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ABSTRACT 

Sparse Aperture Speckle Interferometry Telescope Active Optics Control System 

Matthew Clause 

 

A conventional large aperture telescope required for binary star research is typically cost 

prohibitive. A prototype active optics system was created and fitted to a telescope frame using 

relatively low cost components. The active optics system was capable of tipping, tilting, and 

elevating the mirrors to align reflected star light. The low cost mirror position actuators have a 

resolution of 31 nm, repeatable to within 16 nm. This is accurate enough to perform speckle 

analysis for the visible light spectrum. The mirrors used in testing were not supported with a 

whiffletree and produced trefoil-like aberrations which made phasing two mirrors difficult.  

The active optics system was able to successfully focus and align the mirrors through manual 

adjustment. Interference patterns could not be found due to having no method of measuring the 

mirror surfaces, preventing proper mirror alignment and phasing. Interference from air 

turbulence and trefoil-like aberrations further complicated this task. With some future project 

additions, this system has the potential to be completely automated. The success of the active 

optics actuators makes for a significant step towards a fully automated sparse aperture telescope. 
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I. INTRODUCTION 

Telescopes used for astronomical research are typically very expensive and require costly 

equipment. A telescope design was drafted using separated mirrors to save on costs, creating 

what is known as a sparse aperture. Sparse apertures designs have been tried before, but previous 

designs have been quite costly. The purpose of this project was to design a low cost method for 

aligning telescope mirrors.  

Statement of Problem 

Various telescopes have been used to measure the orbits of binary stars over past decades. 

However, observing time on suitable telescopes has been becoming increasingly difficult to 

obtain. Records of known binary stars may no longer be kept up to date and new binary stars 

may receive no observation at all. A dedicated telescope is needed for the observation of binary 

stars to continue. 

General Approach 

The sparse aperture telescope was designed to be a low cost telescope for observing binary stars. 

For this prototype, three mirrors were spaced apart to maximize angular resolution, but close 

enough for speckle interferometry to be used. Each mirror was controlled using three actuators 

supports. An actuator to support telescope mirrors was designed capable of nanopositioning, 

using fine screws for supporting the mirror. The high thread count of the adjustor screws and a 

stepper motor achieve the desired accuracy at a fraction of the cost of similar off the shelf 

products. A test frame was created to test the actuators using a light source simulating star light. 

A camera was placed next to the light source to and the mirrors were controlled to focus and 

align the three mirrors. 
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Background 

Active Optics 

Active optics is the technology used to correct a telescope mirror from deformations due to 

thermal and gravity effects. This is accomplished by supporting the back of the telescope mirror 

using position actuators capable of nanopositioning. Furthermore, the largest telescopes today 

use segmented mirrors, where a multiple mirrors are aligned to act as one. Active optics is 

essential for the alignment of segmented mirror telescopes because the mirror surfaces need to be 

aligned and phased with one another, requiring nanometer precision. Mirrors without active 

control need to be made much thicker and require a rigid support system, increasing cost 

exponentially in relation the mirror diameter. By using a dynamic support method, larger mirrors 

can be used without an astronomical price increase [1]. 

Active optics systems typically operate at 0.1 Hz or less and can be open or closed loop. This can 

correct for gravity and thermal factors, but active optics does not correct errors from atmospheric 

turbulence, earthquakes, or other high frequency vibrations. These sources of error demand a 

much faster system response speed and are classified as adaptive optics. Adaptive optics must be 

closed loop systems and able to operate at 50 Hz or faster [2]. 

Speckle Interferometry  

Speckle Interferometry is a technique used to overcome the limits of turbulent atmosphere and 

improve angular resolution of telescopes. A high-speed camera is used to take images with 

exposure times of 100 ms or less to minimize the atmospheric effects on the image. The light of 

captured images needs to be within phase to one quarter of the wavelength of light being 

measured. Fourier analysis is then used to reconstruct the ideal image through the atmospheric 
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aberrations. This process is used to improve the capabilities of Earth telescopes past their normal 

seeing limits [1]. 

Binary Stars 

Binary stars, often simply referred to as binaries, are a set of two stars which orbit each other 

around a common center of gravity [3]. By recording the orbits of binary stars of a known 

distance from earth, astronomers can calculate the stars’ mass. Binary stars of a low light 

magnitude are often difficult to record in this way due to atmospheric aberrations. When the light 

of the brighter star passes through our atmosphere, the light blurs outward creating what is 

known as a seeing disc. This seeing disc can completely hide the presence of the dimmer star, 

making observations of orbits impractical with traditional telescopes [4].  

Explanation of Limitations 

The largest limiting factor for this project was finding parts within a small budget. Modern 

telescopes use hardware that can cost between ten to a hundred times more than what this project 

allowed. A drawback of the sparse mirror array is the inability to use edge sensors between 

mirrors, which are used on other telescopes to provide position feedback. The largest challenge 

of this approach was the difficulty to achieve tolerances using parts not originally intended for 

astronomical use. 

This project only addressed the active optics system of the sparse aperture design. The telescope 

frame, automation software, and image processing techniques will be covered by other projects 

another time. The scale of work involved is beyond the scope one project. This project did not 

develop an adaptive optics system due to the high cost of necessary equipment and extensive 

controls design required.  
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II. LITERATURE REVIEW 

Related Work 

Many different active optics designs exist today. Some previously high budget designs have been 

made relatively inexpensive due to the advancement of electronics and manufacturing processes. 

Some design ideas from the CELT and KECK telescopes were reworked to fit the low cost 

approach of this project. The design ideas which contributed to the final design of this project are 

described below.  

WIYN Telescope 

The WIYN telescope is a 3.5 m telescope originally completed in 1994. The design uses stepper 

motors with toothed belts to actuate the mirror surface to correct mirror distortion. This design is 

significant in that it “floats” the mirror on a secondary pneumatic support system. This floating 

support greatly reduces the amount of force the position actuator needs to exert on the mirror.  

A pneumatic support would be costly to reproduce for the sparse aperture telescope. A stepper 

motor with rotary reduction is something which can be done cheaply however, and was used for 

this project.  The tooth belt used for the reduction was eliminated however; otherwise an encoder 

would be needed to deal with the effects of backlash.  

KECK Telescope 

The KECK telescope is a 10 meter segmented mirror telescope first built in 1996. The individual 

mirrors were designed to be controlled with a simple, compact position actuator. Each actuator 

has a mounted servo motor which drives a lead screw. This actuates a nut mounted on a linear 

ball slide. The vertical actuation is then reduced using a pneumatic diaphragm [5]. 
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The KECK motor driven lead screw concept was implemented in this project. The linear ball 

slide was implemented as well, but was used in a different way. The pneumatic diaphragm is not 

a common part, relatively expensive compared to the other components, and is prone to failure 

problems. The pneumatic diaphragm was not used in this project because of these reasons. 

CELT Telescope 

The CELT (California Extremely Large Telescope) is a 30 meter segmented mirror telescope 

planned to be operational in 2022. The CELT position actuator uses a voice-coil and trim motor 

assembly to control mirror position. This assembly is built into a combination of spiral and lever 

flexures. Flexures have a distinct advantage in that they do not generate backlash. Furthermore, a 

position sensor is used to provide feedback for controlling position and stiffness [6]. 

A voice-coil and trim motor assembly provides high accuracy actuation, but has a limited range 

of travel. This limited range of travel made voice-coils unsuitable for this project. The flexure 

assembly of the CELT is quite complex and would be problematic to recreate in this project. A 

simplified flexure design was designed for this project which was inspired by the CELT design.  
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Previous Work 

Conventional large aperture telescopes required for binary star research are typically cost 

prohibitive. A number of workshops and meetings have already taken place to address this issue. 

These workshops have devised a solution; an automated telescope design with a sparsely 

populated aperture could potentially be built for 1/100
th
 of the price of the recent Discovery 

Channel Telescope at Lowell Observatory. By using spherical mirrors sparsely arranged to form 

a larger virtual mirror, mirror costs can be drastically reduced while achieving the angular 

resolution required for binary star research [4]. 

Segmented mirror telescopes require either active optics or adaptive optics systems to ensure the 

mirror array is aligned and in phase. To keep project costs low, an inexpensive active optics 

design is needed. Additionally, active optics is a key step towards automating the sparse aperture 

telescope. With the active optics design completed, teams under Russell Genet can move forward 

onto other parts of the telescope design.  
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III. SYSTEM DESIGN 

The sparse aperture active optics system was designed to satisfy the optical requirements needed 

for speckle analysis. A support frame was designed out of steel to attach the necessary hardware. 

The actuators needed to be designed to be both precise and low cost. A design goal was to use as 

many off the shelf components as possible to make future development easier. This ended up 

working well for most of the parts chosen, but certain parts needed to be custom made to house 

the components. Once the physical assembly was finished, a suitable electronic controller was 

chosen and mirror control program created. 

Optical Requirements 

Speckle analysis requires a surface accuracy roughly one quarter the wavelength measured. This 

system was designed for observation of visible light. Therefore, the active optics system needed 

to be accurate to at least 100 nm. Each mirror needs to be able to travel 1 cm to focus the image. 

Tip, tilt, and elevation control are required to align segmented mirrors, requiring at least 3 

position control points.  

The three mirrors were placed to create a 686 mm aperture. This diameter was chosen to give the 

best aperture resolution while still allowing for speckle analysis. If the mirrors are spaced too far 

apart, shorter wavelengths of light can no longer be analyzed using speckle analysis. This mirror 

spacing was then simulated using speckle simulator software and confirmed to be valid by Dave 

Rowe, an optics and astronomy expert from PlaneWave Instruments. 

Mirror Properties 

The three spherical mirrors used for this project were created as a matched set by Hubble Optics. 

Each mirror has a radius of curvature of 4972 mm, giving a focal ratio of 7.25 with the 686 mm 

aperture. Each Pyrex glass mirror is 267 mm in diameter and 25 mm thick, theoretically allowing 
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for simple 3-point support. Each mirror was supported at three evenly spaced points on two-

thirds the mirror’s diameter. No whiffletree was used to support the mirror, giving a stiffer 

design but subject to higher surface error. Finite element analysis (FEA) was used to estimate 

deflection due to gravity to be 173 nm, with the maximum allowable being 200 nm. As seen in 

Figure 1, the surface deflection is greatest at the edge furthest from the support points. 

 

Figure 1: FEA analysis of mirror surface deflection 

Mirror Geometry 

Each mirror has 6 DOF and needs to have tip, tilt, and elevation control. The mirror support 

fixture prevents lateral motion and axial rotation of the mirror, accounting for 3 DOF.  The tip, 

tilt, and elevation are controlled by three actuators against the bottom surface of the mirror. Each 

actuator is equally spaced on 2/3
rds

 of the mirror’s diameter.  
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Figure 2: Geometry of mirror support points 

As seen in Figure 2, an equilateral triangle can be drawn between the actuator contact points.  

Actuator A is the inner actuator, being closest to the center of the mirror array. Using simple 

geometry, the dimensions of the triangle are determined in relation to the radius of the support 

circle. 

                      (3.1) 

    
 

 
       (3.2) 

The simplest mirror variable to control is elevation, designated h. Mirror elevation is calculated 

by taking the average height of the actuator, seen in 3.3.  

   
         

 
     (3.3) 

Calculating the mirror tip required finding the angle of the mirror towards A, the center of the 

mirror array. In this assembly, there is no way to directly measure or control the center of the 

mirror, so the midpoint of B and C was be used instead. The tip angle can be calculated by 
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calculating the inverse tangent of the difference in height L1. The difference of actuator height 

between A and the midpoint of B and C are used to calculate the tip α in 3.8.  

         
    

 

 
       

  
    (3.8) 

The mirror tilt β is controlled by B and C. A is defined on the directly on the tilt axis. Because of 

this, A is not used in the tilt calculation seen in 3.9. Similar to 3.8, inverse tangent is used to 

calculate the angle. 

        
     

  
     (3.9) 

Inverse tangent calculations are resource heavy for simple microcontrollers to calculate. In this 

test setup the mirrors are never tipped further than 3°, which makes this problem a good 

candidate for small angle approximation. The tip and tilt equations used for this project’s 

microcontroller are shown in 3.10 and 3.11. 

   
    

 

 
     

  
     (3.10) 

  
   

  
     (3.11) 

Using the tip, tilt, and elevation equations 3.3, 3.10, and 3.11, the actuator height equations can 

be determined. For given a mirror position, 3.12, 3.13, and 3.14 are used to calculate the required 

actuator heights. These equations rely on small angle approximations, but are a fast and efficient 

way for low power microcontrollers to determine actuator positions.    

   
    

 
        (3.12) 

    
   

 
   

   

 
       (3.13) 
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       (3.14) 

Mechanical System Design 

Mirror Support Frame 

The frame was constructed from steel square tubing because of its high stiffness and low cost. 

Additionally, this A500 alloy steel is simple to machine and weld. The frame has three mirror 

mount locations with two holes for each mirror. The mirror cell mounting plates are secured to 

the support frame using ½” bolts. The mirror support frame uses a bolt to fix it to the test frame, 

locking it into place. FEA analysis indicates this support frame should have a first harmonic 

above 20 Hz, which should overcome low frequency vibrations due to the outdoor environment. 

 

Figure 3: SolidWorks render of mirror support frame 

Active Optics Actuator 

The actuators used in for the active optics system attach to the mirror cell mounting plate using 

two screws. The actuator consists of a steel housing, stepper motor, linear bearing, solid shaft 

coupling, and a fine adjustment screw. These components are protected from dust and other 
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contaminants with a side cover cut from ABS plastic. Each actuator is also equipped with a limit 

switch to ensure the mirror cannot collide with the actuator’s steel housing. The actuator’s 

component design is seen in Figure 4. 

This actuator design is open loop, utilizing no feedback other than a limit switch. This removes 

the cost of high resolution encoders, but introduces the possibility of error. The sparse aperture 

telescope will eventually have position feedback from measurement of star images, but could not 

be included in this project. Because of this, the actuators need to be controlled manually for this 

project. 

 

Figure 4: SolidWorks render of actuator 

With 254 threads per inch, the fine adjustor screw has a pitch of 0.1 mm. The stepper motor 

chosen has 200 steps per revolution and the motor driver supports 1/16 microstepping. This 

provides 3200 steps per revolution. Dividing the pitch by the steps per revolution, screw height 

can be controlled to 31.25 nm, which is less than 1/10
th
 of the shortest wavelength of visible light. 
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Actuator Housing 

The actuator housing was a custom steel enclosure made from 4” x 5” rectangular tubing. Each 

housing has a set of holes to press fit a linear bearing shaft into place. The fine adjustment screw 

bushing is slip fit into another hole on the top of the housing, with 2 mounting holes located 

directly below it on the bottom of the housing. Each enclosure has tapped holes on its side edge 

to secure the side covers. The ABS plastic side covers have slots for the motor wires and a set of 

mounting holes for a limit switch.    

Fine Adjustment Screw and Bushing 

The actuators used Kozak fine adjustment screws with matched threaded bushings. The adjustor 

screws are ¼” in diameter with 254 threads per inch. Each adjustor screw is 2” long, but has 

approximately 2 cm of travel once installed in an actuator. Each screw supports up to 40 lb 

axially, being limited by fine threads. The adjustor screws are made with 303 stainless steel 

which helps to minimize the risk of part failure due to corrosion. Each fine adjustor screw has a 

steel ball bearing tip with which contacts a sapphire pad adhered to the back of the mirror. The 

sapphire pad is detailed in Table 1. 

Table 1: Sapphire pad general specifications 

Diameter 0.160" ± 0.001" 

Thickness 0.020" ± 0.001" 

Parallelism 3.5 arcmin 

Coefficient of Friction 0.15 Against Steel 

 

Stainless steel, like any other material, is vulnerable to thermal expansion. 304 stainless steel has 

a coefficient of expansion of 17.3∙10
-6

 mm/mm K. When the screw is actuated 23mm (max), then 

the actuator tip will experience deflection of approximately 398 nm per degree Celsius due to 
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thermal expansion. This change of temperature is enough to disrupt mirror phasing. To combat 

this, the stepper motors power off when not in motion to avoid unnecessary heat generation. 

Although it is stainless steel, the adjustor screw operates best in non-condensing conditions. The 

fine threads are susceptible to dust and dirt and should be covered when not in use. Furthermore, 

the bronze bushing is self lubricating, meaning this part should not be lubricated. Failure to 

follow these guidelines could cause the screw to experience heavy friction or seize [7]. 

Stepper Motor 

NEMA 17 bipolar stepper motors were used to drive the adjustor screw. The stepper motor 

chosen for this project is specified in Table 2. Paired with a microstepping motor driver, stepper 

motors can rival the precision of a servo motor at a fraction of the price. Stepper motors were 

chosen for their achievable accuracy with minimal cost. The permanent magnet stepper motors 

used in this project also retain a light holding torque when unpowered, which helped to prevent 

loss of position when the motor was powered off.  

Table 2: Stepper motor general specifications  

Manufacturer 
Changzhou Songyang  

Machinery & Electronics Co 

Part Number SY42STH38-1684A 

NEMA size: 17 

Weight: 285 g 

Shaft type: 5 mm "D" 

Steps per revolution: 200 

Current rating: 1680 mA 

Voltage rating: 2.8 V 

Holding torque: 51 oz•in 

Coil resistance: 1.65 Ohm 

Inductance per phase: 3.2 mH 

Number of leads: 4 
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A linear bearing was used to secure the stepper motor under the fine adjustor screw. Once 

properly adjusted, the stepper motor is free to travel vertically with approximately 14 arcmin of 

rotary backlash.  Due to the placement of the linear bearing in the assembly, vertical backlash is 

not a concern. It is because of this reason that an inexpensive linear bearing can be used. 

A solid shaft coupler connects the stepper motor shaft to the fine adjustor screw, ensuring 

minimal torsional deflection. Set screws secure the coupler onto the stepper motor and fine 

adjuster screw.  

Mirror Support Fixture 

The support fixture provides lateral mirror support while allowing vertical actuation. This fixture 

design, using 0.06” thick ABS, is capable of vertical deflection exceeding 2 cm. Furthermore, it 

limits horizontal deflection to less than 2 mm. A ½” nut is fixed onto the fixture using 

Cyanoacrylate (super glue) for attachment to the mirror support plate. Access to a laser cutter 

makes this part fast and cheap to make. FEA simulation was used to estimate 0.06” ABS can 

deflect 2 cm without fracturing. Figure 5 shows where the greatest stress occurs under deflection.  

 

Figure 5: Abaqus simulation of flexure stress concentrations after 2 cm of actuation  
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Mirror Cell Mounting Plate 

The mounting plate was made from ¼” plate steel. Three actuators are connected to each 

mounting plate using two ¼” screws. A render of a fully assembled mirror cell can be seen in 

Figure 6. A ½-6” bolt is threaded through the center of the mounting plate to connect the mirror 

support fixture. This bolt can be adjusted to set the mirror’s lowest height. Each mounting plate 

has ½” holes through which the plate can be bolted to the mirror support frame. The frame with 

mirror cells attached is seen in Figure 7. 

 

Figure 6: SolidWorks render of open mirror cell 
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Figure 7: SolidWorks render of finished assembly 

Electrical System Design 

Microcontroller 

An Arduino Mega 2560 was used to control each mirror cell. This board uses an Atmega 2560 

microcontroller and can be programmed using C++. Arduino has an extensive set of preexisting 

libraries which makes creating new programs easy. The board operates at 16 MHz, allowing 

plenty of time for motor control and communication protocols. Furthermore, a programming 

header is available for installing a custom configuration, such as the real time operating system 

FreeRTOS. 

Motor Shield 

An inexpensive motor shield developed by the 3D printing community was found to be a perfect 

fit for this project. The relevant component capabilities of the RAMPS shield are shown in Table 

3. The RAMPS and attached Arduino are powered by a 12V power supply. Higher voltages may 

damage the connected Arduino, but the RAMPS board can be modified to prevent this [8]. Each 
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motor controller used 3 stepper drivers, one stepper driver per actuator. Basic limit switches 

require no special hardware because the Arduino Mega utilizes internal pull-up resistors. The 

I2C header allows for future projects to simultaneously control a large number of Arduino 

control boards. Due to its popularity in the 3D printing community, the electronics needed for 

this project can be purchased together as a set at a reduced cost. This set includes an Arduino 

Mega, RAMPS motor shield, and 5 stepper motor drivers. 

Table 3: RAMPS 1.4 hardware support 

Stepper Drivers 5 

Servo Motors 4 

End Stops 6 

I2C Connector 1 

 

Motor Driver 

The A4988 motor driver is available on a breakout board made to interface with the RAMPS 1.4 

shield. This motor driver is capable of 1/16 microstepping, providing the stepper motors the 

required angular resolution at a low price. Motor torque can be manually adjusted by increasing 

the motor current via a potentiometer on each motor driver. Each stepper motor was given 1 amp 

of current, the recommended upper limit of the A4988 motor driver. Motors can be turned off 

when not in use, which conserves power and prevents unwanted heat. Powered off motors will 

not lose their position under normal circumstances, but may be vulnerable to heavy vibration or 

user handling.  
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Figure 8: Arduino MEGA with RAMPS shield and A4988 motor controllers 

When RAMPS board loses motor power but the Arduino remains powered through USB, the 

Arduino will not detect the loss of motor power. If the Arduino main program tries to send a step 

command to an unpowered motor driver, the main program will no longer reflect accurate 

position due to lack of feedback. Because of this, it is important to double check all power 

connections prior to operation. Alternately, an opto-isolator could be connected to the RAMPS 

12V line to detect power loss, but this was not done for this project.  

Software 

A custom Arduino control program was written to control the actuators during these tests. The 

program is capable of controlling each actuator individually, displaying mirror tip, tilt, and 

elevation. Communicating with the Arduino control program requires a serial USB connection. 

The Arduino control program requires ANSI escape commands to refresh the display values. The 

free software PUTTY was chosen to interface with the control program. PUTTY is available on 

both Windows and UNIX systems.  
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Figure 9: Arduino command program interface through PUTTY 

Speckle Interferometry  

While not a part of this project, speckle interferometry will be incorporated in future projects. 

This provides position feedback needed for a closed loop system. Besides encoders, other types 

of sensor do not have the range of travel necessary for this project application [9]. Additionally, 

an interferometer can be used to determine the mirrors’ surface position. Position feedback from 

the interferometer could then be paired with an image processor, creating the feedback loop in  

Figure 10. 

 

Figure 10: Proposed Sparse Aperture Interferometry Telescope closed loop model 
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System Scalability 

Future sparse aperture designs may use larger, heavier mirrors, requiring the actuators to be 

upgraded. Larger diameter precision lead screws can be used to support heavier mirrors, but have 

fewer threads per inch. This upgrade requires a toothed belt and pulley be added to achieve the 

accuracy required. The backlash introduced by the saw toothed belt and larger thread would 

require an encoder be attached to the lead screw for position feedback. The stepper motors can 

be upgraded to NEMA 23 size, providing more torque for heavier loads. The A4988 motor 

drivers can be upgraded to DRV8825 motor drivers. These motor drivers have a higher power 

capacity adding extra power for use with bigger stepper motors.  

Alternate Designs  

Differential threads were initially considered for their high positional resolution. It is possible to 

design a custom differential thread mechanism, but this would add unnecessary complexity to the 

final assembly. This was rejected due to short range travel and lack of market availability. 

A planetary gearbox was considered for use with a stepper motor as it provides a significant step 

up in accuracy. Low cost gear boxes have several degrees of backlash however, which would 

make mirror calibration difficult. Higher precision and low backlash gearboxes are available, but 

were rejected due to their high cost. 

Voice coils were considered due to their simple construction, accuracy, and travel. They have no 

backlash and some models are accurate better than 1 µm. The downside is that voice coils 

require continuous power and can be large and heavy depending on system requirements. 

Additionally, voice coils are substantially higher in cost because cheaper models would not 

withstand the mirror weight, which is why they were rejected.  
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Piezo actuators are well suited for astronomy applications. They have no backlash, high accuracy, 

and can support mirror weight. Unfortunately, they are very expensive and well above the budget 

for this project. Additionally, piezo actuators often require higher voltages, which would drive up 

project cost and could pose a potential safety hazard. 
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IV. SYSTEM IMPLEMENTATION 

All custom parts were machined and welded with some minimal tolerance issues. The actuators 

were finished and electronics systems checked for proper operation before assembly. The 

finished parts were then assembled in the Cal Poly HVAC lab room. The final design was 

completed on budget, although there were project delays due to machining time. 

Bottom Assembly 

Support Frame 

During manufacturing, the mounting holes for the mirror cells shifted out of tolerance. This was 

due to thermal expansion caused by welding the frame. This thermal expansion offset the 

mounting positions by up to 1/8”. As a result, each mounting plate had to be fitted to an 

individual set of mounting holes on the frame. Although this was a problem, these effects were 

minimized by a careful distribution of heat during welding. The heat effects would have been 

much worse without the help of the welder Chris Noone. Figure 11 shows the final test fitting of 

the support frame to the telescope base, a critical step before making the final welds.  
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Figure 11: Mirror support frame being test fit onto telescope base 

Actuators 

The actuator housings were cut from 4” x 5” hollow rectangular tubing. The steel tubing was 

stiff, inexpensive, and available from a local steel supply store. Drilling the holes for the actuator 

components proceeded without issue. There was issue cutting the tubing to length however; the 

steel tubing did not fit under a chop saw, which caused the side edge to not be flat. Because this 

only affected the side covers, it was deemed not important enough to devote more machining to.  

The first step to assembling the actuators was to press fit the linear bearing and shaft into the 

housing. The stepper motors were attached to the linear bearing with a NEMA 17 L-bracket. The 

holes for mounting to the linear bearing were manufactured to fit M4 screws, but the linear 

bearing used M5 bolts. To correct this, the L-brackets holes had to be expanded with a 5 mm 

drill bit. This was a much faster solution rather than fabricating brackets from scratch, and 

proceeded without issue.  
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Each threaded bushing is slip fit into its housing and secured with Loctite 312 according to best 

practice. Due to the tight thread tolerances, press fitting the bushings could result in seizing of 

the screw [7]. Once glued into place, the shaft alignment was adjusted using the slots on the L-

brackets holding the stepper motor. This process turned out to be more challenging than expected, 

and ended up being a minor issue later in the project. 

 

Figure 12: Actuators before side covers and paint 

ABS side covers were laser cut to fit the housing. Additionally, holes were laser cut into the ABS 

side covers to mount the limit switch and to route the stepper motor wires. The holes for 

mounting the limit switches were designed undersized, allowing the metal screws to tap the soft 

plastic. Unfortunately, the laser cutter tolerance was not sufficient for this task and the holes 

were too large. The limit switches were mounted to the side covers by filling the oversized holes 

with Cyanoacrylate.  

Before assembly, all the steel components were primed using acid etch and then painted with 

Krylon Ultra Flat Black spray paint. This paint was chosen because of its low reflectivity [10] 
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and emissivity [11]. Additionally, this off-the-shelf paint is relatively inexpensive compared to 

many telescope paints. This black paint prevents unwanted light from bouncing back into the 

camera during testing. This was also important for preventing rust, ensuring a longer part life. 

Mirror Cell 

 

Figure 13: Mirror cell with actuators before installation of mirror 

As seen in Figure 13, the mirror cell was bolted together before being attached to the support 

frame. A sapphire pad was adhered to the back of the mirror surface using Cyanoacrylate 

matched to the placement of each actuator, as seen in Figure 14. This sapphire pad prevents wear 

on the back of the mirror and ensures a low coefficient of friction. 
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Figure 14: Attached mirror support fixture and sapphire pads 

Electronics 

Each mirror cell was controlled by an Arduino connected to a laptop. The control software 

written for the Arduino could control the tip, tilt, and pitch of each mirror. The Arduino program 

was controlled using PUTTY. This system was open loop and required manual positioning of the 

actuators.  

The electronics used in this project were never mounted to the assembly. This did not impact the 

project itself in anyway, but did make routing wires inconvenient. A laser cut housing was 

planned for mounting purposes, but was not completed due to time constraints. Future builds 

should include this as a safety precaution. Figure 15 shows how the electronics were placed on a 

thick plastic sheet to protect against short circuits. 
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Figure 15: Sparse active optics test setup 

Top Assembly 

Camera 

The QHY5L-II M astronomy camera was used for the fine mirror alignment tests. This camera 

was attached to a Barlow of approximately 2.5 times magnification. The camera was mounted to 

the top assembly and could be adjusted up and down approximately 15 cm. This rough 

adjustment was used to get the mirrors close to focused before using the actuators for fine 

adjustment.  

The QHY camera was controlled with the free Windows software FireCapture. This program 

controlled exposure time and gain control for the QHY camera. It also provided a fast capture 

option for rapid image acquisition, useful for speckle interferometry. Light images were 

automatically tracked and cropped, drastically reducing file size when taking large batches of 

pictures. If the QHY camera is connected to a Linux system, the free software oaCapture can be 

used instead.  
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Light 

A green LED with an approximate bandwidth of 10% was used for the fine mirror alignment 

tests. A 10 µm pinhole was placed over this LED to simulate starlight. This light simulates the 

light power of a binary star, but can only generate one point of light. The light and camera were 

installed with a 36 mm separation. The camera and LED, seen in Figure 16, needed to be placed 

in close proximity to one another to protect against optical aberrations from distorting images. 

 

Figure 16: White camera housing (left) and silver LED housing (right) on top assembly 

Final Assembly 

The test frame was designed by architecture student Michael Nidetz for his senior project. The 

frame was welded by Reed Estrada and Chris Estrada. Figure 17 shows the finished assembly 

used to test the active optics system. The test frame was quite tall, measuring over 16 ft tall. The 

final assembly was set up in the HVAC lab room to make use of its high ceiling and upper 
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balcony. The mirror support frame and mirror cells were bolted together on the frame and set up 

for testing. 

The mirrors were controlled by the actuators to reflect the light onto the camera. The light from 

the LED was aligned and focused onto the camera, but was initially too far out of focus for the 

active optics system. The height of the top assembly needed to be adjusted several times until the 

focal length was close enough for the system to work. When not in use, the mirrors were covered 

with black dust blocking buckets. These buckets were also used to isolate mirrors during testing. 

Once this last adjustment was finished, the active optics system was ready for testing. 

 

Figure 17: Completed sparse aperture active optics test assembly 
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V. TESTING AND EVALUATION 

Several tests needed to be conducted to determine the ability of the active optics actuators. The 

fine adjustor screw test was performed to measure backlash of thread. Each subsequent test then 

built off of the previous results. The rough alignment test was done to determine the basic 

performance of the actuators and to find issues in the assembly. The fine alignment test was done 

to determine if the actuators were able to focus and align the mirrors. Lastly, the mirror phasing 

was adjusted in search of an interference pattern. 

Adjustor Screw Microstepping  

This test was done to measure the backlash and repeatability of the fine adjustor screw. Figure 18 

shows the equipment used to measure angle changes projected across an 8.3 meter room. A 

green laser was glued to the top of the adjustor screw and then the adjustor screw was put under 

a 5 kg load to simulate mirror weight. Using an Arduino with a microstepping motor driver, the 

adjustor screw was actuated to test for position error.  

 

Figure 18: Fine adjustor screw test setup 
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As seen in Figure 19, positional error was found to be within 20 arcmin of the target. This is due 

to the backlash of the thread between the adjustor screw and bushing, approximately 40 arcmin. 

When the effects of backlash are accommodated for, positional accuracy is within 4 arcmin. For 

the screw height, this converts to an expected backlash of 182 nm. When backlash is 

accommodated for, screw height is expected to be accurate to within 17 nm. 

 

Figure 19: A4988 microstepping test results 

This test was an important step in determining the backlash of the fine adjustor screw thread 

under the mirror’s weight. Not only was the measured backlash reasonably small, but it was also 

consistent. The laser displacement test worked quite well, but results would have been easier to 

record using a longer room. 

Mirror Phasing: Coarse Positioning 

The finished sparse mirror array, seen in Figure 15, was tested using a webcam and a bright 

white LED. The test was performed to determine the capability of the active optics actuators. 

Any issues in the assembly needed to be found and corrected during this step before precision 
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tests were to take place. To isolate a mirror, black dust blocking buckets were placed on top of 

the other mirrors. Two mirrors were individually positioned such that the LED circuit was in 

focus on the webcam, seen in Figure 20. Then, a roughly 100 µm pinhole was put onto the LED 

to simulate a bright star image. Both mirrors were then refocused and aligned. The webcam was 

limited in that it could not capture an airy disk from the LED. Chromatic aberration and air 

turbulence were also key factors to the image quality as seen in Figure 21.  

 

Figure 20: Focused LED image with pinhole removed 

 

Figure 21: Webcam capture for alignment mirrors using white LED 

During the initial test, some issues were discovered with the assembly. The sapphire pads needed 

to be more precisely placed to match the actuators. The sapphire pads were only 0.16” diameter, 
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leaving little room for error. The Cyanoacrylate holding the sapphire pads was first dissolved 

using acetone, and then removed with a razor blade. The tips of the actuators were coated with a 

black marker and the mirror was placed on top to transfer the black ink. The pads were then 

adhered to the transferred marks to correct the issue. 

It was initially assumed the friction between the mirror support fixture and the mirror cell would 

prevent mirror motion. However, the mirrors vibrated off the sapphire pads due to stepper motor 

vibration. A light application of Cyanoacrylate was used to hold the mirror support fixture to the 

mirror cell. The glue was strong enough to protect the mirror from vibration and weak enough to 

break away easily during disassembly.  

A minor amount of shaft misalignment was detected from the actuators. During focusing, the 

image on camera would make circles as the shafts rotated. The effect was only noticeable for 

large rotations of the adjustor screw and had no noticeable impact on small image adjustments. 

The misalignment was not corrected during testing because it did not pose a significant issue for 

manual adjustment. 

Mirror Phasing: Fine Adjustment 

The active optics system needed to be tested to determine if the mirrors could be properly 

focused and aligned to one another. To accomplish this, the optical equipment and camera 

needed to be upgraded. The webcam was replaced with a QHY astronomy camera and the large 

pinhole was replaced with a 10 µm ± 1µm precision pinhole. The white LED was replaced with a 

green LED with an approximate bandwidth of 10%. As before, each mirror was set up, focused, 

and aligned using this new configuration.  
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Figure 22: QHY capture for aligned mirrors using green LED 

 

Figure 23: QHY overexposed capture 

The focusing and aligning of the mirrors were successful with an airy disk present for each 

mirror image. However, trefoil-like aberrations were an issue as seen in Figure 22. FEA 

simulation estimated a whiffletree to not be necessary, but these tests determined otherwise. 

Additionally, air turbulence in the room created a constantly shifting image, obscuring the 
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quality of images. This was likely due to the HVAC equipment in the lab. These issues prevented 

confirmation of an interference pattern necessary for determining mirror phasing. The 

overexposed image seen in Figure 23 highlights the detrimental effects from air turbulence.   

Mirror Phasing: Searching for Interference Patterns 

Once the images were aligned and focused, the main goal of the project was complete. However, 

a clear interference pattern would indicate the mirrors to be in phase and ready for speckle 

interferometry. The goal was to find an interference pattern strong enough to show up through 

the air turbulence and trefoil-like aberration. But with no way to measure the position of the 

mirror surface, there was no suitable method to find an interference pattern.  

By the recommendation of Dave Rowe, one mirror was elevated in increments of 2 microns to 

attempt to phase the mirrors. After each 2 micron increment, 100 high speed images were 

captured with a low gain and then another 100 were taken with a high gain. This was repeated 

until one mirror had been elevated by 12 microns. After 12 microns of actuation, the captured 

images showed no discernible change from Figure 22 and Figure 23. These images were then 

sent to Dave Rowe to analyze using speckle analysis to determine if an interference pattern was 

present. Unfortunately, an interference pattern could not be found due the effects of the trefoil-

like aberration. This could also be a result of using an LED due to its 10% bandwidth. Using a 

laser as a light source would likely improve results on subsequent tests. 
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VI. SUMMARY AND CONCLUSIONS 

The components required to build this system are relatively cheap, effective, and will hopefully 

lead to a fully automated sparse aperture telescope in the future. The fine adjustor screw made 

for a relatively lost cost actuator design with nanopositioning capability. During testing, the 

project had some setbacks due to deformation of the mirror and air turbulence. The mirrors were 

able to be properly focused and aligned using the active optics actuators, but with no whiffletree 

the mirrors could not be brought into phase. The actuators were able to control each mirror’s tip, 

tilt, and elevation. 

Contributions to Astronomy 

The success of the active optics actuators is a significant step for the sparse aperture speckle 

interferometry telescope. With the completion of this prototype, it is planned to eventually build 

a 4 meter sparse aperture telescope. Additionally, with the addition of speckle interferometry the 

active optics system is planned to eventually be completely automated. This will allow the 

observation of binary stars to continue on a dedicated telescope. The cost of the active optics 

components significantly lowers the barrier of entry for large aperture segmented mirror 

telescopes. This will hopefully contribute to not just binary star research, but low-budget 

telescope projects everywhere. 

Project Strengths 

The active optics actuators are made using low cost parts, offering an economic solution to 

expensive off the shelf alternatives. With the exception of the actuator housing, each actuator is 

made from readily available parts. The actuator design is relatively simple, making future 

maintenance and repair straight forward. If a component fails, it can easily be replaced with 



38 

 

simple tools. Assembly requires only several wrenches, screw drivers, a hex key, and 

Cyanoacrylate. 

Project Weaknesses 

The actuator housing requires a fair amount of custom machining to make. Without access to 

tools capable of machining steel, the housing may be costly to have produced. Some changes to 

the design need to be made to simplify the machining process. Additionally, it took much longer 

to finish machining the parts that initially anticipated,  approximately 20 hours for the mirror 

support frame and approximately 15 hours each mirror cell’s components. However, a large 

portion of this time was spent developing the machining plan. 

Each actuator has two primary sources of position error. The adjustor thread has mechanical 

backlash as discussed in Chapter V. Additionally, each adjustor screw has a varying degree of 

shaft misalignment in the final actuator assembly. This was not originally tested for and the 

effects were only observed during system testing. 

Future Work 

A simple, low cost whiffletree is needed before future testing can take place. Ideally, the 

whiffletree should have a high stiffness with low to no backlash. Alternately, an air filled bag 

support could be used to “float” the mirror’s weight similar to the WIYN telescope [5]. 

The actuator housing would benefit from some minor design changes. The side covers should be 

attached using another method. Eight tapped holes per housing added a lot of machining time.  

During testing, vibration from the stepper motors was noticeable on the camera image. This 

vibration was low in amplitude and decayed quickly, posing no serious consequence other than 

annoyance. This is simple to resolve however, vibration reducing cork NEMA 17 gaskets are 
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cheap and readily available. The low stiffness of the gaskets may introduce some backlash. If 

future tests determine this to be negligible, then these gaskets should be incorporated for future 

projects. 

The laser cut ABS mirror support fixture fully satisfied the design requirements for this test setup. 

If the aperture is pivoted on an extreme angle however, the fixture may not tolerate the lateral 

weight of larger mirror. A thinner fixture made of steel may be needed to support the lateral 

weight. Additionally, the fixture may need to be redesigned to allow room for a whiffletree. 

One actuator experienced 3 times its normal backlash during testing which initially made 

aligning the images difficult. It was determined this extra backlash was due to a loose bolt 

holding the stepper motor inside the actuator. Future versions should include a mechanism to 

prevent this. This could be a combination of initial calibration and a preventative mechanism, 

such as the cork dampers. Additionally, some actuators had small alignment issues with the 

adjustor screw. The correct alignment of the screws will be crucial to future projects, so a 

calibration tool is needed to correct this issue.    

Conclusion 

The active optics system was able to focus and align the mirrors through manual adjustment. The 

mirrors surfaces could not be brought close enough together to find an interference pattern, but 

this was due to the inability to measure the surface position of the mirror. The position resolution 

of the active optics system should be able to generate interference patterns for future projects. 

With some future project additions, this system has the potential to be completely automated. 

The success of the active optics actuators makes for a significant step towards a fully automated 

sparse aperture telescope.   
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APPENDICES 

A. Bill of Materials 

Table 4: Test frame bill of materials  

 

Table 5: Actuator bill of materials for three actuators 

 

Table 6: Electronics bill of materials for three actuators 

 

  

Vendor Part Number Description PPU QTY Total

B&B Steel and Supply N/A 2-1/2" x 2-1/2" x 0.12 HST 36" $36.00 3 $108.00

B&B Steel and Supply N/A 2-1/2" x 2-1/2" x 0.25 HR Angle 36" $36.00 3 $108.00

B&B Steel and Supply N/A 1/2" HR Round 24" $11.00 1 $11.00

B&B Steel and Supply N/A 1/4" HR Plate 12" x 24" $30.00 1 $30.00

Ace Hardware 1602 Ultra-Flat Black Krylon Spray Paint $3.99 1 $3.99

$260.99Grand Total

Vendor Part Number Description PPU QTY Total

Amazon B00F35HBEA #8-32 Thread, 1/4" screws (100) $4.25 1 $4.25

Amazon B005DZZ2KK HEX, M3 Size, 6mm Length, .5mm Pitch (100) $7.78 1 $7.78

Amazon a12112300ux0262 SCS12UU 12mm Metal Linear Ball Bearing $7.51 9 $67.59

Amazon kit1002 Linear Motion 12 mm Shaft, 13" $8.82 5 $44.10

Amazon 308175 ABS Sheet - .060" Thick, Black, 12" x 12" $17.70 1 $17.70

Amazon 3325 Loctite 03325 Adhesive Kit - 24 ml $31.69 1 $31.69

B&B Steel & Supply N/A 5" x 4" x 0.25" HST 24" $35.00 1 $35.00

ESG 251392777142 Shaft Coupler - 1/4" to 5mm (x3) $10.25 3 $30.75

Kozak TSB250-254-2000/625-AA 1/4-254 TPI screw and bushing matched set $25.32 9 $227.88

Pololu 2267 NEMA-17 Bipolar 42mm Stepper $16.95 9 $152.55

Pololu 2266 Pololu Stamped Aluminum L-Bracket for NEMA 17 $3.95 9 $35.55

$654.84Grand Total

Vendor Part Number Description PPU QTY Total

Amazon B00D7CWSCG 12v 30a Dc Universal Regulated Switching Power Supply  $23.97 1 $23.97

Amazon P007-006 Power Cord 14AWG 15A  $7.29 1 $7.29

Amazon a14061000ux0612 2.54mm 3 Pin F/F Jumper Wire Connector (5) $5.97 2 $11.94

Ebay 271864081924 MEGA2560,RAMPS1.4,3D PRINTER BOARD & 5PCS A4988 $34.50 3 $103.50

Ebay V-155-1C25 SPDT Momentary Limit Micro Switch Snap Action Switch Roller $1.59 9 $14.31

Pololu 2006 Pre-crimped 50-Piece Rainbow Wires, 24" $24.95 1 $24.95

Pololu 1903 0.1" (2.54mm) Crimp Connector Housing: 1x4-Pin (10) $0.59 1 $0.59

$186.55Grand Total
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B. Part Drawings  
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C. Test Data 

Fine adjustor screw position test results, measured across 8.29 meters.  

The A4988 stepper driver was used with 1/16
th
 microstepping and supplied 12 V. 

A 5 lb load was applied to simulate mirror weight. 

Step Target (Deg) Target (mm) Angle (Deg) Actual (mm) Tip Height (nm) 

0 0.00 0.00 0.000 118 0.00 

1 0.11 31.25 0.014 120 3.84 

2 0.23 62.50 0.028 122 7.68 

3 0.34 93.75 0.055 126 15.36 

4 0.45 125.00 0.152 140 42.23 

5 0.56 156.25 0.256 155 71.02 

6 0.68 187.50 0.290 160 80.62 

7 0.79 218.75 0.498 190 138.21 

8 0.90 250.00 0.518 193 143.96 

9 1.01 281.25 0.560 199 155.48 

10 1.13 312.50 0.726 223 201.55 

11 1.24 343.75 0.822 237 228.43 

12 1.35 375.00 0.947 255 262.98 

13 1.46 406.25 1.078 274 299.46 

14 1.58 437.50 1.196 291 332.10 

15 1.69 468.75 1.299 306 360.90 

16 1.80 500.00 1.431 325 397.38 

15 1.69 468.75 1.424 324 395.46 

14 1.58 437.50 1.417 323 393.54 

13 1.46 406.25 1.417 323 393.54 

12 1.35 375.00 1.389 319 385.86 

11 1.24 343.75 1.361 315 378.18 

10 1.13 312.50 1.299 306 360.90 

9 1.01 281.25 1.168 287 324.42 

8 0.90 250.00 1.147 284 318.66 

7 0.79 218.75 1.099 277 305.22 

6 0.68 187.50 0.961 257 266.82 

5 0.56 156.25 0.850 241 236.11 

4 0.45 125.00 0.739 225 205.39 

3 0.34 93.75 0.622 208 172.76 

2 0.23 62.50 0.504 191 140.12 

1 0.11 31.25 0.408 177 113.25 

0 0.00 0.00 0.297 161 82.54 

1 0.11 31.25 0.256 155 71.02 

2 0.23 62.50 0.263 156 72.94 

3 0.34 93.75 0.276 158 76.78 

4 0.45 125.00 0.304 162 84.46 
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5 0.56 156.25 0.346 168 95.98 

6 0.68 187.50 0.422 179 117.09 

7 0.79 218.75 0.532 195 147.80 

8 0.90 250.00 0.546 197 151.64 

9 1.01 281.25 0.601 205 167.00 

10 1.13 312.50 0.753 227 209.23 

11 1.24 343.75 0.857 242 238.03 

12 1.35 375.00 0.981 260 272.58 

13 1.46 406.25 1.099 277 305.22 

14 1.58 437.50 1.223 295 339.78 

15 1.69 468.75 1.320 309 366.66 

16 1.80 500.00 1.444 327 401.22 

15 1.69 468.75 1.437 326 399.30 

14 1.58 437.50 1.431 325 397.38 

13 1.46 406.25 1.424 324 395.46 

12 1.35 375.00 1.410 322 391.62 

11 1.24 343.75 1.368 316 380.10 

10 1.13 312.50 1.292 305 358.98 

9 1.01 281.25 1.182 289 328.26 

8 0.90 250.00 1.161 286 322.50 

7 0.79 218.75 1.113 279 309.06 

6 0.68 187.50 0.967 258 268.74 

5 0.56 156.25 0.864 243 239.95 

4 0.45 125.00 0.746 226 207.31 

3 0.34 93.75 0.636 210 176.60 

2 0.23 62.50 0.511 192 142.04 

1 0.11 31.25 0.428 180 119.01 

0 0.00 0.00 0.304 162 84.46 

1 0.11 31.25 0.311 163 86.38 

2 0.23 62.50 0.318 164 88.30 

3 0.34 93.75 0.325 165 90.22 

4 0.45 125.00 0.346 168 95.98 

5 0.56 156.25 0.387 174 107.49 

6 0.68 187.50 0.435 181 120.93 

7 0.79 218.75 0.553 198 153.56 

8 0.90 250.00 0.567 200 157.40 

9 1.01 281.25 0.622 208 172.76 

10 1.13 312.50 0.760 228 211.15 

11 1.24 343.75 0.864 243 239.95 

12 1.35 375.00 0.981 260 272.58 

13 1.46 406.25 1.113 279 309.06 

14 1.58 437.50 1.237 297 343.62 

15 1.69 468.75 1.334 311 370.50 

16 1.80 500.00 1.458 329 405.06 

15 1.69 468.75 1.451 328 403.14 

14 1.58 437.50 1.437 326 399.30 

13 1.46 406.25 1.424 324 395.46 

12 1.35 375.00 1.410 322 391.62 
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11 1.24 343.75 1.361 315 378.18 

10 1.13 312.50 1.299 306 360.90 

9 1.01 281.25 1.168 287 324.42 

8 0.90 250.00 1.154 285 320.58 

7 0.79 218.75 1.092 276 303.30 

6 0.68 187.50 0.954 256 264.90 

5 0.56 156.25 0.850 241 236.11 

4 0.45 125.00 0.746 226 207.31 

3 0.34 93.75 0.636 210 176.60 

2 0.23 62.50 0.511 192 142.04 

1 0.11 31.25 0.428 180 119.01 

0 0.00 0.00 0.304 162 84.46 
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D. Arduino Program Code 

/* 

SPARE APERTURE MIRROR CELL CONTROL PROGRAM 

PROGRAMMER: MATTHEW CLAUSE 

CONTACT:  MAKLAUSE@GMAIL.COM 

UPDATED ON: 10/24/2015 

VERSION 1.1 

 

CHANGE LOG: 

7/12/2015 MATTHEW CLAUSE 1.0 

 -PROGRAM CREATED 

10/23/2015 MATTHEW CLAUSE 1.1 

 -ADD FUNCTION ADDED 

 -STOP FUNCTION ADDED 

 -ZERO FUNCTION REMOVED 

 -CALIBRATE FUNCTION ADDED 

 -CHANGED ARCS TO MAS 

 -SCREEN UPDATES ON DISPLAY TOGGLE 

 -[BUG] MOVED INVISIBLE CURSOR COMMAND FROM SYSTEM UPDATE TO STARTUP 

 -CHANGED TO MULTI-STEPPER UPDATE METHOD 

 

*/ 

 

#include <Arduino.h> 

 

// Stepper Motor Class 

class stepperMotor 

{ 

 private: 

 // Enable pin 

 int enPin; 

 // Step pin 

 int stepPin; 

 // Set direction pin 

 int dirPin; 

 // Limit switch pin 

 int minPin; 

 // Current position 

 int32_t position; 

 // Target position 

 int32_t target; 

 // Pointer to emergency stop flag 

 bool* eStop; 

 

 public: 

 // Stepper motor constructor 

 stepperMotor (int inEnPin, int inStepPin, int inDirPin, bool* inEStop = 

NULL, int inMinPin = NULL); 

 // Step once in given direction 

 void step(boolean dir); 

 // Power motor on 

 void on () {digitalWrite(enPin, LOW);}; 

 // Power motor off 

 void off () {digitalWrite(enPin, HIGH);}; 

 // Set motor position to target position 
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 void zero () {position = 0; target=position;}; 

 // Return motor position 

 int32_t getPosition () {return position;}; 

 // Return motor target position 

 int32_t getTarget () {return target;}; 

 // Set target position 

 void setTarget (int32_t x) {target = x;}; 

 // Tests limit switch if limit of travel has been reached 

 bool limit () {if (minPin){return !digitalRead(minPin);}else{return 

false;}}; 

 

 void operator=  (int32_t x) {target=x;}; 

 void operator++ () {target++;}; 

 void operator-- () {target--;}; 

 void operator++ (int) {target++;}; 

 void operator-- (int) {target--;}; 

 void operator+= (int32_t x) {target+=x;}; 

 void operator-= (int32_t x) {target-=x;}; 

 

 // Steps motor towards target position based on given variables 

 void update (stepperMotor* stepperPtr1, stepperMotor* stepperPtr2); 

 // Updates three stepper motors to minimze delay time 

 friend void multiStepperUpdate (stepperMotor* stepperPtr1, 

stepperMotor* stepperPtr2, stepperMotor* stepperPtr3); 

}; 

 

void multiStepperUpdate (stepperMotor* stepperPtr1, stepperMotor* stepperPtr2, 

stepperMotor* stepperPtr3); 

 

void updateInput (); 

void updateMainProgram (); 

void actToMirror (int32_t x, int32_t y, int32_t z); 

void mirrorToAct (); 

 

void systemStatusMessage (); 

void systemStatusUpdate (); 

void systemInputMessage (); 

 

// Variable Declaration 

int xEn = 38; 

int xStep = A0; 

int xDir = A1; 

int xMin = 3; 

 

int yEn = A2; 

int yStep = A6; 

int yDir = A7; 

int yMin = 14; 

 

int zEn = A8; 

int zStep = 46; 

int zDir = 48; 

int zMin = 18; 

 

int32_t tip = 0; 

int32_t tilt = 0; 

int32_t elev = 0; 
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// Pauses screen update and convert update 

bool pauseUpdate = false; 

// Toggles whether to display target or actual motor position 

bool displayTarget = false; 

// Emergency stop which turns all motors off 

bool eStop = true; 

 

// System state for main program 

uint8_t state = 0; 

// Updates variables on the display 

bool flagUpdate = false; 

// Converts the tip, tilt, elev variables 

bool flagConvert = false; 

// Calibrates the mirror position against the three limit switches 

bool flagCalibrate = false; 

 

// Distance from Y to Z in nm (5in/25.4mm) 

static const uint32_t L1 = 127000000; 

// Distance from X to midpoint of Y and Z in nm (5.768in/25.4mm) 

static const uint32_t L2 = 146507200; 

// Conversion factor from radians to arc seconds 

static const uint32_t K = 206265; 

// This constant sets the thread pitch in nm 

// static const uint32_t threadPitch = 100000; 

// This constant sets the steps per rev 

// static const uint8_t stepsPerRev = 200; 

// This constant sets the microstepping reduction 

// static const uint8_t stepReduction = 16; 

 

// Input data passed to main program 

uint8_t inByte = 0; 

 

// Three stepper motors to be controlled 

stepperMotor xStepper(xEn, xStep, xDir, &eStop, xMin); 

stepperMotor yStepper(yEn, yStep, yDir, &eStop, yMin); 

stepperMotor zStepper(zEn, zStep, zDir, &eStop, zMin); 

 

//===========================================================================

============================ 

 

// Initialize Program 

void setup() { 

 // open the serial port at 9600 bps: 

 Serial.begin(9600); 

} 

 

void loop() { 

    // Check for serial input 

    updateInput (); 

    // Update program state 

    updateMainProgram(); 

 

    // Update serial output 

    if (flagConvert) { 

        if (displayTarget) { 
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            actToMirror (xStepper.getTarget(), yStepper.getTarget(), 

zStepper.getTarget()); 

        } else { 

            actToMirror (xStepper.getPosition(), yStepper.getPosition(), 

zStepper.getPosition()); 

        } 

    } 

    if (flagUpdate) { 

        systemStatusUpdate(); 

    } 

 

    // Update steppers 

 //xStepper.update (&yStepper, &zStepper); 

 //yStepper.update (&zStepper, &xStepper); 

 //zStepper.update (&xStepper, &yStepper); 

 multiStepperUpdate (&xStepper, &yStepper, &zStepper); 

    // delay(20); 

} 

 

//===========================================================================

============================ 

 

// Stepper motor constructor 

stepperMotor::stepperMotor (int inEnPin, int inStepPin, int inDirPin, bool* 

inEStop, int inMinPin) { 

  enPin = inEnPin; 

  stepPin = inStepPin; 

  dirPin = inDirPin; 

  eStop = inEStop; 

  minPin = inMinPin; 

  position = 0; 

  target = 0; 

 

  pinMode(enPin, OUTPUT); 

  pinMode(stepPin, OUTPUT); 

  pinMode(dirPin, OUTPUT); 

  pinMode(minPin, INPUT); 

 

  this->off(); 

} 

 

// Steps the motor in the given direction and delays. This delay is 

determined by the A4988 motor driver datasheet. 

void stepperMotor::step (boolean dir) { 

 // Set motor direction 

 digitalWrite(dirPin,dir); 

    // Raise step pin giving time for IC to update 

 digitalWrite(stepPin, HIGH); 

 delayMicroseconds(200); 

 digitalWrite(stepPin, LOW); 

 delayMicroseconds(200); 

 

 if (dir) { 

        this->position++; 

 } else { 

        this->position--; 

 } 



59 

 

} 

 

// Updates stepper motor position. If the limit switch is depressed, the 

motor will instead shut off. eStop will cause the motor to power off. If 

flagCalibrate is set and all three limit switches are depressed, the motor 

position will zero. 

void stepperMotor::update (stepperMotor* stepperPtr1, stepperMotor* 

stepperPtr2) { 

 if ( this->limit() && stepperPtr1->limit() && stepperPtr2->limit() && 

flagCalibrate) { 

        this->zero(); 

        flagCalibrate = false; 

    } 

  

 if (!(*eStop) && (position < target) && (stepperPtr1->getPosition() < 

stepperPtr1->getTarget()) && (stepperPtr2->getPosition() < stepperPtr2-

>getTarget()) ) { 

     this->on(); 

  this->step(true); 

    } else if (!(*eStop) && (position < target) && (!stepperPtr1->limit()) && 

(!stepperPtr2->limit())) { 

  this->on(); 

  this->step(true); 

 } else if (!(*eStop) && (position > target) && (!this->limit())) { 

  this->on(); 

  this->step(false); 

 } else { 

  this->off(); 

 } 

} 

 

// Updates three stepper motors simultaneously to minimze delay time  

void multiStepperUpdate (stepperMotor* stepperPtr1, stepperMotor* stepperPtr2, 

stepperMotor* stepperPtr3) { 

    static bool update = false; 

 

    // Check for bottom limits 

    if ( stepperPtr1->limit() && stepperPtr2->limit() && stepperPtr3->limit() 

&& flagCalibrate) { 

        stepperPtr1->zero(); 

        stepperPtr2->zero(); 

        stepperPtr3->zero(); 

        flagCalibrate = false; 

    } 

 

    // Start 1st Stepper Update 

    if ( (!eStop) && (stepperPtr1->getPosition() < stepperPtr1->getTarget()) 

&& (stepperPtr2->getPosition() < stepperPtr2->getTarget()) && (stepperPtr3-

>getPosition() < stepperPtr3->getTarget()) ) { 

     stepperPtr1->on(); 

  digitalWrite(stepperPtr1->dirPin,true); 

        digitalWrite(stepperPtr1->stepPin, HIGH); 

        stepperPtr1->position++; 

        update = true; 

    } else if ( (!eStop) && (stepperPtr1->getPosition() < stepperPtr1-

>getTarget()) && (!stepperPtr2->limit()) && (!stepperPtr3->limit())) { 

  stepperPtr1->on(); 
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  digitalWrite(stepperPtr1->dirPin,true); 

        digitalWrite(stepperPtr1->stepPin, HIGH); 

        stepperPtr1->position++; 

        update = true; 

 } else if ( (!eStop) && (stepperPtr1->getPosition() > stepperPtr1-

>getTarget()) && (!stepperPtr1->limit())) { 

  stepperPtr1->on(); 

  digitalWrite(stepperPtr1->dirPin,false); 

        digitalWrite(stepperPtr1->stepPin, HIGH); 

        stepperPtr1->position--; 

        update = true; 

 } else { 

  stepperPtr1->off(); 

 } 

 

 // Start 2nd Stepper Update 

 if ( (!eStop) && (stepperPtr2->getPosition() < stepperPtr2->getTarget()) 

&& (stepperPtr1->getPosition() < stepperPtr1->getTarget()) && (stepperPtr3-

>getPosition() < stepperPtr3->getTarget()) ) { 

     stepperPtr2->on(); 

  digitalWrite(stepperPtr2->dirPin,true); 

        digitalWrite(stepperPtr2->stepPin, HIGH); 

        stepperPtr2->position++; 

        update = true; 

    } else if ( (!eStop) && (stepperPtr2->getPosition() < stepperPtr2-

>getTarget()) && (!stepperPtr1->limit()) && (!stepperPtr3->limit())) { 

  stepperPtr2->on(); 

  digitalWrite(stepperPtr2->dirPin,true); 

        digitalWrite(stepperPtr2->stepPin, HIGH); 

        stepperPtr2->position++; 

        update = true; 

 } else if ( (!eStop) && (stepperPtr2->getPosition() > stepperPtr2-

>getTarget()) && (!stepperPtr2->limit())) { 

  stepperPtr2->on(); 

  digitalWrite(stepperPtr2->dirPin,false); 

        digitalWrite(stepperPtr2->stepPin, HIGH); 

        stepperPtr2->position--; 

        update = true; 

 } else { 

  stepperPtr2->off(); 

 } 

 

 // Start 3rd Stepper Update 

 if ( (!eStop) && (stepperPtr3->getPosition() < stepperPtr3->getTarget()) 

&& (stepperPtr2->getPosition() < stepperPtr2->getTarget()) && (stepperPtr1-

>getPosition() < stepperPtr1->getTarget()) ) { 

     stepperPtr3->on(); 

  digitalWrite(stepperPtr3->dirPin,true); 

        digitalWrite(stepperPtr3->stepPin, HIGH); 

        stepperPtr3->position++; 

        update = true; 

    } else if ( (!eStop) && (stepperPtr3->getPosition() < stepperPtr3-

>getTarget()) && (!stepperPtr2->limit()) && (!stepperPtr1->limit())) { 

  stepperPtr3->on(); 

  digitalWrite(stepperPtr3->dirPin,true); 

        digitalWrite(stepperPtr3->stepPin, HIGH); 

        stepperPtr3->position++; 
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        update = true; 

 } else if ( (!eStop) && (stepperPtr3->getPosition() > stepperPtr3-

>getTarget()) && (!stepperPtr3->limit())) { 

  stepperPtr3->on(); 

  digitalWrite(stepperPtr3->dirPin,false); 

        digitalWrite(stepperPtr3->stepPin, HIGH); 

        stepperPtr3->position--; 

        update = true; 

 } else { 

  stepperPtr3->off(); 

 } 

 

    // If updating, delay then lower step pins 

    if (update) { 

        delayMicroseconds(200); 

        digitalWrite(stepperPtr1->stepPin, LOW); 

        digitalWrite(stepperPtr2->stepPin, LOW); 

        digitalWrite(stepperPtr3->stepPin, LOW); 

        delayMicroseconds(200); 

        update = false; 

    } 

} 

 

//===========================================================================

============================ 

 

// Checks for serial input to pass to main control program 

void updateInput () { 

    if(Serial.available() > 0) 

    { 

        inByte = Serial.read(); 

    } 

} 

 

// Manages program updates, controls system state, and handles input 

void updateMainProgram () { 

    static char param = 0; 

    static bool sign = true; 

    static char charArray[10] = {0,0,0,0,0,0,0,0,0,0}; 

    static uint8_t charPtr = 0; 

    static int64_t temp = 0; 

    static uint8_t updateCounter = 0; 

 

    // The following interface utilizes ANSI escape commands 

    switch (state) { 

  // Initial entry state 

        case (0): 

            // Set cursor to invisible using ANSI escape command 

            Serial.write(27); 

            Serial.print("[?25l");     // Invisible cursor 

            state = 1; 

            break; 

 

  // Display screen main display and move to state 2 

        case (1): 

            // Update screen with main display message 

            systemStatusMessage(); 
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            state = 2; 

            break; 

 

  // Manages screen update and waits for input before moving to 

state 3 

        case (2): 

            // 

            if ((updateCounter >= 10) && !pauseUpdate) { 

                flagUpdate = true; 

                flagConvert = true; 

                updateCounter = 0; 

            } else { 

                updateCounter++; 

            } 

 

            if(inByte){ 

                state = 3; 

            } 

            break; 

 

  // Determines which method to perform for a  given input 

        case(3): 

            // X Stepper 

            if (inByte=='Q' || inByte=='q') { 

                if (xStepper.getPosition() < 300000000) { 

                xStepper++; 

                } 

            } else if (inByte=='W' || inByte=='w') { 

                if (xStepper.getPosition() > -300000000) { 

                xStepper--; 

                } 

            } else if (inByte=='E' || inByte=='e') { 

                param = 'E'; 

                state = 4; 

                systemInputMessage(); 

                break; 

            } else if (inByte=='R' || inByte=='r') { 

                param = 'R'; 

                state = 4; 

                systemInputMessage(); 

                break; 

            } else if (inByte=='T' || inByte=='t') { 

                xStepper.setTarget(xStepper.getPosition()); 

            } 

            // Y Stepper 

            else if (inByte=='A' || inByte=='a') { 

                if (yStepper.getPosition() < 300000000) { 

                yStepper++; 

                } 

            } else if (inByte=='S' || inByte=='s') { 

                if (yStepper.getPosition() > -300000000) { 

                yStepper--; 

                } 

            } else if (inByte=='D' || inByte=='d') { 

                param = 'D'; 

                state = 4; 

                systemInputMessage(); 
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                break; 

            } else if (inByte=='F' || inByte=='f') { 

                param = 'F'; 

                state = 4; 

                systemInputMessage(); 

                break; 

            } else if (inByte=='G' || inByte=='g') { 

                yStepper.setTarget(yStepper.getPosition()); 

            } 

            // Z Stepper 

            else if (inByte=='Z' || inByte=='z') { 

                if (zStepper.getPosition() < 300000000) { 

                zStepper++; 

                } 

            } else if (inByte=='X' || inByte=='x') { 

                if (zStepper.getPosition() > -300000000) { 

                zStepper--; 

                } 

            }  else if (inByte=='C' || inByte=='c') { 

                param = 'C'; 

                state = 4; 

                systemInputMessage(); 

                break; 

            } else if (inByte=='V' || inByte=='v') { 

                param = 'V'; 

                state = 4; 

                systemInputMessage(); 

                break; 

            } else if (inByte=='B' || inByte=='b') { 

                zStepper.setTarget(zStepper.getPosition()); 

            } 

 

            // Emergency stop 

            else if (inByte==' ') { 

                eStop ^= 1; 

                Serial.write(27); 

                Serial.write("[13;25H"); 

                if (eStop) { 

                    Serial.write("ON "); 

                } else { 

                    Serial.write("OFF"); 

                } 

            } 

 

            // Toggle display mode 

            else if (inByte=='1') { 

                displayTarget ^= 1; 

                Serial.write(27); 

                Serial.write("[14;20H"); 

                if (displayTarget) { 

                    Serial.write("TARGET"); 

                } else { 

                    Serial.write("ACTUAL"); 

                } 

                pauseUpdate = false; 

            } 
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            // Toggle screen update 

            else if (inByte=='2') { 

                pauseUpdate ^= 1; 

                Serial.write(27); 

                Serial.write("[15;20H"); 

                if (pauseUpdate) { 

                    Serial.write("PAUSED"); 

                } else { 

                    Serial.write("LIVE  "); 

                } 

            } 

 

            // Recalibrate 

            else if (inByte=='3') { 

                xStepper.setTarget(-300000000); 

                yStepper.setTarget(-300000000); 

                zStepper.setTarget(-300000000); 

 

                flagCalibrate = true; 

            } 

 

            // By default, clear any input recieved then move to state 2 

            inByte = 0; 

            state = 2; 

            break; 

 

  // Converts the ASCII input characters to binary 

        case (4): 

            if (inByte>='0' && inByte<='9' && charPtr < 9) 

            { 

                charArray[charPtr] = inByte; 

                charPtr++; 

                Serial.write(inByte); 

            } else if (inByte == '+') {                 // Potitive 

                sign = true; 

                Serial.write(27); 

                Serial.print(7); 

                Serial.write(27); 

                Serial.print("[1;22H"); 

                Serial.write(' '); 

                Serial.write(27); 

                Serial.print(8); 

            } else if (inByte == '-') {                 // Negative 

                sign = false; 

                Serial.write(27); 

                Serial.print(7); 

                Serial.write(27); 

                Serial.print("[1;22H"); 

                Serial.write('-'); 

                Serial.write(27); 

                Serial.print(8); 

            } else if (inByte == 127 && charPtr > 0) {    // Backspace 

                charPtr--; 

                charArray[charPtr] = 0; 

                Serial.write("\b \b"); 

            } else if (inByte == 13 && charPtr == 0) { 

                // Clean up 
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                state = 1; 

                param = 0; 

                sign = true; 

                memset(charArray, 0, 10); 

                temp = 0; 

            } else if (inByte == 13 && charPtr > 0) {                  // 

Enter 

                // Add array variabls and apply sign 

                temp = 0; 

                for (uint32_t i = 1; charPtr > 0; i*=10) { 

                    temp += (charArray[--charPtr]-'0')*i; 

                } 

 

                // Check for overflow conditions 

                if (temp < 0 || temp > 300000000) { 

                    temp = 300000000; 

                } 

 

                if (!sign) { 

                    temp *= -1; 

                } 

                // Convert from nm to step position 

                temp *= 4; 

                temp /= 125; 

                // Set position of selected motor 

                switch (param) { 

                    case('E'): 

                        if ( ((xStepper.getPosition() + temp) >= -300000000) 

&& ((xStepper.getPosition() + temp) <= 300000000) ) { 

                        xStepper+=temp; 

                        } 

                        break; 

                    case('R'): 

                        xStepper=temp; 

                        break; 

 

                    case('D'): 

                        if ( ((yStepper.getPosition() + temp) >= -300000000) 

&& ((yStepper.getPosition() + temp) <= 300000000) ) { 

                        yStepper+=temp; 

                        } 

                        break; 

                    case('F'): 

                        yStepper=temp; 

                        break; 

 

                    case('C'): 

                        if ( ((zStepper.getPosition() + temp) >= -300000000) 

&& ((zStepper.getPosition() + temp) <= 300000000) ) { 

                        zStepper+=temp; 

                        } 

                        break; 

                    case('V'): 

                        zStepper=temp; 

                        break; 

                } 
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                // Clean up 

                state = 1; 

                param = 0; 

                sign = true; 

                memset(charArray, 0, 10); 

                charPtr = 0; 

                temp; 

            } 

 

            inByte = 0; 

            break; 

 

  // Error handling state 

        default: 

            Serial.println("Error: Interface in wrong state!"); 

            state = 1; 

            break; 

        // Interface needs to be designed 

        // Add Tip, Tilt, Elevation Control 

    } 

} 

 

// Converts three actuator heights to tip, tilt, elevation 

void actToMirror (int32_t x, int32_t y, int32_t z) { 

    int64_t temp; 

    /// Warning: Calculation relies on small angle approximation! 

 // Calculation is split into steps to avoid math overflow 

    temp  = x; 

    temp *= 2; 

    temp -= y; 

    temp -= z; 

    temp *= 15625*K; 

    temp /= L1; 

    tip = -temp; 

 

    temp  = y; 

    temp -= z; 

    temp *= 31250*K; 

    temp /= L2; 

    tilt = temp; 

 

    temp  = x; 

    temp += y; 

    temp += z; 

    temp *= 125; 

    temp /= 3*4; 

    elev = temp; 

 

    flagConvert = false; 

} 

 

// Converts tip, tilt, elevation to three actuator heights 

void mirrorToAct () { 

    int64_t temp1, temp2; 

    /// Warning: Calculation relies on small angle approximation! 

 // Calculation is split into steps to avoid math overflow 

    temp1 = tip; 
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    temp1 *= 2*L1; 

    temp1 /= 3*K; 

    temp1 += elev; 

    temp1 *= 4; 

    temp1 /= 125; 

    xStepper = temp1; 

 

    temp1 = 3*tilt; 

    temp1 *= L2; 

    temp2 = -2*tip; 

    temp2 *= L1; 

    temp1 += temp2; 

    temp1 /= K; 

    temp1 += elev; 

    temp1 *= 2; 

    temp1 /= 375; 

    yStepper = temp1; 

 

 temp1 = -3*tilt; 

    temp1 *= L2; 

    temp2 = -2*tip; 

    temp2 *= L1; 

    temp1 += temp2; 

    temp1 /= K; 

    temp1 += elev; 

    temp1 *= 2; 

    temp1 /= 375; 

    zStepper = temp1; 

} 

 

// Main display information for display with PUTTY 

void systemStatusMessage () { 

 Serial.write(27); 

 Serial.write("[2J");    // clear screen 

 Serial.write(27); 

 Serial.write("[H");     // cursor to home command 

 

    Serial.println("Mirror Cell GAMMA Control Program, Version 1.1"); 

 

    Serial.println("X Actuator (nm): "); 

    Serial.println("[Q] Inc [W] Dec [E] Add [R] Set [T] Stop"); 

 

    Serial.println("Y Actuator (nm): "); 

    Serial.println("[A] Inc [S] Dec [D] Add [F] Set [G] Stop"); 

 

    Serial.println("Z Actuator (nm): "); 

    Serial.println("[Z] Inc [X] Dec [C] Add [V] Set [B] Stop\n"); 

 

    Serial.println("Tip       (mas): "); 

    Serial.println("Tilt      (mas): "); 

    Serial.println("Elevation  (nm): \n"); 

 

    Serial.write  ("[SPACE] Emergency Stop: "); 

    if (eStop) { 

        Serial.println("ON "); 

    } else { 

        Serial.println("OFF"); 
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    } 

    Serial.write  ("[1] Display Mode:  "); 

    if (displayTarget) { 

        Serial.println("TARGET"); 

    } else { 

        Serial.println("ACTUAL"); 

    } 

    Serial.write  ("[2] Screen Update: "); 

    if (pauseUpdate) { 

        Serial.println("PAUSED"); 

    } else { 

        Serial.println("LIVE"); 

    } 

    Serial.println("[3] Calibrate"); 

 

    Serial.println("Use [ ] key to select parameter to change"); 

 

    if (displayTarget) { 

        actToMirror (xStepper.getTarget(), yStepper.getTarget(), 

zStepper.getTarget()); 

    } else { 

        actToMirror (xStepper.getPosition(), yStepper.getPosition(), 

zStepper.getPosition()); 

    } 

    systemStatusUpdate (); 

} 

 

// Updates system information for display with PUTTY 

void systemStatusUpdate () { 

    Serial.write(27); 

 Serial.write("[2;18H");     // Move cursor to position 

 if (displayTarget) { 

        Serial.print(xStepper.getTarget()*125/4); 

 } else { 

        Serial.print(xStepper.getPosition()*125/4); 

 } 

 Serial.write(27); 

 Serial.write("[K");         // Clear line right of cursor 

 

 Serial.write(27); 

 Serial.write("[4;18H");     // Move cursor to position 

 if (displayTarget) { 

        Serial.print(yStepper.getTarget()*125/4); 

 } else { 

        Serial.print(yStepper.getPosition()*125/4); 

 } 

 Serial.write(27); 

 Serial.write("[K");         // Clear line right of cursor 

 

 Serial.write(27); 

 Serial.write("[6;18H");     // Move cursor to position 

 if (displayTarget) { 

        Serial.print(zStepper.getTarget()*125/4); 

 } else { 

        Serial.print(zStepper.getPosition()*125/4); 

 } 

 Serial.write(27); 
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 Serial.write("[K");         // Clear line right of cursor 

 

 Serial.write(27); 

 Serial.write("[9;18H");     // Move cursor to position 

 Serial.print(tip); 

 Serial.write(27); 

 Serial.write("[K");         // Clear line right of cursor 

 

 Serial.write(27); 

 Serial.write("[10;18H");     // Move cursor to position 

 Serial.print(tilt); 

 Serial.write(27); 

 Serial.write("[K");         // Clear line right of cursor 

 

 Serial.write(27); 

 Serial.write("[11;18H");     // Move cursor to position 

 Serial.print(elev); 

 Serial.write(27); 

 Serial.write("[K");         // Clear line right of cursor 

 

    flagUpdate = false; 

} 

 

// Clears screen and prompts for input information with PUTTY 

void systemInputMessage () { 

    Serial.write(27);       // ESC command 

    Serial.write("[2J");    // clear screen command 

    Serial.write(27);       // ESC command 

    Serial.write("[H");     // Home cursor 

    Serial.write("Input position (nm):  "); 

} 

 


