nelson, and Ririe 2006).  As data from previous sampling 

events was received and analyzed, soil moisture was adjusted in an attempt to meet the 

target 15%.  As a result, soil moisture was maintained between a minimum of 9% and a 

maximum of 17% throughout the experiment (Table 14, Appendix I).  Moisture content 

can be a limiting factor in biodegradation (“In Situ Biological Treatment”); however, 

lower moisture content is likely more representative of actual site conditions due to the 
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low rainfall at the site and the fact that stormwater is pumped, treated, and removed from 

the site.  

4.2.1.5 Soil Contaminant Concentrations 

 Before this experiment was started, target soil contaminant concentrations were 

chosen using professional judgment (Table 3).  Soil contaminant concentrations in 

microcosms were much lower than target concentrations (Appendix K).  Total EFH was 

consistently lower than the target value (100 – 230 mg/kg, Appendix K).  The cleanup 

goal for this site is 5.7 mg/kg of EFH (C15-C20), and all unamended microcosm soil 

concentrations were less than 250 mg/kg.  PAH concentrations were also lower than 

target concentrations (ranging from 87 – 45,139 µg/kg).  They were very low in Soils A 

and C, but still above the Look-Up Table value of 4.47 µg/kg TEQ for benzo(a)pyrene.  

PCB concentrations were lower than target values (37 – 328 µg/kg Aroclor 1260) and 

limited to the most heavily chlorinated mixtures.  Heavily chlorinated Aroclors were 

present at similar levels in all three soils except for Aroclor 5460 in Soil C.  Initial dioxin 

concentrations ranged from 0.026 – 0.116 mg/kg, which were also lower than the target 

concentration of 100 mg/kg.  Maximum total concentration was observed in Soil A, and 

minimum total concentration was observed in Soil B.   
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4.2.2 Microcosm Incubation Temperature 

Microcosm soil temperatures throughout the 244-day study averaged 27.4ºC with 

a standard deviation was 3.1ºC (Figure 9).  This is slightly lower than the average site 

temperature observed in June and July, but presumably much higher than soil 

temperatures in the winter.  This suggests that any biodegradation rates observed in 

microcosm data could be slightly elevated estimations of what could happen if a 

bioremediation technology were applied at the site year-round.  
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Figure 9: Microcosm incubator temperature during experiment 
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4.2.3 Contaminant Soil Concentrations in Microcosms During Incubation 

The total concentration of each contaminant type (EFH, PAHs, PCBs, and 

dioxins) were calculated and the averages and standard errors were plotted as a function 

of time to examine overall trends in chemical concentrations (Figures 10-14).  More 

detailed data for each individual chemical are also provided in tables and graphs in 

Appendices A – D.  

All statistical software outputs are provided as Appendices H, I, and J, respectively: 

Statistical Analysis of Effect of Treatment on Changes in Contaminant Concentrations in 

Soil A, Statistical Analysis of Effect of Gamma Irradiation on Changes in Contaminant 

Concentrations in Soil A, and Statistical Analysis of Different Soil Type (A, B, or C) on 

Changes in Contaminant Concentrations over Time.  

4.2.3.1 EFH 

Some of the observed EFH concentrations in microcosms are much higher than 

that observed for the collected soil (Table 9, Figure 10, Appendix A, and Appendix K).  

Initial concentrations were elevated in microcosms containing soy lecithin because some 

of its organic compounds elute at the same time as petroleum hydrocarbons during gas 

chromatography.  This EFH inflation appeared to dissipate at the second sampling event, 

but EFH concentrations for all microcosms were elevated at the final sampling event.  

EFH values at the start of the experiment were clearly inflated by soy lecithin amendment 

(Figure 10).  Apparently, organic compounds in the soya lecithin volatilize in the gas 

chromatograph at the same time as equivalent carbon ranges of some petroleum 

hydrocarbons.  These EFH-mimicking components of soya lecithin are most likely 

biodegraded before the second sampling event.  Since the corresponding apparent EFH 
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concentrations were reduced substantially within 126 days, soil in these jars was not 

analyzed for EFH because of the interference by this amendment.   

 For the microcosms without soy lecithin interference, EFH concentrations were 

unchanged or decreased slightly during the first 126 days of incubation (Figure 10).  

Total EFH concentration appeared to increase substantially in all other microcosms at 

244 days after the start of the experiment (Figure 10).  This sudden increase was observed 

for both shorter equivalent carbon chains and longer equivalent carbon chains (Appendix 

A: Bar Graphs of EFH Equivalent Carbon Ranges).  This increase in EFH concentration 

may have been a laboratory artifact since the Day 244 GC analyses were conducted by a 

different laboratory than the Day 0 and Day 126 analyses.  For example, the two labs may 

have used different methods of integration or established a different baseline for 

integrating the chromatograms. 
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Figure 10: Total EFH concentration during microcosm incubation 
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4.2.3.2 PAHs 

Total PAH concentrations were calculated by summing all of the various PAH 

concentrations, as shown in Appendix K (Table 21).  Concentrations of individual PAHs 

are shown in Table 19, Appendix K.  Initial PAH concentrations were much higher in 

unamended B soils than both A and C soils (Figures 11 and 12).  This is likely because 

soil B was located in a drainage into which PAH-contaminated water likely flowed.   

PAH concentrations decreased slightly in Soil B during microcosm incubation 

(Figure 11).  However, no decreases in PAH concentrations were not statistically 

significant with a 95% confidence level (p-value of 0.296, Appendix F).  For Soil C, total 

PAH concentrations also appeared to decrease dramatically, but the high variability of 

PAH concentrations measured (as indicated by the large error bars in Figure 12) led to no 

statistically significant change.  For Soil A, total PAH concentration appeared to actually 

increase in several of the amended microcosms.  This is undoubtedly due to the high 

variability of PAH concentrations measured. 

The PAH contamination in these soils is largely comprised of compounds with 4-

6 aromatic rings (Appendix C), and these are typically the most recalcitrant PAHs (Llado 

et al. 2013).  Any degradation of lighter PAHs at the site is likely to have already 

occurred.  If there were more PAHs with 1-3 aromatic rings in soil at one point in time, 

they have likely been preferentially degraded by microorganisms.  Also, once PAHs 

adsorb onto soils, their biodegradation becomes difficult as their bioavailability is 

compromised.  Residual contamination may be tightly adsorbed onto the soil matrix.  

However, surfactant addition to two sets of microcosms (SOLE and COMB) did not 

enhance PAH biodegradation (Figure 12). 
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Figure 11: Total PAH concentration during microcosm incubation 
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Figure 12: Total PAH concentration during microcosm incubation (A and C) 
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4.2.3.3 PCBs 

Slight decreases in Aroclor 1260 concentrations were observed in all but one of 

the microcosms (Figure 13).  However, none of these decreases were statistically 

significant at the 95% confidence interval.  Also, a similar decrease in PCB concentration 

was observed for the sterilized control.  One set of microcosms (unamended A6) 

exhibited an exceptionally high initial PCB concentration which was caused by one 

sample with a particularly high initial PCB concentration.  The Aroclor 1260 

concentration appeared to increase for Soil C, but again this change was not statistically 

significant.  Concentrations appeared to decrease for the most part over time, though 

comparison of treatments indicated that no treatment resulted in greater reduction in 

concentration than another at the 95% confidence level (Appendices F – H).   

The lack of significant PCB biodegradation may be because detectable Aroclors 

detected at the site are the heaviest percent chlorine that were produced (54-60% by 

weight).  Lesser chlorinated PCBs with just 1-2 chlorines that have been to shown to 

degrade under aerobic conditions are only about 30% chlorine by weight, and it is likely 

that these compounds if present historically present at the site have already been 

degraded, and the more heavily chlorinated, recalcitrant compounds remain in the soil.  

The predominantly aerobic conditions at the site and in the microcosms make bacterially-

mediated reductive dechlorination unlikely.  Fungi such as P. chrysosporium, 

Sphingomonas wittichii have been shown to biodegrade PCBs under aerobic conditions, 

but in these experiments bioaugmentation with P. chrysosporium did not result in 

significantly more PCB degradation (Figures 3).  Another possible limitation of PCB 

biodegradation is sequestration in the soil which limits bioavilability.  However, even 
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addition of soy lecithin as a surfactant to release PCBs from the soil structure did not 

facilitate significant PCB degradation.
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Figure 13: Aroclor 1260 concentration during microcosm incubation 
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4.2.3.4 Chlorinated Dioxins and TCDD TEQ 

 Total chlorinated dioxin concentration increased on average in Soils B and C and 

decreased on average in Soil A.  Total chlorinated dioxin concentration decreased 

noticeably only in the microcosms with Soil A amended with the combination of 

nutrients, rice hulls, and P. chrysosporium (AUGM) (Figure 14; also see Appendix B for 

more detail).  However, this decrease was not statistically significant with 95% 

confidence in any of three statistical tests run on these data (Appendices F-H).  For the 

same amendments with soy lecithin also added (COMB), no such decrease was observed 

(Figure 14).  It is not clear why soy lecithin would interfere with biodegradation, unless 

its biodegradation consumed some nutrient needed for biodegradation.  The sterile 

control held a constant dioxin concentration (Figure 14).  

The lack of significant observed dioxin biodegradation may be because the 

primary dioxin contaminant at the site is OCDD, which is the most heavily chlorinated 

dioxin congener.  These highly chlorinated dioxins require anaerobic conditions to be 

bacterially dechlorinated, but site and experimental conditions were aerobic.  

Biodegradation under aerobic conditions may be possible with fungi such as P. 

chrysosporium, and indeed bioagumentation with this fungi appears to have aided dioxin 

biodegradtion, but again this observation was not statistically significant.  

The dioxin source at the site could be from natural fires, or from anthropogenic 

sources.  According to a paper citing congener profiles for anthropogenic sources of 

chlorinated DD/DFs, OCDD is the primary congener emitted from several industrial 

sources: municipal solid waste incineration with dry scrubbers and fabric filters for 

dioxin controls, industrial oil-fired boilers, industrial wood-fired boilers, unleaded 
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gasoline combustion, diesel fuel combustion, and from sewage sludge incineration 

(Cleverly et al. 1997).  Burning of hazardous waste results in minor OCDD and OCDF 

stack emissions.  However, savanna woodland and arid grassland fires also produce 

DD/DFs dominated by OCDD (MacDougall, Rillig, and Klironomos 2011).  Savanna 

woodlands seem to resemble SSFL site conditions (a grassland ecosystem with trees 

spaced so that the canopy does not close, seasonal water availability, and in the 

transitional zone between forest and desert or grassland) suggesting that emissions from a 

wildfire at SSFL might have contributed to the OCDDs as well. 

 TCDD TEQ, an important measure of dioxin congeners’ toxicity, did not appear 

to decrease for any of the treatments (Figure 15).   

.
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Figure 14: Total dioxin concentration during microcosm incubation 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

Only slight decreases in PAH, PCB, and dioxin concentrations were observed 

over the 244-day soil microcosm experiment, and the difference in concentration 

reduction between treatments was not statistically significant with 95% confidence.  

Conclusions could not be made about petroleum hydrocarbon biodegradation because 

EFH measurements were compromised by the use of two different analytical labs for 

initial and final analyses.  Natural attenuation rates of the COIs appear to be very slow, 

indicating that a long time would be required to reach acceptable COI concentrations.  

Amendments tested in this study for biostimulation and/or bioaugmentation (nutrients, 

soy lecithin, rice hulls, and P. chrysosporium) also did not result in statistically 

significant reductions in PAH, dioxin, or PCB concentrations in SSFL soils.   

 The lack of significant observed biodegradation is likely because the COIs in the 

site soil are highly weathered.  Such weathering results in adsorption onto the soil matrix 

which can limit the bioavailability of contaminants.  Also, after weathering, the forms of 

the COIs found in these soils are the more recalcitrant forms of these COIs.  Weathered 

EFH is composed of longer equivalent carbon chains, PAH contamination is composed of 

compounds with 4-6 aromatic rings, the most abundant dioxin congener is OCDD, and 

the PCBs are comprised of the highly chlorinated Aroclor mixtures.  Because of the site’s 

aerobic conditions, it is unlikely that heavily chlorinated compounds will reductively 

dechlorinate over time.  Heavier PAHs are also unlikely to biodegrade under these 

conditions.  It is likely that organic carbon at the site acts as a long-term sink for PAH 

contamination. 
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 It is difficult to determine a source of dioxins at the site.  OCDD/Fs are generated 

by both forest fires and anthropogenic sources.  Perhaps a study of the land surrounding 

SSFL that was also burned in the Topanga Wildfire might help to determine an 

appropriate background dioxin level to compare to SSFL soil chlorinated dioxin 

concentrations. 

 This experiment was short compared to the age of SSFL contamination.  As stated 

in the introduction, some contaminants have persisted at the site for over 40 years, and a 

244-day study may not accurately model COI degradation.  However, some kinetic 

estimations were made using microcosm experiments (Appendix M).  Assuming zero-

order kinetics, contaminants may take less than a year to three years to reack Look-Up 

Table values.  Assuming first-order kinetics, dioxins and PAHs may take up to 20-30 

years to reach Look-Up Table values (Appendix M).  This is a narrower range of time 

required to reach Look-Up Table values than that provided in the December Natural 

Attenuation Report.   

Although this experiment did not result in significant bioremediation rates, it shed 

light on much information that can be used in future studies.  First, soils should be 

adequately contaminated to observe degradation.  In some cases, COI concentrations 

were too low to observe a decreasing trend due to soil variability.  In addition, consistent 

experimental conditions are essential to minimize variability.  Furthermore, methods 

should be kept consistent to prevent data anomalies and unexpected fluctuations in 

concentrations.  All analyses should be performed by the same lab if at all possible, and 

integration techniques should be clearly delineated so methods can be reproduced.  
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 In conclusion, this experiment indicated that natural attenuation and/or 

bioremediation of COIs at SSFL is likely to require extensive time.  Although 

unfortunate, this is valuable information for moving forward to clean up the site and let 

the public embrace its natural beauty. 
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APPENDICES 

Appendix A: Bar Graphs of EFH Equivalent Carbon Ranges 

 

 

 

 

 

 

 

 

Figure 16: C8-C11 EFH equivalent carbon ranges during microcosm incubation 
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Figure 17: EFH C12-C14 concentrations during microcosm incubation 
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Figure 18: EFH C15-C20 concentrations during microcosm incubation 
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Figure 19: Truncated EFH C15-C20 concentrations during microcosm incubation 
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Figure 20: EFH C21-C30 concentrations during microcosm incubation 
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Figure 21: Truncated EFH C21-C30 concentrations during microcoms incubation 
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Figure 22: EFH C30-C40 concentrations during microcosm incubation 
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Appendix B: Bar Graphs of Individual Dioxin Congener Concentrations  
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Figure 23: 1,2,3,4,6,7,8 HpCDD concentrations during microcosm incubation 
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Figure 24: 1,2,3,4,6,7,8 HpCDF concentrations during microcosm incubation 
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Figure 25: 1,2,3,4,7,8,9 HpCDF concentrations during microcosm incubation 
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Figure 26: 1,2,3,4,7,8 HpCDD concentrations during microcosm incubation 
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Figure 27: 1,2,3,4,7,8 HxCDF concentrations during microcosm incubation 
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Figure 28: 1,2,3,6,7,8 HxCDD concentrations during microcosm incubation 
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Figure 29: 1,2,3,6,7,8 HxCDF concentrations during microcosm incubation 
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Figure 30: 1,2,3,7,8,9 HxCDD concentrations during microcosm incubation 
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Figure 31: 1,2,3,7,8,9 HxCDF concentrations during microcosm incubation 
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Figure 32: 1,2,3,7,8 PeCDF concentrations during microcosm incubation 
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Figure 33: 1,2,3,7,8 PeCDD concentrations during microcosm incubation 
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Figure 34: 2,3,4,6,7,8 HxCDF concentrations during microcosm incubation 
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Figure 35: OCDD concentrations during microcosm incubation 
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Figure 36: Truncated OCDF concentrations during microcosm incubation 
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Appendix C: Bar Graphs of Individual PAH Compound Concentrations 

 

Figure 37: 1,1'-biphenyl concetrations during microcosm incubation 
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Figure 38: Benzo(a)anthracene concentrations during microcosm incubation (all soils) 
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Figure 39: Benzo(a)anthracene during incubation (A and C) 
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Figure 40: Benzo(a)pyrene concentrations during microcosm incubation (all soils) 
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Figure 41: Benzo(a)pyrene concentrations during microcosm incubation (A and C) 
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Figure 42: Benzo(b)fluoranthene concentrations during microcosm incubation (all soils) 
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Figure 43: Benzo(b)fluoranthene concentrations during microcosm incubation (A and C) 
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Figure 44: Benzo(e)pyrene concentrations during microcosm incubation (all soils) 
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Figure 45: Benzo(e)pyrene concentrations during microcosm incubation (Soils A and C) 
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Figure 46: Benzo(g,h,i)perylene concentrations during microcosm incubation (all soils) 
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Figure 47: Benzo(g,h,i)perylene concentrations during microcosm incubation (A and C) 
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Figure 48: Benzo(k)fluoranthene concentrations during microcosm incubation (all soils) 
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Figure 49: Benzo(k)fluoranthene concentrations during microcosm incubation (A and C) 
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Figure 50: Chrysene concentrations during microcosm incubation (all soils) 
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Figure 51: Chrysene concentrations during microcosm incubation (A and C) 
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Figure 52: Dibenzo(a,h)anthracene concentrations during microcosm incubation (all soils) 
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Figure 53: Dibenzo(a,h)anthracene concentrations during microcosm incubation (A and C) 
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Figure 54: Fluoranthene concentrations during microcosm incubation (all soils) 
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Figure 55: Flouranthene concentrations during microcosm incubation (A and C) 
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Figure 56: Fluorene concentrations during microcosm incubation (all soils) 
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Figure 57: Fluorene concentrations during microcosm incubation (A and C) 
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Figure 58: Indeno(1,2,3-cd)pyrene concentrations during microcosm incubation (all soils) 
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Figure 59: Indeno(1,2,3-cd)pyrene concentrations during microcosm incubation (A and C) 
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Figure 60: Methanamine, n-methyl n-nitroso concentrations during microcosm incubation 
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Figure 61: Naphthalene concentrations during microcosm incubation (all soils) 
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Appendix D: Bar Graphs of Aroclor Concentrations 

 

Figure 62: Aroclor 1254 concentration during microcosm incubation 
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Figure 63: Truncated Aroclor 1254 concentrations during microcosm incubation 
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Figure 64: Aroclor 1260 concentrations during microcosm incubation 
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Figure 65: Truncated Aroclor 1260 concentrations during microcosm incubation 
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Figure 66: Aroclor 5460 concentrations during microcosm incubation 
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Figure 67: Truncated Aroclor 5460 concentrations during microcosm incubation 
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Appendix E: Microcosm Incubator Temperature Electronic Data Sheet  

Sampling Date Sampling Point 
Raw 

Temp. degC degF 
Temp. 
(degF)     

5/1/2014 1 25 x   77.0     

  2 23.6 x   74.5     

  3 24.2 x   75.6     

  4 25.5 x   77.9     

  5 22.9 x   73.2     

Statistics       Average 75.6 St. Dev. 1.9 

                

5/6/2014 1 19.1 x   66.4     

  2 18.2 x   64.8     

  3 20.7 x   69.3     

  4 22.8 x   73.0     

  5 18.3 x   64.9     

Statistics       Average 67.7 St. Dev. 3.5 

                

5/11/2014 1 26.8 x   80.2     

  2 27.1 x   80.8     

  3 27 x   80.6     

  4 26.9 x   80.4     

  5 27 x   80.6     

Statistics       Average 80.5 St. Dev. 0.2 

                

5/16/2014 1 26.7 x   80.1     
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  2 26.2 x   79.2     

  3 27 x   80.6     

  4 26.5 x   79.7     

  5 28 x   82.4     

Statistics       Average 80.4 St. Dev. 1.2 

                

5/23/2014 1 27.1 x   80.8     

  2 26.8 x   80.2     

  3 26.9 x   80.4     

  4 27 x   80.6     

  5 26.6 x   79.9     

Statistics       Average 80.4 St. Dev. 0.3 

                

5/28/2014 1 26 x   78.8     

  2 25.5 x   77.9     

  3 26.2 x   79.2     

  4 26.1 x   79.0     

  5 26.7 x   80.1     

Statistics       Average 79.0 St. Dev. 0.8 

                

6/3/2014 1 74.2   x 74.2     

  2 73.9 
 

x 73.9     

  3 74.5 
 

x 74.5     

  4 73.7 
 

x 73.7     

  5 75.1 
 

x 75.1     

Statistics       Average 74.3 St. Dev. 0.5 

                

6/9/2014 1 76.2 
 

x 76.2     

  2 77.1 
 

x 77.1     

  3 75.8 
 

x 75.8     
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  4 76.4 
 

x 76.4     

  5 76.8 
 

x 76.8     

Statistics       Average 76.5 St. Dev. 0.5 

                

6/16/2014 1 77.4 
 

x 77.4     

  2 76.6 
 

x 76.6     

  3 77 
 

x 77.0     

  4 76.8 
 

x 76.8     

  5 77.4 
 

x 77.4     

Statistics       Average 77.0 St. Dev. 0.4 

                

6/28/2014 1 26.2 x   79.2     

  2 25.4 x   77.7     

  3 26.8 x   80.2     

  4 25.8 x   78.4     

  5 26.6 x   79.9     

Statistics       Average 79.1 St. Dev. 1.0 

                

6/30/2014 1 25.4 x   77.7     

  2 25.6 x   78.1     

  3 25.3 x   77.5     

  4 25.6 x   78.1     

  5 25 x   77.0     

Statistics       Average 77.7 St. Dev. 0.4 

                

7/7/2014 1 25.3 x   77.5     

  2 25.7 x   78.3     

  3 26.4 x   79.5     

  4 25.2 x   77.4     

  5 25.6 x   78.1     

Statistics       Average 78.2 St. Dev. 0.9 

                

7/14/2014 1 24 x   75.2     
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  2 24.3 x   75.7     

  3 24.3 x   75.7     

  4 24.2 x   75.6     

  5 24.6 x   76.3     

Statistics       Average 75.7 St. Dev. 0.4 

                

7/21/2014 1 25.9 x   78.6     

  2 26.3 x   79.3     

  3 26.7 x   80.1     

  4 26.1 x   79.0     

  5 26.7 x   80.1     

Statistics       Average 79.4 St. Dev. 0.6 

                

7/28/2014 1 26 x   78.8     

  2 26.2 x   79.2     

  3 27 x   80.6     

  4 26.7 x   80.1     

  5 25.8 x   78.4     

Statistics       Average 79.4 St. Dev. 0.9 

                

8/4/2014 1 25.8 x   78.4     

  2 26.3 x   79.3     

  3 26.9 x   80.4     

  4 25.9 x   78.6     

  5 26.7 x   80.1     

Statistics       Average 79.4 St. Dev. 0.9 

                

8/14/2014 1 27.7 x   81.9     

  2 30.6 x   87.1     

  3 29 x   84.2     

  4 30.8 x   87.4     

  5 29.5 x   85.1     

Statistics       Average 85.1 St. Dev. 2.3 
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8/26/2014 1 32.3 x   90.1     

  2 31.3 x   88.3     

  3 30.5 x   86.9     

  4 31.7 x   89.1     

  5 32.1 x   89.8     

Statistics       Average 88.8 St. Dev. 1.3 

                

9/1/2014 1 31.8 x   89.2     

  2 31.3 x   88.3     

  3 30.2 x   86.4     

  4 30.8 x   87.4     

  5 30.6 x   87.1     

Statistics       Average 87.7 St. Dev. 1.1 

                

9/7/2014 1 32.4 x   90.3     

  2 31.6 x   88.9     

  3 31.2 x   88.2     

  4 31.6 x   88.9     

  5 30.5 x   86.9     

Statistics       Average 88.6 St. Dev. 1.2 

                

9/15/2014 1 30.8 x   87.4     

  2 32.3 x   90.1     

  3 31.5 x   88.7     

  4 30.6 x   87.1     

  5 31.7 x   89.1     

Statistics       Average 88.5 St. Dev. 1.2 

                

9/22/2014 1 30.7 x   87.3     

  2 31.3 x   88.3     

  3 32 x   89.6     

  4 30.2 x   86.4     
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  5 31.7 x   89.1     

Statistics       Average 88.1 St. Dev. 1.3 

                

9/29/2014 1 31.2 x   88.2     

  2 30.4 x   86.7     

  3 30.8 x   87.4     

  4 29.2 x   84.6     

  5 31.3 x   88.3     

Statistics       Average 87.0 St. Dev. 1.5 

                

10/6/2014 1 30.5 x   86.9     

  2 31.9 x   89.4     

  3 30.2 x   86.4     

  4 29.8 x   85.6     

  5 31.5 x   88.7     

Statistics       Average 87.4 St. Dev. 1.6 

                

10/13/2014 1 29.9 x   85.8     

  2 31.4 x   88.5     

  3 29.7 x   85.5     

  4 30.2 x   86.4     

  5 30.8 x   87.4     

Statistics       Average 86.7 St. Dev. 1.3 

                

10/20/2014 1 29.8 x   85.6     

  2 31.2 x   88.2     

  3 30.6 x   87.1     

  4 30.5 x   86.9     

  5 30.7 x   87.3     

Statistics       Average 87.0 St. Dev. 0.9 

                

10/27/2014 1 31.7 x   89.1     

  2 30.3 x   86.5     
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  3 30.6 x   87.1     

  4 30.5 x   86.9     

  5 30.7 x   87.3     

Statistics       Average 87.4 St. Dev. 1.0 

                

11/3/2014 1 25.2 x   77.4     

  2 24.7 x   76.5     

  3 23.9 x   75.0     

  4 24.6 x   76.3     

  5 24.2 x   75.6     

Statistics       Average 76.1 St. Dev. 0.9 

                

  
  

Overall Average 81.4     

  
  

Overall St. Dev 5.6     



133 

 

Appendix F: Statistics: Effect of Treatment on Changes in Soil A COIs 

General Linear Model: PAHs (ug/kg) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        6  A1, A2, A3, A4, A5, A6 

Replicate(Treatment)  random      30  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for PAHs (ug/kg), using Adjusted SS for Tests 

 

Source                DF    Seq SS    Adj SS  Adj MS     F      P 

Treatment              5   1985332   1985332  397066  0.86  0.525 

Replicate(Treatment)  24  11142335  11142335  464264  0.81  0.705 

Error                 60  34215143  34215143  570252 

Total                 89  47342811 

 

 

S = 755.151   R-Sq = 27.73%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for PAHs (ug/kg) 

 

        PAHs 

Obs  (ug/kg)      Fit  SE Fit  Residual  St Resid 

 37   235.07  1860.69  435.99  -1625.62     -2.64 R 

 51   262.00  2175.37  435.99  -1913.37     -3.10 R 

 67  4615.00  1860.69  435.99   2754.31      4.47 R 

 81  5214.11  2175.37  435.99   3038.74      4.93 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for PAHs (ug/kg)  

High p values. Not 

statistically 

significant.  
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logPAHs 

General Linear Model: log(PAH) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        6  A1, A2, A3, A4, A5, A6 

Replicate(Treatment)  random      30  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for log(PAH), using Adjusted SS for Tests 

 

Source                DF   Seq SS   Adj SS   Adj MS     F      P 

Treatment              5  0.22966  0.22966  0.04593  1.17  0.354 

Replicate(Treatment)  24  0.94503  0.94503  0.03938  0.49  0.971 

Error                 60  4.78383  4.78383  0.07973 

Total                 89  5.95851 

 

 

S = 0.282366   R-Sq = 19.71%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for log(PAH) 

 

Obs  log(PAH)      Fit   SE Fit  Residual  St Resid 

 31   3.36135  2.85943  0.16302   0.50192      2.18 R 

 37   2.37120  2.96663  0.16302  -0.59543     -2.58 R 

 51   2.41830  3.05222  0.16302  -0.63392     -2.75 R 

 61   2.34713  2.85943  0.16302  -0.51230     -2.22 R 

 67   3.66417  2.96663  0.16302   0.69755      3.03 R 

 81   3.71718  3.05222  0.16302   0.66496      2.88 R 

 

R denotes an observation with a large standardized residual. 

Fanning. Not 

straight 

probability plot. 

Probably need to 

take a log of fits 

to see if we can 

even out the 

variance a bit.  

S-shaped normal 

probability plot 

suggests a 

bimodal 

distribution of 

residuals. 

 P values are huge. Not 

statistically significant.  
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Residual Plots for log(PAH)  
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Dioxins 

General Linear Model: Dioxins (ng/kg) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        6  A1, A2, A3, A4, A5, A6 

Replicate(Treatment)  random      30  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for Dioxins (ng/kg), using Adjusted SS for Tests 

 

Source                DF       Seq SS       Adj SS     Adj MS     F      P 

Treatment              5   1558214254   1558214254  311642851  0.71  0.620 

Replicate(Treatment)  24  10504532277  10504532277  437688845  0.76  0.773 

Error                 60  34747889888  34747889888  579131498 

Total                 89  46810636419 

 

 

S = 24065.2   R-Sq = 25.77%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for Dioxins (ng/kg) 

 

     Dioxins 

Obs  (ng/kg)     Fit  SE Fit  Residual  St Resid 

 17   206618  122788   13894     83830      4.27 R 

 33    80074  140004   13894    -59930     -3.05 R 

 63   229423  140004   13894     89419      4.55 R 

 77    77292  122788   13894    -45496     -2.32 R 

 

R denotes an observation with a large standardized residual. 

 

  

 

Taking logs fixes 

everything.  

 

P values are huge. 

Not statistically 

significant.  
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Residual Plots for Dioxins (ng/kg)  
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logDioxins 

General Linear Model: log(Dioxins) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        6  A1, A2, A3, A4, A5, A6 

Replicate(Treatment)  random      30  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for log(Dioxins), using Adjusted SS for Tests 

 

Source                DF    Seq SS    Adj SS    Adj MS     F      P 

Treatment              5  0.017035  0.017035  0.003407  0.70  0.631 

Replicate(Treatment)  24  0.117449  0.117449  0.004894  0.64  0.887 

Error                 60  0.459894  0.459894  0.007665 

Total                 89  0.594378 

 

 

S = 0.0875494   R-Sq = 22.63%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for log(Dioxins) 

 

Obs  log(Dioxins)      Fit   SE Fit  Residual  St Resid 

 17       5.31517  5.04331  0.05055   0.27186      3.80 R 

 33       4.90349  5.10252  0.05055  -0.19902     -2.78 R 

 63       5.36064  5.10252  0.05055   0.25812      3.61 R 

 77       4.88813  5.04331  0.05055  -0.15517     -2.17 R 

 

R denotes an observation with a large standardized residual. 

Fanning. Not 

straight 

probability plot. 

Probably need to 

take a log of fits 

to see if we can 

even out the 

variance a bit.  

 

P values are huge. Not 

statistically significant.  
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Residual Plots for log(Dioxins)  
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Sqrt (Dioxins) 

General Linear Model: sqrt(Dioxins) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        6  A1, A2, A3, A4, A5, A6 

Replicate(Treatment)  random      30  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for sqrt(Dioxins), using Adjusted SS for Tests 

 

Source                DF  Seq SS  Adj SS  Adj MS     F      P 

Treatment              5    2857    2857     571  0.70  0.629 

Replicate(Treatment)  24   19594   19594     816  0.70  0.836 

Error                 60   70453   70453    1174 

Total                 89   92903 

 

 

S = 34.2668   R-Sq = 24.17%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for sqrt(Dioxins) 

 

Obs  sqrt(Dioxins)      Fit  SE Fit  Residual  St Resid 

 17        454.553  341.059  19.784   113.494      4.06 R 

 33        282.974  364.797  19.784   -81.823     -2.92 R 

Fanning. straight 

probability plot. 

Probably need to 

take a square root 

of responses to 

see if we can even 

out the versus fits 

a bit.  

 

P values are huge. 

Not statistically 

significant.  
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 63        478.981  364.797  19.784   114.184      4.08 R 

 77        278.014  341.059  19.784   -63.045     -2.25 R 

 

R denotes an observation with a large standardized residual. 

 

 

 

  

Residual Plots for sqrt(Dioxins)  
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PCBs 

General Linear Model: PCBs (ug/kg) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        6  A1, A2, A3, A4, A5, A6 

Replicate(Treatment)  random      30  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for PCBs (ug/kg), using Adjusted SS for Tests 

 

Source                DF     Seq SS    Adj SS   Adj MS     F      P 

Treatment              5    8437177   8437177  1687435  1.05  0.411 

Replicate(Treatment)  24   38525024  38525024  1605209  0.97  0.513 

Error                 60   99050933  99050933  1650849 

Total                 89  146013134 

 

 

S = 1284.85   R-Sq = 32.16%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for PCBs (ug/kg) 

 

Still fanning. 

Iono what the 

best next step is.  

 

P values are 

huge. Not 

statistically 

significant.  
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        PCBs 

Obs  (ug/kg)     Fit  SE Fit  Residual  St Resid 

 27  12400.0  4306.3   741.8    8093.7      7.72 R 

 57    272.0  4306.3   741.8   -4034.3     -3.85 R 

 87    247.0  4306.3   741.8   -4059.3     -3.87 R 

 

R denotes an observation with a large standardized residual. 

 

  

 

 

Residual Plots for PCBs (ug/kg)  
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Log(PCBS) 

General Linear Model: log(PCBs) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        6  A1, A2, A3, A4, A5, A6 

Replicate(Treatment)  random      30  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for log(PCBs), using Adjusted SS for Tests 

 

Source                DF   Seq SS   Adj SS   Adj MS     F      P 

Treatment              5  0.22352  0.22352  0.04470  1.26  0.314 

Replicate(Treatment)  24  0.85317  0.85317  0.03555  0.66  0.865 

Error                 60  3.21068  3.21068  0.05351 

Total                 89  4.28737 

 

 

S = 0.231325   R-Sq = 25.11%   R-Sq(adj) = 0.00% 

 

 

… Oh no.  

 

P values are huge. 

Not statistically 

significant.  
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Unusual Observations for log(PCBs) 

 

Obs  log(PCBs)      Fit   SE Fit  Residual  St Resid 

 27    4.09342  2.97356  0.13356   1.11986      5.93 R 

 57    2.43457  2.97356  0.13356  -0.53899     -2.85 R 

 87    2.39270  2.97356  0.13356  -0.58087     -3.08 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for log(PCBs)  
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Sqrt(PCBs) 

General Linear Model: sqrt(PCBs) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        6  A1, A2, A3, A4, A5, A6 

Replicate(Treatment)  random      30  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for sqrt(PCBs), using Adjusted SS for Tests 

 

Source                DF  Seq SS  Adj SS  Adj MS     F      P 

Treatment              5   565.8   565.8   113.2  1.16  0.359 

Replicate(Treatment)  24  2348.2  2348.2    97.8  0.89  0.615 

Error                 60  6607.9  6607.9   110.1 

Total                 89  9521.9 

 

 

S = 10.4944   R-Sq = 30.60%   R-Sq(adj) = 0.00% 

 

Better normal 

prob plot. Take 

sqrt to see if we 

can even out 

versus fits.  

 

P values are huge. 

Not statistically 

significant.  
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Unusual Observations for sqrt(PCBs) 

 

Obs  sqrt(PCBs)     Fit  SE Fit  Residual  St Resid 

 27     111.355  47.855   6.059    63.501      7.41 R 

 57      16.492  47.855   6.059   -31.362     -3.66 R 

 87      15.716  47.855   6.059   -32.138     -3.75 R 

 

R denotes an observation with a large standardized residual. 

 

  

 

 

 

 

 

Residual Plots for sqrt(PCBs)  
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Total EFH (C8-C40) (excluding A2 and A5 because no final measurement)  

General Linear Model: Total EFH (mg/kg) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        4  A1, A3, A4, A6 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 

                                      17, 18, 19, 20, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for Total EFH (mg/kg), using Adjusted SS for Tests 

 

Source                DF   Seq SS   Adj SS  Adj MS     F      P 

Treatment              3     8304     8304    2768  0.56  0.649 

Replicate(Treatment)  16    79049    79049    4941  0.10  1.000 

Error                 40  1911167  1911167   47779 

Square root is 

inappropriate 

here.  

 

P values are huge. Not 

statistically significant.  
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Total                 59  1998520 

 

 

S = 218.584   R-Sq = 4.37%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for Total EFH (mg/kg) 

 

     Total EFH 

Obs    (mg/kg)      Fit   SE Fit  Residual  St Resid 

 51    869.000  371.333  126.200   497.667      2.79 R 

 

R denotes an observation with a large standardized residual. 

 

  

 

 

 

 

Residual Plots for Total EFH (mg/kg)  
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Log(Total EFH) 

General Linear Model: log(Total EFH) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        4  A1, A3, A4, A6 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 

                                      17, 18, 19, 20, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for log(Total EFH), using Adjusted SS for Tests 
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Source                DF  Seq SS  Adj SS  Adj MS     F      P 

Treatment              3  0.0391  0.0391  0.0130  2.07  0.145 

Replicate(Treatment)  16  0.1011  0.1011  0.0063  0.05  1.000 

Error                 40  4.7521  4.7521  0.1188 

Total                 59  4.8923 

 

 

S = 0.344676   R-Sq = 2.87%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for log(Total EFH) 

 

     log(Total 

Obs       EFH)      Fit   SE Fit  Residual  St Resid 

 51    2.93902  2.36428  0.19900   0.57474      2.04 R 

 

R denotes an observation with a large standardized residual. 

 

  

 

Residual Plots for log(Total EFH)  
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General Linear Model: TCDD TEQ (ng/kg) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        6  A1, A2, A3, A4, A5, A6 

Replicate(Treatment)  random      30  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30 

 

 

P values are huge. Not 

statistically significant.  
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Analysis of Variance for TCDD TEQ (ng/kg), using Adjusted SS for Tests 

 

Source                DF  Seq SS  Adj SS  Adj MS     F      P 

Treatment              5   11334   11334    2267  0.99  0.446 

Replicate(Treatment)  24   55121   55121    2297  0.72  0.811 

Error                 60  191401  191401    3190 

Total                 89  257856 

 

 

S = 56.4802   R-Sq = 25.77%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for TCDD TEQ (ng/kg) 

 

     TCDD TEQ 

Obs   (ng/kg)      Fit  SE Fit  Residual  St Resid 

 17   575.000  362.000  32.609   213.000      4.62 R 

 33   260.000  382.667  32.609  -122.667     -2.66 R 

 47   244.000  362.000  32.609  -118.000     -2.56 R 

 63   597.000  382.667  32.609   214.333      4.65 R 

 77   267.000  362.000  32.609   -95.000     -2.06 R 

 81   385.000  292.667  32.609    92.333      2.00 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for TCDD TEQ (ng/kg)  
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Log(TCDD TEQ) 
General Linear Model: log(TCDDTEQ) versus Treatment, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        6  A1, A2, A3, A4, A5, A6 

Replicate(Treatment)  random      30  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

P values are huge. Not 

statistically significant.  
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                                      23, 24, 25, 26, 27, 28, 29, 30 

 

 

Analysis of Variance for log(TCDDTEQ), using Adjusted SS for Tests 

 

Source                DF    Seq SS    Adj SS    Adj MS     F      P 

Treatment              5  0.018170  0.018170  0.003634  1.22  0.331 

Replicate(Treatment)  24  0.071661  0.071661  0.002986  0.64  0.888 

Error                 60  0.281277  0.281277  0.004688 

Total                 89  0.371107 

 

 

S = 0.0684686   R-Sq = 24.21%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for log(TCDDTEQ) 

 

Obs  log(TCDDTEQ)      Fit   SE Fit  Residual  St Resid 

 17       2.75967  2.52452  0.03953   0.23514      4.21 R 

 33       2.41497  2.55161  0.03953  -0.13664     -2.44 R 

 47       2.38739  2.52452  0.03953  -0.13713     -2.45 R 

 63       2.77597  2.55161  0.03953   0.22436      4.01 R 

 81       2.58546  2.45626  0.03953   0.12920      2.31 R 

 

R denotes an observation with a large standardized residual. 

Residual Plots for log(TCDDTEQ)  
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P values are huge. Not 

statistically significant.  
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Appendix G: Statistics: Effect of Gamma Irradiation on Changes in Soil A COIs 

General Linear Model: PAHs (ug/kg) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        7  A1, A2, A3, A4, A5, A6, A7 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      35  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

                                      33, 34, 35 

 

 

Analysis of Variance for PAHs (ug/kg), using Adjusted SS for Tests 

 

Source                DF    Seq SS    Adj SS  Adj MS     F      P 

Treatment              6   3320638   3320638  553440  0.83  0.554 

Time                   1    571110    571110  571110  1.03  0.317 

Replicate(Treatment)  28  18594685  18594685  664096  1.20  0.302 

Error                 34  18788465  18788465  552602 

Total                 69  41274898 

 

 

S = 743.372   R-Sq = 54.48%   R-Sq(adj) = 7.62% 

 

 

Unusual Observations for PAHs (ug/kg) 

 

        PAHs 

Obs  (ug/kg)      Fit  SE Fit  Residual  St Resid 

  7   732.00  2583.17  533.10  -1851.17     -3.57 R 

 21  1050.00  3041.73  533.10  -1991.73     -3.84 R 

 42  4615.00  2763.83  533.10   1851.17      3.57 R 

 56  5214.11  3222.38  533.10   1991.73      3.84 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for PAHs (ug/kg)  
 
 

High p 

value.  
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General Linear Model: log(PAH) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        7  A1, A2, A3, A4, A5, A6, A7 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      35  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

                                      33, 34, 35 

 

 

Analysis of Variance for log(PAH), using Adjusted SS for Tests 

 

Source                DF   Seq SS   Adj SS   Adj MS     F      P 

Treatment              6  0.36689  0.36689  0.06115  0.87  0.529 

Time                   1  0.00353  0.00353  0.00353  0.07  0.792 

Replicate(Treatment)  28  1.96868  1.96868  0.07031  1.41  0.170 

Error                 34  1.69921  1.69921  0.04998 

Total                 69  4.03831 

 

 

S = 0.223555   R-Sq = 57.92%   R-Sq(adj) = 14.61% 

 

 

Unusual Observations for log(PAH) 

 

Obs  log(PAH)      Fit   SE Fit  Residual  St Resid 

  7   2.86451  3.27144  0.16032  -0.40693     -2.61 R 

 21   3.02119  3.37629  0.16032  -0.35510     -2.28 R 

 42   3.66417  3.25724  0.16032   0.40693      2.61 R 

 56   3.71718  3.36208  0.16032   0.35510      2.28 R 

High p 

value.  
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R denotes an observation with a large standardized residual. 

 

  

Residual Plots for log(PAH)  
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General Linear Model: Dioxins (ng/kg) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        7  A1, A2, A3, A4, A5, A6, A7 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      35  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

                                      33, 34, 35 

 

 

Analysis of Variance for Dioxins (ng/kg), using Adjusted SS for Tests 

 

Source                DF       Seq SS       Adj SS     Adj MS     F      P 

Treatment              6   2926809955   2926809955  487801659  0.86  0.537 

Time                   1     25059269     25059269   25059269  0.04  0.839 

Replicate(Treatment)  28  15898895857  15898895857  567817709  0.95  0.553 

Error                 34  20342899904  20342899904  598320585 

Total                 69  39193664986 

 

 

S = 24460.6   R-Sq = 48.10%   R-Sq(adj) = 0.00% 

 

 

High p 

value.  
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Unusual Observations for Dioxins (ng/kg) 

 

     Dioxins 

Obs  (ng/kg)     Fit  SE Fit  Residual  St Resid 

  3   110514  170567   17542    -60053     -3.52 R 

 17   206618  142553   17542     64065      3.76 R 

 38   229423  169370   17542     60053      3.52 R 

 52    77292  141357   17542    -64065     -3.76 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for Dioxins (ng/kg)  
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General Linear Model: log(Dioxins) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        7  A1, A2, A3, A4, A5, A6, A7 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      35  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

                                      33, 34, 35 

 

 

Analysis of Variance for log(Dioxins), using Adjusted SS for Tests 

 

Source                DF    Seq SS    Adj SS    Adj MS     F      P 

Treatment              6  0.034056  0.034056  0.005676  0.92  0.494 High p 

value.  
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Time                   1  0.001079  0.001079  0.001079  0.16  0.694 

Replicate(Treatment)  28  0.172286  0.172286  0.006153  0.90  0.613 

Error                 34  0.233299  0.233299  0.006862 

Total                 69  0.440719 

 

 

S = 0.0828355   R-Sq = 47.06%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for log(Dioxins) 

 

Obs  log(Dioxins)      Fit   SE Fit  Residual  St Resid 

  3       5.04342  5.20595  0.05940  -0.16254     -2.82 R 

 17       5.31517  5.10558  0.05940   0.20959      3.63 R 

 38       5.36064  5.19810  0.05940   0.16254      2.82 R 

 52       4.88813  5.09773  0.05940  -0.20959     -3.63 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for log(Dioxins)  
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General Linear Model: sqrt(Dioxins) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        7  A1, A2, A3, A4, A5, A6, A7 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      35  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 
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                                      23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

                                      33, 34, 35 

 

 

Analysis of Variance for sqrt(Dioxins), using Adjusted SS for Tests 

 

Source                DF  Seq SS  Adj SS  Adj MS     F      P 

Treatment              6    5554    5554     926  0.89  0.519 

Time                   1     103     103     103  0.09  0.765 

Replicate(Treatment)  28   29284   29284    1046  0.92  0.581 

Error                 34   38479   38479    1132 

Total                 69   73419 

 

 

S = 33.6412   R-Sq = 47.59%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for sqrt(Dioxins) 

 

Obs  sqrt(Dioxins)      Fit  SE Fit  Residual  St Resid 

  3        332.436  406.921  24.125   -74.485     -3.18 R 

 17        454.553  367.496  24.125    87.057      3.71 R 

 38        478.981  404.497  24.125    74.485      3.18 R 

 52        278.014  365.071  24.125   -87.057     -3.71 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for sqrt(Dioxins)  
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High p 

value.  
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General Linear Model: PCBs (ug/kg) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        7  A1, A2, A3, A4, A5, A6, A7 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      35  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

                                      33, 34, 35 

 

 

Analysis of Variance for PCBs (ug/kg), using Adjusted SS for Tests 

 

Source                DF     Seq SS    Adj SS   Adj MS     F      P 

Treatment              6   13360507  13360507  2226751  1.08  0.396 

Time                   1    4329618   4329618  4329618  2.10  0.157 

Replicate(Treatment)  28   57535717  57535717  2054847  1.00  0.500 

Error                 34   70132475  70132475  2062720 

Total                 69  145358318 

 

 

S = 1436.22   R-Sq = 51.75%   R-Sq(adj) = 2.08% 

 

 

Unusual Observations for PCBs (ug/kg) 

 

        PCBs 

Obs  (ug/kg)     Fit  SE Fit  Residual  St Resid 

 27  12400.0  6572.2  1030.0    5827.8      5.82 R 

 62    247.0  6074.8  1030.0   -5827.8     -5.82 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for PCBs (ug/kg)  
 
 

High p 

value.  
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General Linear Model: log(PCBs) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        7  A1, A2, A3, A4, A5, A6, A7 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      35  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

                                      33, 34, 35 

 

 

Analysis of Variance for log(PCBs), using Adjusted SS for Tests 

 

Source                DF   Seq SS   Adj SS   Adj MS      F      P 

Treatment              6  0.42909  0.42909  0.07152   1.64  0.174 

Time                   1  1.25020  1.25020  1.25020  33.03  0.000 

Replicate(Treatment)  28  1.22242  1.22242  0.04366   1.15  0.343 

Error                 34  1.28701  1.28701  0.03785 

Total                 69  4.18872 

 

 

S = 0.194559   R-Sq = 69.27%   R-Sq(adj) = 37.65% 

 

 

Unusual Observations for log(PCBs) 

 

Obs  log(PCBs)      Fit   SE Fit  Residual  St Resid 

 27    4.09342  3.37670  0.13953   0.71672      5.29 R 

 62    2.39270  3.10942  0.13953  -0.71672     -5.29 R 

 

R denotes an observation with a large standardized residual. 

Significant p value 

for time? Run after 

midterm Treatment| 

time  
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Residual Plots for log(PCBs)  
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General Linear Model: sqrt(PCBs) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        7  A1, A2, A3, A4, A5, A6, A7 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      35  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

                                      33, 34, 35 

 

 

Analysis of Variance for sqrt(PCBs), using Adjusted SS for Tests 

 

Source                DF  Seq SS  Adj SS  Adj MS     F      P 

Treatment              6   952.6   952.6   158.8  1.28  0.296 

Time                   1   863.8   863.8   863.8  7.07  0.012 

Replicate(Treatment)  28  3460.1  3460.1   123.6  1.01  0.483 

Error                 34  4156.3  4156.3   122.2 

Total                 69  9432.8 

 

 

S = 11.0564   R-Sq = 55.94%   R-Sq(adj) = 10.58% 

 

 

Unusual Observations for sqrt(PCBs) 

 

Obs  sqrt(PCBs)     Fit  SE Fit  Residual  St Resid 

 27     111.355  67.049   7.929    44.307      5.75 R 

High p 

value.  
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 62      15.716  60.023   7.929   -44.307     -5.75 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for sqrt(PCBs)  
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General Linear Model: TCDD TEQ (ng/kg) versus Treatment, Time, 
Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        7  A1, A2, A3, A4, A5, A6, A7 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      35  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

                                      33, 34, 35 

 

 

Analysis of Variance for TCDD TEQ (ng/kg), using Adjusted SS for Tests 

 

Source                DF  Seq SS  Adj SS  Adj MS     F      P 

Treatment              6   17290   17290    2882  1.00  0.443 

Time                   1    2041    2041    2041  0.57  0.455 

Replicate(Treatment)  28   80508   80508    2875  0.80  0.721 

Error                 34  121619  121619    3577 

Total                 69  221458 

 

 

S = 59.8082   R-Sq = 45.08%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for TCDD TEQ (ng/kg) 

High p 

value.  
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     TCDD TEQ 

Obs   (ng/kg)      Fit  SE Fit  Residual  St Resid 

  3   291.000  438.600  42.891  -147.600     -3.54 R 

 17   575.000  415.600  42.891   159.400      3.82 R 

 38   597.000  449.400  42.891   147.600      3.54 R 

 52   267.000  426.400  42.891  -159.400     -3.82 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for TCDD TEQ (ng/kg)  
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General Linear Model: log(TCDDTEQ) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        7  A1, A2, A3, A4, A5, A6, A7 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      35  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

                                      23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

                                      33, 34, 35 

 

 

Analysis of Variance for log(TCDDTEQ), using Adjusted SS for Tests 

 

Source                DF    Seq SS    Adj SS    Adj MS     F      P 

Treatment              6  0.025881  0.025881  0.004314  1.23  0.321 

Time                   1  0.004291  0.004291  0.004291  0.90  0.348 

Replicate(Treatment)  28  0.098145  0.098145  0.003505  0.74  0.792 

High p 

value.  
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Error                 34  0.161304  0.161304  0.004744 

Total                 69  0.289621 

 

 

S = 0.0688784   R-Sq = 44.31%   R-Sq(adj) = 0.00% 

 

 

Unusual Observations for log(TCDDTEQ) 

 

Obs  log(TCDDTEQ)      Fit   SE Fit  Residual  St Resid 

  3       2.46389  2.61210  0.04940  -0.14821     -3.09 R 

 17       2.75967  2.58526  0.04940   0.17441      3.63 R 

 38       2.77597  2.62776  0.04940   0.14821      3.09 R 

 52       2.42651  2.60092  0.04940  -0.17441     -3.63 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for log(TCDDTEQ)  
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Appendix H: Statistics: Effect of Soil Type (A, B, or C) on COIs 

General Linear Model: Dioxins (ng/kg) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        4  A6, A7, B6, C6 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20 

 

 

Analysis of Variance for Dioxins (ng/kg), using Adjusted SS for Tests 

 

Source                DF       Seq SS       Adj SS       Adj MS       F      P 

Treatment              3  33668518629  33668518629  11222839543  136.64  0.000 

Time                   1     47955466     47955466     47955466    0.30  0.591 

Replicate(Treatment)  16   1314145543   1314145543     82134096    0.51  0.909 

Error                 19   3043712649   3043712649    160195403 

Total                 39  38074332288 

 

 

S = 12656.8   R-Sq = 92.01%   R-Sq(adj) = 83.59% 

 

  

Residual Plots for Dioxins (ng/kg)  
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General Linear Model: log(Dioxins versus Treatment, Time, Replicate  
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Factor                Type    Levels  Values 

Treatment             fixed        4  A6, A7, B6, C6 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20 

 

 

Analysis of Variance for log(Dioxins, using Adjusted SS for Tests 

 

Source                DF    Seq SS    Adj SS    Adj MS       F      P 

Treatment              3  1.897128  1.897128  0.632376  323.29  0.000 

Time                   1  0.003974  0.003974  0.003974    0.80  0.381 

Replicate(Treatment)  16  0.031297  0.031297  0.001956    0.40  0.967 

Error                 19  0.093964  0.093964  0.004945 

Total                 39  2.026363 

 

 

S = 0.0703242   R-Sq = 95.36%   R-Sq(adj) = 90.48% 

 

 

Unusual Observations for log(Dioxins 

 

Obs  log(Dioxins      Fit   SE Fit  Residual  St Resid 

 18      4.64137  4.74657  0.05095  -0.10520     -2.17 R 

 38      4.87171  4.76651  0.05095   0.10520      2.17 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for log(Dioxins  
 
 



160 

 

0.100.050.00-0.05-0.10

99

90

50

10

1

Residual

P
e

r
c

e
n

t

5.104.954.804.654.50

0.10

0.05

0.00

-0.05

-0.10

F itted V alue

R
e

s
id

u
a

l

0.100.050.00-0.05-0.10

8

6

4

2

0

Residual

F
r

e
q

u
e

n
c

y

4035302520151051

0.10

0.05

0.00

-0.05

-0.10

O bser vation O r der

R
e

s
id

u
a

l

No rmal Pro b ab ilit y  P lo t Versu s Fit s

Hist o g ram Versu s Ord er

R esidual P lots  for  log(Dioxins

 
 

 

 

 

 

General Linear Model: PAHs (ug/kg) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        4  A6, A7, B6, C6 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20 

 

 

Analysis of Variance for PAHs (ug/kg), using Adjusted SS for Tests 

 

Source                DF       Seq SS       Adj SS      Adj MS       F      P 

Treatment              3  13429037070  13429037070  4476345690  795.99  0.000 

Time                   1     12619489     12619489    12619489    2.09  0.165 

Replicate(Treatment)  16     89978318     89978318     5623645    0.93  0.554 

Error                 19    114930205    114930205     6048958 

Total                 39  13646565082 

 

 

S = 2459.46   R-Sq = 99.16%   R-Sq(adj) = 98.27% 

 

 

Unusual Observations for PAHs (ug/kg) 

 

        PAHs 
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Obs  (ug/kg)      Fit  SE Fit  Residual  St Resid 

 12  44616.0  38696.2  1782.1    5919.8      3.49 R 

 32  31653.0  37572.8  1782.1   -5919.8     -3.49 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for PAHs (ug/kg)  
 
 

500025000-2500-5000

99

90

50

10

1

Residual

P
e

r
c

e
n

t

480003600024000120000

5000

2500

0

-2500

-5000

F itted V alue

R
e

s
id

u
a

l

600030000-3000-6000

20

15

10

5

0

Residual

F
r

e
q

u
e

n
c

y

4035302520151051

5000

2500

0

-2500

-5000

O bser vation O r der

R
e

s
id

u
a

l

No rmal Pro b ab ilit y  P lo t Versu s Fit s

Hist o g ram Versu s Ord er

R esidual P lots  for  PAHs (ug/kg)

 

General Linear Model: log(PAHs) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        4  A6, A7, B6, C6 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20 

 

 

Analysis of Variance for log(PAHs), using Adjusted SS for Tests 

 

Source                DF   Seq SS   Adj SS   Adj MS       F      P 

Treatment              3  39.0214  37.2246  12.4082  112.65  0.000 x 

Time                   1   0.0001   0.0000   0.0000    0.00  0.997 

Replicate(Treatment)  16   1.7303   1.7303   0.1081    0.61  0.838 

Error                 17   3.0272   3.0272   0.1781 

Total                 37  43.7790 

 

x Not an exact F-test. 
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S = 0.421984   R-Sq = 93.09%   R-Sq(adj) = 84.95% 

 

 

Unusual Observations for log(PAHs) 

 

Obs  log(PAHs)      Fit   SE Fit  Residual  St Resid 

 20    3.48572  2.43271  0.30656   1.05301      3.63 R 

 37    1.53148  1.53148  0.42198   0.00000         * X 

 39    2.14613  2.14613  0.42198   0.00000         * X 

 40    1.38021  2.43322  0.30656  -1.05301     -3.63 R 

 

R denotes an observation with a large standardized residual. 

X denotes an observation whose X value gives it large leverage. 

 

  

Residual Plots for log(PAHs)  
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General Linear Model: PCBs (ug/kg) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        4  A6, A7, B6, C6 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20 

 

 

Analysis of Variance for PCBs (ug/kg), using Adjusted SS for Tests 

 

Source                DF     Seq SS    Adj SS   Adj MS     F      P 
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Treatment              3   13453098  13453098  4484366  1.25  0.324 

Time                   1    4790024   4790024  4790024  1.32  0.266 

Replicate(Treatment)  16   57347751  57347751  3584234  0.98  0.507 

Error                 19   69187555  69187555  3641450 

Total                 39  144778428 

 

 

S = 1908.26   R-Sq = 52.21%   R-Sq(adj) = 1.91% 

 

 

Unusual Observations for PCBs (ug/kg) 

 

        PCBs 

Obs  (ug/kg)     Fit  SE Fit  Residual  St Resid 

  2  12400.0  6669.6  1382.7    5730.4      4.36 R 

 22    247.0  5977.5  1382.7   -5730.5     -4.36 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for PCBs (ug/kg)  
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General Linear Model: log(PCBs) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        4  A6, A7, B6, C6 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20 

 

 

Analysis of Variance for log(PCBs), using Adjusted SS for Tests 
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Source                DF   Seq SS   Adj SS   Adj MS      F      P 

Treatment              3  3.66557  3.66557  1.22186  19.86  0.000 

Time                   1  0.65893  0.65893  0.65893  10.62  0.004 

Replicate(Treatment)  16  0.98447  0.98447  0.06153   0.99  0.501 

Error                 19  1.17846  1.17846  0.06202 

Total                 39  6.48743 

 

 

S = 0.249047   R-Sq = 81.83%   R-Sq(adj) = 62.71% 

 

 

Unusual Observations for log(PCBs) 

 

Obs  log(PCBs)      Fit   SE Fit  Residual  St Resid 

  2    4.09342  3.37141  0.18045   0.72201      4.21 R 

 22    2.39270  3.11471  0.18045  -0.72201     -4.21 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for log(PCBs)  
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General Linear Model: TCDD TEQ (ng/kg) versus Treatment, Time, 
Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        4  A6, A7, B6, C6 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20 

 

 

Analysis of Variance for TCDD TEQ (ng/kg), using Adjusted SS for Tests 
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Source                DF  Seq SS  Adj SS  Adj MS       F      P 

Treatment              3  547152  547152  182384  974.09  0.000 

Time                   1    4537    4537    4537   14.37  0.001 

Replicate(Treatment)  16    2996    2996     187    0.59  0.852 

Error                 19    6000    6000     316 

Total                 39  560685 

 

 

S = 17.7709   R-Sq = 98.93%   R-Sq(adj) = 97.80% 

 

  

Residual Plots for TCDD TEQ (ng/kg)  
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General Linear Model: Total EFH (C8-C4 versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        4  A6, A7, B6, C6 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20 

 

 

Analysis of Variance for Total EFH (C8-C40) (mg/kg), using Adjusted SS for 

     Tests 

 

Source                DF   Seq SS   Adj SS   Adj MS       F      P 

Treatment              3  2438732  2438732   812911  118.26  0.000 

Time                   1  4534420  4534420  4534420   50.78  0.000 
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Replicate(Treatment)  16   109982   109982     6874    0.08  1.000 

Error                 19  1696658  1696658    89298 

Total                 39  8779792 

 

 

S = 298.827   R-Sq = 80.68%   R-Sq(adj) = 60.33% 

 

 

Unusual Observations for Total EFH (C8-C40) (mg/kg) 

 

     Total EFH 

      (C8-C40) 

Obs    (mg/kg)      Fit  SE Fit  Residual  St Resid 

 14     220.00   633.31  216.52   -413.31     -2.01 R 

 34    1720.00  1306.69  216.52    413.31      2.01 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for Total EFH (C8-C40) (mg/kg)  
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General Linear Model: log(TotalEFH) versus Treatment, Time, Replicate  
 
Factor                Type    Levels  Values 

Treatment             fixed        4  A6, A7, B6, C6 

Time                  fixed        2  1, 3 

Replicate(Treatment)  random      20  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

                                      13, 14, 15, 16, 17, 18, 19, 20 

 



167 

 

 

Analysis of Variance for log(TotalEFH), using Adjusted SS for Tests 

 

Source                DF   Seq SS   Adj SS   Adj MS       F      P 

Treatment              3  1.11243  1.11243  0.37081   55.52  0.000 

Time                   1  5.34375  5.34375  5.34375  449.81  0.000 

Replicate(Treatment)  16  0.10686  0.10686  0.00668    0.56  0.875 

Error                 19  0.22572  0.22572  0.01188 

Total                 39  6.78876 

 

 

S = 0.108996   R-Sq = 96.68%   R-Sq(adj) = 93.18% 

 

 

Unusual Observations for log(TotalEFH) 

 

Obs  log(TotalEFH)      Fit   SE Fit  Residual  St Resid 

  1        2.39794  2.22757  0.07897   0.17037      2.27 R 

 16        1.77815  1.93003  0.07897  -0.15188     -2.02 R 

 21        2.78821  2.95858  0.07897  -0.17037     -2.27 R 

 36        2.81291  2.66104  0.07897   0.15188      2.02 R 

 

R denotes an observation with a large standardized residual. 

 

  

Residual Plots for log(TotalEFH)  
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Appendix I: Microcosm Data and Graphs  

Table 9: Microcosm soil pH values and statistics 

Microcosm ID/Type Average Value Standard Deviation Standard Error 

Sampling time 
(month/days) 

Feb/0 
days 

Jun/126 
days 

Feb/0 days 
Jun/126 
days 

Feb/0 days 
Jun/126 
days 

A1 Nutrients 6.53 6.28 0.04 0.06 0.02 0.03 

A2 Soya lecithin 5.87 6.31 0.03 0.19 0.01 0.08 

A3 Rice hulls 6.60 6.24 0.07 0.17 0.03 0.08 

A4 Nutrients+rice hulls+P. 
chrysosporium 

6.44 6.35 0.06 0.18 0.03 0.08 

A5 Nutrients+soya 
lecithin+rice hulls+P. 
chrysosporium 

6.03 6.18 0.03 0.09 0.01 0.04 

A6 Unamended site A 6.64 6.30 0.03 0.02 0.01 0.01 

B6 Unamended site B 6.84 6.68 0.03 0.05 0.01 0.02 

C6 Unamended site C 7.35 7.33 0.05 0.05 0.02 0.02 

A7 Unamended, gamma-
irradiated site A 

6.676 N/A 0.038471 N/A 0.017205 N/A 

 

Table 10: Microcosm soil TOC concentrations and statistics 

Microcosm ID/Type 

Average 
Concentration 
(mg/kg) 

Standard 
Deviation Standard Error 

Sampling time 
(month/days) 

Feb/0 
days 

Jun/126 
days 

Feb/0 
days 

Jun/126 
days 

Feb/0 
days 

Jun/126 
days 

A1 nutrient 11976 7986 7266 2594 3250 1160 

A2 soya lecithin 24960 12524 9630 2892 4307 1294 

A3 rice hulls 36420 23820 17833 6181 7975 2764 

A4 nutrients+rice hulls+P. 
chrysosporium 33464 19840 22393 3331 10015 1490 

A5 nutrients+soya 
lecithin+rice hulls+P. 
chrysosporium 37640 23740 11336 4426 5070 1979 

A6 unamended site A 11298 9268 5606 3056 2507 1367 

B6 unamended site B 61060 37530 19453 28015 8700 12529 

C6 unamended site C 3236 2770 1023 1231 458 551 

A7 gamma-irradiated 
unamended site a 10830 N/A 3732 N/A 1669 N/A 
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Figure 68: TOC in microcosms during incubation 
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Table 11: Microcosm soil Nitrate/Nitrate concentrations and statistics 

Microcosm ID/Type 
Average Concentration 
(mg/kg) 

Standard 
Deviation Standard Error 

Sampling time (month/days) Feb/0 days 
Jun/126 
days 

Feb/0 
days 

Jun/126 
days 

Feb/0 
days 

Feb/0 
days 

A1 nutrient 701 991 146 126 65 57 

A2 soya lecithin 772 1148 104 138 47 62 

A3 rice hulls 856 1066 181 657 81 294 

A4 nutrients+rice hulls+P. 
chrysosporium 884 1103 464 149 207 66 

A5 nutrients+soya 
lecithin+rice hulls+P. 
chrysosporium 996 1584 117 454 52 203 

A6 unamended site A 834 1168 198 318 88 142 

B6 unamended site B 1814 2178 437 229 195 103 

C6 unamended site C 186 143 41 82 18 37 

A7 gamma-irradiated 
unamended site a 679 N/A 77 N/A 34 N/A 
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Figure 69: Nitrogen in microcosms during incubation 
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Table 12: Microcosm soil moisture content and statistics 

Microcosm 
ID/Type Average moisture content (%) Standard Deviation Standard Error 

Sampling time 
(month/day) Feb/0 Jun/126 Oct/244 Feb/0 Jun/126 Oct/244 Feb/0 Jun/126 Oct/244 

A1 nutrient 11.7 11.6 15.6 0.3 1.5 1.6 0.2 0.7 0.7 

A2 soya lecithin 11.3 13.2 15.5 2.6 0.9 0.8 1.1 0.4 0.4 

A3 rice hulls 8.9 12.4 15.4 1.0 1.2 0.5 0.4 0.5 0.2 

A4 
nutrients+rice 
hulls+P. 
chrysosporium 12.2 13.0 15.3 1.3 1.5 1.6 0.6 0.7 0.7 

A5 
nutrients+soya 
lecithin+rice 
hulls+P. 
chrysosporium 12.8 12.2 16.8 1.0 0.7 1.7 0.4 0.3 0.7 

A6 unamended 
site A 11.9 11.5 14.4 0.6 0.6 0.3 0.3 0.3 0.1 

B6 unamended 
site B 12.2 11.1 14.9 1.3 0.9 0.9 0.6 0.4 0.4 

C6 unamended 
site C 11.6 12.2 15.5 0.4 0.9 1.8 0.2 0.4 0.8 

A7 gamma-
irradiated 
unamended site 
a 11.4 N/A 11.5 0.8 N/A 0.4 0.3 N/A 0.2 
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Figure 70: Microcosm moisture content during incubation 
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Table 13: Microcosm soil total EFH concentrations and statistics 

Microcosm ID/type Average Concentration (mg/kg) Standard Deviation Standard Error 

Sampling time 
(month/day) Feb/0 days 

Jun/126 
days 

Oct/244 
days 

Feb/0 
days 

Jun/126 
days 

Oct/244 
days 

Feb/0 
days 

Jun/126 
days 

Oct/244 
days 

A1 nutrient 182 152 152 51 54 119 23 24 53 

A2 soya lecithin 1640 172 N/A 219 54 N/A 98 24 N/A 

A3 rice hulls 154 137 502 22 46 502 9 20 225 

A4 nutrients+rice 
hulls+P. chrysosporium 146 113 556 23 27 556 10 12 249 

A5 nutrients+soya 
lecithin+rice hulls+P. 
chrysosporium 1980 156 N/A 327 32 N/A 146 14 N/A 

A6 unamended site A 152 89 502 55 12 79 25 5 35 

B6 unamended site B 230 226 1589 12 30 188 5 14 84 

C6 unamended site C 100 105 558 29 26 54 13 12 24 

A7 gamma-irradiated 
unamended site A 101 N/A 628 9 N/A 42 4 N/A 19 
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Table 14: Microcosm total PAH concentrations and statistics 

Microcosm ID/type Average Concentration (ug/kg) Standard Deviation Standard Error  

Sampling time (month/day) Feb/0 days 
Jun/126 

days 
Oct/244 

days 
Feb/0 

days 
Jun/126 

days 
Oct/244 

days 
Feb/0 

days 
Jun/126 

days 
Oct/244 

days 

A1 nutrient 626 727 673 228 881 714 102 394 319 

A2 soya lecithin 350 538 1390 191 195 1812 85 87 810 

A3 rice hulls 714 489 759 414 282 372 185 126 166 

A4 nutrients+rice hulls+P. 
chrysosporium 214 382 710 39 113 479 15 50 214 

A5 nutrients+soya lecithin+rice 
hulls+P. chrysosporium 87 485 1672 56 282 2014 25 126 901 

A6 unamended site A 467 429 684 297 158 224 133 71 100 

B6 unamended site B 45139 39238 40585 3441 1746 5198 1539 781 2325 

C6 unamended site C 626 153 50 1361 211 50 609 94 23 

A7 gamma-irradiated 
unamended site A 523 N/A 943 364 N/A 289 163 N/A 129 
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Table 15: Microcosm soil total PCB concentrations and statistics 

Microcosm ID/type Average Concentration (ug/kg) Standard Deviation Standard Error  

Sampling time (month/day) Feb/0 days 
Jun/126 
days 

Oct/244 
days 

Feb/0 
days 

Jun/126 
days 

Oct/244 
days 

Feb/0 
days 

Jun/126 
days 

Oct/244 
days 

A1 nutrient 326.4 285.6 215 81.36523 54.6562 37.22902 36.38764 24.44299 16.64932 

A2 soya lecithin 448.2 277.6 197.4 214.9353 46.59184 34.07785 96.12201 20.83651 15.24008 

A3 rice hulls 394 286 186.2 98.66357 104.8308 43.47643 44.12369 46.88177 19.44325 

A4 nutrients+rice hulls+P. 
chrysosporium 378 234 240.2 101.4569 10.41633 19.17551 45.3729 4.658326 8.575547 

A5 nutrients+soya 
lecithin+rice hulls+P. 
chrysosporium 336.2 291.4 217.8 19.46022 43.51781 44.81852 8.702873 19.46176 20.04345 

A6 unamended site A 2811.8 251.4 263 5362.195 17.7426 49.86482 2398.047 7.934734 22.30022 

B6 unamended site B 329.2 414 260.6 37.66563 33.61547 30.66431 16.84458 15.0333 13.7135 

C6 unamended site C 95.4 97.2 51.2 8.414274 5.674504 3.563706 3.762978 2.537716 1.593738 

A7 gamma-irradiated 
unamended site A 323.8 

 
217 27.98571 

 
30.8788 12.51559 

 
13.80942 
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Table 16: Microcosm total dioxin concentration and statistics 

Microcosm ID/type Average Concentration (ng/kg) Standard Deviation Standard Error 

Sampling time (month/day) Feb/0 days 
Jun/126 

days 
Oct/244 

days 
Feb/0 

days 
Jun/126 

days 
Oct/244 

days 
Feb/0 

days 
Jun/126 

days 
Oct/244 

days 

A1 nutrient 98898 79230 126710 11141 3779 57719 4982 1690 25813 

A2 soya lecithin 99547 84227 88048 6749 14579 4316 3018 6520 1930 

A3 rice hulls 89064 85548 93723 6327 19916 11257 2830 8907 5034 

A4 nutrients+rice hulls+P. 
chrysosporium 116316 90113 85415 51418 20613 85415 22995 9219 38199 

A5 nutrients+soya lecithin+rice 
hulls+P. chrysosporium 100358 88368 97854 13966 12666 17633 6246 5665 7886 

A6 unamended site A 99432 81967 96257 9032 2047 19335 4039 915 8647 

B6 unamended site B 26581 26041 30452 1536 2396 2397 687 1072 1072 

C6 unamended site C 54509 54526 55342 7608 6219 12275 3403 2781 5490 

A7 gamma-irradiated 
unamended site a 91803 

 
99035 18189 

 
7052 8135 

 
3154 
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Table 17: Microcosm soil TCDD TEQ concentrations and statistics 

Microcosm ID/type Average Concentration (ng/kg) Standard Deviation Standard Error 

Sampling time (month/day) Feb/0 days 
Jun/126 

days 
Oct/244 

days 
Feb/0 

days 
Jun/126 

days 
Oct/244 

days 
Feb/0 

days 
Jun/126 

days 
Oct/244 

days 

A1 nutrient 297 247 247 28 20 137 13 9 61 

A2 soya lecithin 303 264 264 27 27 10 12 12 4 

A3 rice hulls 267 250 276 18 15 28 8 7 12 

A4 nutrients+rice hulls+P. 
chrysosporium 332 266 282 137 34 11 61 15 5 

A5 nutrients+soya lecithin+rice 
hulls+P. chrysosporium 286 262 314 33 19 41 15 8 18 

A6 unamended site A 288.4 263.8 308.8 12.66096 4.32435 29.72709 5.662155 1.933908 13.29436 

B6 unamended site B 57.22 53.92 66.98 2.277499 2.20159 4.350517 1.018528 0.984581 1.94561 

C6 unamended site C 55.14 56.24 62.38 6.518666 4.646827 10.97802 2.915236 2.078124 4.909521 

A7 gamma-irradiated 
unamended site a 266 

 
313.8 17.50714 

 
8.074652 7.829432 

 
3.611094 
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Appendix J: Microcosm Soil Temperature Log 

Table 18: Microcosm Temperature Data 

Date 
Number of days of 

incubation 
Average Temp 

(degC) 
Standard 
Deviation 

Standard 
Error 

5/1/2014 77 24.2 1.0 0.5 

5/6/2014 82 19.8 1.9 0.9 

5/11/2014 87 27.0 0.1 0.1 

5/16/2014 92 26.9 0.7 0.3 

5/23/2014 99 26.9 0.2 0.1 

5/28/2014 104 26.1 0.4 0.2 

6/3/2014 110 23.5 0.3 0.1 

6/9/2014 116 24.7 0.3 0.1 

6/16/2014 123 25.0 0.2 0.1 

6/28/2014 135 26.2 0.6 0.3 

6/30/2014 137 25.4 0.2 0.1 

7/7/2014 144 25.6 0.5 0.2 

7/14/2014 151 24.3 0.2 0.1 

7/21/2014 158 26.3 0.4 0.2 

7/28/2014 165 26.3 0.5 0.2 

8/4/2014 172 26.3 0.5 0.2 

8/14/2014 182 29.5 1.3 0.6 

8/26/2014 194 31.6 0.7 0.3 

9/1/2014 200 30.9 0.6 0.3 

9/7/2014 206 31.5 0.7 0.3 

9/15/2014 214 31.4 0.7 0.3 

9/22/2014 221 31.2 0.7 0.3 

9/29/2014 228 30.6 0.8 0.4 

10/6/2014 235 30.8 0.9 0.4 

10/13/2014 242 30.4 0.7 0.3 

 



180 

 

Appendix K: COI Concentrations, Standard Deviation, and Standard Error 

Table 19: Individual compound concentration including standard deviation and error 

Treatment 

 

NUTR SOLE RICE AUGM COMB STER UNAA UNAC UNAB 

Feb/0 days 

Chemical Units Mean Concentration 

1,2,3,4,6,7,8-

HEPTACHLORODIBENZO-P-

DIOXIN ng/kg 10510 11740 9756 11382 10826 9078 9953 2798 2083 

1,2,3,4,6,7,8-HPCDF ng/kg 983 861 818 1249 979 815 870 176 255 

1,2,3,4,7,8,9-HPCDF ng/kg 84 76 72 88 68 69 75 10 19 

1,2,3,4,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 83 83 74 92 79 75 81 5 16 

1,2,3,4,7,8-HXCDF ng/kg 25 22 22 31 24 22 24 3 10 

1,2,3,6,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 478 484 429 523 441 430 444 61 80 

1,2,3,6,7,8-HXCDF ng/kg 31 25 25 55 44 24 26 3 9 

1,2,3,7,8,9-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 189 190 169 205 173 169 178 14 34 

1,2,3,7,8,9-HXCDF ng/kg 7 6 6 8 2 4 3 0 3 

1,2,3,7,8-

PENTACHLORODIBENZOFURAN ng/kg 8 8 8 9 7 7 8 1 3 

1,2,3,7,8-PENTACHLORODIBENZO-

P-DIOXIN ng/kg 56 53 50 62 50 53 55 2 8 

2,3,4,6,7,8-HXCDF ng/kg 49 44 42 54 41 42 45 3 13 

2,3,4,7,8-PECDF ng/kg 12 10 10 13 10 10 11 1 7 

2,3,7,8-TCDD ng/kg 9 9 8 10 8 9 9 0 1 

2,3,7,8- ng/kg 3 2 2 3 2 2 2 1 4 
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TETRACHLORODIBENZOFURAN 

OCDD ng/kg 84340 84080 75840 100420 85980 79280 84738 50860 22600 

OCDF ng/kg 2034 1854 1734 2112 1626 1714 1794 572 835 

TCDD TEQ ng/kg 297 303 267 332 286 266 288 55 57 

1,1'-Biphenyl 

UG/

KG 0 0 0 0 0 0 0 0 62 

1-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 0 0 0 0 

2-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 0 0 0 138 

ACENAPHTHENE 

UG/

KG 0 0 0 0 0 0 0 16 0 

ACENAPHTHYLENE ug/kg 0 0 8 0 0 0 0 0 151 

ANTHRACENE ug/kg 7 0 9 0 0 0 5 22 639 

AZOBENZENE 

UG/

KG 0 0 0 0 0 0 0 0 0 

BENZO(A)ANTHRACENE ug/kg 39 21 20 0 0 19 27 38 1322 

BENZO(A)PYRENE ug/kg 38 24 48 12 0 38 37 44 4500 

BENZO(B)FLUORANTHENE ug/kg 66 55 69 35 0 67 69 54 6278 

Benzo(e)pyrene ug/kg 49 40 61 26 12 47 53 42 4356 

BENZO(G,H,I)PERYLENE ug/kg 27 18 58 34 0 38 35 20 7922 

BENZO(K)FLUORANTHENE ug/kg 16 0 7 0 0 6 0 18 1157 

bis(2-Ethylhexyl)phthalate ug/kg 0 0 0 0 0 0 0 0 0 

Butylbenzylphthalate ug/kg 0 0 0 0 0 0 0 0 0 

Chrysene ug/kg 68 40 57 0 0 43 53 50 2256 

Di-n-butylphthalate ug/kg 0 0 0 0 0 0 0 0 0 

DIBENZO(A,H)ANTHRACENE 

UG/

KG 0 0 0 0 0 0 0 6 1211 

Di-n-octylphthalate ug/kg 0 0 0 0 0 0 0 0 0 
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FLUORANTHENE ug/kg 129 86 144 49 62 102 110 96 2622 

FLUORENE 

UG/

KG 0 0 0 0 0 0 0 10 84 

INDENO(1,2,3-CD)PYRENE ug/kg 17 0 25 0 0 8 6 17 7611 

METHANAMINE, N-METHYL-N-

NITROSO 

UG/

KG 0 0 0 0 0 0 0 0 111 

NAPHTHALENE 

UG/

KG 0 0 0 0 0 0 0 0 203 

PHENANTHRENE ug/kg 55 47 92 16 0 61 38 100 2222 

PYRENE ug/kg 114 20 117 42 24 93 94 94 1678 

Aroclor 1016 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1221 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1232 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1242 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1248 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1254 ug/kg 132 150 142 160 140 132 645 59 127 

Aroclor 1260 ug/kg 97 108 110 110 103 112 328 37 111 

Aroclor 1262 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1268 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5432 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5442 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5460 ug/kg 97 191 142 108 93 80 908 0 102 
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EFH (C12-C14) 

MG/

KG 0 21 0 0 1 0 1 0 1 

EFH (C15-C20) 

MG/

KG 0 376 4 5 404 0 2 0 17 

EFH (C21-C30) 

mg/k

g 94 1046 79 84 1414 55 79 49 133 

EFH (C30-C40) 

mg/k

g 87 166 73 57 130 45 52 50 86 

EFH (C8-C11) 

MG/

KG 0 14 0 0 1 0 1 0 1 

Jun/126 days 

Chemical Units Mean Concentration 

1,2,3,4,6,7,8-

HEPTACHLORODIBENZO-P-

DIOXIN ng/kg 9292 9774 9186 10120 9850 N/A 9571 2956 2171 

1,2,3,4,6,7,8-HPCDF ng/kg 781 790 789 821 850 N/A 828 167 252 

1,2,3,4,7,8,9-HPCDF ng/kg 70 70 68 71 72 N/A 72 12 19 

1,2,3,4,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 72 73 69 73 70 N/A 74 5 16 

1,2,3,4,7,8-HXCDF ng/kg 21 21 21 22 23 N/A 22 2 10 

1,2,3,6,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 411 427 402 406 427 N/A 432 60 82 

1,2,3,6,7,8-HXCDF ng/kg 23 23 23 23 25 N/A 25 2 8 

1,2,3,7,8,9-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 169 172 158 172 167 N/A 176 13 35 

1,2,3,7,8,9-HXCDF ng/kg 5 7 3 4 4 N/A 2 0 0 

1,2,3,7,8-

PENTACHLORODIBENZOFURAN ng/kg 7 7 7 7 7 N/A 7 0 3 

1,2,3,7,8-PENTACHLORODIBENZO-

P-DIOXIN ng/kg 49 50 46 48 48 N/A 52 2 8 

2,3,4,6,7,8-HXCDF ng/kg 42 41 40 42 42 N/A 42 4 13 
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2,3,4,7,8-PECDF ng/kg 8 10 9 9 9 N/A 9 1 7 

2,3,7,8-TCDD ng/kg 9 9 8 8 9 N/A 8 0 1 

2,3,7,8-

TETRACHLORODIBENZOFURAN ng/kg 2 2 2 2 2 N/A 2 1 4 

OCDD ng/kg 66580 71080 76000 76500 74900 N/A 68871 50720 23129 

OCDF ng/kg 1688 1672 13584 1786 1864 N/A 1804 580 831 

TCDD TEQ ng/kg 247 264 534 266 262 N/A 264 56 56 

1,1'-Biphenyl 

UG/

KG 0 0 0 0 0 N/A 0 0 48 

1-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 N/A 0 0 67 

2-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 N/A 0 0 103 

ACENAPHTHENE 

UG/

KG 9 0 0 0 0 N/A 0 0 12 

ACENAPHTHYLENE ug/kg 0 3 0 0 0 N/A 0 0 129 

ANTHRACENE ug/kg 16 6 3 7 0 N/A 0 0 566 

AZOBENZENE 

UG/

KG 0 0 0 0 0 N/A 0 

 

0 

BENZO(A)ANTHRACENE ug/kg 46 27 24 8 30 N/A 23 16 1171 

BENZO(A)PYRENE ug/kg 49 29 36 26 36 N/A 33 6 3757 

BENZO(B)FLUORANTHENE ug/kg 75 59 58 45 60 N/A 58 17 5043 

Benzo(e)pyrene ug/kg 49 34 37 35 44 N/A 40 33 3514 

BENZO(G,H,I)PERYLENE ug/kg 36 29 36 33 28 N/A 35 15 7057 

BENZO(K)FLUORANTHENE ug/kg 13 13 11 5 15 N/A 10 3 1060 

bis(2-Ethylhexyl)phthalate ug/kg 0 0 0 0 0 N/A 0 0 0 

Butylbenzylphthalate ug/kg 0 0 0 0 0 N/A 0 0 0 

Chrysene ug/kg 68 60 46 36 55 N/A 45 11 1814 

Di-n-butylphthalate ug/kg 0 0 0 0 0 N/A 0 0 0 
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DIBENZO(A,H)ANTHRACENE 

UG/

KG 6 0 3 0 0 N/A 0 0 1229 

Di-n-octylphthalate ug/kg 0 0 0 0 0 N/A 0 0 0 

FLUORANTHENE ug/kg 129 116 93 69 87 N/A 76 14 2186 

FLUORENE 

UG/

KG 6 0 0 0 0 N/A 0 0 22 

INDENO(1,2,3-CD)PYRENE ug/kg 16 23 24 20 19 N/A 23 5 7057 

METHANAMINE, N-METHYL-N-

NITROSO 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

NAPHTHALENE 

UG/

KG 0 0 0 0 0 N/A 0 

 

177 

PHENANTHRENE ug/kg 91 55 38 38 39 N/A 31 7 1900 

PYRENE ug/kg 117 100 79 62 73 N/A 68 11 1414 

Aroclor 1016 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1221 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1232 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1242 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1248 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1254 ug/kg 71 73 74 58 85 N/A 69 59 137 

Aroclor 1260 ug/kg 128 116 120 118 126 N/A 121 38 143 

Aroclor 1262 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1268 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 5432 

UG/

KG 0 0 0 0 0 N/A 0 0 0 
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Aroclor 5442 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 5460 ug/kg 87 89 92 58 81 N/A 70 0 112 

EFH (C12-C14) 

MG/

KG 0 0 0 0 0 N/A 0 0 1 

EFH (C15-C20) 

MG/

KG 0 5 2 1 7 N/A 0 0 21 

EFH (C21-C30) 

mg/k

g 40 55 67 58 71 N/A 49 46 137 

EFH (C30-C40) 

mg/k

g 109 109 68 54 78 N/A 42 59 73 

EFH (C8-C11) 

MG/

KG 0 0 0 0 0 N/A 0 0 0 

Oct/244 days 

Chemical 

Unit 

of 

Meas

ure Mean Concentration 

1,2,3,4,6,7,8-

HEPTACHLORODIBENZO-P-

DIOXIN ng/kg 13110 9340 10086 10182 12070 11180 11160 3288 2388 

1,2,3,4,6,7,8-HPCDF ng/kg 1269 852 879 878 864 926 893 163 268 

1,2,3,4,7,8,9-HPCDF ng/kg 100 73 73 77 79 83 81 11 20 

1,2,3,4,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 90 77 75 81 83 95 90 6 18 

1,2,3,4,7,8-HXCDF ng/kg 28 22 24 23 23 25 81 2 12 

1,2,3,6,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 593 446 461 459 499 489 490 70 90 

1,2,3,6,7,8-HXCDF ng/kg 31 24 26 25 26 27 27 2 9 

1,2,3,7,8,9-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 214 181 178 182 197 209 197 15 38 

1,2,3,7,8,9-HXCDF ng/kg 6 0 0 

 

0 0 0 2 0 
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1,2,3,7,8-

PENTACHLORODIBENZOFURAN ng/kg 10 8 9 8 7 8 7 1 4 

1,2,3,7,8-PENTACHLORODIBENZO-

P-DIOXIN ng/kg 59 51 51 53 57 62 60 2 9 

2,3,4,6,7,8-HXCDF ng/kg 57 44 45 46 47 51 50 3 16 

2,3,4,7,8-PECDF ng/kg 12 9 10 10 10 11 11 1 8 

2,3,7,8-TCDD ng/kg 10 10 9 10 11 11 10 0 1 

2,3,7,8-

TETRACHLORODIBENZOFURAN ng/kg 3 3 3 3 3 3 3 1 4 

OCDD ng/kg 108200 75060 79860 71480 82020 83840 81260 51200 26680 

OCDF ng/kg 2918 1848 1936 1898 1860 2016 1894 575 887 

TCDD TEQ ng/kg 469 269 276 282 314 314 309 62 67 

1,1'-Biphenyl 

UG/

KG 0 0 0 0 0 0 0 0 0 

1-METHYLNAPHTHALENE 

UG/

KG 4 2 3 2 5 3 4 0 600 

2-METHYLNAPHTHALENE 

UG/

KG 9 10 8 9 9 9 10 0 782 

ACENAPHTHENE 

UG/

KG 5 0 5 7 34 3 2 0 24 

ACENAPHTHYLENE ug/kg 3 1 7 0 7 2 2 0 148 

ANTHRACENE ug/kg 9 16 11 12 48 13 9 0 846 

AZOBENZENE 

UG/

KG 0 0 0 0 0 0 0 0 0 

BENZO(A)ANTHRACENE ug/kg 21 126 38 42 96 54 29 3 1780 

BENZO(A)PYRENE ug/kg 19 87 34 40 82 49 27 0 3620 

BENZO(B)FLUORANTHENE ug/kg 47 142 66 70 127 86 58 6 5380 

Benzo(e)pyrene ug/kg 10 56 32 24 56 36 16 0 3320 

BENZO(G,H,I)PERYLENE ug/kg 12 42 19 20 51 33 17 6 2640 

BENZO(K)FLUORANTHENE ug/kg 21 57 25 28 58 32 24 0 1900 
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bis(2-Ethylhexyl)phthalate ug/kg 92 79 73 51 137 56 75 20 430 

Butylbenzylphthalate ug/kg 0 0 15 0 0 15 0 0 0 

Chrysene ug/kg 59 165 83 72 144 97 73 15 2780 

Di-n-butylphthalate ug/kg 18 34 0 30 0 0 0 0 0 

DIBENZO(A,H)ANTHRACENE 

UG/

KG 0 9 5 4 12 10 0 0 672 

Di-n-octylphthalate ug/kg 0 0 0 0 0 0 0 0 270 

FLUORANTHENE ug/kg 143 248 132 106 280 138 138 0 4540 

FLUORENE 

UG/

KG 5 0 4 5 24 2 2 0 39 

INDENO(1,2,3-CD)PYRENE ug/kg 6 37 14 17 43 27 13 0 3500 

METHANAMINE, N-METHYL-N-

NITROSO 

UG/

KG 0 0 0 0 0 0 0 0 0 

NAPHTHALENE 

UG/

KG 4 4 4 7 43 3 2 0 614 

PHENANTHRENE ug/kg 86 1848 75 73 229 77 74 0 4600 

PYRENE ug/kg 100 216 104 89 222 103 102 0 2100 

Aroclor 1016 

UG/

KG 0 0 0 4 0 0 0 0 0 

Aroclor 1221 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1232 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1242 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1248 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1254 ug/kg 65 70 63 77 77 70 78 75 29 

Aroclor 1260 ug/kg 77 66 65 78 69 70 80 95 22 

Aroclor 1262 

UG/

KG 0 0 0 0 0 0 0 0 0 
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Aroclor 1268 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5432 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5442 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5460 ug/kg 73 61 59 81 71 77 106 91 0 

EFH (C12-C14) 

MG/

KG 0 

 

0 0 

 

0 0 0 0 

EFH (C15-C20) 

MG/

KG 3 

 

10 19 

 

28 0 0 140 

EFH (C21-C30) 

mg/k

g 108 

 

132 164 

 

174 128 144 560 

EFH (C30-C40) 

mg/k

g 284 

 

360 372 

 

420 372 414 888 

EFH (C8-C11) 

MG/

KG 0 

 

0 0 

 

0 0 0 0 

Feb/0 days 

          

Chemical 

Unit 

of 

Meas

ure 

Standar

d 

Deviati

on 

        1,2,3,4,6,7,8-

HEPTACHLORODIBENZO-P-

DIOXIN ng/kg 1377 1422 1509 5018 2227 818 797 312 73 

1,2,3,4,6,7,8-HPCDF ng/kg 189 65 37 589 376 18 47 36 13 

1,2,3,4,7,8,9-HPCDF ng/kg 14 5 5 36 5 2 5 1 1 

1,2,3,4,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 6 10 4 35 9 3 7 1 0 

1,2,3,4,7,8-HXCDF ng/kg 3 2 2 12 6 1 2 0 0 

1,2,3,6,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 54 52 19 219 56 15 27 6 3 
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1,2,3,6,7,8-HXCDF ng/kg 8 3 2 50 40 1 3 2 1 

1,2,3,7,8,9-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 12 24 7 83 20 2 13 2 1 

1,2,3,7,8,9-HXCDF ng/kg 1 1 1 3 3 3 3 1 2 

1,2,3,7,8-

PENTACHLORODIBENZOFURAN ng/kg 1 0 1 4 2 1 1 0 0 

1,2,3,7,8-PENTACHLORODIBENZO-

P-DIOXIN ng/kg 2 2 2 26 5 2 4 0 0 

2,3,4,6,7,8-HXCDF ng/kg 6 3 2 21 2 1 4 0 0 

2,3,4,7,8-PECDF ng/kg 0 1 0 5 1 1 1 0 0 

2,3,7,8-TCDD ng/kg 0 0 1 5 1 0 0 0 0 

2,3,7,8-

TETRACHLORODIBENZOFURAN ng/kg 0 0 0 1 0 0 0 0 0 

OCDD ng/kg 9825 5465 5226 44883 11854 17348 6611 7244 1384 

OCDF ng/kg 428 104 119 838 133 24 92 56 53 

TCDD TEQ ng/kg 28 27 18 137 33 18 13 2 7 

1,1'-Biphenyl 

UG/

KG 0 0 0 0 0 0 0 0 4 

1-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 0 0 0 0 

2-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 0 0 0 22 

ACENAPHTHENE 

UG/

KG 0 0 0 0 0 0 0 36 0 

ACENAPHTHYLENE ug/kg 0 0 18 0 0 0 0 0 9 

ANTHRACENE ug/kg 10 0 13 0 0 0 14 49 48 

AZOBENZENE 

UG/

KG 0 0 0 0 0 0 0 0 0 

BENZO(A)ANTHRACENE ug/kg 12 28 19 0 0 29 25 85 120 

BENZO(A)PYRENE ug/kg 11 24 19 17 0 29 27 98 255 
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BENZO(B)FLUORANTHENE ug/kg 22 22 21 4 0 31 27 121 507 

Benzo(e)pyrene ug/kg 10 12 35 15 28 14 17 57 251 

BENZO(G,H,I)PERYLENE ug/kg 4 17 31 4 0 10 17 44 1190 

BENZO(K)FLUORANTHENE ug/kg 5 0 10 0 0 13 0 39 138 

bis(2-Ethylhexyl)phthalate ug/kg 0 0 0 0 0 0 0 0 0 

Butylbenzylphthalate ug/kg 0 0 0 0 0 0 0 0 0 

Chrysene ug/kg 33 15 38 0 0 35 34 112 321 

Di-n-butylphthalate ug/kg 0 0 0 0 0 0 0 0 0 

DIBENZO(A,H)ANTHRACENE ug/kg 0 0 0 0 0 0 0 14 154 

Di-n-octylphthalate ug/kg 0 0 0 0 0 0 0 0 0 

FLUORANTHENE ug/kg 60 30 99 10 4 67 88 215 156 

FLUORENE ug/kg 0 0 0 0 0 0 0 21 41 

INDENO(1,2,3-CD)PYRENE ug/kg 5 0 16 0 0 18 16 38 918 

METHANAMINE, N-METHYL-N-

NITROSO ug/kg 0 0 0 0 0 0 0 0 3 

NAPHTHALENE ug/kg 0 0 0 0 0 0 0 0 19 

PHENANTHRENE ug/kg 34 23 106 22 0 61 62 224 199 

PYRENE ug/kg 55 44 60 8 33 66 73 210 97 

Aroclor 1016 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1221 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1232 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1242 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1248 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1254 ug/kg 23 16 15 64 12 15 1358 5 12 
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Aroclor 1260 ug/kg 11 9 7 26 6 14 596 3 8 

Aroclor 1262 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1268 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5432 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5442 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5460 ug/kg 52 201 86 41 11 4 2300 0 46 

EFH (C12-C14) 

MG/

KG 0 5 0 0 2 0 2 0 2 

EFH (C15-C20) 

MG/

KG 0 53 0 1 71 0 4 0 2 

EFH (C21-C30) 

mg/k

g 43 140 5 16 252 6 22 16 15 

EFH (C30-C40) 

mg/k

g 11 5 20 11 16 7 20 14 10 

EFH (C8-C11) 

MG/

KG 0 3 0 0 2 0 2 0 2 

Jun/126 days 

Chemical 

Unit 

of 

Meas

ure Standard Deviation 

1,2,3,4,6,7,8-

HEPTACHLORODIBENZO-P-

DIOXIN ng/kg 436 1516 373 2046 783 N/A 344 237 262 

1,2,3,4,6,7,8-HPCDF ng/kg 30 46 20 66 91 N/A 34 12 18 

1,2,3,4,7,8,9-HPCDF ng/kg 3 4 2 8 9 N/A 4 2 1 

1,2,3,4,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 5 6 4 7 9 N/A 3 0 1 
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1,2,3,4,7,8-HXCDF ng/kg 1 3 1 1 2 N/A 1 0 1 

1,2,3,6,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 11 19 18 31 37 N/A 10 2 4 

1,2,3,6,7,8-HXCDF ng/kg 1 3 2 1 4 N/A 2 0 1 

1,2,3,7,8,9-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 6 15 7 15 14 N/A 5 1 2 

1,2,3,7,8,9-HXCDF ng/kg 3 1 4 4 4 N/A 3 0 1 

1,2,3,7,8-

PENTACHLORODIBENZOFURAN ng/kg 1 1 1 1 1 N/A 1 0 1 

1,2,3,7,8-PENTACHLORODIBENZO-

P-DIOXIN ng/kg 3 1 4 2 3 N/A 3 0 4 

2,3,4,6,7,8-HXCDF ng/kg 1 2 2 2 4 N/A 2 0 1 

2,3,4,7,8-PECDF ng/kg 2 1 1 1 1 N/A 1 0 1 

2,3,7,8-TCDD ng/kg 2 2 1 0 1 N/A 1 0 0 

2,3,7,8-

TETRACHLORODIBENZOFURAN ng/kg 0 0 0 0 1 N/A 0 0 0 

OCDD ng/kg 3454 13006 21351 18368 12520 N/A 1632 6003 2859 

OCDF ng/kg 40 50 26618 149 203 N/A 132 34 64 

TCDD TEQ ng/kg 20 27 635 34 19 N/A 5 5 5 

1,1'-Biphenyl 

UG/

KG 0 0 0 0 0 N/A 0 0 4 

1-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 N/A 0 0 5 

2-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 N/A 0 0 8 

ACENAPHTHENE 

UG/

KG 21 0 0 0 0 N/A 0 0 6 

ACENAPHTHYLENE ug/kg 0 7 0 0 0 N/A 0 0 11 

ANTHRACENE ug/kg 31 9 7 10 0 N/A 0 0 48 

AZOBENZENE 

UG/

KG 0 0 0 0 0 N/A 0 0 0 
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BENZO(A)ANTHRACENE ug/kg 64 25 27 11 29 N/A 15 12 111 

BENZO(A)PYRENE ug/kg 56 10 24 8 23 N/A 13 14 270 

BENZO(B)FLUORANTHENE ug/kg 70 22 29 7 40 N/A 16 22 486 

Benzo(e)pyrene ug/kg 30 7 17 7 19 N/A 11 16 248 

BENZO(G,H,I)PERYLENE ug/kg 29 5 16 4 11 N/A 9 10 577 

BENZO(K)FLUORANTHENE ug/kg 23 8 12 7 18 N/A 10 6 92 

bis(2-Ethylhexyl)phthalate ug/kg 0 0 0 0 0 N/A 0 0 0 

Butylbenzylphthalate ug/kg 0 0 0 0 0 N/A 0 0 0 

Chrysene ug/kg 69 23 25 10 26 N/A 16 25 135 

Di-n-butylphthalate ug/kg 0 0 0 0 0 N/A 0 0 0 

DIBENZO(A,H)ANTHRACENE ug/kg 10 0 7 0 0 N/A 0 0 138 

Di-n-octylphthalate ug/kg 0 0 0 0 0 N/A 0 0 0 

FLUORANTHENE ug/kg 158 42 49 22 48 N/A 26 32 168 

FLUORENE 

UG/

KG 13 0 0 0 0 N/A 0 0 3 

INDENO(1,2,3-CD)PYRENE ug/kg 29 6 12 3 15 N/A 8 11 326 

METHANAMINE, N-METHYL-N-

NITROSO 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

NAPHTHALENE 

UG/

KG 0 0 0 0 0 N/A 0 

 

6 

PHENANTHRENE ug/kg 139 20 19 23 25 N/A 9 15 153 

PYRENE ug/kg 142 34 45 20 39 N/A 23 25 135 

Aroclor 1016 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1221 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1232 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1242 

UG/

KG 0 0 0 0 0 N/A 0 0 0 
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Aroclor 1248 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1254 ug/kg 19 6 28 8 12 N/A 12 4 23 

Aroclor 1260 ug/kg 8 13 7 4 11 N/A 7 2 13 

Aroclor 1262 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 1268 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 5432 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 5442 

UG/

KG 0 0 0 0 0 N/A 0 0 0 

Aroclor 5460 ug/kg 59 47 72 3 29 N/A 20 0 17 

EFH (C12-C14) 

MG/

KG 0 0 0 0 0 N/A 0 0 2 

EFH (C15-C20) 

MG/

KG 0 7 3 1 4 N/A 0 0 2 

EFH (C21-C30) 

mg/k

g 12 10 22 14 7 N/A 5 10 14 

EFH (C30-C40) 

mg/k

g 42 38 21 12 25 N/A 8 18 15 

EFH (C8-C11) 

MG/

KG 0 0 0 0 0 N/A 0 0 1 

Oct/244 days 

Chemical 

Unit 

of 

Meas

ure Standard Deviation 

1,2,3,4,6,7,8-

HEPTACHLORODIBENZO-P-

DIOXIN ng/kg 6077 758 1718 665 2901 554 1078 569 229 

1,2,3,4,6,7,8-HPCDF ng/kg 827 22 113 78 19 29 48 27 15 
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1,2,3,4,7,8,9-HPCDF ng/kg 54 1 8 4 2 4 4 1 1 

1,2,3,4,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 22 1 6 3 2 2 8 1 1 

1,2,3,4,7,8-HXCDF ng/kg 11 1 3 2 1 2 4 0 3 

1,2,3,6,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 257 23 51 24 59 10 38 9 5 

1,2,3,6,7,8-HXCDF ng/kg 12 1 2 1 1 1 1 0 1 

1,2,3,7,8,9-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 54 4 13 5 19 4 12 2 2 

1,2,3,7,8,9-HXCDF ng/kg 5 0 0 0 0 0 0 2 0 

1,2,3,7,8-

PENTACHLORODIBENZOFURAN ng/kg 3 1 1 1 1 1 1 0 1 

1,2,3,7,8-PENTACHLORODIBENZO-

P-DIOXIN ng/kg 11 1 3 2 2 1 6 0 1 

2,3,4,6,7,8-HXCDF ng/kg 27 2 4 3 0 2 3 0 1 

2,3,4,7,8-PECDF ng/kg 5 2 2 0 0 1 1 0 2 

2,3,7,8-TCDD ng/kg 2 1 1 1 1 1 2 0 0 

2,3,7,8-

TETRACHLORODIBENZOFURAN ng/kg 1 0 0 0 0 0 1 0 0 

OCDD 

 

48267 4678 9008 13162 14696 6723 18256 11601 2100 

OCDF ng/kg 2154 66 338 240 64 105 73 97 65 

TCDD TEQ ng/kg 270 10 28 11 41 8 30 11 4 

1,1'-Biphenyl 

UG/

KG 0 0 0 0 0 0 0 0 0 

1-METHYLNAPHTHALENE 

UG/

KG 8 4 6 4 10 4 5 0 60 

2-METHYLNAPHTHALENE 

UG/

KG 9 3 9 5 10 1 6 0 77 

ACENAPHTHENE 

UG/

KG 11 0 7 15 76 8 5 0 3 

ACENAPHTHYLENE ug/kg 8 2 7 0 3 3 5 0 16 
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ANTHRACENE ug/kg 11 18 9 9 85 10 4 0 88 

AZOBENZENE 

UG/

KG 0 0 0 0 0 0 0 0 0 

BENZO(A)ANTHRACENE ug/kg 13 209 24 27 148 34 11 8 259 

BENZO(A)PYRENE ug/kg 7 131 19 25 128 30 9 0 614 

BENZO(B)FLUORANTHENE ug/kg 29 195 34 34 154 40 12 5 858 

Benzo(e)pyrene ug/kg 21 83 33 34 74 38 22 0 432 

BENZO(G,H,I)PERYLENE ug/kg 3 50 7 10 67 18 3 6 288 

BENZO(K)FLUORANTHENE ug/kg 16 81 13 15 75 16 6 0 255 

bis(2-Ethylhexyl)phthalate ug/kg 87 48 42 47 261 53 44 45 207 

Butylbenzylphthalate ug/kg 0 0 34 0 0 33 0 0 0 

Chrysene ug/kg 51 232 57 33 148 40 20 3 460 

Di-n-butylphthalate ug/kg 41 76 0 67 0 0 0 0 0 

DIBENZO(A,H)ANTHRACENE ug/kg 0 21 5 6 22 8 0 0 81 

Di-n-octylphthalate ug/kg 0 0 0 0 0 0 0 0 48 

FLUORANTHENE ug/kg 217 371 90 60 325 64 85 0 662 

FLUORENE ug/kg 11 0 5 12 54 5 5 0 5 

INDENO(1,2,3-CD)PYRENE ug/kg 5 52 6 11 65 16 3 0 367 

METHANAMINE, N-METHYL-N-

NITROSO 

UG/

KG 0 0 0 0 0 0 0 0 0 

NAPHTHALENE 

UG/

KG 6 5 5 4 65 4 4 0 50 

PHENANTHRENE ug/kg 142 66 71 68 359 40 53 0 534 

PYRENE ug/kg 145 339 72 55 273 45 59 0 255 

Aroclor 1016 

UG/

KG 0 0 0 9 0 0 0 0 0 

Aroclor 1221 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1232 UG/ 0 0 0 0 0 0 0 0 0 
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KG 

Aroclor 1242 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1248 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1254 ug/kg 15 15 22 13 35 7 11 31 2 

Aroclor 1260 ug/kg 8 16 12 4 6 5 9 11 2 

Aroclor 1262 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1268 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5432 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5442 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5460 ug/kg 23 7 10 12 9 25 30 53 0 

EFH (C12-C14) 

MG/

KG 0 

 

0 0 

 

0 0 0 0 

EFH (C15-C20) 

MG/

KG 6 

 

10 29 

 

4 0 0 22 

EFH (C21-C30) 

mg/k

g 28 

 

8 54 

 

11 22 15 60 

EFH (C30-C40) 

mg/k

g 89 

 

16 139 

 

34 58 40 108 

EFH (C8-C11) 

MG/

KG 0 

 

0 0 

 

0 0 0 0 

Feb/0 days 

Chemical 

Unit 

of 

Meas

ure Standard Error of the Mean 

1,2,3,4,6,7,8- ng/kg 616 636 675 2244 996 366 356 140 32 
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HEPTACHLORODIBENZO-P-

DIOXIN 

1,2,3,4,6,7,8-HPCDF ng/kg 85 29 17 263 168 8 21 16 6 

1,2,3,4,7,8,9-HPCDF ng/kg 6 2 2 16 2 1 2 0 0 

1,2,3,4,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 3 5 2 16 4 1 3 0 0 

1,2,3,4,7,8-HXCDF ng/kg 1 1 1 5 3 0 1 0 0 

1,2,3,6,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 24 23 9 98 25 7 12 3 1 

1,2,3,6,7,8-HXCDF ng/kg 3 1 1 22 18 1 1 1 1 

1,2,3,7,8,9-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 5 11 3 37 9 1 6 1 0 

1,2,3,7,8,9-HXCDF ng/kg 0 0 0 1 1 1 1 0 1 

1,2,3,7,8-

PENTACHLORODIBENZOFURAN ng/kg 0 0 1 2 1 0 0 0 0 

1,2,3,7,8-PENTACHLORODIBENZO-

P-DIOXIN ng/kg 1 1 1 11 2 1 2 0 0 

2,3,4,6,7,8-HXCDF ng/kg 3 1 1 9 1 0 2 0 0 

2,3,4,7,8-PECDF ng/kg 0 0 0 2 0 0 1 0 0 

2,3,7,8-TCDD ng/kg 0 0 0 2 0 0 0 0 0 

2,3,7,8-

TETRACHLORODIBENZOFURAN ng/kg 0 0 0 1 0 0 0 0 0 

OCDD 

 

4394 2444 2337 20072 5301 7758 2956 3240 619 

OCDF ng/kg 191 46 53 375 59 11 41 25 24 

TCDD TEQ ng/kg 13 12 8 61 15 8 6 3 1 

1,1'-Biphenyl 

UG/

KG 0 0 0 0 0 0 0 0 2 

1-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 0 0 0 0 

2-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 0 0 0 10 
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ACENAPHTHENE 

UG/

KG 0 0 0 0 0 0 0 16 0 

ACENAPHTHYLENE ug/kg 0 0 8 0 0 0 0 0 4 

ANTHRACENE ug/kg 4 0 6 0 0 0 6 22 21 

AZOBENZENE 

UG/

KG 0 0 0 0 0 0 0 0 0 

BENZO(A)ANTHRACENE ug/kg 5 13 9 0 0 13 11 38 54 

BENZO(A)PYRENE ug/kg 5 11 8 7 0 13 12 44 114 

BENZO(B)FLUORANTHENE ug/kg 10 10 9 2 0 14 12 54 227 

Benzo(e)pyrene ug/kg 4 5 16 7 12 6 8 26 112 

BENZO(G,H,I)PERYLENE ug/kg 2 8 14 2 0 5 8 20 532 

BENZO(K)FLUORANTHENE ug/kg 2 0 4 0 0 6 0 18 62 

bis(2-Ethylhexyl)phthalate ug/kg 0 0 0 0 0 0 0 0 0 

Butylbenzylphthalate ug/kg 0 0 0 0 0 0 0 0 0 

Chrysene ug/kg 15 7 17 0 0 16 15 50 143 

Di-n-butylphthalate ug/kg 0 0 0 0 0 0 0 0 0 

DIBENZO(A,H)ANTHRACENE ug/kg 0 0 0 0 0 0 0 6 69 

Di-n-octylphthalate ug/kg 0 0 0 0 0 0 0 0 0 

FLUORANTHENE ug/kg 27 14 44 5 2 30 39 96 70 

FLUORENE ug/kg 0 0 0 0 0 0 0 10 18 

INDENO(1,2,3-CD)PYRENE ug/kg 2 0 7 0 0 8 7 17 411 

METHANAMINE, N-METHYL-N-

NITROSO 

UG/

KG 0 0 0 0 0 0 0 0 1 

NAPHTHALENE 

UG/

KG 0 0 0 0 0 0 0 0 9 

PHENANTHRENE ug/kg 15 10 47 10 0 27 28 100 89 

PYRENE ug/kg 24 20 27 3 15 29 33 94 43 

Aroclor 1016 

UG/

KG 0 0 0 0 0 0 0 0 0 
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Aroclor 1221 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1232 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1242 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1248 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1254 ug/kg 10 7 7 29 5 7 607 2 5 

Aroclor 1260 ug/kg 5 4 3 12 3 6 266 1 3 

Aroclor 1262 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1268 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5432 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5442 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5460 ug/kg 23 90 38 18 5 2 1029 0 21 

EFH (C12-C14) 

MG/

KG 0 2 0 0 1 0 1 0 1 

EFH (C15-C20) 

MG/

KG 0 24 0 1 32 0 2 0 1 

EFH (C21-C30) 

mg/k

g 19 63 2 7 113 3 10 7 7 

EFH (C30-C40) 

mg/k

g 5 2 9 5 7 3 9 6 5 

EFH (C8-C11) 

MG/

KG 0 1 0 0 1 0 1 0 1 

Jun/126 days 

          

Chemical 

Unit 

of 

Standar

d Error 
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Meas

ure 

of the 

Mean 

1,2,3,4,6,7,8-

HEPTACHLORODIBENZO-P-

DIOXIN ng/kg 195 678 167 915 350 

 

130 106 99 

1,2,3,4,6,7,8-HPCDF ng/kg 14 21 9 29 41 

 

13 5 7 

1,2,3,4,7,8,9-HPCDF ng/kg 1 2 1 4 4 

 

1 1 0 

1,2,3,4,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 2 3 2 3 4 

 

1 0 0 

1,2,3,4,7,8-HXCDF ng/kg 1 1 1 0 1 

 

0 0 0 

1,2,3,6,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 5 9 8 14 17 

 

4 1 1 

1,2,3,6,7,8-HXCDF ng/kg 0 1 1 0 2 

 

1 0 0 

1,2,3,7,8,9-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 2 7 3 7 6 

 

2 0 1 

1,2,3,7,8,9-HXCDF ng/kg 1 1 2 2 2 

 

1 0 0 

1,2,3,7,8-

PENTACHLORODIBENZOFURAN ng/kg 0 0 0 0 0 

 

0 0 0 

1,2,3,7,8-PENTACHLORODIBENZO-

P-DIOXIN ng/kg 1 1 2 1 1 

 

1 0 1 

2,3,4,6,7,8-HXCDF ng/kg 0 1 1 1 2 

 

1 0 0 

2,3,4,7,8-PECDF ng/kg 1 1 0 0 0 

 

1 0 0 

2,3,7,8-TCDD ng/kg 1 1 0 0 1 

 

0 0 0 

2,3,7,8-

TETRACHLORODIBENZOFURAN ng/kg 0 0 0 0 1 

 

0 0 0 

OCDD ng/kg 1545 5817 9548 8214 5599 

 

617 2685 1081 

OCDF ng/kg 18 22 11904 67 91 

 

50 15 24 

TCDD TEQ ng/kg 9 12 284 15 8 

 

2 2 2 

1,1'-Biphenyl 

UG/

KG 0 0 0 0 0 

 

0 0 1 
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1-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 

 

0 0 2 

2-METHYLNAPHTHALENE 

UG/

KG 0 0 0 0 0 

 

0 0 3 

ACENAPHTHENE 

UG/

KG 9 0 0 0 0 

 

0 0 2 

ACENAPHTHYLENE ug/kg 0 3 0 0 0 

 

0 0 4 

ANTHRACENE ug/kg 14 4 3 5 0 

 

0 0 18 

AZOBENZENE 

UG/

KG 0 0 0 0 0 

 

0 0 0 

BENZO(A)ANTHRACENE ug/kg 29 11 12 5 13 

 

5 5 42 

BENZO(A)PYRENE ug/kg 25 4 11 3 10 

 

5 6 102 

BENZO(B)FLUORANTHENE ug/kg 31 10 13 3 18 

 

6 10 184 

Benzo(e)pyrene ug/kg 13 3 8 3 8 

 

4 7 94 

BENZO(G,H,I)PERYLENE ug/kg 13 2 7 2 5 

 

4 5 218 

BENZO(K)FLUORANTHENE ug/kg 10 4 5 3 8 

 

4 3 35 

bis(2-Ethylhexyl)phthalate ug/kg 0 0 0 0 0 

 

0 0 0 

Butylbenzylphthalate ug/kg 0 0 0 0 0 

 

0 0 0 

Chrysene ug/kg 31 11 11 4 12 

 

6 11 51 

Di-n-butylphthalate ug/kg 0 0 0 0 0 

 

0 0 0 

DIBENZO(A,H)ANTHRACENE ug/kg 4 0 3 0 0 

 

0 0 52 

Di-n-octylphthalate ug/kg 0 0 0 0 0 

 

0 0 0 

FLUORANTHENE ug/kg 71 19 22 10 21 

 

10 14 63 

FLUORENE ug/kg 6 0 0 0 0 

 

0 0 1 

INDENO(1,2,3-CD)PYRENE ug/kg 13 3 6 2 7 

 

3 5 123 

METHANAMINE, N-METHYL-N-

NITROSO 

UG/

KG 0 0 0 0 0 

 

0 0 0 

NAPHTHALENE 

UG/

KG 0 0 0 0 0 

 

0 

 

3 
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PHENANTHRENE ug/kg 62 9 9 10 11 

 

3 7 58 

PYRENE ug/kg 64 15 20 9 17 

 

9 11 51 

Aroclor 1016 

UG/

KG 0 0 0 0 0 

 

0 0 0 

Aroclor 1221 

UG/

KG 0 0 0 0 0 

 

0 0 0 

Aroclor 1232 

UG/

KG 0 0 0 0 0 

 

0 0 0 

Aroclor 1242 

UG/

KG 0 0 0 0 0 

 

0 0 0 

Aroclor 1248 

UG/

KG 0 0 0 0 0 

 

0 0 0 

Aroclor 1254 ug/kg 8 3 13 4 5 

 

5 2 9 

Aroclor 1260 ug/kg 4 6 3 2 5 

 

607 1 5 

Aroclor 1262 

UG/

KG 0 0 0 0 0 

 

0 0 0 

Aroclor 1268 

UG/

KG 0 0 0 0 0 

 

0 0 0 

Aroclor 5432 

UG/

KG 0 0 0 0 0 

 

0 0 0 

Aroclor 5442 

UG/

KG 0 0 0 0 0 

 

0 0 0 

Aroclor 5460 ug/kg 26 21 32 1 13 

 

7 0 7 

EFH (C12-C14) 

MG/

KG 0 0 0 0 0 

 

0 0 1 

EFH (C15-C20) 

MG/

KG 0 3 1 1 2 

 

0 0 1 

EFH (C21-C30) 

mg/k

g 5 4 10 6 3 

 

2 4 5 

EFH (C30-C40) 

mg/k

g 19 17 9 6 11 

 

3 8 6 

EFH (C8-C11) MG/ 0 0 0 0 0 

 

0 0 0 
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KG 

Oct/244 days 

Chemical 

Unit 

of 

Meas

ure Standard Error of the Mean 

1,2,3,4,6,7,8-

HEPTACHLORODIBENZO-P-

DIOXIN ng/kg 2718 339 768 297 1297 248 482 255 103 

1,2,3,4,6,7,8-HPCDF ng/kg 370 10 51 35 8 13 22 12 7 

1,2,3,4,7,8,9-HPCDF ng/kg 24 1 3 2 1 2 2 1 0 

1,2,3,4,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 10 1 3 2 1 1 3 0 0 

1,2,3,4,7,8-HXCDF ng/kg 5 0 1 1 0 1 2 1 1 

1,2,3,6,7,8-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 115 10 23 11 26 5 17 4 2 

1,2,3,6,7,8-HXCDF ng/kg 5 0 1 1 1 0 0 0 0 

1,2,3,7,8,9-HEXACHLORODIBENZO-

P-DIOXIN ng/kg 24 2 6 2 8 2 6 1 1 

1,2,3,7,8,9-HXCDF ng/kg 2 0 0 0 0 0 0 1 0 

1,2,3,7,8-

PENTACHLORODIBENZOFURAN ng/kg 1 0 0 1 0 0 0 0 0 

1,2,3,7,8-PENTACHLORODIBENZO-

P-DIOXIN ng/kg 5 1 1 1 1 1 3 0 0 

2,3,4,6,7,8-HXCDF ng/kg 12 1 2 1 0 1 2 0 0 

2,3,4,7,8-PECDF ng/kg 2 1 1 0 0 0 0 0 1 

2,3,7,8-TCDD ng/kg 1 0 0 1 0 0 1 0 0 

2,3,7,8-

TETRACHLORODIBENZOFURAN ng/kg 0 0 0 0 0 0 0 0 0 

OCDD ng/kg 21586 2092 4029 5886 6572 3006 8164 5188 939 
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OCDF ng/kg 963 30 151 107 29 47 33 43 29 

TCDD TEQ ng/kg 121 4 12 5 18 4 13 5 2 

1,1'-Biphenyl 

UG/

KG 0 0 0 0 0 0 0 0 0 

1-METHYLNAPHTHALENE 

UG/

KG 4 2 3 2 5 2 2 0 27 

2-METHYLNAPHTHALENE 

UG/

KG 4 1 4 2 4 1 3 0 35 

ACENAPHTHENE 

UG/

KG 5 0 3 7 34 3 2 0 1 

ACENAPHTHYLENE ug/kg 3 1 3 0 1 2 2 0 7 

ANTHRACENE ug/kg 5 8 4 4 38 4 2 0 40 

AZOBENZENE 

UG/

KG 0 0 0 0 0 0 0 0 0 

BENZO(A)ANTHRACENE ug/kg 6 94 11 12 66 15 5 3 116 

BENZO(A)PYRENE ug/kg 3 58 8 11 57 13 4 0 275 

BENZO(B)FLUORANTHENE ug/kg 13 87 15 15 69 18 5 2 384 

Benzo(e)pyrene ug/kg 10 37 15 15 33 17 10 0 193 

BENZO(G,H,I)PERYLENE ug/kg 1 22 3 5 30 8 1 3 129 

BENZO(K)FLUORANTHENE ug/kg 7 36 6 7 33 7 3 0 114 

bis(2-Ethylhexyl)phthalate ug/kg 39 22 19 21 117 24 20 20 93 

Butylbenzylphthalate ug/kg 0 0 15 0 0 15 0 0 0 

Chrysene ug/kg 23 104 25 15 66 18 9 1 206 

Di-n-butylphthalate ug/kg 18 34 0 30 0 0 0 0 0 

DIBENZO(A,H)ANTHRACENE ug/kg 0 9 2 3 10 4 0 0 36 

Di-n-octylphthalate ug/kg 0 0 0 0 0 0 0 0 22 

FLUORANTHENE ug/kg 97 166 40 27 145 29 38 0 296 

FLUORENE ug/kg 5 0 2 5 24 2 2 0 2 

INDENO(1,2,3-CD)PYRENE ug/kg 2 23 3 5 29 7 1 0 164 
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METHANAMINE, N-METHYL-N-

NITROSO 

UG/

KG 0 0 0 0 0 0 0 0 0 

NAPHTHALENE 

UG/

KG 3 2 2 2 29 2 2 0 22 

PHENANTHRENE ug/kg 64 30 32 30 161 18 24 0 239 

PYRENE ug/kg 65 152 32 24 122 20 26 0 114 

Aroclor 1016 

UG/

KG 0 0 0 4 0 0 0 0 0 

Aroclor 1221 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1232 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1242 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1248 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1254 ug/kg 7 7 10 6 16 3 5 14 1 

Aroclor 1260 ug/kg 4 7 5 2 3 2 4 5 1 

Aroclor 1262 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 1268 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5432 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5442 

UG/

KG 0 0 0 0 0 0 0 0 0 

Aroclor 5460 ug/kg 10 3 4 5 4 11 14 24 0 

EFH (C12-C14) 

MG/

KG 0 N/A 0 0 N/A 0 0 0 0 

EFH (C15-C20) 

MG/

KG 3 N/A 4 13 N/A 2 0 0 10 

EFH (C21-C30) mg/k 12 N/A 4 24 N/A 5 10 7 27 
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g 

EFH (C30-C40) 

mg/k

g 40 N/A 7 62 N/A 15 26 18 48 

EFH (C8-C11) 

MG/

KG 0 N/A 0 0 N/A 0 0 0 0 
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Table 20: Total EFH concentration in microcosms during incubation 

 

Time NUTR SOLE RICE AUGM COMB UNAA UNAB UNAC STER 

Average 

(mg/kg) 

Feb/0 

days 182 1640 154 146 1980 152 230 100 101 

Jun/126 

days 152 172 137 113 156 89 226 105 N/A 

Oct/244 

days 152 N/A 502 556 N/A 502 1589 558 628 

Standard 

Deviation 

(mg/kg) 

Feb/0 

days 51 219 21 23 327 55 12 29 9 

Jun/126 

days 54 54 46 27 32 12 30 26 N/A 

Oct/244 

days 119 N/A 502 556 N/A 79 188 54 42 

Standard Error 

(mg/kg) 

Feb/0 

days 23 98 9 10 146 25 5 13 4 

Jun/126 

days 24 24 20 12 14 5 14 12 N/A 

Oct/244 

days 53 N/A 225 248 N/A 35 84 24 19 
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Table 21: Total PAH concentration in microcosms during incubation 

 Time NUTR SOLE RICE AUGM COMB UNAA UNAB UNAC STER 

Average 

(µg/kg) 

Feb/0 

days 

626 350 714 214 87 467 45139 626 523 

Jun/126 

days 

727 538 489 382 485 429 39238 153 
N/A 

Oct/244 

days 

673 1390 759 710 1672 684 40585 50 
943 

Standard 

Deviation 

(µg/kg) 

Feb/0 

days 

228 191 414 34 56 297 3441 1361 
364 

Jun/126 

days 

882 195 282 113 282 158 1746 211 
N/A 

Oct/244 

days 

714 1812 372 479 2014 224 5198 50 
289 

Standard Error 

(µg/kg) 

Feb/0 

days 

102 85 185 15 25 133 1539 609 
163 

Jun/126 

days 

394 87 126 50 126 71 781 94 
N/A 

Oct/244 

days 

319 810 166 214 901 100 2325 23 129 
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Table 22: Aroclor 1260, 5460, and 1254 concentrations in microcosms during incubation 

AROCLOR 1260 NUTR SOLE RICE AUGM COMB UNAA UNAB UNAC STER 

Average (µg/kg) 

Feb/0 days 97 108 110 110 103 328 111 37 112 

Jun/126 days 128 116 120 118 126 121 143 38 N/A 

Oct/244 days 77 66 65 78 69 80 22 95 70 

Standard Deviation 

(µg/kg) 

Feb/0 days 11 9 7 26 6 596 8 3 14 

Jun/126 days 8 13 7 4 11 7 13 2 N/A 

Oct/244 days 8 16 12 4 6 9 2 11 5 

Standard Error 

(µg/kg) 

Feb/0 days 5 4 3 12 3 266 3 1 6 

Jun/126 days 4 6 3 2 5 607 5 1 N/A 

Oct/244 days 4 7 5 2 3 4 1 5 2 

AROCLOR 5460 NUTR SOLE RICE AUGM COMB UNAA UNAB UNAC STER 

Average (µg/kg) 

Feb/0 days 97 191 142 108 93 908 102 0 80 

Jun/126 days 87 89 92 58 81 70 112 0 N/A 

Oct/244 days 73 61 59 81 71 106 0 91 77 

Standard Deviation 

(µg/kg) 

Feb/0 days 52 201 86 41 11 2300 46 0 4 

Jun/126 days 59 47 72 3 29 20 17 0 

 
Oct/244 days 23 7 10 12 9 30 0 53 25 

Standard Error 

(µg/kg) 

Feb/0 days 23 90 38 18 5 1029 21 0 2 

Jun/126 days 26 21 32 1 13 7 7 0 

 
Oct/244 days 10 3 4 5 4 14 0 24 11 
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AROCLOR 1254 NUTR SOLE RICE AUGM COMB UNAA UNAB UNAC STER 

Average (µg/kg) 

Feb/0 days 132 150 142 160 140 645 127 59 132 

Jun/126 days 71 73 74 58 85 69 137 59 

 
Oct/244 days 65 70 63 77 77 78 29 75 70 

Standard Deviation 

(µg/kg) 

Feb/0 days 23 16 15 64 12 1358 12 5 15 

Jun/126 days 19 6 28 8 12 12 23 4 

 
Oct/244 days 15 15 22 13 35 11 2 31 7 

Standard Error 

(µg/kg) 

Feb/0 days 10 7 7 29 5 607 5 2 7 

Jun/126 days 8 3 13 4 5 5 9 2 

 
Oct/244 days 7 7 10 6 16 5 1 14 3 
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Table 23: Total dioxin concentration in microcosms during incubation 

 

Time NUTR SOLE RICE AUGM COMB UNAA UNAB UNAC STER 

Average (ng/kg) 

Feb/0 days 98898 99547 89064 116316 100358 99432 26581 54509 91803 

Jun/126 days 79230 84227 85548 90113 88368 81967 26041 54526 N/A 

Oct/244 days 126710 88048 93723 85415 97854 96257 30452 55342 99035 

Standard Deviation (ng/kg) 

Feb/0 days 11141 6749 6327 51418 13966 9032 1536 7608 18189 

Jun/126 days 3779 14579 19916 20613 12666 2047 2396 6219 N/A 

Oct/244 days 57719 4316 11257 85415 17633 19335 2397 12275 7052 

Standard Error (ng/kg) 

Feb/0 days 4982 3018 2830 22995 6246 4039 687 3403 8135 

Jun/126 days 1690 6520 8907 9219 5665 915 1072 2781 N/A 

Oct/244 days 25813 1930 5034 38199 7886 8647 1072 5490 3154 
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Table 24: TCDD TEQ in microcosms during incubation 

 
Time NUTR SOLE RICE AUGM COMB UNAA UNAB UNAC STER 

Average 

(ng/kg) 

Feb/0 

days 
297 303 267 332 286 288 57 55 266 

Jun/126 

days 
247 264 250 266 262 264 54 56 N/A 

Oct/244 

days 
247 264 276 282 314 309 67 62 314 

Standard 

Deviation 

(ng/kg) 

Feb/0 

days 
28 27 18 137 33 13 2 7 18 

Jun/126 

days 
20 27 15 34 19 4 2 5 N/A 

Oct/244 

days 
137 10 28 11 41 30 4 11 8 

Standard Error 

(ng/kg) 

Feb/0 

days 
13 12 8 61 15 6 1 3 8 

Jun/126 

days 
9 12 7 15 8 2 1 2 N/A 

Oct/244 

days 
61 4 12 5 18 13 2 5 4 
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Appendix L: Raw Soil Gas Data 

Depth (ft-

bgs) 

CO2 

(%) 

CO2 

Average 

(%) 

CO2 St Dev 

(%) O2 (%) 

O2 Average 

(%) 

O2 St Dev 

(%) Date Collected 

5 0.8 1.761363636 2.446375193 20 18.27727273 3.505534736 Jun-14 

5 0.8 

  

18.8 

  

Jun-14 

5 0.7 

  

20.3 

  

Jun-14 

5 0.9 

  

20 

  

Jun-14 

5 1.7 

  

19 

  

Jun-14 

5 1.6 

  

19.5 

  

Jun-14 

5 11.8 

  

5.6 

  

Jun-14 

5 4 

  

16.8 

  

Jun-14 

5 0 

  

20.3 

  

Jun-14 

5 0 

  

20.1 

  

Jun-14 

5 0.1 

  

19.9 

  

Jun-14 

5.5 3.4 

  

17.4 

  

Jun-14 

5.5 1 

  

19.8 

  

Jun-14 

5.5 1 

  

19.8 

  

Jun-14 

5.5 2.4     18.8 

  

Jun-14 

5.5 0.7 

  

19.6 

  

Jun-14 

5.5 0.4 

  

19.8 

  

Jun-14 

5.5 0.4 

  

19 

  

Jun-14 

5.5 3.1 

  

17.1 

  

Jun-14 

5.5 10.3 

  

2.1     Jun-14 

5.5 2.7 

  

16.9     Jun-14 

5.5 0.4 

  

19.7 

  

Jun-14 

5.5 0.1 

  

18.1 

  

Jun-14 

5.5 1 

  

20 

  

Jun-14 
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5.5 1 

  

19.9 

  

Jun-14 

5.5 0.8 

  

20.2 

  

Jun-14 

5.5 0.3 

  

20.5 

  

Jun-14 

5.5 1.5 

  

19.2 

  

Jun-14 

5.5 2.4 

  

18.6 

  

Jun-14 

5.5 0 

  

19.2 

  

Jun-14 

5.5 2.4 

  

18.4 

  

Jun-14 

5.5 0.5 

  

19.8 

  

Jun-14 

5.5 3.9 

  

16.4 

  

Jun-14 

5.5 0.1 

  

20.1 

  

Jun-14 

5.5 2 

  

18.6 

  

Jun-14 

5.5 4.6 

  

14.2 

  

Jun-14 

5.5 0.2 

  

19.9 

  

Jun-14 

5.5 0.3 

  

20 

  

Jun-14 

5.5 0.2 

  

19.5 

  

Jun-14 

5.5 0 

  

20.1 

  

Jun-14 

5.5 1.4 

  

18.2 

  

Jun-14 

5.5 0.7 

  

19 

  

Jun-14 

5.6 0.7 

  

19.2 

  

Jun-14 

5.75 5.2     14.8     Jun-14 

6 0.9 1.986666667 1.524966822 20 16.91333333 5.014958576 Jun-14 

6 0.9 

  

19.8 

  

Jun-14 

6 0.9 

  

19.8 

  

Jun-14 

6 0.6 

  

19.6 

  

Jun-14 

6 2.4 

  

15 

  

Jun-14 

6 1.5 

  

19.5 

  

Jun-14 

6 2.2 

  

18.1 

  

Jun-14 

6 4.5 

  

13.3 

  

Jun-14 

6.5 0 

  

17.8 

  

Jun-14 
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6.5 1 

  

20.1 

  

Jun-14 

6.5 1.9 

  

0.3     Jun-14 

6.5 5 

  

16.2 

  

Jun-14 

6.5 3.9 

  

17 

  

Jun-14 

6.5 0.9 

  

19.2 

  

Jun-14 

6.5 3.2     18     Jun-14 

7 1.5 2.14 1.360042016 18.8 17.43333333 3.894990678 Jun-14 

7 3.2 

  

17.6 

  

Jun-14 

7 1 

  

19.8 

  

Jun-14 

7 0.5 

  

19.4 

  

Jun-14 

7.5 4 

  

16.8 

  

Jun-14 

7.5 3.4 

  

17.8 

  

Jun-14 

7.5 0.8 

  

19.4 

  

Jun-14 

7.5 2.1 

  

4.1     Jun-14 

7.5 3.2 

  

17.1 

  

Jun-14 

7.5 3 

  

18.5 

  

Jun-14 

7.5 1.2 

  

19.6 

  

Jun-14 

7.5 1.2 

  

19.2 

  

Jun-14 

7.5 0 

  

20.1 

  

Jun-14 

7.5 2.6 

  

17.5 

  

Jun-14 

7.5 4.4     15.8     Jun-14 

8 0.6 1.533333333 1.41509717 19.8 18.43333333 1.188486432 Jun-14 

8 1.4 

  

18.2 

  

Jun-14 

8 2 

  

18.5 

  

Jun-14 

8.5 2 

  

17.4 

  

Jun-14 

8.5 0.4 

  

19.8 

  

Jun-14 

8.5 0 

  

18.6 

  

Jun-14 

8.5 0.1 

  

19.7 

  

Jun-14 

8.5 3.5 

  

16.5 

  

Jun-14 
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8.9 3.8     17.4     Jun-14 

9 5.8 2.875 2.526361019 12.7 17.225 3.348009359 Jun-14 

9 1.6 

  

19.5 

  

Jun-14 

9.5 0.1 

  

20 

  

Jun-14 

9.5 4     16.7     Jun-14 

10 1.3 3.007692308 3.202983385 19.1 15.5 6.232976817 Jun-14 

10 0.1 

  

18.5 

  

Jun-14 

10.5 4.6 

  

15.9 

  

Jun-14 

10.5 7.9 

  

0     Jun-14 

10.5 8.3 

  

6.7     Jun-14 

10.5 1.2 

  

19.3 

  

Jun-14 

10.5 2.8 

  

18.3 

  

Jun-14 

10.5 0 

  

18.5 

  

Jun-14 

10.5 1.8 

  

18.6 

  

Jun-14 

10.5 8.1 

  

9 

  

Jun-14 

10.5 0.1 

  

19.7 

  

Jun-14 

10.5 0 

  

19.9 

  

Jun-14 

10.6 2.9     18     Jun-14 

11 1.4 2.45 1.711306936 18.7 17.5125 1.589642817 Jun-14 

11 4.5 

  

15.8 

  

Jun-14 

11 0 

  

20.2 

  

Jun-14 

11.08 0.8 

  

19 

  

Jun-14 

11.5 4.9 

  

16.4 

  

Jun-14 

11.5 2.9 

  

16.1 

  

Jun-14 

11.5 2.9 

  

16.8 

  

Jun-14 

11.5 2.2     17.1     Jun-14 

12 5.2 3.24 2.154762168 15 13.88 8.053384382 Jun-14 

12 4 

  

0     Jun-14 

12.5 2 

  

18.8 

  

Jun-14 
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12.5 0.1 

  

20.1 

  

Jun-14 

12.5 4.9     15.5     Jun-14 

13 0 1.22 1.62080227 20 18.44 1.494322589 Jun-14 

13.3 1.5 

  

18.3 

  

Jun-14 

13.5 0.7 

  

19.6 

  

Jun-14 

13.5 3.9 

  

16.2 

  

Jun-14 

13.5 0     18.1     Jun-14 

14.5 1 

  

15.9 

  

Jun-14 

15.5 5.9 4.014285714 4.490519113 14.4 14.48571429 6.862562343 Jun-14 

15.5 12.7 

  

0     Jun-14 

15.5 1.2 

  

19.4 

  

Jun-14 

15.5 0 

  

16.8 

  

Jun-14 

15.5 5.1 

  

13.3 

  

Jun-14 

15.5 0 

  

20.4 

  

Jun-14 

15.6 3.2     17.1     Jun-14 

16 1.6 

  

19 

  

Jun-14 

17.5 0 

  

20 

  

Jun-14 

18.5 3.2 2.4 1.13137085 16.5 16.55 0.070710678 Jun-14 

18.5 1.6     16.6     Jun-14 

19 4.6 

  

16.2 

  

Jun-14 

20.5 6.1 6.3 3.772929896 14.1 10.12 7.748354664 Jun-14 

20.5 9.9 

  

0     Jun-14 

20.5 0 

  

20.6 

  

Jun-14 

20.5 7.9 

  

9.1 

  

Jun-14 

20.5 7.6     6.8     Jun-14 

25.5 0.6     19.4     Jun-14 

25.5 7.7     6.8     Jun-14 

30.5 7.7     0     Jun-14 

40.5 1.4 

  

0     Jun-14 
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Appendix M: Kinetics Estimations Using Microcosm Data 

Notes: Kinetics calculations were only performed for average concentrations that showed a reduction in COI concentrations over the 

duration of the microcosm study.  Standard error was not considered for these calculations.  To review calculations, see Excel file 

‘graphs for thesis and kinetics_MB_19Dec2014.xlsx’. 

Table 25: EFH kinetics estimate 

EFH UNAA AUGM RICE NUTR 

Feb/0 days 152 146 154 182 

Jun/126 days 89.4 113.4 137.2 151.6 

First-Order Reaction Constant 

(1/d) 4.2E-03 2.0E-03 9.2E-04 1.5E-03 

Time to reach LUT (First-Order), 

days 7.8E+02 1.6E+03 3.6E+03 2.4E+03 

Time to reach LUT (First-Order), 

years 2.1 4.4 9.9 6.5 

Zero-Order Reaction Constant 

(ppm/d) 5.0E-01 2.6E-01 1.3E-01 2.4E-01 

Time to reach LUT (Zero-Order), 

days 2.9E+02 5.4E+02 1.1E+03 7.3E+02 

Time to reach LUT (Zero-Order), 

years 0.8 1.5 3.0 2.0 
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Table 26: PAHs kinetics estimate 

PAHs 

Benzo(a)pyrene in 

UNAB 

Feb/0 days 4.5E+03 

Oct/244 days 3.6E+03 

First-Order Reaction Constant (1/d) 8.9E-04 

Time to reach LUT (First-Order), days 7.8E+03 

Time to reach LUT (First-Order), years 21.2 

Zero-Order Reaction Constant (ppb/d) 7.0E+00 

Time to reach LUT (Zero-Order), days 6.4E+02 

Time to reach LUT (Zero-Order), years 1.8 

Note: LUT value is BaP TEQ; performed kinetic analysis on Benzo(a)pyrene in Soil B 

(PUBS 1044) 
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Table 27: PCBs kinetics estimate 

PCBs NUTR SOLE RICE AUGM COMB UNAA UNAB UNAC STER 

Feb/0 days 326.4 448.2 394 378 336.2 2811.8 329.2 95.4 323.8 

Oct/244 days 215 197.4 186.2 240.2 217.8 263 260.6 51.2 217 

First-Order Reaction Constant (1/d) 1.7E-03 3.4E-03 3.1E-03 1.9E-03 1.8E-03 9.7E-03 9.6E-04 2.6E-03 1.6E-03 

Time to reach LUT (First-Order), days 

1.1E+0

3 

6.3E+0

2 

6.5E+0

2 

1.1E+0

3 

1.0E+0

3 

4.1E+0

2 

1.9E+0

3 

2.3E+0

2 

1.1E+0

3 

Time to reach LUT (First-Order), 

years 2.9 1.7 1.8 2.9 2.8 1.1 5.2 0.6 3.0 

Zero-Order Reaction Constant (ppb/d) 4.6E-01 

1.0E+0

0 8.5E-01 5.6E-01 4.9E-01 

1.0E+0

1 2.8E-01 1.8E-01 4.4E-01 

Time to reach LUT (Zero-Order), days 

6.0E+0

2 

3.8E+0

2 

4.0E+0

2 

5.7E+0

2 

5.8E+0

2 

2.6E+0

2 

9.8E+0

2 

2.3E+0

2 

6.2E+0

2 

Time to reach LUT (Zero-Order), 

years 1.6 1.1 1.1 1.6 1.6 0.7 2.7 0.6 1.7 

 

Table 28: Dioxins kinetics estimate 

TCDD TEQ SOLE AUGM NUTR 

Feb/0 days 303.4 332.2 297.2 

Oct/244 days 263.8 282 247.4 

First-Order Reaction Constant (1/d) 5.7E-04 6.7E-04 7.5E-04 

Time to reach LUT (First-Order), days 1.0E+04 8.8E+03 7.7E+03 

Time to reach LUT (First-Order), years 27.8 24.1 21.1 

Zero-Order Reaction Constant (ppt/d) 1.6E-01 2.1E-01 2.0E-01 

Time to reach LUT (Zero-Order), days 1.9E+03 1.6E+03 1.5E+03 

Time to reach LUT (Zero-Order), years 5.1 4.4 4.0 
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