

A FREQUENCY-DOMAIN METHOD FOR ACTIVE ACOUSTIC

CANCELLATION OF KNOWN AUDIO SOURCES

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Ryan D. Rocha

June 2014

ii

© 2014

Ryan D. Rocha

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: A Frequency-Domain Method for Active Acoustic

 Cancellation of Known Audio Sources

AUTHOR: Ryan D. Rocha

DATE SUBMITTED: June 2014

COMMITTEE CHAIR: Dr. Wayne Pilkington, Ph.D.

 Associate Professor of Electrical Engineering

COMMITTEE MEMBER: Dr. Tina Smilkstein, Ph.D.

 Assistant Professor of Electrical Engineering

COMMITTEE MEMBER: Dr. Xiaozheng Zhang, Ph.D.

 Associate Professor, Associate Dept. Chair,

 Graduate Coordinator of Electrical Engineering

iv

ABSTRACT

A Frequency-Domain Method for Active Acoustic

Cancellation of Known Audio Sources

Ryan D. Rocha

Active noise control (ANC) is a real-time process in which a system measures an

external, unwanted sound source and produces a canceling waveform. The cancellation

is due to destructive interference by a perfect copy of the received signal phase-shifted by

180 degrees. Existing active noise control systems process the incoming and outgoing

audio on a sample-by-sample basis, requiring a high-speed digital signal processor (DSP)

and analog-to-digital converters (ADCs) with strict timing requirements on the order of

tens of microseconds. These timing requirements determine the maximum sample rate

and bit size as well as the maximum attenuation that the system can achieve. In

traditional noise cancellation systems, the general assumption is that all unwanted sound

is indeterminate. However, there are many instances in which an unwanted sound source

is predictable, such as in the case of a song. This thesis presents a method for active

acoustic cancellation of a known audio signal using the frequency characteristics of the

known audio signal compared to that of a sampled, filtered excerpt of the same known

audio signal.

In this procedure, we must first correctly locate the sample index for which a

measured audio excerpt begins via the cross-correlation function. Next, we obtain the

frequency characteristics of both the known source (WAVE file of the song) and the

measured unwanted audio by taking the Fast Fourier Transform (FFT) of each signal, and

calculate the effective environmental transfer function (degradation function) by taking

the ratio of the two complex frequency-domain results. Finally, we attempt to recreate the

environmental audio from the known data and produce an inverted, synchronized, and

amplitude-matched signal to cancel the audio via destructive interference. Throughout the

process, we employ many signal conditioning methods such as FIR filtering, median

filtering, windowing, and deconvolution. We illustrate this frequency-domain method in

Native Instruments’ LabVIEW running on the Windows operating system, and discuss its

reliability, areas for improvement, and potential future applications in mobile

technologies. We show that under ideal conditions (unwanted sound is a known white

noise source, and microphone, loudspeaker, and environmental filter frequency responses

are all perfectly flat), we can achieve a theoretical maximum attenuation of

approximately 300 dB. If we replace the white noise source with an actual song and the

environmental filter with a low-order linear filter, then we can achieve maximum

attenuation in the range of 50-70 dB. However, in a real-world environment, with

additional noise and imperfect microphones, speakers, synchronization, and amplitude-

matching, we can expect to see attenuation values in the range of 10-20 dB.

Keywords: Digital Signal Processing, Active Noise Control, Discrete Filtering,

Frequency Domain, FFT.

v

ACKNOWLEDGMENTS

 I want to formally thank my family and friends for supporting me throughout my

collegiate career, especially my parents, Rob and Char, who raised me to believe that I

could achieve success through hard work and determination. I would also like to thank

my thesis advisor Dr. Wayne Pilkington for meeting with me from week to week to go

over my progress and providing suggestions and an expert opinion on the topics of digital

signal processing. I also want to thank him for teaching me nearly all I know about

signal processing and inspiring and engaging me in his undergraduate lectures.

Furthermore, I want to thank my thesis committee members Dr. Tina Smilkstein

and Dr. Xiaozheng Zhang, who, in addition to Dr. Pilkington, taught me valuable

information in the field of Electrical Engineering. In fact, it was in Dr. Smilkstein’s EE-

521 course where I first formulated and tested the theory that this thesis builds upon. I

also learned various image processing techniques in Dr. Zhang’s classes that I applied to

digital audio processing in this thesis.

Lastly, I want to thank the institution of California Polytechnic State University,

San Luis Obispo for providing me with a thorough education in Electrical Engineering

and challenging me to apply myself to achieve my fullest potential.

vi

TABLE OF CONTENTS

LIST OF TABLES .. x

LIST OF FIGURES ... xi

CHAPTER 1: INTRODUCTION ... 1

1.1 PROBLEM STATEMENT .. 1

1.2 PROJECT OVERVIEW ... 3

1.3 COMPARISON BETWEEN EXISTING AND PROPOSED CONCEPTS 5

CHAPTER 2: BACKGROUND ... 8

2.1 CURRENT APPROACHES TO NOISE CANCELLATION ... 8

2.1.1 Passive Attenuation .. 8

2.1.2 Active Attenuation .. 9

2.2 FREQUENCY-DOMAIN METHOD: PROOF OF CONCEPT ... 14

2.2.1 Example 1: Song as Unwanted Noise Source ... 14

2.2.2 Example 2: White Noise as Unwanted Noise Source ... 23

CHAPTER 3: DESIGN REQUIREMENTS .. 27

3.1 INTRODUCTION ... 27

3.2 ACOUSTIC MEASUREMENTS .. 27

3.2.1 Dayton Audio EMM-6 Electret Measurement Microphone ... 28

3.2.2 Blue Icicle XLR to USB Microphone Converter/Preamp ... 30

3.3 LOUDSPEAKER .. 31

3.3.1 M-Audio AV-30 Reference Monitor Loudspeakers ... 32

vii

CHAPTER 4: IMPLEMENTATION ... 34

4.1 INITIAL DATA ACQUISITION .. 34

4.1.1 Overview .. 34

4.1.2 LabVIEW Block Diagrams ... 35

4.1.3 Parameters Chosen .. 36

4.2 INITIAL SYNCHRONIZATION .. 37

4.2.1 Overview .. 37

4.2.2 LabVIEW Block Diagram .. 37

4.2.3 Parameters Chosen .. 39

4.3 TRANSFER FUNCTION .. 40

4.3.1 Overview .. 40

4.3.2 LabVIEW Block Diagram .. 41

4.3.3 Parameters Chosen .. 41

4.4 IMPULSE RESPONSE WINDOWING ... 42

4.4.1 Overview .. 42

4.4.2 LabVIEW Block Diagram .. 43

4.4.3 Parameters chosen .. 43

4.5 SECONDARY OFFSET CALCULATION ... 44

4.5.1 Overview .. 44

4.5.2 LabVIEW Block Diagram .. 44

4.6 CANCELLATION WAVEFORM GENERATION ... 45

4.6.1 Overview .. 45

4.6.2 LabVIEW Block Diagrams ... 46

4.7 OVERLAP AND SAVE METHOD FOR SUCCESSIVE FFTS 46

4.7.1 Overview .. 46

4.7.2 LabVIEW Block Diagram .. 48

viii

4.7.3 Parameters chosen .. 48

4.8 FINAL SYNCHRONIZATION AND PLAYBACK .. 48

4.8.1 Overview .. 48

4.8.2 LabVIEW Block Diagrams and Detailed Description .. 50

CHAPTER 5: SYSTEM VERIFICATION/TESTING .. 59

5.1 AMPLITUDE MATCHING CALIBRATION ... 59

5.1.1 Overview and Setup .. 59

5.1.2 Test Results ... 60

5.2 FINAL SYNCHRONIZATION (DUAL-SWEEP) TESTING AND ANALYSIS 63

5.2.1 Overview and Setup .. 63

5.2.2 Test Results ... 64

5.3 COMPLETE SYSTEM TESTING .. 70

5.3.1 White Noise Source .. 70

5.3.2 Low-Pass Filtered Song Source .. 73

CHAPTER 6: CONCLUSIONS ... 76

6.1 SUMMARY ... 76

6.2 LIMITATIONS OF CURRENT DESIGN ... 76

6.2.1 Hardware .. 76

6.2.2 Mono vs. Stereo .. 77

6.2.3 Microsoft Windows OS .. 77

6.3 FUTURE IMPROVEMENTS ... 78

6.3.1 Microphone and Loudspeaker Array .. 78

6.3.2 Loudspeaker Equalization with Inverse Filtering ... 78

6.3.3 Improved Initial Synchronization ... 78

6.4 CONCLUDING REMARKS ... 79

ix

REFERENCES ... 80

APPENDIX A. LABVIEW SUB-VIS .. 82

A.1 MICROPHONE DATA ACQUISITION .. 82

A.1.1 Sound Input Configure VI .. 82

A.1.2 Sound Input Read VI .. 83

A.1.3 Sound Input Clear VI .. 84

A.2 AUDIO PLAYBACK VIA WAVEIO V0.70 .. 84

A.3 BUILT-IN SIGNAL PROCESSING VIS ... 86

A.3.1 Cross-Correlation VI .. 86

A.3.2 FFT VI .. 87

A.3.3 Inverse FFT VI ... 88

A.3.4 Median Filter VI ... 89

A.3.5 Butterworth Filter VI .. 90

A.3.6 Smoothing Filter VI .. 91

A.3.7 Hanning Window VI ... 91

A.3.8 Interpolation VI .. 92

A.4 ADDITIONAL USER-CREATED VIS .. 93

A.4.1 Bit Weight Converter VI... 93

A.4.2 Sweep Parameters VI(s).. 94

APPENDIX B. LOUDSPEAKER EQUALIZATION INVESTIGATION 96

B.1 OVERVIEW .. 96

B.1.1 LabVIEW Implementation ... 96

B.1.2 Test Results ... 102

x

LIST OF TABLES

Table Page

Table 1-1: Comparison of existing ANC methods vs. frequency-domain method.7

Table 2-1: Parameters for frequency-domain method in Examples 1 and 2.14

Table 3-1: Microphone requirements compared to the Dayton Audio EMM-6

datasheet specifications [10]. ...29

Table 3-2: Dayton Audio EMM-6 SN6521 key frequency response values.....................30

Table 3-3: Loudspeaker requirements compared to the M-Audio AV-30 datasheet

specifications [13]. ...32

Table 4-1: Parameters chosen for data acquisition. ...36

Table 4-2: Parameters chosen for initial synchronization. ..40

Table 4-3: Parameters chosen for transfer function block. ...41

Table 4-4: Parameters chosen for impulse response windowing block.44

Table 4-5: Parameters chosen for dual-sweep algorithm. ...52

Table 5-1: Amplitude matching calibration results with 1 kHz reference signal.60

xi

LIST OF FIGURES

Figure Page

Figure 1-1: Active Noise Control (ANC) via destructive interference.2

Figure 1-2: Basic block diagram of frequency-domain cancellation method.4

Figure 2-1: Passive noise system used in noise-canceling headphones [4].8

Figure 2-2: Simulated typical passive attenuation [4]. ...9

Figure 2-3: Feedback (left) and feedforward (right) noise-cancellation

configurations [3]. ..10

Figure 2-4: Feedback control diagram [4]. ...10

Figure 2-5: Simulated typical active attenuation using feedback method [4].11

Figure 2-6: Feedforward control diagram [4]. ..12

Figure 2-7: Attenuation with a feedback controller for a plant with additional delay

of 0.1 msec and 1 msec [4]. ...13

Figure 2-8: Excerpt of “Beat It” by Michael Jackson, used as the original signal.15

Figure 2-9: Filtered version of waveform in Figure 2-8, used as sample signal.15

Figure 2-10: Cross-correlation of original and sampled signals in LabVIEW.16

Figure 2-11: FFT of original signal...18

Figure 2-12: FFT of sampled signal. ...18

Figure 2-13: Full-length filter frequency response. ..19

Figure 2-14: Filter frequency response from first half of the total sample.20

Figure 2-15: median-filtered version of Figure 2-14. ...21

Figure 2-16: Recreated ~5 sec. portion of waveform in Figure 2-9 (2
nd

 half).22

Figure 2-17: Canceled ~5 sec. future segment of unwanted audio.22

xii

Figure 2-18: Attenuation in dB of the canceled waveform. ..23

Figure 2-19: FFT of white noise source (original and sampled).......................................24

Figure 2-20: Attenuation plot of known white noise source under ideal conditions.24

Figure 2-21: Attenuation vs. frequency for different sample offsets of white noise

source at 44.1 kHz sample rate. ...25

Figure 3-1: Dayton Audio EMM-6 Electret Measurement Microphone.28

Figure 3-2: Frequency Response of Dayton Audio EMM-6 Electret Measurement

Microphone. ...30

Figure 3-3: Blue Icicle XLR to USB Microphone Converter/Preamp [11].30

Figure 3-4: Connection diagram for Blue Icicle interface between mic and PC [11].31

Figure 3-5: Typical frequency response of M-Audio AV-30 reference monitor

loudspeakers according to [13]. ...33

Figure 4-1: High-level system flow diagram. ...34

Figure 4-2: Record From Mic.vi block diagram. ..35

Figure 4-3: Acquire Microphone Data (6sec).vi block diagram.35

Figure 4-4: Cross-correlation.vi block diagram. ...37

Figure 4-5: Input side of cross-correlation.vi block diagram..38

Figure 4-6: Correlation parse loop within cross-correlation.vi. ..38

Figure 4-7: Output side of cross-correlation.vi. ..39

Figure 4-8: Transfer Function.vi block diagram. ..41

Figure 4-9: Impulse Response Windowing.vi block diagram...43

Figure 4-10: Impulse response of environmental filter before and after windowing.43

Figure 4-11: Initial Offset.vi block diagram. ..45

xiii

Figure 4-12: Recreate Waveform.vi block diagram..46

Figure 4-13: WAV from TF.vi block diagram. ...46

Figure 4-14: Overlap and save method schematic diagram [14].47

Figure 4-15: Overlap and save method block diagram. ..48

Figure 4-16: Basic principle of sweep algorithm for final synchronization.49

Figure 4-17: Block diagram of first loop in final synchronization.50

Figure 4-18: Offset compensation calculation on i=0, buffer playback on

subsequent iterations. ...51

Figure 4-19: Block diagram of second important loop in final synchronization

process..52

Figure 4-20: Left part of block diagram in Figure 4-19. ..53

Figure 4-21: Middle part of block diagram in Figure 4-19. ...54

Figure 4-22: Dual-sweep synchronization example. ...56

Figure 4-23: Right part of block diagram in Figure 4-19...56

Figure 4-24: Summary of final synchronization block diagram.57

Figure 4-25: Accumulative offset correction within first loop in Figure 4-17.58

Figure 5-1: Amplitude matching calibration block diagram. ..60

Figure 5-2: Output RMS vs. Input RMS for amplitude matching at 1 kHz.61

Figure 5-3: Linear region of Figure 5-2. ..62

Figure 5-4: RMS percent error vs. input level (dB). ...62

Figure 5-5: Test setup for dual-sweep synchronization. ...64

Figure 5-6: Sweep 1 test (white noise source, ideal environment/devices) – #1.65

Figure 5-7: Sweep 2 test (white noise source, ideal environment/devices) – #1.65

xiv

Figure 5-8: Sweep 1 test (white noise source, ideal environment/devices) – #2.65

Figure 5-9: Sweep 2 test (white noise source, ideal environment/devices) – #2.66

Figure 5-10: Attenuation of white noise source in the frequency domain.66

Figure 5-11: Sweep 1 test (low-pass song source, ideal environment/devices) – #1.68

Figure 5-12: Sweep 2 test (low-pass song source, ideal environment/devices) – #1.68

Figure 5-13: Sweep 1 test (low-pass song source, ideal environment/devices) – #2.69

Figure 5-14: Sweep 2 test (low-pass song source, ideal environment/devices) – #2.69

Figure 5-15: Attenuation of low-pass filtered song in the frequency domain.69

Figure 5-16: Complete system test-setup with external noise source.70

Figure 5-17: Measured environmental filter frequency response (before

windowing). ...71

Figure 5-18: Measured environmental filter frequency response (after windowing).71

Figure 5-19: Full system test (white noise, Sweep 1). ..72

Figure 5-20: Complete system test (white noise, Sweep 2). ...72

Figure 5-21: Attenuation of white noise source in the frequency domain (complete

system). ..72

Figure 5-22: Environmental filter frequency response for low-pass filtered song

with fh = 12 kHz (left) and 2 kHz (right) after windowing. ...73

Figure 5-23: Complete system test (low-pass filtered song, Sweep 1).74

Figure 5-24: Complete system test (low-pass filtered song, Sweep 2).74

Figure A-1: Sound Input Configure.vi IO for microphone input.82

Figure A-2: Sound Input Read.vi IO for microphone input. ...83

Figure A-3: Sound Input Clear.vi IO for microphone input. ..84

xv

Figure A-4: Play Data Format & Setup.vi block diagram. ...85

Figure A-5: CrossCorrelation.vi IO. ...86

Figure A-6: FFT.vi IO. ..88

Figure A-7: Inverse FFT.vi IO. ...88

Figure A-8: Median Filter.vi IO. ...89

Figure A-9: Butterworth Filter.vi IO...90

Figure A-10: Filter Express VI IO. ...91

Figure A-11: Smoothing filter configuration window within Filter Express VI.91

Figure A-12: Hann (Hanning) window and its Fourier transform [20].92

Figure A-13: Hanning window.vi IO. ...92

Figure A-14: Interpolate 1D Array.vi IO. ...92

Figure A-15: Bit Weight Converter (WAVE to I32).vi block diagram.94

Figure A-16: Sweep parameter calculation block #1. ...94

Figure A-17: Sweep parameter calculation block #2. ...95

Figure B-1: Data collection block diagram for multiple 20 Hz to 20 kHz chirps.97

Figure B-2: Loudspeaker average transfer function block diagram.97

Figure B-3: Average measured frequency response of M-Audio AV-30

loudspeaker. ...98

Figure B-4: Loudspeaker frequency response from Figure B-3 in dB.............................98

Figure B-5: Transfer function interpolation block diagram. ...99

Figure B-6: Wiener deconvolution block diagram. ..99

Figure B-7: Block diagarm of windowing, band-pass filtering, and normalization of

Wiener deconvolution filter. ..100

xvi

Figure B-8: Normalized Wiener deconvolution filter with window size M=80000.101

Figure B-9: Wiener deconvolution filter from Figure B-8 in dB.101

Figure B-10: Normalized Wiener deconvolution filter with window size M=5000.102

Figure B-11: Wiener deconvolution filter from Figure B-10 in dB.102

Figure B-12: Wiener-deconvolved loudspeaker transfer function (M=5000).103

Figure B-13: Frequency response from Figure B-12 in dB. ..103

Figure B-14: Comparison between unfiltered (left) and filtered (right) loudspeaker

frequency responses. ..104

1

CHAPTER 1: INTRODUCTION

1.1 Problem Statement

 The cancellation of unwanted noise has and will always be an important challenge

that acoustic engineering and digital signal processing can help address. Those who have

a stake in the success of noise-cancellation systems include the major audio technology

companies, engineers, consumers, and even healthcare providers. Studies have linked

excess noise exposure with health risks such as hearing impairment, hypertension and

ischemic heart disease, annoyance, sleep disturbance, and decreased school performance

[1]. Today, noise cancellation is still considered a luxury, as most people would rather

accept and deal with unwanted noise than pay a premium price for a system to reduce it.

Perhaps the most popular and well-known consumer products to feature noise

cancellation are noise-canceling headphones. Many noise-canceling headphones employ

two forms of noise reduction: passive and active. While the physical materials of the

headphone itself passively attenuate noise above 500 Hz [2], an isolated microphone,

digital signal processor (DSP), and headphone loudspeaker produce a canceling

waveform to actively attenuate noise via destructive interference, as shown in Figure 1-1.

To achieve substantive noise cancellation (better than 9 dB of attenuation), the unwanted

noise signal and cancellation waveform must be matched with an amplitude accuracy

within 3 dB and a phase accuracy within 20 simultaneously [3]. This method of

active noise control (ANC) requires a high-speed DSP and adaptive algorithms that can

be computationally demanding, and its expected performance is typically up to 25 dB of

attenuation at low frequencies for a well-calibrated system [2]. The existing ANC

method assumes that all unwanted noise is random or unknown, and thus the cancellation

2

procedure requires a fast real-time architecture to sample, process, and produce a

canceling waveform within strict timing requirements. Additionally, this method of ANC

is not well-suited for changing, dynamic noise such as music.

Figure 1-1: Active Noise Control (ANC) via destructive interference.

 This project investigates an alternative noise-cancellation procedure in which the

unwanted noise source is assumed to be known, as is in the case of a song.

Advancements in song recognition technology make it possible to identify an unwanted

song, and with the appropriate microphones, loudspeakers, and signal processing, it is

possible to create an acoustic cancellation system in which processing occurs in chunks

in “pseudo-real-time” on a non-real-time operating system such as Windows.

The ultimate goal would be to leverage technological items that many people

already have – a computer, mobile phone, or tablet with a fast processor, and a good set

of loudspeakers – to create an inexpensive acoustic cancellation system for known audio

sources. The only additional item required would be a high-quality measurement

microphone that could interface to the processing platform. This project seeks to create a

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1
Noise

A
m

p
lit

u
d
e

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1
Anti-Noise

A
m

p
lit

u
d
e

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1
Cancellation Result

Sample Number - n

A
m

p
lit

u
d
e

3

system prototype that is affordable (compared to top-of-the-line active noise-canceling

headphones, i.e. less than $300), and achieves similar cancellation performance to the

active noise attenuation of ANC headphones (not including passive noise reduction, or at

least 10 dB).

1.2 Project Overview

 In this project, we will use National Instruments’ LabVIEW running on the

Microsoft Windows operating system to acquire a microphone signal of an unwanted

song source, process the signal, and play back a canceling waveform through a

loudspeaker. LabVIEW is well-suited for this project because it is a very visual,

intuitive, and system-oriented programming language that is designed for rapid

prototyping. LabVIEW also contains many built-in signal processing functions that

allow us to focus more on the system architecture and less on recreating known signal

processing algorithms. Although Windows is not a real-time operating system and thus is

not the ideal platform for a “pseudo-real-time” noise-cancellation system, it offers some

advantages: 1) It runs the basic version of LabVIEW, 2) it allows us to take advantage of

the powerful multi-threaded, high-performance processors and PCs that run on Windows,

3) it allows a Windows PC to simultaneously be both a design tool and a system

prototype, and 4) it allows for quick and simple interfacing with peripherals such as

loudspeakers and USB microphones.

 The basic procedure is as follows: First, a measurement microphone interfaced to

a PC via USB records an excerpt of the unwanted song playing in the environment. We

will assume that the song source has already been identified and its WAVE file data has

been acquired. One example of how this could be accomplished now would be to use a

4

song recognition application such as Shazam or Soundhound to identify the song, and

ping a database to download the song file (copyright issues may apply). To minimize the

complications of additional variables as much as possible, we will perform the test on a

single channel (mono). With the song properly identified and its full WAVE file data

acquired, we perform a cross-correlation algorithm in LabVIEW to approximate the

starting location (sample index) of the excerpt within the original WAVE file, all while

keeping track of the amount of time elapsed during the processing. With the approximate

location found, we perform a Fast Fourier Transform (FFT) on the measured excerpt and

its corresponding WAVE file excerpt to obtain a transfer function between the measured

(mic recording) and actual (WAVE file) frequency responses. Assuming the transfer

function represents the frequency response of the loudspeaker playing the unwanted

sound coupled with an environmental filter, we apply the transfer function to a future

segment of the WAVE file via frequency domain multiplication, take the Inverse Fast

Fourier Transform (IFFT), and phase-shift the time-domain waveform by 180 to produce

the canceling waveform. Lastly, we accumulate future playback values in a buffer, and

stream the canceling waveform to the soundcard for cancellation.

Figure 1-2: Basic block diagram of frequency-domain cancellation method.

5

 During playback, the system requires additional synchronization steps: We

record from the microphone again and sweep the playback index to find the location of

optimal cancellation for a final timing synchronization. We can perform a similar

procedure to sweep the amplitude of the playback signal to find the optimal volume for

the cancellation waveform, but it is more desirable to eliminate the amplitude variable by

calibrating the system beforehand to produce a 1:1 input to output audio level. In the

ideal case – i.e. the song is easily recognizable and non-repetitive, the microphone and

loudspeakers have perfectly flat frequency responses, and the transfer function impulse

response behaves like a low-order linear filter – theory shows that this system can

perform very well. Chapter 2 will provide a detailed proof of concept test to illustrate

this best-case real-world scenario as well as an optimal scenario in which the noise source

is [known] white noise and the environmental filter is perfectly flat. Chapter 4 will

provide a detailed documentation of the LabVIEW system implementation.

 In its final polished form, a noise-cancellation system using the frequency-domain

method proposed in this project could have many potential applications and end-uses for

consumers. For instance, this system could be used in a bedroom to cancel the noise

(music) from the party next door so that the user can get a good night’s sleep. This

system could also be used in mobile technologies in conjunction with music recognition

software to cancel an unwanted song or even assist ANC headphones with supplementary

cancellation.

1.3 Comparison between Existing and Proposed Concepts

The frequency-domain method has a key advantage over the existing ANC

method in that it can accurately predict the future time-domain and frequency-domain

6

values of the noise signal in advance. The predictive ability of the proposed method

effectively makes it a non-causal system, which would be impossible to achieve with a

real-time control system. From this key advantage, we can expect the frequency-domain

method to produce better broadband attenuation performance over the entire audible

frequency range as long as the cancellation waveform is properly synchronized in the

time domain and its frequency response characteristics are adequately matched. We can

also expect it to produce better cancellation of unwanted music.

Furthermore, the existing methods of ANC require ultra-fast analog-to-digital

converters (ADCs) and digital signal processors (DSPs) comprising a control system

which acquires and processes data in real time. The proposed frequency-domain method

can avoid the need for high-speed DSPs to produce the cancellation signal by processing

the future cancellation waveform in bigger sections at a slower rate. It is worth noting

that the proposed frequency-domain method of acoustic cancellation is still technically

“real time,” in that there are still timing requirements that must be met for proper

operation, but these processing-time constrains are on the order of milliseconds to

seconds instead of microseconds.

One advantage that the current real-time ANC method has over the proposed

method is that its timing is deterministic, which makes timing synchronization a much

easier task. For the frequency-domain method running on a non-real-time system, the

processing time will be variable, depending on system resources, which makes perfect

synchronization more difficult to achieve.

Table 1-1 summarizes the aforementioned advantages and disadvantages of the

existing ANC method and the proposed frequency-domain method.

7

Table 1-1: Comparison of existing ANC methods vs. frequency-domain method.

Category Existing ANC Method Freq. Domain Method

Processor requirements
High speed, high power

DSP chip required

Dedicated DSP chip not

required – Processor can

be PC, mobile phone, or

tablet processor

Timing

Real-time processing

restricts calculations to

be within microseconds

(<30) [2]

Piecewise processing

allows for more lenient

constraints (milliseconds

to seconds)

Reliability

Real-time DSP

produces deterministic

timing

Non-real-time operating

system results in variable

processing time and

inconsistent results

Low-Frequency (<400

Hz) Attenuation
10 25 dB [4] 10 70 dB

Wide Frequency

Attenuation
0 10 dB [4] 5 20 dB

Cost (mid-range) >$300 ~$200

Source Best At

Canceling

Any constant, random

noise signal (low

frequency)

Known audio signal (such

as a song)

8

CHAPTER 2: BACKGROUND

2.1 Current Approaches to Noise Cancellation

The current approach to noise cancellation is to use headphones as both a passive

and active noise-canceling device. The passive attenuation behaves like a low-pass filter,

greatly attenuating frequencies above a few hundred Hertz. The active attenuation

behaves like a high-pass filter, performing well at frequencies below a few hundred

Hertz, but not at higher frequencies. Together, both forms of attenuation provide

sufficient noise cancellation over the entire audible frequency range.

2.1.1 Passive Attenuation

The existing noise-cancellation method relies heavily on passive attenuation for

noise reduction above a few hundred Hertz. In a headphone system, the headset shell and

earphone cushions provide a seal between the user’s ear and the noisy environment.

These physical materials absorb high-frequency noise in the vibrations of the shell.

Figure 2-1 shows a simple illustration of a passive noise system [4].

Figure 2-1: Passive noise system used in noise-canceling headphones [4].

This passive attenuation system behaves as a second-order mechanical system

characterized by the following equation:

9

 Eq. 2-1

where M is the mass of the shell, R is the cushion damping, and Kv and Kc are the

stiffness of the air in the shell volume and cushion respectively [4]. We observe that the

attenuation is inversely proportional to the mass of the shell and the cushion damping,

and that the attenuation is better at higher frequencies. Figure 2-2 shows a simulated

passive filter attenuation curve described by Eq. 2-1, with a 6-dB cutoff frequency of 300

Hz [4].

Figure 2-2: Simulated typical passive attenuation [4].

2.1.2 Active Attenuation

Active attenuation within a noise-canceling headphone relies on a control system

that continuously monitors the incoming noise and seeks to minimize an error signal.

Active noise-cancellation systems feature two different control system architectures:

feedback and feedforward [4] [3] [5]. Figure 2-3 shows the simplified diagrams of each

control method [3].

10

Figure 2-3: Feedback (left) and feedforward (right) noise-cancellation configurations [3].

A. Feedback Method

The feedback control system uses an internal microphone that is located directly

in front of the headphone loudspeaker and is coupled to the loudspeaker by a negative

feedback control loop [3]. Figure 2-4 shows the basic block diagram for a negative

feedback analog control system. Here, P is the plant (response from the loudspeaker to

the microphone output), C is the analog controller, d is the disturbance signal (noise), and

e is the error signal [4].

Figure 2-4: Feedback control diagram [4].

11

Eq. 2-2 shows the frequency-domain representation of the error signal.

 Eq. 2-2

Eq. 2-3 describes the response of the closed-loop system.

 Eq. 2-3

Figure 2-5 shows a simulation of a typical magnitude response of active

attenuation using feedback control [4]. We observe from Figure 2-5 that frequencies

below 500 Hz are attenuated by more than 10 dB, while frequencies above a few kHz

show no attenuation. The controller amplifies frequencies in the transition region near 1

kHz, because according to [6], the Bode integral must be equal to zero.

∫ | |

 Eq. 2-4

Figure 2-5: Simulated typical active attenuation using feedback method [4].

12

B. Feedforward Method

The feedforward method is the most popular ANC method used in modern active

noise-canceling headphones [5]. Contrary to the feedback approach, the feedforward

method uses an external microphone to detect a reference of the noise, which gets

inverted and added to the headphone drive signal, while an internal error microphone

tunes the digital controller (adaptive filter) [4] [3]. Figure 2-6 shows the feedforward

control diagram where W is the adaptive filter [4].

Figure 2-6: Feedforward control diagram [4].

The goal of the adaptive filter W is to minimize the mean-squared error of the

signal from the internal error microphone. Some well-known algorithms used to achieve

this goal include: LMS (Least Mean Squares), Filtered-x LMS, and Adjoint LMS, with

the main differences between algorithms being their rates of convergence and

computational efficiencies [5] [7].

One drawback of both digital feedback and feedforward control is that they are

both subject to additional delay due to sampling delay in the DSP and DAC, and the

phase delay of the low-pass filters [4] [3]. If the total electric delay exceeds the acoustic

delay from the reference microphone to the loudspeaker, then the optimal filter will be

non-causal, and prediction will be required to attenuate broadband signals [4]. Figure

13

2-7 shows how this delay can affect performance by limiting both the control bandwidth

and attenuation level of an active noise-cancellation system [4].

Figure 2-7: Attenuation with a feedback controller for a plant with additional delay of

0.1 msec and 1 msec [4].

Figure 2-7 shows that to achieve best performance, the delay must be minimized.

Using a very high sampling frequency can minimize the delay but this will generally

require powerful DSP processors and increased cost [4]. Typically, only band-limited or

predictable signals can be successfully attenuated. Performance is thus limited to narrow

band or tonal noise when using conventional DSP systems [5].

14

2.2 Frequency-Domain Method: Proof of Concept

Here, we discuss the original proof of concept and the fundamental theory behind

the frequency-domain method of active noise control introduced in this report. We

demonstrate two test examples in LabVIEW of the basic procedure using the parameters

listed in Table 2-1 for both an actual song and white noise (known, not random) as the

unwanted noise sources. The goal of Example 1 is to describe the key steps in the

procedure and provide results for an ideal real-world implementation. In Example 2, we

show the theoretical optimal performance of the system.

Table 2-1: Parameters for frequency-domain method in Examples 1 and 2.

Parameter Example 1: Song Example 2: White Noise

Sample Rate 44.1 kHz 44.1 kHz

Bit Depth 16-bit 16-bit

Channels 1-Mono 1-Mono

Noise Source

Frequency Response

Not all frequencies well

represented

All frequencies strongly

represented

Noise Source

Autocorrelation

1 defined autocorrelation

peak with several smaller

peaks (due to

repetitiveness of beat

structure of song)

1 strong autocorrelation

peak

Recorded Sample

Length

Half of original song

length

Half of original signal

length

Microphone

Frequency Response

Perfectly flat over all

frequencies

Perfectly flat over all

frequencies

Loudspeaker

Frequency Response

Perfectly flat over all

frequencies

Perfectly flat over all

frequencies

Environmental

Filter Frequency

Response

Low-order, linear band-

pass filter response

Perfectly flat over all

frequencies

2.2.1 Example 1: Song as Unwanted Noise Source

To make the basic explanation of this method more clear and concise, we will

define two key terms: 1) we will refer to the known audio track data (from a song file) as

15

the original signal. We use a 10 second (approximate) excerpt of Michael Jackson’s

“Beat It” as an example of an original signal, shown in Figure 2-8 below.

Figure 2-8: Excerpt of “Beat It” by Michael Jackson, used as the original signal.

2) We will refer to the sampled and filtered version of the original signal as the

sampled signal. The sampled signal is assumed to be a filtered version of the original

signal since the speakers and environment act as synthetic and natural filters to

frequencies in the audible range of 20 Hz to 20 kHz. For this example, we acquire the

sampled signal with an ideal microphone (noiseless, distortionless, perfectly flat

frequency response). Figure 2-9 shows an example of a sampled signal, which is a

filtered and attenuated version of the original signal from Figure 2-8. Here, we will

assume that the music has been recognized correctly and the original signal data has been

fetched from a database and is ready for processing.

Figure 2-9: Filtered version of waveform in Figure 2-8, used as sample signal.

16

The following list illustrates the basic cancellation procedure using the frequency-

domain method:

A. Determine Sample Location within Original Signal

In order to properly determine the transfer function, or frequency response, of the

environmental filter, we must first locate the starting index of the sampled signal within

the original signal. We achieve this with the cross-correlation function, which is a

convolution-like function used to determine the similarity between two waveforms. We

can find the cross-correlation mathematically using

][][])[(* mngmfngf
m

 Eq. 2-5

 We can determine the cross-correlation in LabVIEW using the built-in correlation

virtual instrument (VI). Figure 2-10 below shows the result of the correlation of the

original signal shown in Figure 2-8 and the first half of the sampled signal shown in

Figure 2-9.

Figure 2-10: Cross-correlation of original and sampled signals in LabVIEW.

17

 Figure 2-10 shows a clear spike at the index near n = 475000. To find the index

of the original signal that corresponds to the starting index of the sampled signal, we use

.mni Eq. 2-6

 In this equation, i is the index of the original signal that corresponds to the

sampled signal’s starting index, n is the index at which the maximum cross-correlation

value occurs, and m is the length (total number of samples) of the original signal. This

method of locating and synchronizing waveforms must be optimized in order to

synchronize waveforms as accurately as possible, since the cancellation capabilities are

highly dependent on proper alignment.

B. Get Frequency Content of Each Signal

Next, we take the Fast Fourier Transform of each signal (both the sampled signal and the

located excerpt of the original signal). Eq. 2-7 shows the equation for the Discrete

Fourier Transform (DFT) of a signal. The FFT is an efficient algorithm to calculate the

DFT.

1.-N , … 0,=kfor
1

0

2

N

n

N

n
kj

nk exX

 Eq. 2-7

 As in the previous step, we use built-in LabVIEW VIs to calculate the FFT for

each signal. Figure 2-11 and Figure 2-12 show the FFTs of the original and sampled

audio waveforms from Figure 2-8 and Figure 2-9. We plot each FFT in the frequency

domain over the audible frequency range (20 Hz 20 kHz).

In a product implementation of this system, we should choose to acquire a

sampled signal of length because the FFT is optimized for signals that are powers of 2

in length.

18

Figure 2-11: FFT of original signal.

Figure 2-12: FFT of sampled signal.

 Figure 2-12 shows the FFT of the entire filtered version of the original signal.

However, only the first half of the original signal will be used to take the FFT. We show

the full length FFTs so that we can compare the filter transfer functions of the full length

signals to that of the half-length signals.

19

C. Determine and Condition the Filter Transfer Function

 We can easily determine the effective filter response applied to the original signal

by the sound source and intervening environment by dividing the sampled signal’s

complex FFT by the original signal’s FFT. It is important to maintain both the magnitude

and phase information for each frequency; and so, you cannot simply divide the

magnitude responses to obtain the effective filter response. Figure 2-13 shows the result

of the FFT division from the full-length data in Figure 2-11 and Figure 2-12. The

resulting filter shows a band-pass response centered at approximately 450 Hz.

Figure 2-13: Full-length filter frequency response.

 Figure 2-14 shows the filter derived from a sample signal whose length is half of

the original sample, and whose index starts at 0 (the beginning of the original signal).

20

Figure 2-14: Filter frequency response from first half of the total sample.

 We can see from Figure 2-13 and Figure 2-14 that significant noise exists on the

filter magnitude responses. If we assume that environmental filters are relatively smooth

in nature, we can apply a low-order median filter to the resulting filter FFT values to

reduce the noisy spikes on the output. Although median filtering is a non-linear process,

it is shown to be more effective at limiting the impulse-like noise on the transfer function

without “blurring” the time-domain response. Figure 2-15 shows the result of passing

the data from Figure 2-14 through a median filter of size 10.

21

Figure 2-15: median-filtered version of Figure 2-14.

D. Recreate & Cancel the Filtered Signal from the Determined Filter Response

 Now that we have the effective environmental filter response, we can apply the

filter to an equal-length future segment of the original signal. We do this by taking the

FFT of future values of the original signal and multiplying the resulting FFT by the

environmental filter response FFT values. Because we are performing frequency-domain

multiplication, it is extremely important that the lengths of both FFT results are the same.

The length of the example filter FFT in Figure 2-15 is half of the original sample length

(~5 seconds out of ~10 seconds), which means we can recreate a filtered version of the

second half of the original signal for cancellation. In Figure 2-16 below, the second half

of the waveform from Figure 2-9 is almost perfectly recreated by multiplying the FFT of

the equivalent portion of the signal from Figure 1-1 and the filter FFT from Figure 2-15,

and then taking the inverse FFT of the result.

22

Figure 2-16: Recreated ~5 sec. portion of waveform in Figure 2-9 (2
nd

 half).

 Once we have recreated the expected values of future sampled data, we can invert

the waveform (180 phase shift) and output the data to destructively interfere with the

future sampled values. Figure 2-17 shows the result of adding the second half of the

waveform data in Figure 2-9 (which has yet to be played) to the inverted waveform in

Figure 2-16. We can see that this method nearly perfectly cancels the unwanted audio

signal.

Figure 2-17: Canceled ~5 sec. future segment of unwanted audio.

 Figure 2-18 below shows the attenuation in dB of the canceled waveform over

the audible frequency range. Since the environmental filter behaves like a band-pass

filter centered at 450 Hz, we see the best attenuation of roughly 70 dB near 450 Hz.

23

Conversely, we see no attenuation at the frequencies that the environmental filter had

filtered out (below 50 Hz and above 2.5 kHz). This makes sense from an intuitive

standpoint because if the sampled signal is already void of frequency content above 2.5

kHz and below 50 Hz, then it is already attenuated at those frequencies and an ANC

signal will not help to further attenuate those frequencies.

Figure 2-18: Attenuation in dB of the canceled waveform.

2.2.2 Example 2: White Noise as Unwanted Noise Source

This example uses a 6-second white noise signal as the unwanted noise source.

We will use the same white noise signal for both the original and sampled signals,

effectively simulating a perfect environment. Figure 2-19 shows the FFT of the white

noise signal. Note that because the white noise source is time-limited, the magnitude

response of the FFT is not equal-valued for all frequencies.

24

Figure 2-19: FFT of white noise source (original and sampled).

 Here, obtaining the transfer function of the environmental filter is trivial, since the

two waveforms are identical. The resulting transfer function will have a magnitude of 1.0

and a phase of 0 for all frequencies. When we apply this transfer function to the original

signal, we create a perfect copy of the noise signal to be canceled, which we phase-shift

by 180 and play back for cancellation.

 With perfect synchronization, we can attenuate the noise by approximately 300

dB, as shown in the attenuation plot in Figure 2-20.

Figure 2-20: Attenuation plot of known white noise source under ideal conditions.

25

Any residual noise is due to quantization error and rounding error from floating

point calculations within LabVIEW, which is insignificant because the human ear would

not be able to distinguish it from ambient noise.

As previously mentioned, the plot in Figure 2-20 is the attenuation result in the

case of perfect synchronization. Figure 2-21 shows the attenuation vs. frequency when

the cancellation waveform is 1, 2, 3, and 4 samples out of sync (at). For a

1-sample misalignment, the best theoretical attenuation reduces to 50 dB (at 20 Hz) and

further reduces logarithmically by approximately 20 dB/decade as the frequency

increases. Increasing the offset effectively shifts the y-intercept (referenced to 20 Hz) up

on the plot in Figure 2-21. The notches at 14.7 kHz and 11 kHz are due to the fact that

the sample rate is 44.1 kHz and therefore 14.7 kHz is one full period out of phase (360)

for an offset of 3, and 11 kHz is one full period out of phase for an offset of 4. Further

increasing the offset will introduce more notches, as the offset and frequency of one

period required for complete cancellation are inversely related.

Figure 2-21: Attenuation vs. frequency for different sample offsets of white noise source

at 44.1 kHz sample rate.

Offset:

26

The frequency-domain method described here is very robust as long as we

properly synchronize the original and sampled signals and acquire a sufficient length

sample. Due to the high sensitivity to time-alignment, we must continue improving and

developing the synchronization methods, since the cross-correlation method does not

always produce an exact alignment.

 The minimum sample length required varies from song to song, as each song

contains unique frequency content over time. However, tests show that sample lengths

down to 2 seconds in length at a 44.1 kHz sample rate still produce significant

attenuation. Increasing the sample size not only increases the number of frequency bins

of the FFT, but also the odds that more frequencies in the audible range are represented

within that sample. As the sample length increases, the system will not only take longer

to begin the cancellation process, but the algorithm itself will take longer. Thus, we must

simultaneously maximize the representation of frequencies in the audible range to

increase the reliability of this frequency-domain cancellation method, while minimizing

the length so that we can start the cancellation procedure quicker and perform all

necessary computations efficiently.

27

CHAPTER 3: DESIGN REQUIREMENTS

3.1 Introduction

This project seeks to create a system prototype that is affordable compared to

existing high-performance active noise-canceling headphones, i.e. less than $300), and

achieves similar cancellation performance to the active noise attenuation of ANC

headphones without microphone isolation. Since the microphone and loudspeaker will

not be isolated and neither the microphone nor loudspeaker will be ideal devices, the goal

is to achieve at least 10 dB of noise reduction.

Again, the aim is to leverage widely-available technological items such as a

personal computer and loudspeakers to create an inexpensive, almost do-it-yourself

acoustic cancellation system for known audio sources. The only additional item required

is a high-quality measurement microphone that can take accurate acoustic measurements.

3.2 Acoustic Measurements

 This sound canceling method relies heavily on precise acoustic measurements. If

these measurements do not accurately represent the real-world environmental sound, then

all future signal processing computations and algorithms based on these inaccurate

measurements will neither be reliable nor useful. Thus, the project requires a high-

quality measurement microphone. Electret condenser microphones (ECM) are the most

commonly used microphone type for measurement purposes due to their stability and

their wide and flat frequency response characteristics [8] [9]. ECMs can also achieve

reasonable signal-to-noise ratios and good maximum sound pressure levels, although

distortion and a high noise floor can be an issue. The two main disadvantages of ECMs

are that 1) they require a large DC bias voltage (usually phantom power at +48V) and (2)

28

they must be coupled directly to an amplifier because of their low capacitance [8]. Most

importantly, ECMs are relatively inexpensive devices, with quality microphones in the

price range of $50-$100. The best (and most expensive) measurement microphones cost

several thousands of dollars and these would be the ideal devices for this project.

However, the goal of the project is to not only to create a sound cancellation system that

performs well, but one that is also affordable. Therefore, we must make some sacrifices

in quality with a less expensive microphone.

3.2.1 Dayton Audio EMM-6 Electret Measurement Microphone

 To compromise price and quality as best as possible, this project utilizes the

Dayton Audio EMM-6 electret condenser measurement microphone for acoustic

measurements, shown in Figure 3-1 below. Table 3-1 on the following page shows the

microphone requirements compared to the EMM-6 datasheet specifications.

Figure 3-1: Dayton Audio EMM-6 Electret Measurement Microphone.

29

Table 3-1: Microphone requirements compared to the Dayton Audio EMM-6 datasheet

specifications [10].

Parameter Microphone

Requirements

Dayton Audio EMM-6

Capsule type electret condenser 6 mm electret condenser

Polar pattern Omnidirectional omnidirectional

Frequency response 20 Hz – 20kHz 18 Hz - 20 kHz

Impedance 200 200 between pins 2 and 3

Sensitivity at 1 kHz

into 1 k

<10 mV/Pa 10 mV/Pa (-40 dBV, re. 0 dB =

1V/Pa)

Max. SPL for 1%

THD @ 1000 Hz

>120 dB 127 dB

S/N ratio >70 dB 70 dB A-weighted

Connector USB gold plated XLR

Power phantom power phantom power: +15 V to +48 V

Weight Any 144 grams

Price <$100 $79.99

 The EMM-6 offers many advantages over other similarly-priced measurement

microphones. First, the microphone boasts a very flat frequency response from 18Hz to

20 kHz with a sensitivity deviation within 2dB of the 1 kHz value over the entire

frequency range [10]. Furthermore, Dayton Audio provides a file of the calibration data

attributed to each microphone’s serial number. Figure 3-2 shows the frequency response

calibration data for the microphone used in this project (serial number 6521), which is

located on Dayton Audio’s website. The frequency response appears to be reasonably

flat over the entire frequency range, with more variation in the sensitivity occurring at

frequencies above 2 kHz. Table 3-2 summarizes key values from Figure 3-2.

30

Figure 3-2: Frequency Response of Dayton Audio EMM-6 Electret Measurement

Microphone.

Table 3-2: Dayton Audio EMM-6 SN6521 key frequency response values.

Parameter Sensitivity Frequency

Sensitivity at 1 KHz into 1 k -40.5 dBV 1 kHz

Maximum Sensitivity -38.1 dBV 20 kHz

Minimum Sensitivity -41.4 dBV 6.24 kHz

3.2.2 Blue Icicle XLR to USB Microphone Converter/Preamp

 The Dayton Audio EMM-6 microphone has an XLR connector and requires

phantom power. This project necessitates a USB microphone interface to a PC and

therefore requires an XLR-to-USB converter which supplies phantom power. In this

project, we use the Blue Icicle converter and preamp shown in Figure 3-3 [11].

Figure 3-3: Blue Icicle XLR to USB Microphone Converter/Preamp [11].

31

 Figure 3-4 shows the connection diagram provided by Blue Microphones on how

to properly interface an XLR, phantom-powered microphone to a PC via USB [11].

Figure 3-4: Connection diagram for Blue Icicle interface between mic and PC [11].

According to the Blue Icicle datasheet, it uses a 44.1 kHz sample rate with a bit

depth of 16 bits. It requires 200 mA from the USB bus to supply 48 V phantom power to

the microphone [11].

3.3 Loudspeaker

The ideal loudspeaker for this project has a perfectly flat frequency response from

20 Hz to 20 kHz and has no distortion at any frequency in that range. As with the

microphone, we cannot expect to achieve ideal characteristics with an affordable device.

However, this project will attempt to overcome the shortcomings of non-ideal

loudspeakers with inverse filtering. First, we will characterize the frequency response of

the loudspeaker using a frequency sweep source. An inverse filter attempts to “undo” the

frequency response of the loudspeaker by boosting the underrepresented frequencies and

attenuating the overrepresented frequencies.

In theory, inverse filtering can perfectly equalize the frequency response of the

loudspeaker. In practice, however, the process will most likely introduce distortion

32

because the magnitude of the inverse filter response goes to infinity as the measured

magnitude response approaches zero. One solution is to use Wiener deconvolution,

which can compensate for these instances where the inverse filter response goes to

infinity by introducing a term in the denominator of the filter [12]. Unfortunately, if the

loudspeaker physically cannot reproduce particular frequencies, then no amount of

frequency response correction will be able to achieve a flat response. We will further

discuss the performance of inverse filtering in this project in Chapter 5.

3.3.1 M-Audio AV-30 Reference Monitor Loudspeakers

This project will use the M-Audio AV-30 reference monitor loudspeakers for

audio playback. These are mid-range studio monitors designed to reproduce accurate

sound with a relatively flat frequency response for under $100. The main drawback of

the AV-30 is its low-frequency response. We can attempt to improve the low-frequency

response with a subwoofer. See Table 3-3 below for the loudspeaker requirements and

Figure 3-5 for the AV-30 frequency response according to [13].

Table 3-3: Loudspeaker requirements compared to the M-Audio AV-30 datasheet

specifications [13].

Parameter Loudspeaker

Requirements

M-Audio AV-30

Frequency response 50 Hz – 20kHz 90 Hz – 20kHz

RMS SPL 100 dB @ 1 meter 101.5 dB @ 1 meter

S/N ratio >80 dB >90 dB A-weighted

Input connectors 1/8” audio jack Left and right RCA line input

and 1/8" aux input

Price <$100 $79.99

33

Figure 3-5: Typical frequency response of M-Audio AV-30 reference monitor

loudspeakers according to [13].

34

CHAPTER 4: IMPLEMENTATION

This chapter will provide a detailed block-by-block discussion of the project

implementation in LabVIEW according to the diagram shown Figure 4-1 below. We

will highlight important features and LabVIEW functions, and explain the pros and cons

of the chosen parameters.

Figure 4-1: High-level system flow diagram.

4.1 Initial Data Acquisition

4.1.1 Overview

The first block in the system block diagram is the data acquisition block. This

block records a segment of the unwanted audio via a microphone and sends the measured

data to the next block. In this project, we make use of LabVIEW’s built-in Sound VIs for

microphone input. The three main sub-VIs required for microphone data acquisition are

“Sound Input Configure.vi,” which configures the soundcard to record audio from a

specified microphone source at a desired sound format; “Sound Input Read.vi” which

reads the input data and stores the values to a waveform; and “Sound Input Clear.vi”

which stops acquisition of data and clears the buffer. See APPENDIX A for more

information on the inputs and outputs of low-level VIs used in this project. Combined

Initial Data
Acquisition

Initial
Sync

Transfer
Function

Determination

Impulse
Response

Windowing

Secondary
Offset

Calculation

Cancellation
Waveform
Generation

Overlap
and Save
Method

for
Successive

FFTs

Final Sync
and

Playback

35

together, these three sub-VIs create a custom VI (function) called “Record From Mic.vi,”

shown in Figure 4-2. This VI will record a specified number of samples of audio from

the microphone and output a 1-dimensional array of wave values.

The function “Acquire Microphone Data (6sec).vi” shown in Figure 4-3 records

approximately 6 seconds of audio at 44.1 kHz and 16 bits per sample. It also initializes a

microsecond timer, which we will use later for synchronization purposes.

4.1.2 LabVIEW Block Diagrams

Figure 4-2: Record From Mic.vi block diagram.

Figure 4-3: Acquire Microphone Data (6sec).vi block diagram.

36

4.1.3 Parameters Chosen

For the sound format, we choose a sample rate of 44.1 kHz and a bit depth of 16

bits per sample because these are the values compatible with the Blue Icicle [11]. As

mentioned earlier, this project operates on only a single channel (mono), but we must

choose 2 channels in the sound format to keep the system compatible with stereo

microphones. To obtain a single channel, we simply extract one channel from the

resulting 2-D array.

We choose to record 262144 samples of audio for a few reasons: 1) the number is

a power of 2 (2
18

), which will make future FFT operations more efficient; 2) we will

achieve a good resolution in the frequency domain (~0.17 Hz) after taking an FFT; 3) the

approximately 6-second (5.944 s) duration of audio is long enough to increase the

likelihood that more frequencies will be present in the waveform; and 4) the large value

will increase the likelihood that the cross-correlation operation will accurately locate the

starting index of the excerpt within the original WAVE file.

The disadvantages of using such a large number of samples for the initial data

acquisition are that 1) the block will produce a minimum time delay of 6 seconds and 2)

the processing time will be longer than it would with a smaller sample length, since

processing time increases as sample length increases. Table 4-1 below summarizes the

key parameters used in the initial data acquisition block.

Table 4-1: Parameters chosen for data acquisition.

Parameter Value

Sample Rate 44.1 kHz

Number of Channels 2

Bit Depth 16-bit

Number of Samples 262144 (or 2
18

)

37

4.2 Initial Synchronization

4.2.1 Overview

After the initial data acquisition stage, it is critical to locate the sample index

within the original WAVE file that the excerpt begins so that the frequency content of

each FFT match as best as possible. We accomplish the initial synchronization using the

cross-correlation function, which is a convolution between the recorded excerpt and the

original waveform. The length of the original waveform subtracted from sample index of

the peak of the cross-correlation function returns the starting index of the excerpt.

However, with large WAVE files, it is not efficient to perform the cross-

correlation with the entire waveform because this will require an unreasonably large

amount of memory and slow down the processor. To avoid using excess RAM, we parse

the WAVE file into more manageable sizes and perform the cross-correlation between

the excerpt and each parsed section.

4.2.2 LabVIEW Block Diagram

 Figure 4-4 shows the entire block diagram used in the initial synchronization

process.

Figure 4-4: Cross-correlation.vi block diagram.

Figure 4-5 shows a zoomed-in view of the input side of the block diagram, in

which we read the WAVE file and specify the parse size based on the WAVE file size.

38

Figure 4-5: Input side of cross-correlation.vi block diagram.

Figure 4-6 shows the parse loop, which sweeps through the WAVE file, performs

the cross-correlation on each section, and saves the maximum correlation value, index,

and loop iteration in which the max value occurs using three case-select structures and

shift registers, which send data to the next iteration of the FOR loop.

Figure 4-6: Correlation parse loop within cross-correlation.vi.

Figure 4-7 shows the output side of the block diagram, which computes the

starting index () based on 1) the parse size (), 2) the index within the parse

39

where the max value occurs (), and 3) the parse (loop iteration) in which the max

value occurs () according to Eq. 4-1 below.

 ()() Eq. 4-1

Figure 4-7: Output side of cross-correlation.vi.

4.2.3 Parameters Chosen

The initial synchronization process requires only one important parameter: the

parse size. This parameter affects both the memory usage required for processing, the

processing time, and the reliability of the correlation function. If the sections are too

large, then both the memory usage and the processing time will increase. If parse size is

too small, then the correlation result becomes unreliable. Tests show that parsing the

WAVE file into sections approximately twice the length of the excerpt produces the best

results. This means that the cross-correlation is between the 6-second recorded excerpt

and WAVE file sections of approximately 12 seconds.

40

Table 4-2: Parameters chosen for initial synchronization.

Parameter Value

Parse size 524288 (or 2
19

)

4.3 Transfer Function

4.3.1 Overview

With the approximate starting index of the recorded excerpt located, the next step

is to determine the transfer function of the environmental filter (degradation function) by

comparing the FFTs of both the measured excerpt and the found WAVE file excerpt.

Prior to taking the FFT of the measured excerpt, we filter the waveform with a band-pass

filter. The band-pass filter prevents the transfer function from over-amplifying the

extreme low and high frequencies. We choose to filter out the low-frequency content

because the loudspeaker will not be able to adequately reproduce these frequencies and

also because including this frequency content in the canceling waveform could introduce

unnecessary distortion. Additionally, we filter out the high-frequency content for a

couple of reasons: 1) active noise-cancellation performance worsens at higher frequencies

(recall Figure 2-7 and Figure 2-21), and we can thus reduce the risk of adding to the

high-frequency noise by pre-filtering the measured sample; and 2) for this project, we can

assume that the environmental filter has some passive, low-pass behavior and therefore

has already filtered out much of the high-frequency content.

After computing the environmental filter transfer function, we must filter the

impulse-like noise in both the magnitude and phase response with a low-order median

filter. Although median filtering is a non-linear operation, it works best to eliminate

high-variance noise without greatly disturbing the original signal.

41

4.3.2 LabVIEW Block Diagram

Figure 4-8: Transfer Function.vi block diagram.

4.3.3 Parameters Chosen

The parameters for this block include the band-pass and median filter

specification. For the band-pass filter, we choose a 5
th

 order Butterworth filter due to its

smooth transition region and linear phase response. We choose 50 Hz for the low cutoff

frequency because the loudspeaker will not be able to properly reproduce frequencies

below this value. We choose 12 kHz for the high cutoff frequency because we want to

avoid adding high-frequency noise during cancellation. Lastly, we choose a median filter

size of 10 based on experimental testing. Median filter sizes over 20 caused noticeable

and undesirable artifacts in the sound of the waveform. The chosen parameters are

summarized in Table 4-3 below.

Table 4-3: Parameters chosen for transfer function block.

Parameter Value

Band-pass filter type Butterworth

Band-pass filter order 5

Band-pass low cutoff frequency 50 Hz

Band-pass high cutoff frequency 12 kHz

Median filter size 10

42

4.4 Impulse Response Windowing

4.4.1 Overview

One undesirable result of the environmental filter transfer function is that, due to

the non-ideal loudspeaker and microphone, it behaves like an infinite impulse response

(IIR) filter. This project requires the filter to behave like a relatively low-order finite

impulse response (FIR) filter to minimize the impact of circular convolution when

rebuilding the output waveform from multiple FFTs. Tests show that the impulse

response (found by taking the IFFT of the transfer function) typically contains significant

information beyond 100000 samples. In LabVIEW, the impulse response shows peaks at

indices 0 and 262144 and nearly symmetrically fades out toward index 131072, as shown

in Figure 4-10. To properly window the impulse response, we must swap the first and

second halves of this waveform, set the first and last 131072 – M/2 values to zero, and

apply the window to the middle section of M values, where M is the window size. Then,

we rebuild the waveform and swap the two halves back. Figure 4-9 shows the LabVIEW

implementation of this process.

After windowing the transfer function’s impulse response, we again take its FFT

to convert it back to the frequency domain.

43

4.4.2 LabVIEW Block Diagram

Figure 4-9: Impulse Response Windowing.vi block diagram.

4.4.3 Parameters chosen

The two main parameters in this subsystem are the window type and window size.

We choose to use a Hanning Window with a size of 5000. The equation for the Hanning

Window is shown in Eq. 4-2 below, where M is the window size.

 (

) Eq. 4-2

Figure 4-10: Impulse response of environmental filter before and after windowing.

44

Figure 4-10 shows the impulse response of the environmental filter before and

after windowing. We can see that without windowing, the impulse response does not

decay to zero. The following table summarizes the parameters chosen for this block.

Table 4-4: Parameters chosen for impulse response windowing block.

Parameter Value

Window type Hanning

Window size 5000

4.5 Secondary Offset Calculation

4.5.1 Overview

The goal of this block is to determine the amount of time that has elapsed since

the initial data acquisition block so that it can compensate by adding an offset to the

starting index of the future cancellation waveform. Recall from Figure 4-3 that “Acquire

Microphone Data (6sec).vi” initializes a microsecond timer. Before we can apply the

environmental filter to the WAVE file to generate the cancellation waveform, we must

find the total elapsed time and convert it to its equivalent number of samples. Eq. 4-3

shows the conversion from the total elapsed microseconds (t) to the equivalent sample

offset value.

 Eq. 4-3

4.5.2 LabVIEW Block Diagram

Figure 4-11 shows the LabVIEW implementation of Eq. 4-3. The purpose of

“FFT values in” and “FFT values out” is to guarantee that LabVIEW processes this block

45

only after the FFT values have been determined, since the VI will not be executed until

all inputs are ready.

Figure 4-11: Initial Offset.vi block diagram.

4.6 Cancellation Waveform Generation

4.6.1 Overview

The next step is to generate the cancellation waveform from the environmental

filter transfer function. The LabVIEW implementation of this process is quite simple:

Given the full song WAV data, the found starting index, and the calculated secondary

offset, we extract the future excerpt and take its FFT. We then perform complex

multiplication with the FFT of the future WAV excerpt and the filter transfer function.

Lastly, we take the IFFT of the result and negate the time-domain signal. The reason we

cannot simply convolve the impulse response of the environmental filter with the rest of

the WAVE file is that this operation would take up too much memory. This is the same

reason we had to parse the WAVE file for the cross-correlation in the initial

synchronization block.

46

4.6.2 LabVIEW Block Diagrams

Figure 4-12: Recreate Waveform.vi block diagram.

Figure 4-13: WAV from TF.vi block diagram.

4.7 Overlap and Save Method for Successive FFTs

4.7.1 Overview

The previous step generates a cancellation waveform of length 262144, or about 6

seconds of cancellation audio at 44.1 kHz. In order to continue the cancellation, we must

repeat the same process to subsequent portions of the WAV data. However, due to the

effects of circular convolution, we cannot simply compute the next 262144 values and

append the result to the previous computation. Multiplication in the frequency-domain

multiplication is equivalent to convolution in the time-domain, and the convolution has

some lead-in and lead-out depending on the length of the filter’s impulse response. In the

overlap and save method, we overlap the successive FFTs, throw away the lead-in and

47

lead-out of each convolution result, and save the parts of the waveform unaffected by the

wrapping effect of the circular convolution.

Figure 4-14 shows an illustration of the overlap and save method implemented in

this project [14].

Figure 4-14: Overlap and save method schematic diagram [14].

Using half of the window length (M/2) from the impulse response windowing

block as the number of samples to throw away from the beginning and end of each

convolution result, we can make use of LabVIEW’s array subset function to extract the

desired portion of each convolution result. Figure 4-15 shows the basic LabVIEW

implementation of the overlap and save method. We convert each saved portion of the

convolution result from WAV values to 32-bit integers (required for WaveIO playback

[15]), and we then fill a buffer by concatenating each result to dynamically build an

output array. In this implementation, we separately compute the first section so that it is

immediately available for playback. This gives the overlap and save block a 6 second

48

head start to fill up the output buffer. The output buffer array, called “I32 values” is a

local variable, which can be accessed from other locations within the same VI.

4.7.2 LabVIEW Block Diagram

Figure 4-15: Overlap and save method block diagram.

4.7.3 Parameters chosen

The only parameter in the overlap and save block is the overlap size, or the

number of samples to throw away from the beginning and end of the signal. We choose

M/2 for this parameter, where M is the window length chosen in Section 4.4.3. M/2 is

the smallest value for which you can guarantee avoiding the effects of circular

convolution, because it is also the maximum length of the environmental filter’s impulse

response.

4.8 Final Synchronization and Playback

4.8.1 Overview

As the output buffer fills up, the system can begin playing the cancellation

waveform. This block attempts to find the optimal index offset to synchronize the

cancellation waveform with the noise signal. We achieve this by first calculating an

M/2

Sections Remaining

Excerpt [Size] Bits M/2

49

updated offset compensation value based on the delay since the previous calculation in

Section 4.5. Then, we perform a coarse sweep (Sweep 1) of the sample index above and

below the approximate best index value while measuring the resulting audio. We locate

the region within the recorded waveform where it exhibits the best cancellation, and

repeat with a fine sweep (Sweep 2) around the located region. This procedure will only

work if 1) the sample index that produces perfect synchronization/cancellation falls

within the range of the first sweep, 2) the step size of Sweep 1 is not larger than the width

of the cancellation “sweet spot,” and 3) the total sweep range of Sweep 2 is at least twice

the step size of Sweep 1.

Figure 4-16 shows an illustration of the principle behind the dual-sweep

algorithm for the final synchronization block. The red region represents the indices

where there is no cancellation, while the green region represents the cancellation “sweet

spot,” or the range of indices where partial and complete cancellation occurs. The origin

index labeled as “0” is the approximate pre-sweep sample index including the initial

offset compensation. Note that we may require a constant offset index value if the pre-

sweep value is consistently off by the same (or nearly the same) value.

Figure 4-16: Basic principle of sweep algorithm for final synchronization.

50

4.8.2 LabVIEW Block Diagrams and Detailed Description

While the concept of the dual-sweep algorithm is fairly straightforward, its

implementation in LabVIEW is complicated. This block consists of two important loops

that must communicate between one another. Figure 4-17 shows the block diagram of

first important loop in this final synchronization process. This loop sets the sweep

parameters for each sweep, performs both Sweep 1 and Sweep 2, adjusts the sample

index offset value based on the value found in the second loop (shown in Figure 4-19),

and plays the cancellation waveform.

Figure 4-17: Block diagram of first loop in final synchronization.

Figure 4-18 shows the case structure that calculates the best approximate pre-

sweep index (origin of Figure 4-16) during the first iteration of the loop shown in Figure

4-17 (bottom right) and plays the buffered cancellation audio during all subsequent

iterations.

51

Figure 4-18: Offset compensation calculation on i=0, buffer playback on subsequent

iterations.

In Figure 4-17, we define the parameters for each sweep. There are 4 different

sweep parameters: start iteration, stop iteration, speed adjust, and step size. The start and

stop iterations define the iteration range within the first loop that the sweep will occur.

The speed-adjust parameter defines the rate at which the index will sweep by skipping

iterations within the specified range that do not divide evenly into the difference between

the current iteration and the start iteration. For example, a speed-adjust value of 2 would

make it so that the index will only step during even iterations. The step size is simply the

number of samples the sweep steps by during each iteration. With a speed adjust value of

2, the index will step by the step size every 8000 samples (2 buffer size), or every 181

milliseconds of real time.

52

For this project, we choose the following parameters in Table 4-5 below.

Table 4-5: Parameters chosen for dual-sweep algorithm.

Parameter Sweep 1 Sweep 2

Start iteration 10 160

Stop iteration 110 220

Speed adjust 2 2

Step size 10 2

With these parameters, Sweep 1 will step from 250 samples by 10 samples.

This is because with a speed-adjust value of 2, there will only be 50 steps during the 100

iterations, which equates to a total Sweep 1 range of 500 samples. Similarly, Sweep 2

will step from 15 samples by 1 sample. We wait 50 iterations between Sweep 1 and

Sweep 2 to allow the second important loop to process the recorded audio and return the

best found index.

The sweep parameters are set in a case structure with the Boolean variable “end

sweep 1” as the case selector. For Sweep 1, “end sweep 1” is False. The variable is set

to True after processing the measured audio from Sweep 1 in the second loop.

When the first loop iteration equals the start iteration, this triggers a Boolean

variable “start?” to be True. When “start?” is True, the sample index at start of the sweep

is stored to the variable “Sweep Start Index” and the processing within the second main

loop begins.

Figure 4-19: Block diagram of second important loop in final synchronization process.

53

Figure 4-19 shows the block diagram of the second loop, which records audio

during each sweep, compares the averaged and normalized measured waveform to the

averaged and normalized playback waveform, and determines the index location where

the best cancellation occurs. The entire process must be contained within a while loop

because it must check the values of the local variables at the start of each iteration.

Figure 4-20: Left part of block diagram in Figure 4-19.

Figure 4-20 shows the left side of the block diagram in Figure 4-19. This is

where the sound input is configured and the microphone data is read similarly to the

initial data acquisition step in Section 4.1.

54

Figure 4-21: Middle part of block diagram in Figure 4-19.

Figure 4-21 shows the portion of the block diagram that compares the measured

audio to the playback audio (expected audio), and finds the best cancellation index. We

must compare the measured and expected audio because songs typically have a variable

dynamic range and thus by only taking the minimum value of the measured audio after

smoothing, we increase the risk of finding a false positive. This project uses a moving

average filter size of 10000. We locate the index where the optimal cancellation occurs

within the averaged result by finding the location of its minimum value.

The following are some important details within Figure 4-21:

 We subtract an experimentally-determined constant value (14000 in this case)

from “Sweep Start Index” to account for the delay in Figure 4-20. This better

aligns the measured audio with the playback audio.

 We disregard the first (24000 = 3 step size) samples of the averaged result,

where: step size = buffer size speed adjust = 4000 2 = 8000 samples.

This is because the beginning portion of the outcome of the moving average filter

returns small values, which will likely result in false positives. Additionally,

depending on the synchronization of the microphone recording and the sweep, it

is possible that the microphone might record a cancellation signal at the beginning

55

if it begins the recording slightly before the start of the sweep and if the optimal

cancellation index is near the origin of the sweep. See Section 5.2.2 for an

example of why disregarding the first 24000 samples is important.

 Because both sweeps are designed to step the sample index value down from

 to , the final index of each sweep is below the initial

approximation (origin of Sweep 1). We must add the appropriate number of

indices to () to produce the best index. Figure 4-22 shows an

example where the best cancellation index is 108 samples above the origin. Using

the sweep parameters from Table 4-5, we expect the best coarse cancellation

index to be 36 steps (step size of 10) above the final sweep value of 250. Sweep

2 centers around the sum of the two values, which will be 110 samples above the

initial approximation. Lastly, we expect the best Sweep 2 cancellation index to be

13 steps above the final sweep value of 15, producing a final found index value

of 2 with respect to the origin of Sweep 2, and +108 with respect to the origin of

Sweep 1. The total range of the loop is 400,000 samples in real-time, since there

are 50 total steps with (2 buffer size = samples/step).

56

Figure 4-22: Dual-sweep synchronization example.

The final part of the second loop is to set “end sweep 1” to True, shown in Figure

4-23. Recall, that this value will trigger the sweep parameter case structure to switch

from the Sweep 1 parameters to the Sweep 2 parameters.

Figure 4-23: Right part of block diagram in Figure 4-19.

57

Figure 4-24 summarizes the basic flow diagram of the final synchronization step.

Note that the blue blocks represent the processing that takes place in Figure 4-17, while

the green blocks represent the processing that occurs in Figure 4-19.

Figure 4-24: Summary of final synchronization block diagram.

Figure 4-25 shows the accumulative offset correction within the first loop in

Figure 4-17. Here we add 7 different values together: the offset compensation value

calculated during the first iteration, the index values for each sweep (final values are

 250 and 15 for Sweeps 1 and 2 respectively), the sample index corrections for each

sweep, the constant offset value, and the current playback iteration multiplied by the

buffer size.

58

Figure 4-25: Accumulative offset correction within first loop in Figure 4-17.

59

CHAPTER 5: SYSTEM VERIFICATION/TESTING

In this chapter, we will show and discuss the experimental test results for the

amplitude matching calibration step, the dual-sweep synchronization algorithm, and the

complete system performance.

5.1 Amplitude Matching Calibration

5.1.1 Overview and Setup

To avoid the need for amplitude synchronization, we perform an amplitude

calibration step, which matches the amplitude of the microphone signal to that of the

loudspeaker signal. This will ensure that there is a 1:1 ratio between the measured audio

and the cancellation audio and will allow magnitude variations in the frequency domain

to accurately reflect the amplitude variation required for cancellation in the time domain.

In this project, the final amplitude value is controlled by four different level-controls: 1)

the volume setting on the PC, 2) the volume knob on the loudspeaker, 3) the gain-control

knob on the microphone preamplifier, and 4) the microphone gain setting within

Windows’ sound control panel.

To perform the calibration step, we set 3 of the 4 level-controls previously listed

to constant settings – We choose the volume knob on the loudspeaker as the only

variable. Next we play a 1 kHz sine wave signal through the loudspeaker and record the

output audio with the microphone. We compare the RMS of the recorded waveform to

that of the original waveform, and manually adjust the volume knob on the loudspeaker

until the RMS values match. We can sweep the input level of the sine wave from -30 dB

to 0 dB to ensure the amplitude matches over a wide dynamic range.

60

We create a data collection VI to sweep the input level from 30 dB to 0 dB in

steps of +3 dB and store the input and output RMS values in an array. This is shown in

Figure 5-1 below.

Figure 5-1: Amplitude matching calibration block diagram.

5.1.2 Test Results

Table 5-1 shows the final amplitude matching calibration test results. For this

test, the PC volume level was set to 16 (out of 100) and both microphone gain levels were

set to their maximum.

Table 5-1: Amplitude matching calibration results with 1 kHz reference signal.

Input Level (dB) Input RMS Output RMS RMS percent error (%)

-30 0.0224 0.0224 0.0295

-27 0.0316 0.0315 0.4015

-24 0.0446 0.0443 0.7475

-21 0.0630 0.0625 0.8638

-18 0.0890 0.0881 0.9795

-15 0.1257 0.1242 1.2327

-12 0.1776 0.1749 1.5089

-9 0.2509 0.2467 1.6748

-6 0.3544 0.3483 1.7272

-3 0.5006 0.3982 20.4596

0 0.7071 0.3985 43.6386

61

We can see that the input and output RMS levels are very similar to each other for

input levels between 30 dB and 6 dB. However, as the input level approaches 0 dB,

the output RMS no longer increases linearly. This is shown visually in Figure 5-2 and

Figure 5-3. The most likely reason why the output RMS values level off as the input

approaches 0 dB is that this particular soundcard or codec has built-in compression or

limiting as the input level approaches peak gain.

Figure 5-2: Output RMS vs. Input RMS for amplitude matching at 1 kHz.

The trend line representing the linear region between 30 dB and 6 dB has a

slope of 0.9813, which is a 1.87% error from the desired value of 1.0.

62

Figure 5-3: Linear region of Figure 5-2.

Figure 5-4 below shows the RMS percent error as the input level is swept from

 30 dB to 0 dB. The error is less than 2% until the input level reaches 6 dB, where it

begins to increase due to the peak compression.

Figure 5-4: RMS percent error vs. input level (dB).

63

In this test, we developed a reliable way to calibrate the amplitude of the speaker

output to match that of the microphone measurement. We discovered that the soundcard

or codec introduces compression as the input level approaches 0 dB. This mismatch at

high amplitude levels will negatively affect the overall system’s ability to attenuate loud

noise, but it should not have an impact on its performance for amplitude levels below 6

dB. Soundcards or codecs that do not introduce compression near 0 dB will not create

this problem.

5.2 Final synchronization (Dual-Sweep) Testing and Analysis

5.2.1 Overview and Setup

To test the reliability of the dual-sweep synchronization method from Section 4.8,

we design a test suite in LabVIEW consisting of a modified version of the complete

system which bypasses the environmental filter transfer function block. Bypassing this

block simulates a perfect loudspeaker frequency response and a perfect environment.

Next, we play a WAVE file with Windows Media Player at 100% volume before

running the LabVIEW program. The cancellation loudspeaker is connected to the

computer’s audio-out jack and the measurement microphone is placed near the woofer (as

opposed to the tweeter) of the loudspeaker. The woofer outputs frequencies at the lower

end of the audible range, which are more likely to be attenuated. Here, the cancellation

occurs within the soundcard – the loudspeaker is used to play the canceled audio so that

the microphone can detect the optimal cancellation region for each sample index sweep.

Figure 5-5 shows the physical setup configuration for this test.

64

Figure 5-5: Test setup for dual-sweep synchronization.

5.2.2 Test Results

The first test uses a white noise source as the unwanted audio. Out of 20 trials,

the dual-sweep synchronization method was successful in all but 1 of them (95% success

rate). The only failure was due to the cancellation “sweet spot” not falling within the

range of the first sweep. Possible reasons for this include: 1) variable processing speeds

within Windows, 2) large deviation between the cross-correlation result and the expected

value, and 3) additional unwanted noise interfering with the initial audio measurement.

Recall from Section 4.8.2 that the sweep may require a constant index offset.

This particular test required a constant offset of -3500 samples. The following two

figures show the recorded microphone signals (averaged and compared to the original

sweep signal) for both Sweep 1 and Sweep 2. Here the cancellation region falls within

the range of Sweep 1, and the system is able to correctly locate the optimal cancellation

sample index.

65

Figure 5-6: Sweep 1 test (white noise source, ideal environment/devices) – #1.

Figure 5-7: Sweep 2 test (white noise source, ideal environment/devices) – #1.

In the following example, the microphone recording for Sweep 2 begins slightly

before the index sweep begins, which means that the microphone records a short period

of cancellation at the beginning of the measurement. Since we do not want this false

positive to be identified as the best cancellation index, we disregard the first 24000

samples and use the remaining samples to determine the best index (shown in Figure

5-9).

Figure 5-8: Sweep 1 test (white noise source, ideal environment/devices) – #2.

66

Figure 5-9: Sweep 2 test (white noise source, ideal environment/devices) – #2.

From Figure 5-7 and Figure 5-9, we see that the unwanted white noise appears to

be reduced by approximately 80%, or 14 dB. However, recall that this waveform is

normalized, averaged, and compared to the normalized and averaged input waveform, so

it doesn’t reflect the actual attenuation. To get a better idea of the attenuation this

produces, we must compare the frequency responses of the measured noise and the

measured cancellation waveforms. Figure 5-10 shows the attenuation in the frequency

domain.

Figure 5-10: Attenuation of white noise source in the frequency domain.

67

From Figure 5-10, it is still difficult to understand how well the system attenuates

noise. The best metric to understand the overall noise cancellation performance is to

compare the total power of the noise signal with the cancellation signal. To do this, we

simply square and every element in both waveforms, sum the array elements and divide

the result from the cancellation waveform with that of the noise waveform. In the

example above, the total signal power is attenuated by 9.4 dB. For this case, the total

signal power attenuation ranges from 8-15 dB.

For the next test, we replace the white noise sound source with a low-pass-filtered

version of an actual song and run an additional 20 trials. Theoretically, we should expect

the system to produce better cancellation because perfect synchronization is not required

to significantly attenuate low-frequency sound. However, the filtered signal has much

less frequency content than the unfiltered WAVE file version and this could reduce the

reliability of the cross-correlation result – i.e. the system may no longer consistently and

accurately locate the starting index of the recorded excerpt within the unfiltered WAVE

file. We will most likely require different sweep parameters and a different constant

sample index offset value to compensate for this. After many tests, we find that the

constant sample index which yields the most consistent results is -4750 samples. This

result was found to deviate by as much as 1000 samples. To accommodate for this

wide sample offset deviation, we could increase the step size of Sweep 1, or increase the

start-to-stop iteration range. The main drawback of increasing the sweep range is a

longer sweep time. For this test, however, we will leave the sweep parameters as they

were and only adjust the constant offset value.

68

After 20 trials, we find that the dual-sweep algorithm located the best cancellation

index 14 times (70%). 6 tests failed because the desired sample index was outside of the

range of the sweep. As we hypothesized, the following graphs show a wider cancellation

“sweet spot.” We also see that we can achieve better attenuation than in the previous test.

Figure 5-11: Sweep 1 test (low-pass song source, ideal environment/devices) – #1.

Figure 5-12: Sweep 2 test (low-pass song source, ideal environment/devices) – #1.

The following two figures show another successful sweep in which the

normalized and averaged unwanted noise shows a reduction of 96%, or 28 dB. Again

this metric does not accurately reflect the actual noise cancellation performance given

this particular input signal; it simply serves as an estimate for the magnitude of the

attenuation as well as proof that cancellation is present.

69

Figure 5-13: Sweep 1 test (low-pass song source, ideal environment/devices) – #2.

Figure 5-14: Sweep 2 test (low-pass song source, ideal environment/devices) – #2.

Figure 5-15 shows the noise attenuation in the frequency domain. We see that

when the unwanted sound signal is low-pass in nature, the cancellation performance is

much better than when the signal has a lot of high-frequency content. If we compare the

input noise power with the cancellation noise power, we find that this system attenuates

the noise power by 64 dB. Section 2.2 of this report shows a similar result.

Figure 5-15: Attenuation of low-pass filtered song in the frequency domain.

70

From these tests, we see typical attenuation between 50-70 dB for low-pass

filtered songs. Keep in mind that these tests simulate a perfect environment where the

noise and cancellation audio occur within the soundcard.

5.3 Complete System Testing

Lastly, we test the performance of the entire system for both a white noise source

and a low-pass filtered song. We also perform the test with and without loudspeaker

equalization. The test-setup is similar to the one shown in Figure 5-5 except that now

instead of playing the noise within Windows, we have an external sound source.

Figure 5-16: Complete system test-setup with external noise source.

5.3.1 White Noise Source

For this test, we use a white noise signal for the unwanted noise source. The

following two figures show the measured environmental filter frequency response before

and after windowing the impulse response. We observe that windowing has a greater

impact on the low frequency response than the high frequency response.

71

Figure 5-17: Measured environmental filter frequency response (before windowing).

Figure 5-18: Measured environmental filter frequency response (after windowing).

The following two figures show results similar to those produced in the dual-

sweep test section. We see that the first sweep correctly locates the general cancellation

region, and the second sweep finds the precise location. This example shows the best

noise reduction achieved over 20 trials.

72

Figure 5-19: Full system test (white noise, Sweep 1).

Figure 5-20: Complete system test (white noise, Sweep 2).

Here, the noise power is attenuated by 14 dB. Figure 5-21 shows the attenuation

of the white noise in the frequency domain. Out of 20 trials, this was the best case noise

attenuation. The average attenuation is approximately 10 dB.

Figure 5-21: Attenuation of white noise source in the frequency domain (complete

system).

73

5.3.2 Low-Pass Filtered Song Source

Here, we repeat the previous test for a low-pass filtered song. As demonstrated in

Section 5.2, we expect the system to provide better noise attenuation because active

attenuation is better at canceling low-frequency noise. We can achieve the best noise-

cancellation performance if we anticipate low-pass filtered noise and lower the band-pass

filter’s high cutoff frequency from 12 kHz to 2 kHz. This helps because any high-

frequency noise the microphone picks up will not be factored into the environmental

filter transfer function and thus the cancellation waveform will not include the song’s

high-frequency content. Put another way, if we know that the unwanted noise is low-pass

filtered and does not contain high-frequency content, then we can take advantage of this

by lowering the high frequency cutoff of the transfer function so that the system does not

attempt to cancel the song’s low-frequency content with any high-frequency content.

Figure 5-22 shows the measured environmental filter transfer function (after

windowing) with the high cutoff frequency set to 12 kHz (left) and 2 kHz (right). Both

show strong frequency content at the low end of the audible range below 2 kHz.

However, the plot on the left exhibits significant frequency content above 2 kHz.

Figure 5-22: Environmental filter frequency response for low-pass filtered song with fh =

12 kHz (left) and 2 kHz (right) after windowing.

74

The plot on the right is a better representation of the actual unwanted song’s

frequency response and thus will provide better cancellation performance.

The following two figures show the results of the dual-sweep synchronization

step. We observe that Sweep 1 locates the cancellation region, and Sweep 2 finds the

optimal sample index. Here, we see that the noise appears to be attenuated by

approximately 90%, or 20 dB.

Figure 5-23: Complete system test (low-pass filtered song, Sweep 1).

Figure 5-24: Complete system test (low-pass filtered song, Sweep 2).

This system is very sensitive to additional noise: For example, the existence of 60

Hz noise will cause the environmental filter transfer function to amplify the song’s 60 Hz

frequency content, which is not desirable. Also, there is a possibility that random

impulses of noise may occur during the cancellation region, which could prevent the

system from correctly locating the best possible cancellation index.

75

It also appears that the overall system performance depends on the available

resources within Windows. For example, if there are too many tasks running in the

background that require a significant amount of system memory and processor demands,

then the processing within LabVIEW will take longer. Luckily, the system is designed to

handle these slight fluctuations in processing performance. However, tests show that

varying the system’s resources affects the constant sample index offset required for time-

synchronization. A dedicated processor would not have this problem. The dual-sweep

synchronization step also requires that the system completes the post-Sweep-1 processing

before the start of Sweep 2, since Sweep 2 uses the result from Sweep 1 to determine its

sweep location.

76

CHAPTER 6: CONCLUSIONS

6.1 Summary

In this report, we introduced a novel frequency domain method for the active

acoustic cancellation of known audio sources and demonstrated a system prototype in

LabVIEW running on a Windows PC using Dayton Audio’s EMM-6 measurement

microphone and M-Audio’s AV-30 loudspeakers. We showed that in a perfect

environment with a perfect measurement microphone and loudspeaker, i.e. flat frequency

responses with high signal-to-noise ratios, we can achieve roughly 300 dB noise

attenuation, where the error associated with the 32-bit floating point computations is the

only thing preventing perfect cancellation.

We also showed that representing the environmental filter frequency response by

a low-order linear filter changes the typical noise attenuation to 50-70 dB. In this case,

small errors in the environmental filter recreation have a greater impact on the system’s

ability to attenuate noise.

Finally, for the complete system implementation, we achieved typical wideband

(white noise) attenuation between 8-15 dB with low-frequency attenuation in the range of

10-20 dB. For the most part, these attenuation values exceed the goal of 10 dB and are

within the range of the typical performance of active noise-canceling headphones.

6.2 Limitations of Current Design

6.2.1 Hardware

The most significant limitation on the current design is the quality of the

microphone and loudspeaker. Although both the EMM-6 and AV-30 offer great

77

performance for their respective prices, a cancellation system utilizing this frequency

domain method requires perfect measurement and playback devices. If the microphone

cannot detect certain frequencies, then the computed environmental filter transfer

function will filter those frequencies out. Similarly, if the loudspeaker cannot reproduce

certain frequencies, then it will not be able to attenuate noise at those frequencies. The

performance of this cancellation system is heavily debilitated by the worst-performing

device.

6.2.2 Mono vs. Stereo

Another limitation of this implementation is that it only takes into account 1

channel (mono). Songs typically have left and right channels that together produce a

stereo sound field. Therefore, any unwanted song in the environment will contain a

combination of phase-shifted and attenuated audio from both the left and right channels.

In this general case, the location of the microphone within the stereo field becomes

important. Furthermore, this project does not take into account the multipath effects of

an audio waveform reflecting off of objects in the environment.

6.2.3 Microsoft Windows OS

Another major limitation of this design is the non-real-time processing within

Windows. The nondeterministic timing within Windows makes audio synchronization a

difficult task. This project makes use of microsecond timers to track the amount of time

elapsed between key processes; however, even with these corrections, the offset required

for perfect synchronization still deviates by a few thousand samples, depending on

system resources, i.e. available memory and processor bandwidth. One obvious solution

would be to switch to a real-time operating system. However, one important goal of this

78

project is to make use of software that most people already have, and most people do not

use real-time operating systems.

6.3 Future Improvements

6.3.1 Microphone and Loudspeaker Array

One possible future improvement is to implement the cancellation system with an

array of microphones and speakers. This array of devices could potentially expand the

zone of silence, or the region in space where significant cancellation occurs. [16] shows a

robust MIMO control framework for the compensation of loudspeaker-room responses.

It is shown that increasing the number of support loudspeakers results in better

loudspeaker-room equalization. It was previously mentioned that the most important

loudspeaker requirement is that it have a flat frequency response.

6.3.2 Loudspeaker Equalization with Inverse Filtering

A possible alternative of supplementary loudspeaker equalization technique is to

use inverse filtering to “undo” the frequency response of the loudspeaker [17] [18].

While it is possible to attenuate frequencies that are overrepresented in the loudspeaker

frequency response, it is not feasible to boost frequencies that the loudspeaker cannot

reproduce. Refer to Appendix B, for an investigation on loudspeaker equalization using

Wiener deconvolution.

6.3.3 Improved Initial Synchronization

This project relies heavily on the ability of the cross-correlation procedure to

accurately locate the recorded excerpt within the original WAVE file. A large error in

this step will propagate throughout the rest of the signal chain: First, the frequency

79

content of the mismatched excerpts will likely be different, and thus the calculated

environmental filter transfer function will not accurately represent the actual

environmental filter response. Additionally, miscalculating the exact location of the

excerpt will lead to timing synchronization errors which must be corrected by the dual-

sweep algorithm.

Another improvement that must be made on the initial synchronization procedure

is to account for the repetitive structure of songs. A poorly made song may have

repetitive elements that are exact copies throughout the song. This will cause multiple

peaks in the cross-correlation function, which could cause the system to find the wrong

starting index location. Unfortunately, there is no easy solution to this problem. To

account for this potential repetition, a future implementation of this design must store all

possible starting index locations based on a thresholded magnitude of the cross-

correlation result. The cancellation system will work as long as the repeated structure of

the song remains identical to the found location. However the cancellation will no longer

work when the song changes, and at this point, the system must jump to the other

possible locations.

6.4 Concluding Remarks

This thesis provides strong evidence that the acoustic cancellation of known audio

sources in the frequency domain is a viable method for canceling unwanted songs in an

environment. The 8-15 dB broadband attenuation and 10-20 dB low-frequency

attenuation compares favorably with the typical performance of existing active noise

cancellation systems. A future implementation of this system can only improve upon

these results.

80

REFERENCES

[1] W. Passchier-Vermeer and W. Passchier, "Noise exposure and public health,"

Environmental Health Perspectives, no. 108, pp. 123-131, 2010.

[2] O. Jones, "Challenges Await In Noise-Cancelling Headset Design - Electronic

Design," 13 June 2013. [Online]. Available:

http://electronicdesign.com/analog/challenges-await-noise-cancelling-headset-

design. [Accessed 28 April 2014].

[3] Wolfson Microelectronics, "Ambient Noise Cancellation for Headphones and

Handsets," Application Note, Aug. 2010, Rev 1.1.

[4] B. Rafaely, "Active Noise Reducing Headset," in International Congress and

Exhibition on Noise Control Engineering, The Hague, The Netherlands, 2001.

[5] V. Sethia, "Noise Cancellation in Headphones," Electronic Systems Group, EE Dept,

IIT Bombay, Nov. 2002.

[6] J. C. Doyle, B. A. Francis and A. R. Tannenbaum, Feedback Control Theory,

Maxwell MacMillan International, 1992.

[7] Y. Xiao and J. Wang, "A New Feedforward Hybrid Active Noise Control System,"

IEEE Signal Processing Letters, vol. 18, no. 10, pp. 591-594, 2011.

[8] G. Sessler and J. West, "Self‐biased condenser microphone with high capacitance,"

The Journal of the Acoustical Society of America, vol. 34, no. 11, p. 1787, 1962.

[9] A. Ohyagi, D Adachi, H Kodama and Y Yasuno, "Electret Condenser Microphones

for Measurement Instruments," 2008 13th International Symposium on Electrets, p.

C135, 2008.

[10] Dayton Audio, "EMM-6 Measurement Microphone," EMM-6 Datasheet.

[11] Blue Microphones, "Blue Icicle Datasheet," Datasheet, 2008.

[12] R. W. a. S. E. Rafael Gonzalez, Digital Image Processing Using Matlab., Prentice

Hall, 2003.

[13] M-Audio, "M-Audio AV-30 User Guide," Datasheet, 2010.

[14] A. R. Collins, "Zoom FFT," [Online]. Available:

http://www.arc.id.au/ZoomFFT.html. [Accessed 15 May 2014].

[15] C. Zeitnitz, WaveIO Version 0.70: A Soundcard interface for LabView (Help File),

Nov. 2010.

81

[16] L.-J. Brännmark, A. Bahne and A. Ahlén, "Compensation of Loudspeaker–Room

Responses in a Robust MIMO Control Framework," IEEE Transactions on Audio,

Speech, and Language Processing, vol. 21, no. 6, pp. 1201-1216, 6 June 2013.

[17] S. Hendry, "Loudspeaker Equalisation to Compensate for Low Frequency Room

Acoustics." Ph.D. Dissertation, School of Physics, Univ. of Edinburgh, 2007.

[18] G. S. Norcross, A. G. Soulodre and C. M. Lavoie, "Subjective Investigations of

Inverse Filtering," Journal of the Audio Engineering Society, vol. 52, no. 10, pp.

1003-1026, 2004.

[19] National Instruments, LabVIEW 2012 Help, 2012.

[20] G. Heinzel, A. Rüdiger and R. Schilling, "Spectrum and spectral density estimation

by the Discrete Fourier transform (DFT), including a comprehensive list of window

functions and some new flat-top windows," Max Planck Institute (MPI) für

Gravitationsphysik / Laser Interferometry & Gravitational Wave Astronomy, 2002.

82

 LABVIEW SUB-VIS APPENDIX A.

 Microphone Data Acquisition A.1

LabVIEW uses three built-in functions to record microphone audio. The

following is a detailed description of the functionality and IO of each VI according to the

LabVIEW 2012 help file [19].

A.1.1 Sound Input Configure VI

This VI configures a sound input device to acquire data and send the data to the

buffer.

Figure A-1: Sound Input Configure.vi IO for microphone input.

number of samples/ch: specifies the number of samples per channel in the buffer. Use a

large number of samples for continuous operations. Use a smaller number of samples if

you want to use less memory.

sample mode: specifies whether the VI acquires samples just once (Finite Samples) or

continuously (Continuous Samples). In Finite Samples mode, call Sound Input Read

only until you have written the number of samples specified in number of samples/ch.

In Continuous Samples mode, you can call Sound Input Read repeatedly as needed.

device ID: is the input or output device you access for a sound operation. In general,

most users should select the default value of 0. The value ranges from 0 to n–1, where n

is the number of input or output devices on the computer.

sound format: sets the acquisition rate, the number of channels, and the bits per sample

of the sound operation. The values for each of these controls is dependent on your sound

card.

sample rate (S/s) sets the sampling rate for the sound operation.

number of channels specifies the number of channels. This input can accept as many

channels as the sound card supports. For most sound cards 1 is Mono and 2 is Stereo.

bits per sample specifies the quality of each sample in bits. Common resolutions are 16

bits and 8 bits. The default is 16 bits.

83

error in describes error conditions that occur before this node runs. This input provides

standard error in functionality.

task ID returns an identification number associated with the configuration on the

specified device. You can pass task ID to other sound operation VIs.

error out contains error information. This output provides standard error out

functionality.

A.1.2 Sound Input Read VI

This VI reads data from a sound input device.

Figure A-2: Sound Input Read.vi IO for microphone input.

number of samples/ch specifies the number of samples per channel to read from the

buffer.

task ID is the sound operation from the configured device you want to manipulate or

input. You generate task ID with the Sound Input Configure VI.

error in describes error conditions that occur before this node runs. This input provides

standard error in functionality.

timeout (sec) specifies the time, in seconds, that the VI waits for the sound operation to

complete. This VI returns an error if the time elapses. The default is 10. If you set timeout

(sec) to -1, the VI waits indefinitely.

task ID out is the manipulated sound operation originally passed to the task ID

parameter.

data reads any sound data from the internal buffers. For multi-channel sound data, data

is an array of waveforms where each element of the array is a single channel.

t0 is the start time for the first sample read. LabVIEW approximates the initial

time that the first sample was read because the sound file does not contain this

data.

dt is the sampling interval. It is the inverse of the sampling rate specified by the

Sound Input Config VI.

Y is the sound data. If the array data type is a floating-point numeric, Y ranges

from -1.0 to 1.0.

The specified data type determines the range of values for the sound data.

error out contains error information. This output provides standard error out

functionality.

84

A.1.3 Sound Input Clear VI

This VI stops acquisition of data, clears the buffer, returns the task to the default

state, and clears the resources associated with the task. The task becomes invalid.

Figure A-3: Sound Input Clear.vi IO for microphone input.

task ID is the sound operation from the configured device you want to manipulate or

input. You generate task ID with the Sound Input Configure VI.

error in describes error conditions that occur before this node runs. This input provides

standard error in functionality.

error out contains error information. This output provides standard error out

functionality.

 Audio Playback Via WaveIO v0.70 A.2

WaveIO is a soundcard interface for LabVIEW. While the default sound library

lvsound.dll has some limitations in I/O channels, sampling rates, and resolutions, the

WaveIO library overcomes these shortcomings by providing flexible access to the

soundcard with all possible hardware supported features. The connection between the

LabView VI and actual sound hardware is done via the standard Windows API.

Therefore, all sound systems providing drivers for Windows should be accessible via the

WaveIO interface. This applies to on-board sound, PCI sound cards as well as USB

sound systems [15]. WaveIO also allows for a direct write to the output buffer with low

latency.

85

The WaveIO package contains the following Soundcard Interface VIs in waveio.llb:

WaveIO_Open: opens a sound device for recording or playback. The device has to be

started before actually reading/writing data to it. The open will return an error if the

device is not existing, already open or the selected sound format is not supported by the

device. A watchdog thread is started, if the specified timeout is greater than zero. The

watchdog will close the device, if the no call to DLL for the specific device is recorded

within the given time window. For each device (and I/O mode) a separate watchdog

thread is started.

WaveIO_Start: starts the opened sound device.

WaveIO_Play: sends the provided data to the soundcard. An error will occur,

if the size of the provided data does not match the buffer setting of the open

command.

WaveIO_Record: waits and retrieves data from the soundcard.

WaveIO_Stop: stops the sound device. Required before closing the device.

WaveIO_Close: closes the sound device.

Figure A-4 shows the VI used in this project that formats the output audio

(sample rate, number of channels, bits per sample, and buffer size) and configures

WaveIO for audio playback. In the project signal chain, this block goes between the first

cancellation block and the audio playback loop (before the overlap and save method as

well). The sample rate is set to 44.1 kHz, the number of channels is set to 2, the bit size

is set to 16 bits, and the buffer size is set to 4000 samples.

Figure A-4: Play Data Format & Setup.vi block diagram.

86

 Built-in Signal Processing VIs A.3

This project utilizes many built-in signal processing VIs. These VIs include:

 Cross-correlation

 FFT and Inverse FFT

 Median filter

 Butterworth filter

 Smoothing filter

 Windowing (Hanning Window)

 Interpolation

A.3.1 Cross-Correlation VI

This VI computes the cross correlation of the input sequences X and Y. The cross

correlation Rxy(t) of the sequences x(t) and y(t) is defined by the following equation:

 ∫

Eq. A-1

The discrete implementation is as follows:

 ∑

 Eq. A-2

Figure A-5: CrossCorrelation.vi IO.

87

X is the first input sequence.

Y is the second input sequence.

algorithm specifies the correlation method to use. When algorithm is direct, this VI

computes the cross correlation using the direct method of linear correlation. When

algorithm is frequency domain, this VI computes the cross correlation using an FFT-

based technique. If X and Y are small, the direct method typically is faster. If X and Y

are large, the frequency domain method typically is faster. Additionally, slight

numerical differences can exist between the two methods.

0 direct

1 frequency domain (default)

normalization specifies the normalization method to use to compute the cross correlation

between X and Y.

0 none (default)

1 unbiased

2 biased

Rxy is the cross correlation of X and Y.

error returns any error or warning from the VI.

A.3.2 FFT VI

This VI computes the fast Fourier transform (FFT) of the input sequence X. For

1D signals, the FFT VI computes the discrete Fourier transform (DFT) of the input

sequence with a fast Fourier transform algorithm. The 1D DFT is defined as:

 ∑

Eq. A-3

where x is the input sequence, N is the number of elements of x, and Y is the transform

result. The frequency resolution is:

 Eq. A-4

where fs is the sampling frequency.

88

Figure A-6: FFT.vi IO.

X is a real vector.

shift? specifies whether the DC component is at the center of FFT {X}. The default is

FALSE.

FFT size is the length of the FFT you want to perform. If FFT size is greater than the

number of elements in X, this VI adds zeros to the end of X to match the size of FFT

size. If FFT size is less than the number of elements in X, this VI uses only the first n

elements in X to perform the FFT, where n is FFT size. If FFT size is less than or equal

to 0, this VI uses the length of X as the FFT size.

FFT {X} is the FFT of X.

error returns any error or warning from the VI.

A.3.3 Inverse FFT VI

This VI computes the inverse discrete Fourier transform (IDFT) of the input

sequence FFT {X}. For a 1D, N-sample, frequency domain sequence Y, the IDFT is

defined as:

∑

Eq. A-5

Figure A-7: Inverse FFT.vi IO.

FFT {X} is the complex valued input sequence.

shift? specifies whether the DC component is at the center of FFT {X}. The default is

FALSE.

X is the inverse complex FFT of FFT{X}.

error returns any error or warning from the VI.

89

A.3.4 Median Filter VI

This VI applies a median filter of rank to the input sequence X, where rank is

right rank if right rank is greater than zero, or left rank if right rank is less than zero. The

Median Filter VI obtains the elements of Filtered X using the following equation:

 Eq. A-6

where Y represents the output sequence Filtered X, n is the number of elements in the

input sequence X, Ji is a subset of the input sequence X centered about the i
th

 element of

X, and the indexed elements outside the range of X equal zero. The following equation

describes Ji:

 – – – – Eq. A-7

where rl is the filter left rank, and rr is the filter right rank. The value given to either

left rank or right rank defines the order of the median filter.

Figure A-8: Median Filter.vi IO.

X is the input signal to filter. The number of elements, n, in X must be greater than right

rank. If the number of elements in X is less than or equal to right rank, the VI sets

Filtered X to an empty array and returns an error.

left rank is the number of elements used to compute the median filter to the left side. left

rank must be greater than or equal to 0. The default is 2.

right rank is the number of elements used to compute the median filter to the right side.

If right rank is less than 0, the VI assumes right rank is equal to left rank. right rank

must be less than X. The default is -1.

Filtered X is the output array of filtered samples. The size of this array is the same as the

input array X.

error returns any error or warning from the VI.

90

A.3.5 Butterworth Filter VI

This VI Generates a digital Butterworth filter by calling the Butterworth

Coefficients VI.

Figure A-9: Butterworth Filter.vi IO.

filter type specifies the passband of the filter.

0 Lowpass

1 Highpass

2 Bandpass

3 Bandstop

X is the input signal to filter.

sampling freq: fs is the frequency in Hz at which you want to sample X and must be

greater than 0. The default is 1.0 Hz. If sampling freq: fs is less than or equal to 0, this

VI sets Filtered X to an empty array and returns an error.

high cutoff freq: fh is the high cutoff frequency in Hz. The default is 0.45 Hz. The VI

ignores this parameter when filter type is 0 (Lowpass) or 1 (Highpass). When filter type

is 2 (Bandpass) or 3 (Bandstop), high cutoff freq: fh must be greater than low cutoff

freq: fl and observe the Nyquist criterion.

low cutoff freq: fl is the low cutoff frequency in Hz and must observe the Nyquist

criterion. The default is 0.125 Hz. If low cutoff freq: fl is less than or equal to 0 or

greater than half the value of sampling freq: fs, the VI sets Filtered X to an empty array

and returns an error. When filter type is 2 (Bandpass) or 3 (Bandstop), low cutoff freq:

fl must be less than high cutoff freq: fh.

order specifies the filter order and must be greater than 0. The default is 2. If order is

less than or equal to 0, the VI sets Filtered X to an empty array and returns an error.

init/cont controls the initialization of the internal states. The default is FALSE. The first

time this VI runs or if init/cont is FALSE, LabVIEW initializes the internal states to 0. If

init/cont is TRUE, LabVIEW initializes the internal states to the final states from the

previous call to this instance of this VI. To process a large data sequence that consists of

smaller blocks, set this input to FALSE for the first block and to TRUE for continuous

filtering of all remaining blocks.

Filtered X is the output array of filtered samples.

error returns any error or warning from the VI.

91

A.3.6 Smoothing Filter VI

This VI generates a smoothing filter and yields forward-only (FIR) coefficients.

This option is available only when you select Smoothing from the Filtering Type pull-

down menu within the Filter Express VI. You can then choose to specify the smoothing

filter as moving average or exponential. Figure A-11 shows the smoothing filter

configuration window within the Filter Express VI.

Figure A-10: Filter Express VI IO.

Figure A-11: Smoothing filter configuration window within Filter Express VI.

A.3.7 Hanning Window VI

This VI applies a Hanning window to the input signal X. The Hanning window is

defined by the following equation:

92

 (

) Eq. A-8

The following figure shows the Hanning window and its Fourier transform [20].

Figure A-12: Hann (Hanning) window and its Fourier transform [20].

Figure A-13: Hanning window.vi IO.

X is a real vector.

Windowed X is the input signal with the window applied.

error returns any error or warning from the VI.

A.3.8 Interpolation VI

This VI linearly interpolates a decimal y value from an array of numbers or

points using a fractional index or x value.

Figure A-14: Interpolate 1D Array.vi IO.

93

array of numbers or points can be an array of numbers or an array of points where each

point is a cluster of x and y coordinates. If this input is an array of points, the function

uses the first element in the cluster (x) to obtain a fractional index by linear interpolation.

The function then uses this fractional index to compute the output y value from the

second cluster element (y).

fractional index or x is the index or x-value at which the function should return a y-

value. For example, if array of numbers or points contains two double-precision,

floating-point numeric values, 5 and 7, and fractional index or x is set to 0.5, the

function returns 6.0, which is halfway between the values at elements 0 and 1.

If array of numbers or points contains an array of data point sets, the function returns

the linearly interpolated y value at the x-value corresponding to fractional index or x.

For example, if the array contains two points, (3,7) and (5,9), and fractional index or x

is set to 3.5, the function returns 7.5.

fractional index or x does not interpolate beyond the bounds of an array or data point

set. For example, if the parameter is set lower than the first element or x-value in an

array, the function returns the value of the first element or the y-value of the first data

point. Similarly, if the parameter is set too high, the function returns the value in the final

element or the final y-value. fractional index or x must be located directly on a point or

between two points for the function to work correctly.

y value is the interpolated value of the element at the fractional index or the interpolated

y-value of the fractional data point, in array of numbers or points.

 Additional User-Created VIs A.4

This project requires some miscellaneous VIs that are not completely discussed in

Chapter 4 but are critical to the functionality of the system.

A.4.1 Bit Weight Converter VI

One such VI is the bit weight converter VI, which converts the WAVE values

(double precision floating point) to 32-bit integer values and vice versa. This function is

necessary because WaveIO requires 32-bit integers for audio playback, while all FFT

computations are with double precision floating point values. Figure A-15 shows the VI

for the conversion from WAVE file to 32-bit integers according to the following

equation.

94

 ((

 ⁄
)) Eq. A-9

Figure A-15: Bit Weight Converter (WAVE to I32).vi block diagram.

A.4.2 Sweep Parameters VI(s)

The dual-sweep algorithm discussed in Section 4.8 uses nested VIs to compute

important values required to produce a successful sweep based on the given sweep

parameters. These computations are located in sub-VIs to minimize the visual clutter

within the main VI.

Figure A-16 shows the block diagram of the VI which computes values such as

the total size of the microphone recording required to capture the entire sweep. It also

show the calculation for the equivalent step size in the microphone recording that

corresponds to one step of the sweep.

Figure A-16: Sweep parameter calculation block #1.

95

Figure A-17 shows the block diagram for the VI that performs the Boolean

comparisons which determine the start of the sweep and the continuation of the sweep

based on the sweep parameters.

Figure A-17: Sweep parameter calculation block #2.

96

 LOUDSPEAKER EQUALIZATION INVESTIGATION APPENDIX B.

 Overview B.1

In an attempt to equalize the loudspeaker frequency response, we investigate

using an inverse filtering method known as Wiener deconvolution. The frequency

response of a Wiener deconvolution filter is defined by Eq. B-1 [12].

| |
 Eq. B-1 [12]

where is the frequency response of the loudspeaker and is its signal-to-noise

ratio. We can simplify Eq. B-1 by approximating with a constant. We can see

that as the SNR goes to infinity, the Wiener deconvolution filter becomes an inverse

filter.

B.1.1 LabVIEW Implementation

The first step is to obtain the loudspeaker frequency response . We do this

by simultaneously playing and recording a logarithmic frequency sweep from 20 Hz to

20 kHz. We collect multiple measurements to obtain an average. Figure B-1 shows the

LabVIEW block diagram that collects data from 5 separate chirps.

97

Figure B-1: Data collection block diagram for multiple 20 Hz to 20 kHz chirps.

Figure B-2 shows the block diagram that finds the average loudspeaker frequency

response by comparing the FFT of the average of 5 microphone recordings with the FFT

of the original chirp signal.

Figure B-2: Loudspeaker average transfer function block diagram.

Figure B-3 shows the resulting frequency response of the M-Audio AV-30

loudspeaker. Figure B-4 shows the same plot with the amplitude in dB. Note that the

98

amplitude values depend on the volume of the chirp signal as well as the gain of the

microphone.

Figure B-3: Average measured frequency response of M-Audio AV-30 loudspeaker.

Figure B-4: Loudspeaker frequency response from Figure B-3 in dB.

We must resize the transfer function to 262144 so that it matches with the size of

the transfer function in Section 4.3. We use LabVIEW’s built-in 1D interpolation VI and

interpolate both the magnitude and phase components of the complex transfer function.

Figure B-5 shows the block diagram of this interpolation step.

99

Figure B-5: Transfer function interpolation block diagram.

 Next, we apply the Wiener deconvolution filter from Eq. B-1 to the interpolated

transfer function, shown in Figure B-6 below. Here we choose a constant value of 0.002

for . This is equivalent to a SNR value of approximately 54 dB.

Figure B-6: Wiener deconvolution block diagram.

The last steps are to window (Hanning, size 5000) and filter (band-pass

Butterworth, 50 Hz – 12 kHz, 5
th

 order) the iFFT of the Wiener deconvolution filter

values and to normalize the final frequency response, all shown in Figure B-7.

100

Figure B-7: Block diagarm of windowing, band-pass filtering, and normalization of

Wiener deconvolution filter.

Figure B-8 shows the resulting Wiener deconvolution filter for a large window

size of M=80000. Notice how it mirrors the loudspeaker frequency response from

Figure B-3 – i.e. frequencies at which the magnitude of the loudspeaker frequency

response is large show attenuation, while frequencies at which the magnitude of the

loudspeaker frequency response is small show little to no attenuation. The filter is

designed to only attenuate frequencies because amplification could introduce unwanted

distortion. From this, we expect the amplitude of the equalized loudspeaker audio to be

reduced.

When this large filter is applied to the chirp signal, the resulting audio exhibits

harmonic distortion and it sounds very different from the original chirp.

101

Figure B-8: Normalized Wiener deconvolution filter with window size M=80000.

Figure B-9: Wiener deconvolution filter from Figure B-8 in dB.

Figure B-10 shows the resulting Wiener deconvolution filter for a window size of

M=5000. We observe that we lose significant resolution in the low-frequency range,

characterized by the smooth low-frequency response. There is a trade-off between the

window size (which must be small enough to limit the effects of circular convolution)

and the low-frequency resolution of the Wiener deconvolution filter.

102

Figure B-10: Normalized Wiener deconvolution filter with window size M=5000.

Figure B-11: Wiener deconvolution filter from Figure B-10 in dB.

B.1.2 Test Results

We apply the Wiener deconvolution filter determined in the previous section to

the frequency chirp signal, re-play and re-measure the filtered audio, and observe the

resulting transfer function to determine if this deconvolution step improves the

loudspeaker frequency response.

103

Figure B-12: Wiener-deconvolved loudspeaker transfer function (M=5000).

Figure B-13: Frequency response from Figure B-12 in dB.

Figure B-14 shows a comparison between the loudspeaker frequency response

before and after Wiener deconvolution. We observe marginal improvement in the low-

frequency response as well as better performance in the frequency range between 400-

600 Hz. However, there are many frequencies at which the magnitude response is very

small. We expect the frequency nulls to remain uncompensated for as this filter does not

104

perform any amplification. This result is desired because the loudspeaker will not be

equalized by boosting frequencies which it cannot reproduce.

Figure B-14: Comparison between unfiltered (left) and filtered (right) loudspeaker

frequency responses.

