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ABSTRACT 
 

How Are Rare Species Maintained?: Reproductive Barriers Between Layia jonesii, A 
Rare Serpentine Endemic, And L. platyglossa 

Natalie L. Rossington 
 

Reproductive barriers are vital to generating new species as well as maintaining distinct 
species. Investigating reproductive barriers between closely related plant taxa helps us to 
understand how these barriers are maintained, particularly between rare and widespread 
relatives.  Layia jonesii, a rare San Luis Obispo County serpentine endemic, and L. 
platyglossa, a common coastal species, co-occur on serpentine derived hillsides and are 
interfertile. At these locations, L. jonesii is isolated to dry soils near serpentine rock 
outcrops and L. platyglossa is located on slightly deeper grassland soils surrounding the 
rock outcrops. On hillsides where they co-occur, I observe two morphologically distinct 
species, therefore the two species must be maintaining reproductive barriers, yet 
mechanisms that maintain this isolation are unknown. I studied this system to investigate 
possible mechanisms contributing to the maintenance of reproductive barriers. I 
hypothesize prezygotic reproductive isolation in this system is due to (1) habitat isolation 
due to local adaptation to differential edaphic environments on the hillside, (2) flowering 
time differences, and (3) reduced seed set resulting from hybrid crosses. To investigate 
the local adaptation of L. jonesii and L. platyglossa, I reciprocally transplanted both 
species into the center of each species’ distribution. I also conducted a competition 
experiment to determine if L. jonesii is sensitive to resource competition beyond its 
natural distribution. To investigate flowering time differences, I tracked flowering time of 
both wild and reciprocally transplanted populations. I also performed controlled crosses 
to determine if heterospecific, or hybrid crosses, result in lowered seed set than 
conspecific crosses. The reciprocal transplants showed L. platyglossa is locally adapted 
to the grassland habitat. Local adaptation likely prevents L. playtyglossa from dispersing 
into the rock outcrop habitat. Results of the competition experiment revealed L. jonesii is 
sensitive to competition and this may contribute to its constrained distribution to shallow 
soils.  Local adaptation and competition likely contribute to habitat isolation between the 
two species. I also documented stark differences in flowering time between the species 
which contributes to reproductive isolation by reducing pollen flow. Hybrid crosses also 
resulted in lowered seed set than conspecific crosses. These results suggest prezygotic 
barriers to reproduction likely maintain the majority of isolation between the two species. 
These results provide insight into mechanisms that maintain reproductive barriers 
between closely related taxa existing in similar habitats. The results also contribute to our 
understanding of how rare plants preserve genetic integrity near common and interfertile 
relatives. 
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CHAPTER 1 
 

INTRODUCTION 

Charles Darwin was one of the first scientists to recognize the importance of 

barriers to gene exchange as vital to the origin and maintenance of species (Darwin, 

1859). Since Darwin, many evolutionary biologists have studied and characterized 

reproductive barriers, including Mayr (1947), whose biological species concept is 

founded on the importance of reproductive barriers. Today, studies of reproductive 

barriers remain essential for understanding the generation and maintenance of species and 

for understanding biodiversity. 

Reproductive barriers maintain reproductive isolation between species and are 

commonly divided into two broad categories: prezygotic and postzygotic barriers. 

Prezygotic barriers prevent the formation of a zygote. Types of prezygotic barriers in 

plants include ecogeographic or habitat isolation (Ramsey et al., 2003; Angert and 

Schemske, 2005), temporal isolation through flowering time differences (Lowry et al., 

2008), pollinator isolation (Hodges et al., 2002; Miller et al., 2014), and postpollination 

isolation that can occur due to genetic incompatibilities of stigma and style (Kay, 2006). 

Post-zygotic barriers prevent gene flow after a zygote is formed and include hybrid 

inviability (Christie and Macnair, 1987) and reduced hybrid fitness (Kay, 2006). Many 

different types of reproductive barriers contribute to total reproductive isolation between 

taxa (Sobel and Chen, 2014).   

The majority of reproductive isolation between plant taxa is due to prezygotic 

barriers to reproduction (Ramsey et al., 2003; Sobel et al., 2010). Previous studies show 

prezygotic barriers can contribute to greater than 99% of total reproductive isolation 
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between some plant species (Ramsey et al., 2003; Kay, 2006). A large portion of isolation 

between these species is due to ecological interactions between plants and their 

environment, rather than genetic incompatibilities between species. This research 

suggests differential ecological adaptation is not only crucial for maintaining species but 

is also a factor driving speciation (Schemske, 2010). 

Habitat isolation, caused by differential adaptation between two plant species, 

reduces reproductive contact between the two species and therefore acts as a strong 

prezygotic isolating mechanism (Nosil et al., 2005; Sobel et al., 2010). Habitat isolation 

contributes to reproductive isolation both between closely related species and among 

differentially adapted populations, or ecotypes, of the same species (Clausen et al., 1947; 

Kruckeberg, 1951; Ramsey et al., 2003; Kay, 2006; Sobel et al., 2010). Habitat isolation 

has commonly been studied using systems in which populations are separated by large 

geographic or elevation differences (Nagy and Rice, 1997; Ramsey et al., 2003), or exist 

in drastically different edaphic conditions (relating to the soil i.e. serpentine and non-

serpentine soils; Kruckeberg, 1951; Brady et al., 2005; Wright et al., 2006). Few studies 

have focused on the contribution of habitat isolation to reproductive isolation between 

species that occur within mating distance at a small, local scale along edaphic gradients 

(but see Yost et al., 2012).  

Understanding how reproductive barriers maintain rare species that occur within 

mating distance of interfertile and widespread relatives is especially important. Repeated 

hybridization of a rare species with a more abundant relative can be detrimental to 

population growth of the rare species and could potentially lead to extinction (Levin, 

1996). Few studies have investigated which prezygotic barriers to reproduction contribute 
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to reproductive isolation between rare and common taxa occurring within mating distance 

along an edaphic gradient. Investigating how rare species in these types of systems 

maintain prezygotic reproductive isolation near common and widespread relatives, and 

therefore preventing hybridization, can help inform conservation efforts.  

Layia jonesii A. Gray, a rare serpentine endemic in San Luis Obispo, California 

and Layia platyglossa (Fisch. & C.A. Mey) A. Gray, a widespread species, co-occur on 

serpentine derived hillsides along an edaphic gradient. These two species are interfertile 

(Clausen, 1951) and occur within a few meters of each other (parapatrically) at multiple 

sites in San Luis Obispo (California Consortium of Herbaria at 

ucjeps.berkeley.edu/consortium/). At these sites, L. jonesii is primarily isolated to rocky, 

dry soils near serpentine rock outcrops while L. platyglossa occurs in grassland habitats 

surrounding rock outcrops (Figure 1). Because the two species are capable of hybridizing, 

I would expect that over time the rare species would become extinct through 

introgression with a much more common and widespread relative. However, at sites 

where these species co-occur, I observe two intact and morphologically distinct species. 

Here, I characterize prezygotic reproductive barriers that contribute to reproductive 

isolation between L. jonesii and L. platyglossa. I hypothesize prezygotic reproductive 

isolation in this system is due to (1) habitat isolation due to local adaptation to differential 

edaphic environments on the hillside, (2) temporal isolation due to flowering time 

differences, and (3) postpollination isolation through reduced seed set in hybrid crosses. 

	
  
MATERIALS AND METHODS 
Study System 

    The genus Layia Hook. & Arn. ex DC. consists of 14 spring-flowering annuals 



4 

endemic to California. Most species are self-incompatible, including L. jonesii A. Gray 

and L. platyglossa (Fisch. & C.A. Mey) A. Gray (Clausen, 1951). Layia jonesii and L. 

platyglossa are distinguished morphologically by pappus shape. Layia jonesii has a 

pappus of short scales, whereas L. platyglossa has pappus of long bristles. Layia jonesii is 

endemic to San Luis Obispo County, California on serpentine derived soils (Safford et 

al., 2005). The distribution of L. jonesii consists of only about 15 small, scattered 

populations from the city of San Luis Obispo north to Cayucos (California Consortium of 

Herbaria at ucjeps.berkeley.edu/consortium/). In contrast, L. platyglossa is a more 

widespread species ranging from Baja California to the northern coast ranges of 

California, occurring on a range of soil substrates including serpentine (Baldwin et al., 

2012). Herbarium records document the two species growing sympatrically (intermixed 

populations) and parapatrically (adjacent populations) at multiple populations within San 

Luis Obispo County (California Consortium of Herbaria at 

ucjeps.berkeley.edu/consortium/).  

    The two species occur within meters of each other (parapatrically), which is well 

within mating distance, on serpentine derived hillsides in Reservoir Canyon Open Space 

(RC), San Luis Obispo County, California (35.284897, -120.618303). RC is part of a 

series of serpentine ridges that run parallel to the Santa Lucia Mountains in San Luis 

Obispo County. The ridge through RC is part of the Franciscan Complex, a coastal 

geologic formation consisting of mainly metamorphic substrates including serpentine. 

Multiple populations of both L. jonesii and L. platyglossa occur on serpentine derived 

soil within RC. At these populations, L. jonesii is restricted to rock outcrops while L. 

platyglossa occurs in grassland soils surrounding these rock outcrops. Although these two 
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species occur on different soils, there is little evidence of a stark line that divides the rock 

outcrop and grassland habitats. The two species exist along an edaphic gradient with 

some overlap in distribution toward the center of this gradient. 

 

Soil Sampling 

 Soil was sampled from the four reciprocal transplant plots to characterize the soil 

chemistry at RC. I made three, 1L collections of soil from the top 15cm in each plot. The 

soil was tested at A&M Laboratories for organic matter percent, estimated nitrogen 

release (lbs/acre), phosphorus (Weak Bray and Olson Method, ppm), potassium (ppm), 

magnesium (ppm), calcium (ppm), sodium (ppm), soil pH, hydrogen (meq/100g), cation 

exchange capacity (meq/100g), and sulfur (ppm). I performed a principle component 

analysis with these soil characteristics with JMP. 

 To characterize physical characteristics of the soils at RC, I conducted one soil 

profile description in each of the grassland and rock outcrop habitats. Within each 

habitat, I described a soil directly adjacent to a reciprocal transplant plot. I described the 

depth, rock fragment content, texture, and structure for each horizon in both soil profiles. 

I also calculated the available water holding capacity for each soil profile using standard 

calculations based on texture and rock fragment content (Schoeneberger et al., 2012; Soil 

Survey Division Staff, 1993). 

 

Reciprocal Transplant and Competition Experiment 

   I performed a reciprocal transplant between L. jonesii and L. platyglossa at RC. I 

established four reciprocal transplant plots (0.5m x 0.5m) on a serpentine hillside where 
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L. jonesii and L. platyglossa co-occur. Two plots were placed near the serpentine rock 

outcrop in previously documented L. jonesii habitat and two plots were placed in the 

grassland below the rock outcrop in L. platyglossa habitat. In each of the four plots, I 

planted two seeds from 16 maternal families of each species. In total, I planted 32 seeds 

of L. jonesii and 32 seeds of L. platyglossa for a total of 64 seeds per plot. I glued each 

seed to a color-coded toothpick to assist with tracking each plant through its life cycle. 

Each seed was randomly assigned a planting position within the plot. I planted the seeds 

in early November, 2013.  

   In addition to the reciprocal transplant experiment, I conducted a competition 

experiment. In both grassland transplant plots, I established two smaller sub-plots 

(weeded plots) adjacent to the reciprocal transplant plots in which I planted two 

additional seeds from the same 16 maternal families of L. jonesii for a total of 32 seeds 

per sub-plot. On a weekly basis, I weeded out all plants except for the planted L. jonesii 

seedlings. 

    Once the seeds germinated in both the reciprocal transplant and weeded plots, 

survival was recorded on a weekly basis until the end of the growing season. I quantified 

fitness by counting the number of viable seeds produced by each surviving individual for 

both the reciprocal transplant and competition experiments. Dark-colored, fully inflated 

seeds were considered viable. Pale-colored, deflated seeds were considered unviable. 

Germination and survival rates were analyzed using a generalized linear mixed model 

(PROC GLIMMIX) with SAS. I analyzed survival and viable seed set data from the 

reciprocal transplant and competition experiments using a 2-factor ANOVA with a 

randomized block design with JMP (ver 11.0.0, SAS Institute, Cary, North Carolina, 
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USA). I transformed the viable seed set with a square root before our analysis to account 

for non-constant variance in our dataset. 

 

Flowering Time 

   I tracked flowering time in wild and reciprocally transplanted populations. To 

track flowering time in wild populations at RC, I established a plot (0.5m x 0.5m) in the 

center of each species distribution. I counted the number of opened and unopened heads 

within each plot weekly over a four-week period from mid-April to early May. An open 

head was defined as having at least one open disk floret. Using this data, I calculated the 

proportion of open heads per week in wild populations of L. jonesii and L. platyglossa. 

To track flowering time in reciprocally transplanted populations, I documented the 

number of open heads on individuals within the transplant plots on a weekly basis. I 

analyzed flowering time data from the reciprocal transplant using a 2-factor ANOVA 

with a randomized block design with JMP. 

 

Controlled Crosses 

 Plants used for the controlled crosses were germinated from seeds collected at 

RC. I used 12 individuals of L. jonesii and 8 individuals of L. platyglosssa. As the 

individuals began to bloom, each head was randomly designated as one of three types of 

crosses. The first type of cross was a conspecific cross, meaning pollen from a different 

individual of the same species was used to pollinate the inflorescence. The second type of 

cross was a heterospecific cross, or hybrid cross, meaning pollen from a different species 

was used to pollinate the head. The third type of cross was a control meaning the head 



8 

was not manipulated and received no pollen. I performed the controlled crosses by 

rubbing open heads together every two days during the entire period the head was open. 

The average number of crosses per head was 4.17 with a range of 1-8. I counted the 

viable number of seeds produced by each cross. I analyzed the seed set for each type of 

cross using a 2-factor ANOVA with a randomized block design with JMP. 

	
  
RESULTS 

Soil Characteristics 

 To characterize the chemical edaphic environment on the serpentine hillside, we 

conducted a principle component analysis of 13 chemical soil characteristics in both the 

grassland and rock outcrop habitats. The first two principle components describe 67.3% 

of the variation in soil characteristics between the two habitats in RC (Table 1, Figure 2). 

The analysis shows there is little variation between the rock outcrop and grassland soils, 

but there is similar variation among soil characters within both soils. Low levels of 

essential nutrients like phosphorus, potassium, and calcium along with high levels of 

magnesium have loading scores above 0.5 and therefore drive variation within the soils. 

This pattern of nutrient content is characteristic of serpentine soils (Alexander et al., 

2007). 

 To characterize the physical edaphic environment on the serpentine hillside, I 

conducted a soil pedon description in the rock outcrop and grassland habitats. Both soil 

profiles show evidence of soil development by the presence of an illuvial clay horizon 

(Bt). The rock outcrop and grassland soils were a similar depth, however, the outcrop soil 

contains a higher percentage of rock fragments in all solum horizons (horizons above the 

bedrock, Cr) compared to grassland soil. The presence of high levels of rock fragments in 



9 

the solum reduces the available water holding capacity of rock outcrop soils. The 

available water holding capacity of the rock outcrop soil is about half of the water 

holding capacity of the grassland soil (rock outcrop soil 1.9 cm; grassland soil 3.75 cm; 

Table 2). 

 

Reciprocal Transplant and Competition Experiment 

   To investigate if habitat isolation contributes to reproductive isolation between L. 

jonesii and L. platyglossa, we sought to determine if either species is locally adapted to 

specific habitats on the hillside in RC using a reciprocal transplant. To determine if the 

grassland and rock outcrop habitats effect plant fitness during the early portion of the life 

cycle, we tracked the germination and survival to flowering. Germination proportions of 

L. jonesii and L. platyglossa were similar across all habitats (Table 3 and 4; Figure 3). 

Proportion of L. jonesii individuals and L. platyglossa individuals surviving to flowering 

was similar across all habitats (Table 5 and 6; Figure 4). Both species survived longer, 

regardless if they flowered or not, in the grassland habitat. Individuals survived 24 days 

longer in the grassland habitat than the rock outcrop habitat. (F=6.2956, P=0.0142; Table 

7). 

   We used viable seed set to determine the reproductive fitness of L. jonesii and L. 

platyglossa in the rock outcrop and grassland habitats in RC. Results from the reciprocal 

transplanted showed the reproductive fitness of both L. jonesii and L. platyglossa was 

higher in the grassland habitat than the rock outcrop habitat (F=25.16, P<0.0001; Table 8; 

Figure 6). Layia jonesii showed a somewhat higher fitness in both the rock outcrop and 

grassland habitats compared to L. platyglossa. Results from the competition experiment 
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showed L. jonesii had a higher reproductive fitness when competition was removed in the 

weeded grassland plots than when competition was not removed in the un-weeded 

grassland plots (weeded grassland 298.3 viable seeds per individual, 95% CI 178.71-

448.46; un-weeded grassland 46.47 viable seeds per individual, 95% CI 4-104.85; F= 

18.0, P=0.0004; Figure 6). 

 

Flowering Time 

   To determine if flowering time differences, or temporal isolation, contribute to 

reproductive isolation between L. jonesii and L. platyglossa, we tracked flowering time of 

reciprocal transplant and wild populations. Reciprocal transplant populations in both the 

rock outcrop and grassland habitats showed an earlier flowering time for L. jonesii than 

L. platyglossa (F=18.7, P=0.0003).  In the rock outcrop plots, L. jonesii flowered 

7.99±2.61 days earlier than L. platyglossa, and in the grassland plots L. jonesii flowered 

5.98±2.17 days earlier than L. platyglossa. Both species showed a slight delay in 

flowering time in the grassland habitat compared to the rock outcrop habitat (Figure 7). 

Wild populations of L. jonesii also flowered earlier than wild populations of L. 

platyglossa. Peak flowering time for wild L. jonesii was about 15 days earlier than wild 

L. platyglossa (Figure 8).  

 

Controlled Crosses 

    To determine if any postpollination reproductive barriers exist between L. jonesii 

and L. platyglossa, we conducted controlled crosses in the greenhouse. For both species, 

conspecific crosses resulted in a higher viable seed set than heterospecific crosses 
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(F=80.70, P<0.0001). Because both species are self-incompatible, I am confident the 

viable seeds that resulted from heterospecific crosses are hybrid seeds rather than the 

result of a self-fertilization event.  Control heads were not manipulated during the crosses 

and produced no viable seeds (Figure 9). 

 

DISCUSSION 

Local Adaptation 

 Prezygotic reproductive barriers contribute most strongly to reproductive isolation 

between plant taxa (Sobel et al., 2010; Schemske, 2010). Specifically, habitat isolation 

via differential adaptation acts as a strong reproductive barrier in many systems (e.g., 

between coastal and inland taxa (Lowry et al., 2008), high and low elevation taxa (Angert 

and Schemske, 2005), and edaphic specialists (Wright et al., 2006)), but it may also 

contribute to reproductive isolation on a more local scale where species occur 

parapatrically. At RC, the distinct distribution of two species in the genus Layia on a 

hillside – with L. jonesii occurring mainly near a rock outcrop and L. platyglossa 

occurring in the grassland, lead me to hypothesize that local adaptation to different 

edaphic conditions may control the observed distribution. The rock outcrop and grassland 

habitats present on the serpentine derived hillside in RC exist within meters of each other, 

but although the soils are chemically similar, they are physically distinct. The rock 

outcrop habitat soils are rocky, and therefore, have about half the available water holding 

capacity of the grassland soils. This means the rock outcrop habitat is a drier environment 

than the grassland habitat.  
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 The reciprocal transplant results indicate that both L. jonesii and L. platyglossa 

germinate and survive to flowering time at equivalent rates in both the rock outcrop and 

the grassland habitat, suggesting there is no selection against migrants of either species 

between the two habitats at the germination or early seedling stage. At the reproductive 

stage, reproductive fitness data (viable seed set) from the reciprocal transplant shows L. 

platyglossa is less fit in the rock outcrop habitat than the grassland habitat. The lowered 

reproductive fitness of L. platyglossa in the rock outcrop habitat provides support for the 

hypothesis that L. platyglossa is locally adapted to grassland soils, and this likely 

prevents the species from expanding into the rock outcrop habitat. Layia platyglossa 

likely not as fit in the rock outcrop habitat because of the dry conditions.   

To determine if the distribution of L. jonesii is constrained to the rock outcrop 

habitat due to higher levels of competition in grassland soils, I created weeded grassland 

plots and examined the effect of removing competition on the fitness of L. jonesii. Layia 

jonesii produced about six times more viable seeds in the weeded portion of the grassland 

plots than the non-weeded portion of the plot. These results show that L. jonesii is 

sensitive to competition from surrounding species. Reduced competitive ability of some 

serpentine endemics may be due to an evolutionary trade-off between serpentine 

tolerance and competitive ability (Kruckeberg, 1954; Kazakou et al., 2008; Kay et al., 

2011). It hypothesized that serpentine soils serve as a kind of refuge from competition for 

many serpentine species which have a lowered ability to compete with species on non-

serpentine soils (Alexander et al., 2007; Brady et al., 2005; Kruckeberg, 1954), but my 

results suggest competitive interactions could influence the distribution of serpentine 

endemics at an even finer scale. The dry rock outcrop habitats patchily distributed on 
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serpentine soils may serve as a refuge from competition for endemic species within the 

serpentine environments. 

The evolution of serpentine tolerance to avoid competition may be an 

evolutionary “dead-end.” Using molecular phylogenetic analyses of 23 genera (including 

Layia), Anacker et al. (2010) show that diversification rates are lower for serpentine 

endemic lineages than non-endemic lineages. The abrupt ecological boundaries and the 

island-like nature of serpentine environments drives speciation on to these soils, but once 

lineages evolve on to serpentine, the lack of specialized niches and the homogenous 

nature of these habitats may limit the further diversification (Rajakaruna, 2004). In 

addition, many serpentine endemics have small, isolated populations, and therefore, 

limited genetic diversity could potentially further constrain speciation of these linages 

(Stockwell et al., 2003; Leimu et al., 2006).  

 Unexpectedly, the reciprocal transplant results did not support my hypothesis of 

local adaptation of L. jonesii to the rock outcrop habitat. Although I saw the distribution 

of L. jonesii constrained to the rock outcrop habitat during the previous year, my results 

indicate L. jonesii has a higher fitness in the grassland than the rock outcrop habitat. 

These results could be related to the extreme drought that coincided with my reciprocal 

transplant in spring 2014. During spring 2014, I observed that the distribution of L. 

jonesii expanded out from the rock outcrop habitat into the grassland habitat. Extreme 

drought likely reduced the survival of many annual species in the grassland habitat, and 

therefore, competition may have been lower in that habitat during the drought than in 

previous years. Reduced competition may have allowed the L. jonesii individuals in my 

reciprocal transplant plots to take advantage of the more conducive growing environment, 
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like higher water availability, found in grassland soils than rock outcrop soils. The 

hypothesis that increased rainfall can lead to increased productivity and therefore 

increased competition on serpentine soils is supported by other studies. Harrison et al. 

(2006) found that increased rainfall and the corresponding increased productivity was 

negatively correlated with serpentine endemic richness on serpentine rock outcrops in 

California. This result provides validity to my hypothesis that increased fitness of L. 

jonesii in the grassland habitat could be due to reduced rainfall and therefore reduced 

competition in that habitat. 

 The expansion of L. jonesii during a drought year suggests the distribution of the 

two species is dynamic from year to year based on annual environmental conditions. 

Because L. jonesii occurs on rocky, dry soils near serpentine rock outcrops, it may be 

more drought tolerant than L. platyglossa.  This pattern suggests temporal selection 

maintains the distribution of the two populations on serpentine derived hillsides, where 

expansion of the rare serpentine endemic L. jonesii is favored during dry years but 

expansion of the common L. platyglossa is favored during wet years. It is hypothesized 

that the dry conditions of serpentine soils are a major evolutionary pressure driving 

serpentine tolerance (Alexander et al., 2007; Gardner and Macnair, 2000; Brady et al., 

2005), and previous studies provide support for the hypothesis that serpentine endemics 

are more drought tolerant than non-serpentine or bodenvag species (Hughes et al., 2001; 

Wu et al., 2010). The local expansion of a serpentine endemic during drought conditions 

suggests serpentine endemics are drought tolerant and may be well adapted to survive a 

prolonged drought scenario due to climate change. Serpentine endemic species also share 

morphological features that are characteristic of drought tolerance such as succulent 
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leaves and deep root systems that could help them persist through future droughts (Brady 

et al., 2005a; Kazakou et al., 2008; Kay et al., 2011). A thorough morphometric and 

physiological comparison between L. platyglossa and L. jonesii could elucidate 

characteristics associated with drought that may allow the rare L. jonesii to better survive 

drought conditions in the rock outcrop habitat than the more common L. platyglossa. 

Edaphic specialization and highly local endemism is common in the genus Layia, 

with many rare species confined to specific soil substrates including L. discodea and L. 

jonesii on serpentine soils, L. carnosa on dune soils, L. munzii on alkali soils, and L. 

leucopappa on alluvial clay soils. Layia jonesii, L. munzii, and L. leucopappa are 

morphologically similar sister taxa and are readily interfertile (Baldwin, 2006; Clausen, 

1951). Differential edaphic adaptation maintains these species as geographically distant, 

allopatric populations, and therefore, differential adaptation rather than genetic 

incompatibilities likely acts as the strongest barrier to reproduction among these species.  

 

Flowering Time  

I sought to determine if there were flowering time differences between the two 

species that could potentially contribute to reproductive isolation. Results show there was 

a significant flowering time difference between L. jonesii and L. platyglossa when the 

two species are grown in common habitats in the reciprocal transplant plots. In both rock 

outcrop and grassland plots, L. jonesii flowered about a week earlier than L. platyglossa. 

We documented a similar pattern in wild populations of L. jonesii in the rock outcrop 

habitat and L. platyglossa in the grassland habitat. Peak flowering time of L. jonesii was 

about two weeks earlier than L. platyglossa in the wild populations. The greater 
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difference in flowering time when the two species grew in different habitats (wild 

populations), than when grown in the same habitat (reciprocal transplant plots) suggests 

that both environmental and genetic factors contribute to flowering time as a reproductive 

barrier. Layia jonesii flowers earlier in the rock outcrop habitat, where rocky soils 

become dry earlier in the growing season, than L. platyglossa in grassland soils which 

hold more moisture. This explanation is also supported by reciprocal transplant data. 

Flowering time for both L. jonesii and L. platyglossa was delayed in the grassland habitat 

compared to the rock outcrop habitat. For both species, earlier flowering time in the dry 

outcrop habitat is likely evidence of a plastic adaptation to ensure seed development by 

avoiding drought.  

Shifts to earlier flowering time are often associated with adaptation to serpentine. 

Shifts in phenology likely evolved as mechanism to reproduce early in the season in order 

to avoid the drought conditions often found on serpentine soils (Brady et al., 2005; Kay et 

al., 2011). This pattern has been observed across multiple families. Serpentine endemic 

species in the genus Mimulus, Helianthus, and Collinsia flower earlier than close 

congeners, and this difference in flowering time contributes to reproductive isolation 

between species in these systems (Gardner and Macnair, 2000; Sambatti and Rice, 2006; 

Wright et al., 2006). Layia jonesii potentially evolved earlier flowering time as a 

mechanism to avoid drought, and this shift in flowering time likely has allowed this rare 

species to persist and maintain reproductive isolation while growing within mating 

distance of an interfertile congener.  Flowering time differences can reduce the gene flow 

by reducing the amount of pollen transferred between two taxa (Sobel et al., 2010). 

Future studies could examine pollen movement dynamics between L. jonesii and L. 
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platyglossa in the field by utilizing fluorescent pollen dye and tracking movement of 

pollen between and within species by pollinators (Campbell and Waser, 1989). 

Although flowering time differences between L. jonesii and L. platyglossa likely 

acts as a strong barrier to gene flow, there is some overlap in flowering time, and 

therefore, the barrier does not completely prevent gene flow. Both L. jonesii and L. 

platyglossa are morphologically similar in flower size, color, and color pattern and 

therefore likely share pollinators. Because the two species occur within meters of each 

other on serpentine derived hillsides at RC and other populations, some pollen transfer 

may occur during periods of flowering time overlap. At RC, I observed a diverse suite of 

pollinators, including beetles, sweat bees, and bumble bees, moving freely between 

individuals of the same species and between individuals of different species when 

blooming near each other at the same time. 

 

Controlled Crosses 

Controlled crosses show hybrid crosses between L. jonesii and L. platyglossa 

(heterospecific crosses) result in significantly lower seed set than crosses within the same 

species (conspecific crosses). Heterospecific crosses produced about 90% less seeds than 

conspecific crosses. These results show postpollination isolation contributes to 

reproductive isolation in between L. jonesii and L. platyglossa, although the mechanism 

causing postpollination isolation between the two species is unknown. Postpollination 

isolation can be caused by multiple mechanisms including pollen and stigma 

incompatibilities where heterospecific pollen grains do not germinate or grow well in 

stigmatic tissue (Kay, 2006), and pollen competition where heterospecific pollen tubes 
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grow more slowly than conspecific pollen tubes (Carney et al., 1996). Examining pollen 

tube growth in stigmas of heterospecific crosses could help determine the postpollination 

mechanism that contributes to reproductive isolation between L. jonesii and L. 

platyglossa. 

My initial investigations into the viability of hybrid seeds that resulted from the 

few successful heterospecific crosses indicate that the seeds of both maternal parents 

germinate readily and develop to the reproductive stage. Planting these hybrid seeds in 

the field could elucidate patterns of hybrid survival fitness across the hillside and help me 

understand which mechanisms contribute to post-zygotic reproductive barriers between 

the species. It is possible hybrid individuals have a low survival and fitness in the field, 

which would act as a barrier to continued gene flow between the species. 

 

CONCLUSIONS 

My results show that prezygotic reproductive barriers exist between L. jonesii and 

L. platyglossa in RC. The strongest barriers to reproduction at this site are likely temporal 

isolation and postpollination isolation. Temporal isolation contributes to reproductive 

isolation through flowering time differences because L. jonesii flowers earlier than L. 

platyglossa. Post-pollination isolation due to genetic incompatibilities contribute to 

reproductive isolation through lowered seed set in hybrid crosses. Future studies could 

use genetic markers or other molecular techniques (RAPD, allozymes, etc.) to investigate 

true gene flow between the two L. jonesii and L. platyglossa. 

My results also show that local adaptation may maintain the distribution of L. 

jonesii and L. platyglossa on the hillside. Local adaptation of L. platyglossa to the 
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grassland habitat prevents this species from expanding into the rock outcrop habitat. 

Layia jonesii is sensitive to resource competition from species in grassland habitat, and 

this may contribute to its constraint to drier rock outcrop habitat. Although local 

adaptation maintains these species parapatrically, habitat isolation is likely not a strong 

reproductive barrier in this system. My results also suggest that rocky, dry serpentine 

rock outcrops with sparse vegetation may act as refuges for L. jonesii and potentially 

other competition-sensitive rare serpentine endemics. 

My research provides insight into the mechanisms that prevent gene flow between 

two closely related species. These same mechanisms, like temporal isolation and 

postpollination isolation, have also been found to maintain rare serpentine species in 

other systems as well (Gardner and Macnair, 2000; Sambatti and Rice, 2006), but my 

research shows these same mechanisms also act similarly on a fine spatial scale across an 

edaphic gradient. Understanding how these mechanisms maintain reproductive isolation 

between a rare species with limited distribution and a more widespread species is 

especially important. Rare species are vulnerable to the homogenizing effects of gene 

flow and have the potential to become extinct when occurring near interfertile relatives. 

Prezygotic barriers provide substantial isolation from more widespread species and help 

preserve genetic integrity of rare species.  
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APPENDICES 
A. Tables 
 
Table 1. Principal component analysis of chemical soil characteristics between rock 
outcrop and grassland habitats on a serpentine hillside in Reservoir Canyon. Bold values 
represent loading scores above 0.5. 
Soil Character PC1 (35.8%) PC2 (31.5%) 
Organic Matter (%) -0.131496892 0.932253751 
ENR (lbs/A) -0.129973069 0.916607008 
Phosphorus - Weak Bray (ppm) 0.831659909 -0.253545207 
Phosphorus - Olsen Method (ppm) 0.763682855 -0.20125828 
K (ppm) 0.792500946 -0.146389921 
Mg (ppm) 0.082588052 0.935110863 
Ca (ppm) 0.852161306 0.240069183 
Na (ppm) -0.003191771 0.603536605 
Soil pH -0.869018537 -0.338342157 
H (meq/100g) -8.29E-17 2.17E-16 
CEC (meq/100g) 0.31159572 0.910575831 
Sulfur (ppm) 0.665912481 0.055550232 
Ca:Mg (%) 0.824247913 -0.138850573 
	
  
	
  
Table 2. Soil pedon descriptions for soil pits in the rock outcrop and grassland habitats. 
Available water holding capacity (AWHC) in cm of water for the entire soil profile is 
shown above the table. 

ROCK 
OUTCROP  (AWHC=1.9 cm) 

  
Horizon 

Depth 
(cm) 

Rock 
Fragments Texture Structure 

A 0-1.5  <15% Clay granular 
Bt 1.5-6 50% Clay blocky 

Bt/C 6-20 65% Clay blocky 
Cr 20+ - - - 

     GRASSLAND (AWHC=3.75 cm) 
  

Horizon 
Depth 
(cm) 

Rock 
Fragments Texture Structure 

A 0-5 <15% Clay granular 
Bt 5-25 <15% Clay blocky 
Cr 25+ - - - 
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Table 3. Fixed effect tests of germination of L. jonesii and L. platyglossa in reciprocal 
transplant plots in the rock outcrop and grassland habitats.  

Effect Num DF Den DF F Pr > F 
Habitat 1 217 0.08 0.7765 
Species 1 30 1.64 0.2098 

Habitat*Species 1 217 1.39 0.2396 
	
  
	
  
Table 4. Fixed effect tests of germination of L. jonesii in the grassland and weeded plots 
(treatments).  

Effect Nparm DF 
L-R 

ChiSquare Prob>ChiSq 
Treatment 1 1 0.011735 0.9137 

 
 
Table 5. Fixed effect tests of proportion surviving to flowering of L. jonesii and L. 
platyglossa in reciprocal transplant plots in the rock outcrop and grassland habitats. 

Effect Num DF DenDF F Pr>F 
Habitat 1 51 1.39 0.2432 
Species 1 26 1.46 0.2371 

Habitat*Species 1 51 1.25 0.2696 
 
 
Table 6. Fixed effect tests of survival to flowering of L. jonesii in the grassland and 
weeded grassland plots (treatments). 

Effect Nparm DF 
L-R 

ChiSquare Prob>ChiSq 
Treatment 1 1 0.01 0.92 

 
 
Table 7. Fixed effect tests of number of days surviving of L. jonesii and L. platyglossa in 
the reciprocal transplant plots in the rock outcrop and grassland habitats. Bolded values 
represent significant p-values. 

Effect Nparm DF DFDen F Ratio Prob > F 
Habitat 1 1 75.89 6.2956 0.0142 
Species 1 1 0.441 0.0371 0.9018 

Habitat*Species 1 1 75.89 0.8164 0.3691 
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Table 8. Fixed effect tests of the number of viable seeds produced by L. jonesii and L. 
platyglossa individuals in the reciprocal transplant plots in the rock outcrop and grassland 
habitats. Bold values represent significant p-values.  

Effect Nparm DF DFDen F Ratio Prob > F 
Habitat 1 1 42.48 25.1585 <0.0001 
Species 1 1 18.23 1.6481 0.2153 

Habitat*Species 1 1 42.48 0.0828 0.775 
 
 
Table 9. Fixed effect tests of the number of viable seeds produced by L. jonesii in the 
grassland and weeded grassland plots (treatments). Bolded value represents a significant 
p-value. 

Effect Nparm DF 
Sum of 
Squares F Ratio Prob > F 

Treatment 1 1 854.103 18.00 0.0004 
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Table 10. Least square means, standard errors and confidence intervals for transformed fitness values (number of seeds produced per 
individual) of L. jonesii and L. platyglossa in the reciprocal transplant plots in the rock outcrop and grassland habitats. 

Species Habitat 

Least 
Square 
Mean of 
Viable 
Seeds 

SqRt(Least 
Square Mean 

of Viable 
Seeds) 

Standard 
Error of SqRt 

(Least Sq 
Mean) 

Lower 95% 
CI 

Upper 95% 
CI 

L. jonesii grassland 46.47 6.82 0.60 31.07 64.95 
L. jonesii rock outcrop 8.43 2.90 0.67 2.40 18.12 

L. platyglossa grassland 31.79 5.64 0.79 16.40 53.23 
L. platyglossa rock outcrop 4.62 2.15 0.89 0.12 15.6 

 
 
 
Table 11. Least square means, standard errors, and confidence intervals for fitness values (number of seeds produced per individual) 
of L. jonesii in the grassland and weeded grassland plots. 

Treatment 
Least Sq 

Mean Std Error 
Lower 

95% CI 
Upper 

95% CI Mean 
Grassland 37.45 1.97 4 104.85 46.42 
Weeded 298.34 1.87 178.71 448.46 268.36 

 
 
Table 12. Fixed effect tests for flowering time of L. jonesii and L. platyglossa in the reciprocal transplant plots in the rock outcrop and 
grassland habitats. Bold values represent significant p-values. 

Effect Nparm DF 
Sum of 
Squares F Ratio Prob > F 

Habitat 1 1 206.49 9.4 0.0057 
Species 1 1 410.98 18.7 0.0003 

Habitat*Species 1 1 61.95 2.81 0.1073 
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Table 13. Fixed effect tests for the controlled greenhouse crosses. Cross types include 
conspecific, heterospecific, and control crosses. Bolded values represent significant p-
values. 

Effect DF F Ratio Prob > F 
Species 1 13.7336 0.0003 

Cross Type 2 86.0074 <.0001 
Species*Cross Type 2 13.5956 <.0001 
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B. Figures 

	
  

	
  
Figure 1. The distribution of the rare L. jonesii during spring 2013 (A) and spring 2014 
(B) at RC.  Layia jonesii distribution is shown in orange and L. platyglossa distribution is 
show in blue. During spring 2013, L. jonesii was confined to the rock outcrop but during 
spring 2014 it expanded into the grassland habitat. The placement of the reciprocal 
transplant plots is also shown. 

A Rock Outcrop Plots 

Grassland Plots 

B Rock Outcrop Plots 

Grassland Plots 
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Figure 2. Principle component analysis of the 13 soil characteristics. The two principal 
components (PCs) describe 67% of the variation in soil characteristics between the two 
habitats at RC. The points in the plot above represent individual soil samples from the 
outcrop habitat (black circles) and the grassland habitat (white circles). See Table 1 for 
loading scores. 
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Figure 3. The proportion of germinated seeds of total seeds planted in the rock outcrop, 
grassland, and weeded grassland reciprocal transplant plots for both L. jonesii (outcrop 
n=62, grassland n=63, weeded grassland n=64) and L. platyglossa (outcrop n=63, 
grassland n=63). Value above the bar represents the proportion of germinated seeds of 
total seeds planted in each plot. Layia platyglossa was not grown in the weeded grassland 
plots. 
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Figure 4. The proportion of germinated seeds surviving to flowering in the rock outcrop, 
grassland, and weeded grassland reciprocal transplant plots for both L. jonesii (outcrop 
n=21, grassland n=25, weeded grassland n=26) and L. platyglossa (outcrop n=20, 
grassland n=15) in RC. Values above the bar represent the proportion of germinated 
seeds surviving to flowering in each plot. Layia platyglossa was not grown in the weeded 
grassland plots. 
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Figure 5. The number of days surviving for germinated seedlings of both L. jonesii 
(outcrop n=21, grassland n=25) and L. platyglossa (outcrop n=20, grassland n=15) 
individuals in the rock outcrop and grassland habitats. Values above the bar represent the 
least square mean. Means with identical letters are not significantly different in Tukey 
HSD comparisons (P < 0.05). Error bars represent 1 unit of standard error. 
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Figure 6. Number of viable seeds produced per individual plant in the rock outcrop, 
grassland, and weeded grassland reciprocal transplant plots of both L. jonesii (outcrop 
n=14, grassland n=17, weeded grassland n=17) and L. platyglossa (outcrop n=10, 
grassland n=8) in RC. Only individuals that survived to flowering were included in this 
analysis. Values above the bars represent the least squares mean. Means with identical 
letters are not significantly different in Tukey HSD comparisons (P < 0.05). Both species 
had significantly higher viable seed set in the grassland habitat than the rock outcrop 
habitat. See Table 10 for standard errors of each mean. Layia platyglossa in the weeded 
grassland plots. 
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Figure 7. Average days to flowering for individual plants in the rock outcrop and 
grassland reciprocal transplant plots for both L. jonesii (outcrop n=14, grassland n=17) 
and L. platyglossa (outcrop n=10, grassland n=8). Values above the bars represent the 
least squares mean. Means with identical letters are not significantly different in Tukey 
HSD comparisons (P < 0.05). Error bars represent 1 unit of standard error. 
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Figure 8. Flowering time differences in wild populations of L. jonesii (n=153) and L. 
platyglossa (n=74) at RC during spring 2014.  
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Figure 9. Number of viable seeds produced by each species in the conspecific, 
heterospecific (hybrid), and control crosses performed in the greenhouse with L. jonesii 
(conspecific n=33, heterospecific n=24, control n=20) and L. platyglossa (conspecific 
n=23, heterospecific n=24, control n=23). Values above the bars represent the least 
squares mean. Means with identical letters are not significantly different in Tukey HSD 
comparisons (P < 0.05). Error bars represent 1 unit of standard error.  
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