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ABSTRACT 

A Frequency-Domain Method for Active Acoustic 

Cancellation of Known Audio Sources 

Ryan D. Rocha 

Active noise control (ANC) is a real-time process in which a system measures an 

external, unwanted sound source and produces a canceling waveform.  The cancellation 

is due to destructive interference by a perfect copy of the received signal phase-shifted by 

180 degrees. Existing active noise control systems process the incoming and outgoing 

audio on a sample-by-sample basis, requiring a high-speed digital signal processor (DSP) 

and analog-to-digital converters (ADCs) with strict timing requirements on the order of 

tens of microseconds. These timing requirements determine the maximum sample rate 

and bit size as well as the maximum attenuation that the system can achieve. In 

traditional noise cancellation systems, the general assumption is that all unwanted sound 

is indeterminate.  However, there are many instances in which an unwanted sound source 

is predictable, such as in the case of a song. This thesis presents a method for active 

acoustic cancellation of a known audio signal using the frequency characteristics of the 

known audio signal compared to that of a sampled, filtered excerpt of the same known 

audio signal. 

In this procedure, we must first correctly locate the sample index for which a 

measured audio excerpt begins via the cross-correlation function.  Next, we obtain the 

frequency characteristics of both the known source (WAVE file of the song) and the 

measured unwanted audio by taking the Fast Fourier Transform (FFT) of each signal, and 

calculate the effective environmental transfer function (degradation function) by taking 

the ratio of the two complex frequency-domain results. Finally, we attempt to recreate the 

environmental audio from the known data and produce an inverted, synchronized, and 

amplitude-matched signal to cancel the audio via destructive interference. Throughout the 

process, we employ many signal conditioning methods such as FIR filtering, median 

filtering, windowing, and deconvolution. We illustrate this frequency-domain method in 

Native Instruments’ LabVIEW running on the Windows operating system, and discuss its 

reliability, areas for improvement, and potential future applications in mobile 

technologies.  We show that under ideal conditions (unwanted sound is a known white 

noise source, and microphone, loudspeaker, and environmental filter frequency responses 

are all perfectly flat), we can achieve a theoretical maximum attenuation of 

approximately 300 dB.  If we replace the white noise source with an actual song and the 

environmental filter with a low-order linear filter, then we can achieve maximum 

attenuation in the range of 50-70 dB.  However, in a real-world environment, with 

additional noise and imperfect microphones, speakers, synchronization, and amplitude-

matching, we can expect to see attenuation values in the range of 10-20 dB. 

Keywords: Digital Signal Processing, Active Noise Control, Discrete Filtering, 

Frequency Domain, FFT. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

 The cancellation of unwanted noise has and will always be an important challenge 

that acoustic engineering and digital signal processing can help address.  Those who have 

a stake in the success of noise-cancellation systems include the major audio technology 

companies, engineers, consumers, and even healthcare providers.  Studies have linked 

excess noise exposure with health risks such as hearing impairment, hypertension and 

ischemic heart disease, annoyance, sleep disturbance, and decreased school performance 

[1].  Today, noise cancellation is still considered a luxury, as most people would rather 

accept and deal with unwanted noise than pay a premium price for a system to reduce it. 

Perhaps the most popular and well-known consumer products to feature noise 

cancellation are noise-canceling headphones. Many noise-canceling headphones employ 

two forms of noise reduction: passive and active.  While the physical materials of the 

headphone itself passively attenuate noise above 500 Hz [2], an isolated microphone, 

digital signal processor (DSP), and headphone loudspeaker produce a canceling 

waveform to actively attenuate noise via destructive interference, as shown in Figure 1-1.  

To achieve substantive noise cancellation (better than 9 dB of attenuation), the unwanted 

noise signal and cancellation waveform must be matched with an amplitude accuracy 

within  3 dB and a phase accuracy within  20  simultaneously [3].  This method of 

active noise control (ANC) requires a high-speed DSP and adaptive algorithms that can 

be computationally demanding, and its expected performance is typically up to 25 dB of 

attenuation at low frequencies for a well-calibrated system [2].  The existing ANC 

method assumes that all unwanted noise is random or unknown, and thus the cancellation 
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procedure requires a fast real-time architecture to sample, process, and produce a 

canceling waveform within strict timing requirements.  Additionally, this method of ANC 

is not well-suited for changing, dynamic noise such as music. 

 

Figure 1-1: Active Noise Control (ANC) via destructive interference. 

 This project investigates an alternative noise-cancellation procedure in which the 

unwanted noise source is assumed to be known, as is in the case of a song.  

Advancements in song recognition technology make it possible to identify an unwanted 

song, and with the appropriate microphones, loudspeakers, and signal processing, it is 

possible to create an acoustic cancellation system in which processing occurs in chunks 

in “pseudo-real-time” on a non-real-time operating system such as Windows. 

The ultimate goal would be to leverage technological items that many people 

already have – a computer, mobile phone, or tablet with a fast processor, and a good set 

of loudspeakers – to create an inexpensive acoustic cancellation system for known audio 

sources.  The only additional item required would be a high-quality measurement 

microphone that could interface to the processing platform.  This project seeks to create a 
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system prototype that is affordable (compared to top-of-the-line active noise-canceling 

headphones, i.e. less than $300), and achieves similar cancellation performance to the 

active noise attenuation of ANC headphones (not including passive noise reduction, or at 

least 10 dB). 

1.2 Project Overview 

 In this project, we will use National Instruments’ LabVIEW running on the 

Microsoft Windows operating system to acquire a microphone signal of an unwanted 

song source, process the signal, and play back a canceling waveform through a 

loudspeaker.  LabVIEW is well-suited for this project because it is a very visual, 

intuitive, and system-oriented programming language that is designed for rapid 

prototyping.  LabVIEW also contains many built-in signal processing functions that 

allow us to focus more on the system architecture and less on recreating known signal 

processing algorithms.  Although Windows is not a real-time operating system and thus is 

not the ideal platform for a “pseudo-real-time” noise-cancellation system, it offers some 

advantages: 1) It runs the basic version of LabVIEW, 2) it allows us to take advantage of 

the powerful multi-threaded, high-performance processors and PCs that run on Windows, 

3) it allows a Windows PC to simultaneously be both a design tool and a system 

prototype, and 4) it allows for quick and simple interfacing with peripherals such as 

loudspeakers and USB microphones. 

 The basic procedure is as follows:  First, a measurement microphone interfaced to 

a PC via USB records an excerpt of the unwanted song playing in the environment.  We 

will assume that the song source has already been identified and its WAVE file data has 

been acquired.  One example of how this could be accomplished now would be to use a 
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song recognition application such as Shazam or Soundhound to identify the song, and 

ping a database to download the song file (copyright issues may apply). To minimize the 

complications of additional variables as much as possible, we will perform the test on a 

single channel (mono).  With the song properly identified and its full WAVE file data 

acquired, we perform a cross-correlation algorithm in LabVIEW to approximate the 

starting location (sample index) of the excerpt within the original WAVE file, all while 

keeping track of the amount of time elapsed during the processing.  With the approximate 

location found, we perform a Fast Fourier Transform (FFT) on the measured excerpt and 

its corresponding WAVE file excerpt to obtain a transfer function between the measured 

(mic recording) and actual (WAVE file) frequency responses.  Assuming the transfer 

function represents the frequency response of the loudspeaker playing the unwanted 

sound coupled with an environmental filter, we apply the transfer function to a future 

segment of the WAVE file via frequency domain multiplication, take the Inverse Fast 

Fourier Transform (IFFT), and phase-shift the time-domain waveform by 180  to produce 

the canceling waveform.  Lastly, we accumulate future playback values in a buffer, and 

stream the canceling waveform to the soundcard for cancellation.   

 

Figure 1-2: Basic block diagram of frequency-domain cancellation method. 
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 During playback, the system requires additional synchronization steps:  We 

record from the microphone again and sweep the playback index to find the location of 

optimal cancellation for a final timing synchronization.  We can perform a similar 

procedure to sweep the amplitude of the playback signal to find the optimal volume for 

the cancellation waveform, but it is more desirable to eliminate the amplitude variable by 

calibrating the system beforehand to produce a 1:1 input to output audio level.  In the 

ideal case – i.e. the song is easily recognizable and non-repetitive, the microphone and 

loudspeakers have perfectly flat frequency responses, and the transfer function impulse 

response behaves like a low-order linear filter – theory shows that this system can 

perform very well.  Chapter 2 will provide a detailed proof of concept test to illustrate 

this best-case real-world scenario as well as an optimal scenario in which the noise source 

is [known] white noise and the environmental filter is perfectly flat. Chapter 4 will 

provide a detailed documentation of the LabVIEW system implementation. 

 In its final polished form, a noise-cancellation system using the frequency-domain 

method proposed in this project could have many potential applications and end-uses for 

consumers.  For instance, this system could be used in a bedroom to cancel the noise 

(music) from the party next door so that the user can get a good night’s sleep.  This 

system could also be used in mobile technologies in conjunction with music recognition 

software to cancel an unwanted song or even assist ANC headphones with supplementary 

cancellation. 

1.3 Comparison between Existing and Proposed Concepts 

The frequency-domain method has a key advantage over the existing ANC 

method in that it can accurately predict the future time-domain and frequency-domain 
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values of the noise signal in advance.  The predictive ability of the proposed method 

effectively makes it a non-causal system, which would be impossible to achieve with a 

real-time control system.  From this key advantage, we can expect the frequency-domain 

method to produce better broadband attenuation performance over the entire audible 

frequency range as long as the cancellation waveform is properly synchronized in the 

time domain and its frequency response characteristics are adequately matched.  We can 

also expect it to produce better cancellation of unwanted music. 

Furthermore, the existing methods of ANC require ultra-fast analog-to-digital 

converters (ADCs) and digital signal processors (DSPs) comprising a control system 

which acquires and processes data in real time.  The proposed frequency-domain method 

can avoid the need for high-speed DSPs to produce the cancellation signal by processing 

the future cancellation waveform in bigger sections at a slower rate. It is worth noting 

that the proposed frequency-domain method of acoustic cancellation is still technically 

“real time,” in that there are still timing requirements that must be met for proper 

operation, but these processing-time constrains are on the order of milliseconds to 

seconds instead of microseconds. 

One advantage that the current real-time ANC method has over the proposed 

method is that its timing is deterministic, which makes timing synchronization a much 

easier task.  For the frequency-domain method running on a non-real-time system, the 

processing time will be variable, depending on system resources, which makes perfect 

synchronization more difficult to achieve. 

Table 1-1 summarizes the aforementioned advantages and disadvantages of the 

existing ANC method and the proposed frequency-domain method. 
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Table 1-1: Comparison of existing ANC methods vs. frequency-domain method. 

Category Existing ANC Method Freq. Domain Method 

Processor requirements 
High speed, high power 

DSP chip required 

Dedicated DSP chip not 

required – Processor can 

be PC, mobile phone, or 

tablet processor 
 

Timing 

Real-time processing 

restricts calculations to 

be within microseconds 

(<30  ) [2] 

Piecewise processing 

allows for more lenient 

constraints (milliseconds 

to seconds) 

Reliability 

Real-time DSP 

produces deterministic 

timing 

Non-real-time operating 

system results in variable 

processing time and 

inconsistent results 

Low-Frequency (<400 

Hz) Attenuation 
10 25 dB [4] 10 70 dB 

Wide Frequency 

Attenuation 
0 10 dB [4] 5 20 dB 

Cost (mid-range) >$300 ~$200 

Source Best At 

Canceling
 

Any constant, random 

noise signal (low 

frequency) 

Known audio signal (such 

as a song) 
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CHAPTER 2:  BACKGROUND 

2.1 Current Approaches to Noise Cancellation 

The current approach to noise cancellation is to use headphones as both a passive 

and active noise-canceling device.  The passive attenuation behaves like a low-pass filter, 

greatly attenuating frequencies above a few hundred Hertz.  The active attenuation 

behaves like a high-pass filter, performing well at frequencies below a few hundred 

Hertz, but not at higher frequencies.  Together, both forms of attenuation provide 

sufficient noise cancellation over the entire audible frequency range. 

2.1.1 Passive Attenuation 

The existing noise-cancellation method relies heavily on passive attenuation for 

noise reduction above a few hundred Hertz.  In a headphone system, the headset shell and 

earphone cushions provide a seal between the user’s ear and the noisy environment.  

These physical materials absorb high-frequency noise in the vibrations of the shell.  

Figure 2-1 shows a simple illustration of a passive noise system [4].  

 

Figure 2-1: Passive noise system used in noise-canceling headphones [4]. 

This passive attenuation system behaves as a second-order mechanical system 

characterized by the following equation: 
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 Eq. 2-1 

where M is the mass of the shell, R is the cushion damping, and Kv and Kc are the 

stiffness of the air in the shell volume and cushion respectively [4].  We observe that the 

attenuation is inversely proportional to the mass of the shell and the cushion damping, 

and that the attenuation is better at higher frequencies.  Figure 2-2 shows a simulated 

passive filter attenuation curve described by Eq. 2-1, with a 6-dB cutoff frequency of 300 

Hz [4]. 

 

Figure 2-2: Simulated typical passive attenuation [4]. 

2.1.2 Active Attenuation 

Active attenuation within a noise-canceling headphone relies on a control system 

that continuously monitors the incoming noise and seeks to minimize an error signal.  

Active noise-cancellation systems feature two different control system architectures: 

feedback and feedforward [4] [3] [5].  Figure 2-3 shows the simplified diagrams of each 

control method [3]. 



10 

 

Figure 2-3: Feedback (left) and feedforward (right) noise-cancellation configurations [3]. 

A. Feedback Method 

The feedback control system uses an internal microphone that is located directly 

in front of the headphone loudspeaker and is coupled to the loudspeaker by a negative 

feedback control loop [3].  Figure 2-4 shows the basic block diagram for a negative 

feedback analog control system.  Here, P is the plant (response from the loudspeaker to 

the microphone output), C is the analog controller, d is the disturbance signal (noise), and 

e is the error signal [4]. 

 

Figure 2-4: Feedback control diagram [4]. 
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Eq. 2-2 shows the frequency-domain representation of the error signal. 

   
 

    
 Eq. 2-2 

Eq. 2-3 describes the response of the closed-loop system. 

  
 

    
 Eq. 2-3 

Figure 2-5 shows a simulation of a typical magnitude response of active 

attenuation using feedback control [4].  We observe from Figure 2-5 that frequencies 

below 500 Hz are attenuated by more than 10 dB, while frequencies above a few kHz 

show no attenuation.  The controller amplifies frequencies in the transition region near 1 

kHz, because according to [6], the Bode integral must be equal to zero. 

∫    |    |  

 

 

   Eq. 2-4 

 

Figure 2-5: Simulated typical active attenuation using feedback method [4]. 
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B. Feedforward Method 

The feedforward method is the most popular ANC method used in modern active 

noise-canceling headphones [5].  Contrary to the feedback approach, the feedforward 

method uses an external microphone to detect a reference of the noise, which gets 

inverted and added to the headphone drive signal, while an internal error microphone 

tunes the digital controller (adaptive filter) [4] [3].  Figure 2-6 shows the feedforward 

control diagram where W is the adaptive filter [4]. 

 

Figure 2-6: Feedforward control diagram [4]. 

The goal of the adaptive filter W is to minimize the mean-squared error of the 

signal from the internal error microphone.  Some well-known algorithms used to achieve 

this goal include: LMS (Least Mean Squares), Filtered-x LMS, and Adjoint LMS, with 

the main differences between algorithms being their rates of convergence and 

computational efficiencies [5] [7]. 

One drawback of both digital feedback and feedforward control is that they are 

both subject to additional delay due to sampling delay in the DSP and DAC, and the 

phase delay of the low-pass filters [4] [3].  If the total electric delay exceeds the acoustic 

delay from the reference microphone to the loudspeaker, then the optimal filter will be 

non-causal, and prediction will be required to attenuate broadband signals [4].  Figure 
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2-7 shows how this delay can affect performance by limiting both the control bandwidth 

and attenuation level of an active noise-cancellation system [4].  

 

Figure 2-7: Attenuation with a feedback controller for a plant with additional delay of 

0.1 msec and 1 msec [4]. 

Figure 2-7 shows that to achieve best performance, the delay must be minimized. 

Using a very high sampling frequency can minimize the delay but this will generally 

require powerful DSP processors and increased cost [4].  Typically, only band-limited or 

predictable signals can be successfully attenuated. Performance is thus limited to narrow 

band or tonal noise when using conventional DSP systems [5]. 
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2.2 Frequency-Domain Method: Proof of Concept 

Here, we discuss the original proof of concept and the fundamental theory behind 

the frequency-domain method of active noise control introduced in this report.  We 

demonstrate two test examples in LabVIEW of the basic procedure using the parameters 

listed in Table 2-1 for both an actual song and white noise (known, not random) as the 

unwanted noise sources.  The goal of Example 1 is to describe the key steps in the 

procedure and provide results for an ideal real-world implementation. In Example 2, we 

show the theoretical optimal performance of the system. 

Table 2-1: Parameters for frequency-domain method in Examples 1 and 2. 

Parameter Example 1: Song Example 2: White Noise 

Sample Rate 44.1 kHz 44.1 kHz 

Bit Depth 16-bit 16-bit 

Channels 1-Mono 1-Mono 

Noise Source 

Frequency Response 

Not all frequencies well 

represented 

All frequencies strongly 

represented 

Noise Source 

Autocorrelation 

1 defined autocorrelation 

peak with several smaller 

peaks (due to 

repetitiveness of beat 

structure of song) 

1 strong autocorrelation 

peak 

Recorded Sample 

Length 

Half of original song 

length 

Half of original signal 

length 

Microphone 

Frequency Response 

Perfectly flat over all 

frequencies 

Perfectly flat over all 

frequencies 

Loudspeaker 

Frequency Response 

Perfectly flat over all 

frequencies 

Perfectly flat over all 

frequencies 

Environmental 

Filter Frequency 

Response 

Low-order, linear band-

pass filter response 

Perfectly flat over all 

frequencies 

2.2.1 Example 1: Song as Unwanted Noise Source 

To make the basic explanation of this method more clear and concise, we will 

define two key terms:  1) we will refer to the known audio track data (from a song file) as 
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the original signal.  We use a 10 second (approximate) excerpt of Michael Jackson’s 

“Beat It” as an example of an original signal, shown in Figure 2-8 below. 

 

Figure 2-8: Excerpt of “Beat It” by Michael Jackson, used as the original signal. 

2) We will refer to the sampled and filtered version of the original signal as the 

sampled signal.  The sampled signal is assumed to be a filtered version of the original 

signal since the speakers and environment act as synthetic and natural filters to 

frequencies in the audible range of 20 Hz to 20 kHz. For this example, we acquire the 

sampled signal with an ideal microphone (noiseless, distortionless, perfectly flat 

frequency response).  Figure 2-9 shows an example of a sampled signal, which is a 

filtered and attenuated version of the original signal from Figure 2-8.  Here, we will 

assume that the music has been recognized correctly and the original signal data has been 

fetched from a database and is ready for processing. 

 

Figure 2-9: Filtered version of waveform in Figure 2-8, used as sample signal. 
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The following list illustrates the basic cancellation procedure using the frequency-

domain method: 

A. Determine Sample Location within Original Signal 

In order to properly determine the transfer function, or frequency response, of the 

environmental filter, we must first locate the starting index of the sampled signal within 

the original signal.  We achieve this with the cross-correlation function, which is a 

convolution-like function used to determine the similarity between two waveforms. We 

can find the cross-correlation mathematically using 

][][])[( * mngmfngf
m

 




 Eq. 2-5 

 We can determine the cross-correlation in LabVIEW using the built-in correlation 

virtual instrument (VI). Figure 2-10 below shows the result of the correlation of the 

original signal shown in Figure 2-8 and the first half of the sampled signal shown in 

Figure 2-9. 

 

Figure 2-10: Cross-correlation of original and sampled signals in LabVIEW. 
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 Figure 2-10 shows a clear spike at the index near n = 475000.  To find the index 

of the original signal that corresponds to the starting index of the sampled signal, we use 

.mni   Eq. 2-6 

 In this equation, i is the index of the original signal that corresponds to the 

sampled signal’s starting index, n is the index at which the maximum cross-correlation 

value occurs, and m is the length (total number of samples) of the original signal.  This 

method of locating and synchronizing waveforms must be optimized in order to 

synchronize waveforms as accurately as possible, since the cancellation capabilities are 

highly dependent on proper alignment. 

B. Get Frequency Content of Each Signal 

Next, we take the Fast Fourier Transform of each signal (both the sampled signal and the 

located excerpt of the original signal). Eq. 2-7 shows the equation for the Discrete 

Fourier Transform (DFT) of a signal.  The FFT is an efficient algorithm to calculate the 

DFT. 
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 Eq. 2-7 

 

 As in the previous step, we use built-in LabVIEW VIs to calculate the FFT for 

each signal.  Figure 2-11 and Figure 2-12 show the FFTs of the original and sampled 

audio waveforms from Figure 2-8 and Figure 2-9.  We plot each FFT in the frequency 

domain over the audible frequency range (20 Hz 20 kHz). 

In a product implementation of this system, we should choose to acquire a 

sampled signal of length    because the FFT is optimized for signals that are powers of 2 

in length. 
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Figure 2-11: FFT of original signal. 

 

Figure 2-12: FFT of sampled signal. 

 Figure 2-12 shows the FFT of the entire filtered version of the original signal.  

However, only the first half of the original signal will be used to take the FFT.  We show 

the full length FFTs so that we can compare the filter transfer functions of the full length 

signals to that of the half-length signals. 
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C. Determine and Condition the Filter Transfer Function 

 We can easily determine the effective filter response applied to the original signal 

by the sound source and intervening environment by dividing the sampled signal’s 

complex FFT by the original signal’s FFT.  It is important to maintain both the magnitude 

and phase information for each frequency; and so, you cannot simply divide the 

magnitude responses to obtain the effective filter response.  Figure 2-13 shows the result 

of the FFT division from the full-length data in Figure 2-11 and Figure 2-12.  The 

resulting filter shows a band-pass response centered at approximately 450 Hz. 

 

Figure 2-13: Full-length filter frequency response. 

 Figure 2-14 shows the filter derived from a sample signal whose length is half of 

the original sample, and whose index starts at 0 (the beginning of the original signal). 
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Figure 2-14: Filter frequency response from first half of the total sample. 

 We can see from Figure 2-13 and Figure 2-14 that significant noise exists on the 

filter magnitude responses.  If we assume that environmental filters are relatively smooth 

in nature, we can apply a low-order median filter to the resulting filter FFT values to 

reduce the noisy spikes on the output.  Although median filtering is a non-linear process, 

it is shown to be more effective at limiting the impulse-like noise on the transfer function 

without “blurring” the time-domain response.  Figure 2-15 shows the result of passing 

the data from Figure 2-14 through a median filter of size 10. 
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Figure 2-15: median-filtered version of Figure 2-14. 

D. Recreate & Cancel the Filtered Signal from the Determined Filter Response 

 Now that we have the effective environmental filter response, we can apply the 

filter to an equal-length future segment of the original signal.  We do this by taking the 

FFT of future values of the original signal and multiplying the resulting FFT by the 

environmental filter response FFT values.  Because we are performing frequency-domain 

multiplication, it is extremely important that the lengths of both FFT results are the same.  

The length of the example filter FFT in Figure 2-15 is half of the original sample length 

(~5 seconds out of ~10 seconds), which means we can recreate a filtered version of the 

second half of the original signal for cancellation.  In Figure 2-16 below, the second half 

of the waveform from Figure 2-9 is almost perfectly recreated by multiplying the FFT of 

the equivalent portion of the signal from Figure 1-1 and the filter FFT from Figure 2-15, 

and then taking the inverse FFT of the result. 
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Figure 2-16: Recreated ~5 sec. portion of waveform in Figure 2-9 (2
nd

 half). 

 Once we have recreated the expected values of future sampled data, we can invert 

the waveform (180  phase shift) and output the data to destructively interfere with the 

future sampled values.  Figure 2-17 shows the result of adding the second half of the 

waveform data in Figure 2-9 (which has yet to be played) to the inverted waveform in 

Figure 2-16.  We can see that this method nearly perfectly cancels the unwanted audio 

signal. 

 

Figure 2-17: Canceled ~5 sec. future segment of unwanted audio. 

 Figure 2-18 below shows the attenuation in dB of the canceled waveform over 

the audible frequency range.  Since the environmental filter behaves like a band-pass 

filter centered at 450 Hz, we see the best attenuation of roughly 70 dB near 450 Hz. 
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Conversely, we see no attenuation at the frequencies that the environmental filter had 

filtered out (below 50 Hz and above 2.5 kHz).  This makes sense from an intuitive 

standpoint because if the sampled signal is already void of frequency content above 2.5 

kHz and below 50 Hz, then it is already attenuated at those frequencies and an ANC 

signal will not help to further attenuate those frequencies. 

 

Figure 2-18: Attenuation in dB of the canceled waveform. 

2.2.2 Example 2: White Noise as Unwanted Noise Source 

This example uses a 6-second white noise signal as the unwanted noise source.  

We will use the same white noise signal for both the original and sampled signals, 

effectively simulating a perfect environment.  Figure 2-19 shows the FFT of the white 

noise signal.  Note that because the white noise source is time-limited, the magnitude 

response of the FFT is not equal-valued for all frequencies. 
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Figure 2-19: FFT of white noise source (original and sampled). 

 Here, obtaining the transfer function of the environmental filter is trivial, since the 

two waveforms are identical.  The resulting transfer function will have a magnitude of 1.0 

and a phase of 0 for all frequencies.  When we apply this transfer function to the original 

signal, we create a perfect copy of the noise signal to be canceled, which we phase-shift 

by 180  and play back for cancellation. 

 With perfect synchronization, we can attenuate the noise by approximately 300 

dB, as shown in the attenuation plot in Figure 2-20. 

 

Figure 2-20: Attenuation plot of known white noise source under ideal conditions. 
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Any residual noise is due to quantization error and rounding error from floating 

point calculations within LabVIEW, which is insignificant because the human ear would 

not be able to distinguish it from ambient noise.  

As previously mentioned, the plot in Figure 2-20 is the attenuation result in the 

case of perfect synchronization.  Figure 2-21 shows the attenuation vs. frequency when 

the cancellation waveform is 1, 2, 3, and 4 samples out of sync (at            ). For a 

1-sample misalignment, the best theoretical attenuation reduces to 50 dB (at 20 Hz) and 

further reduces logarithmically by approximately 20 dB/decade as the frequency 

increases.  Increasing the offset effectively shifts the y-intercept (referenced to 20 Hz) up 

on the plot in Figure 2-21.  The notches at 14.7 kHz and 11 kHz are due to the fact that 

the sample rate is 44.1 kHz and therefore 14.7 kHz is one full period out of phase (360 ) 

for an offset of 3, and 11 kHz is one full period out of phase for an offset of 4.  Further 

increasing the offset will introduce more notches, as the offset and frequency of one 

period required for complete cancellation are inversely related. 

 

Figure 2-21: Attenuation vs. frequency for different sample offsets of white noise source 

at 44.1 kHz sample rate. 

              

Offset: 
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The frequency-domain method described here is very robust as long as we 

properly synchronize the original and sampled signals and acquire a sufficient length 

sample. Due to the high sensitivity to time-alignment, we must continue improving and 

developing the synchronization methods, since the cross-correlation method does not 

always produce an exact alignment. 

 The minimum sample length required varies from song to song, as each song 

contains unique frequency content over time.  However, tests show that sample lengths 

down to 2 seconds in length at a 44.1 kHz sample rate still produce significant 

attenuation.  Increasing the sample size not only increases the number of frequency bins 

of the FFT, but also the odds that more frequencies in the audible range are represented 

within that sample.  As the sample length increases, the system will not only take longer 

to begin the cancellation process, but the algorithm itself will take longer.  Thus, we must 

simultaneously maximize the representation of frequencies in the audible range to 

increase the reliability of this frequency-domain cancellation method, while minimizing 

the length so that we can start the cancellation procedure quicker and perform all 

necessary computations efficiently.   
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CHAPTER 3: DESIGN REQUIREMENTS 

3.1 Introduction 

This project seeks to create a system prototype that is affordable compared to 

existing high-performance active noise-canceling headphones, i.e. less than $300), and 

achieves similar cancellation performance to the active noise attenuation of ANC 

headphones without microphone isolation.  Since the microphone and loudspeaker will 

not be isolated and neither the microphone nor loudspeaker will be ideal devices, the goal 

is to achieve at least 10 dB of noise reduction. 

Again, the aim is to leverage widely-available technological items such as a 

personal computer and loudspeakers to create an inexpensive, almost do-it-yourself 

acoustic cancellation system for known audio sources.  The only additional item required 

is a high-quality measurement microphone that can take accurate acoustic measurements.   

3.2 Acoustic Measurements 

 This sound canceling method relies heavily on precise acoustic measurements.  If 

these measurements do not accurately represent the real-world environmental sound, then 

all future signal processing computations and algorithms based on these inaccurate 

measurements will neither be reliable nor useful.  Thus, the project requires a high-

quality measurement microphone. Electret condenser microphones (ECM) are the most 

commonly used microphone type for measurement purposes due to their stability and 

their wide and flat frequency response characteristics [8] [9].  ECMs can also achieve 

reasonable signal-to-noise ratios and good maximum sound pressure levels, although 

distortion and a high noise floor can be an issue.  The two main disadvantages of ECMs 

are that 1) they require a large DC bias voltage (usually phantom power at +48V) and (2) 
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they must be coupled directly to an amplifier because of their low capacitance [8].  Most 

importantly, ECMs are relatively inexpensive devices, with quality microphones in the 

price range of $50-$100.  The best (and most expensive) measurement microphones cost 

several thousands of dollars and these would be the ideal devices for this project.  

However, the goal of the project is to not only to create a sound cancellation system that 

performs well, but one that is also affordable.  Therefore, we must make some sacrifices 

in quality with a less expensive microphone. 

3.2.1 Dayton Audio EMM-6 Electret Measurement Microphone 

 To compromise price and quality as best as possible, this project utilizes the 

Dayton Audio EMM-6 electret condenser measurement microphone for acoustic 

measurements, shown in Figure 3-1 below.  Table 3-1 on the following page shows the 

microphone requirements compared to the EMM-6 datasheet specifications. 

 

Figure 3-1: Dayton Audio EMM-6 Electret Measurement Microphone. 
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Table 3-1: Microphone requirements compared to the Dayton Audio EMM-6 datasheet 

specifications [10]. 

Parameter Microphone 

Requirements 

Dayton Audio EMM-6 

Capsule type electret condenser 6 mm electret condenser 

Polar pattern Omnidirectional omnidirectional 

Frequency response 20 Hz – 20kHz 18 Hz - 20 kHz 

Impedance 200   200   between pins 2 and 3 

Sensitivity at 1 kHz 

into 1 k  

<10 mV/Pa 10 mV/Pa (-40 dBV, re. 0 dB = 

1V/Pa) 

Max. SPL for 1% 

THD @ 1000 Hz 

>120 dB 127 dB 

S/N ratio >70 dB 70 dB A-weighted 

Connector USB gold plated XLR 

Power phantom power phantom power: +15 V to +48 V 

Weight Any 144 grams 

Price <$100 $79.99 

 The EMM-6 offers many advantages over other similarly-priced measurement 

microphones.  First, the microphone boasts a very flat frequency response from 18Hz to 

20 kHz with a sensitivity deviation within 2dB of the 1 kHz value over the entire 

frequency range [10].  Furthermore, Dayton Audio provides a file of the calibration data 

attributed to each microphone’s serial number.  Figure 3-2 shows the frequency response 

calibration data for the microphone used in this project (serial number 6521), which is 

located on Dayton Audio’s website.  The frequency response appears to be reasonably 

flat over the entire frequency range, with more variation in the sensitivity occurring at 

frequencies above 2 kHz.  Table 3-2 summarizes key values from Figure 3-2. 
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Figure 3-2: Frequency Response of Dayton Audio EMM-6 Electret Measurement 

Microphone. 

Table 3-2: Dayton Audio EMM-6 SN6521 key frequency response values. 

Parameter Sensitivity Frequency 

Sensitivity at 1 KHz into 1 k  -40.5 dBV 1 kHz 

Maximum Sensitivity -38.1 dBV 20 kHz 

Minimum Sensitivity -41.4 dBV 6.24 kHz 

3.2.2 Blue Icicle XLR to USB Microphone Converter/Preamp 

 The Dayton Audio EMM-6 microphone has an XLR connector and requires 

phantom power.  This project necessitates a USB microphone interface to a PC and 

therefore requires an XLR-to-USB converter which supplies phantom power.  In this 

project, we use the Blue Icicle converter and preamp shown in Figure 3-3 [11]. 

 

Figure 3-3: Blue Icicle XLR to USB Microphone Converter/Preamp [11]. 
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 Figure 3-4 shows the connection diagram provided by Blue Microphones on how 

to properly interface an XLR, phantom-powered microphone to a PC via USB [11]. 

 

Figure 3-4: Connection diagram for Blue Icicle interface between mic and PC [11]. 

According to the Blue Icicle datasheet, it uses a 44.1 kHz sample rate with a bit 

depth of 16 bits.  It requires 200 mA from the USB bus to supply 48 V phantom power to 

the microphone [11]. 

3.3 Loudspeaker 

The ideal loudspeaker for this project has a perfectly flat frequency response from 

20 Hz to 20 kHz and has no distortion at any frequency in that range.  As with the 

microphone, we cannot expect to achieve ideal characteristics with an affordable device.  

However, this project will attempt to overcome the shortcomings of non-ideal 

loudspeakers with inverse filtering.  First, we will characterize the frequency response of 

the loudspeaker using a frequency sweep source.  An inverse filter attempts to “undo” the 

frequency response of the loudspeaker by boosting the underrepresented frequencies and 

attenuating the overrepresented frequencies. 

In theory, inverse filtering can perfectly equalize the frequency response of the 

loudspeaker. In practice, however, the process will most likely introduce distortion 
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because the magnitude of the inverse filter response goes to infinity as the measured 

magnitude response approaches zero.  One solution is to use Wiener deconvolution, 

which can compensate for these instances where the inverse filter response goes to 

infinity by introducing a term in the denominator of the filter [12].  Unfortunately, if the 

loudspeaker physically cannot reproduce particular frequencies, then no amount of 

frequency response correction will be able to achieve a flat response.  We will further 

discuss the performance of inverse filtering in this project in Chapter 5. 

3.3.1 M-Audio AV-30 Reference Monitor Loudspeakers 

This project will use the M-Audio AV-30 reference monitor loudspeakers for 

audio playback.  These are mid-range studio monitors designed to reproduce accurate 

sound with a relatively flat frequency response for under $100.  The main drawback of 

the AV-30 is its low-frequency response.  We can attempt to improve the low-frequency 

response with a subwoofer.  See Table 3-3 below for the loudspeaker requirements and 

Figure 3-5 for the AV-30 frequency response according to [13]. 

Table 3-3: Loudspeaker requirements compared to the M-Audio AV-30 datasheet 

specifications [13]. 

Parameter Loudspeaker 

Requirements 

M-Audio AV-30 

Frequency response 50 Hz – 20kHz 90 Hz – 20kHz 

RMS SPL 100 dB @ 1 meter 101.5 dB @ 1 meter 

S/N ratio >80 dB >90 dB A-weighted 

Input connectors 1/8” audio jack Left and right RCA line input 

and 1/8" aux input 

Price <$100 $79.99 
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Figure 3-5: Typical frequency response of M-Audio AV-30 reference monitor 

loudspeakers according to [13].  
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CHAPTER 4: IMPLEMENTATION 

This chapter will provide a detailed block-by-block discussion of the project 

implementation in LabVIEW according to the diagram shown Figure 4-1 below.  We 

will highlight important features and LabVIEW functions, and explain the pros and cons 

of the chosen parameters. 

 

Figure 4-1: High-level system flow diagram. 

4.1 Initial Data Acquisition 

4.1.1 Overview 

The first block in the system block diagram is the data acquisition block.  This 

block records a segment of the unwanted audio via a microphone and sends the measured 

data to the next block.  In this project, we make use of LabVIEW’s built-in Sound VIs for 

microphone input.  The three main sub-VIs required for microphone data acquisition are 

“Sound Input Configure.vi,” which configures the soundcard to record audio from a 

specified microphone source at a desired sound format; “Sound Input Read.vi” which 

reads the input data and stores the values to a waveform; and “Sound Input Clear.vi” 

which stops acquisition of data and clears the buffer.  See APPENDIX A for more 

information on the inputs and outputs of low-level VIs used in this project.  Combined 
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together, these three sub-VIs create a custom VI (function) called “Record From Mic.vi,” 

shown in Figure 4-2.  This VI will record a specified number of samples of audio from 

the microphone and output a 1-dimensional array of wave values. 

The function “Acquire Microphone Data (6sec).vi” shown in Figure 4-3 records 

approximately 6 seconds of audio at 44.1 kHz and 16 bits per sample.  It also initializes a 

microsecond timer, which we will use later for synchronization purposes. 

4.1.2 LabVIEW Block Diagrams 

 

Figure 4-2: Record From Mic.vi block diagram. 

  

Figure 4-3: Acquire Microphone Data (6sec).vi block diagram. 
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4.1.3 Parameters Chosen 

For the sound format, we choose a sample rate of 44.1 kHz and a bit depth of 16 

bits per sample because these are the values compatible with the Blue Icicle [11].  As 

mentioned earlier, this project operates on only a single channel (mono), but we must 

choose 2 channels in the sound format to keep the system compatible with stereo 

microphones.  To obtain a single channel, we simply extract one channel from the 

resulting 2-D array. 

We choose to record 262144 samples of audio for a few reasons:  1) the number is 

a power of 2 (2
18

), which will make future FFT operations more efficient; 2) we will 

achieve a good resolution in the frequency domain (~0.17 Hz) after taking an FFT; 3) the 

approximately 6-second (5.944 s) duration of audio is long enough to increase the 

likelihood that more frequencies will be present in the waveform; and 4) the large value 

will increase the likelihood that the cross-correlation operation will accurately locate the 

starting index of the excerpt within the original WAVE file. 

The disadvantages of using such a large number of samples for the initial data 

acquisition are that 1) the block will produce a minimum time delay of 6 seconds and 2) 

the processing time will be longer than it would with a smaller sample length, since 

processing time increases as sample length increases.  Table 4-1 below summarizes the 

key parameters used in the initial data acquisition block. 

Table 4-1: Parameters chosen for data acquisition. 

Parameter Value 

Sample Rate 44.1 kHz 

Number of Channels 2 

Bit Depth 16-bit 

Number of Samples 262144 (or 2
18

) 
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4.2 Initial Synchronization 

4.2.1 Overview 

After the initial data acquisition stage, it is critical to locate the sample index 

within the original WAVE file that the excerpt begins so that the frequency content of 

each FFT match as best as possible.  We accomplish the initial synchronization using the 

cross-correlation function, which is a convolution between the recorded excerpt and the 

original waveform.  The length of the original waveform subtracted from sample index of 

the peak of the cross-correlation function returns the starting index of the excerpt. 

However, with large WAVE files, it is not efficient to perform the cross-

correlation with the entire waveform because this will require an unreasonably large 

amount of memory and slow down the processor.  To avoid using excess RAM, we parse 

the WAVE file into more manageable sizes and perform the cross-correlation between 

the excerpt and each parsed section.   

4.2.2 LabVIEW Block Diagram 

 Figure 4-4 shows the entire block diagram used in the initial synchronization 

process. 

 

Figure 4-4: Cross-correlation.vi block diagram. 

Figure 4-5 shows a zoomed-in view of the input side of the block diagram, in 

which we read the WAVE file and specify the parse size based on the WAVE file size.   
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Figure 4-5: Input side of cross-correlation.vi block diagram. 

Figure 4-6 shows the parse loop, which sweeps through the WAVE file, performs 

the cross-correlation on each section, and saves the maximum correlation value, index, 

and loop iteration in which the max value occurs using three case-select structures and 

shift registers, which send data to the next iteration of the FOR loop. 

 

Figure 4-6: Correlation parse loop within cross-correlation.vi. 

Figure 4-7 shows the output side of the block diagram, which computes the 

starting index ( ) based on 1) the parse size (         ), 2) the index within the parse 
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where the max value occurs (    ), and 3) the parse (loop iteration) in which the max 

value occurs (      ) according to Eq. 4-1 below. 

  (         )(        )         Eq. 4-1 

 

 

Figure 4-7: Output side of cross-correlation.vi. 

4.2.3 Parameters Chosen 

The initial synchronization process requires only one important parameter: the 

parse size.  This parameter affects both the memory usage required for processing, the 

processing time, and the reliability of the correlation function.  If the sections are too 

large, then both the memory usage and the processing time will increase.  If parse size is 

too small, then the correlation result becomes unreliable.  Tests show that parsing the 

WAVE file into sections approximately twice the length of the excerpt produces the best 

results.  This means that the cross-correlation is between the 6-second recorded excerpt 

and WAVE file sections of approximately 12 seconds. 
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Table 4-2: Parameters chosen for initial synchronization. 

Parameter Value 

Parse size 524288 (or 2
19

) 

4.3 Transfer Function 

4.3.1 Overview 

With the approximate starting index of the recorded excerpt located, the next step 

is to determine the transfer function of the environmental filter (degradation function) by 

comparing the FFTs of both the measured excerpt and the found WAVE file excerpt.  

Prior to taking the FFT of the measured excerpt, we filter the waveform with a band-pass 

filter.  The band-pass filter prevents the transfer function from over-amplifying the 

extreme low and high frequencies.  We choose to filter out the low-frequency content 

because the loudspeaker will not be able to adequately reproduce these frequencies and 

also because including this frequency content in the canceling waveform could introduce 

unnecessary distortion.  Additionally, we filter out the high-frequency content for a 

couple of reasons: 1) active noise-cancellation performance worsens at higher frequencies 

(recall Figure 2-7 and Figure 2-21), and we can thus reduce the risk of adding to the 

high-frequency noise by pre-filtering the measured sample; and 2) for this project, we can 

assume that the environmental filter has some passive, low-pass behavior and therefore 

has already filtered out much of the high-frequency content. 

After computing the environmental filter transfer function, we must filter the 

impulse-like noise in both the magnitude and phase response with a low-order median 

filter.  Although median filtering is a non-linear operation, it works best to eliminate 

high-variance noise without greatly disturbing the original signal. 
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4.3.2 LabVIEW Block Diagram 

 

Figure 4-8: Transfer Function.vi block diagram. 

4.3.3 Parameters Chosen 

The parameters for this block include the band-pass and median filter 

specification.  For the band-pass filter, we choose a 5
th

 order Butterworth filter due to its 

smooth transition region and linear phase response.  We choose 50 Hz for the low cutoff 

frequency because the loudspeaker will not be able to properly reproduce frequencies 

below this value.  We choose 12 kHz for the high cutoff frequency because we want to 

avoid adding high-frequency noise during cancellation.  Lastly, we choose a median filter 

size of 10 based on experimental testing.  Median filter sizes over 20 caused noticeable 

and undesirable artifacts in the sound of the waveform.  The chosen parameters are 

summarized in Table 4-3 below. 

Table 4-3: Parameters chosen for transfer function block. 

Parameter Value 

Band-pass filter type Butterworth 

Band-pass filter order 5 

Band-pass low cutoff frequency 50 Hz 

Band-pass high cutoff frequency 12 kHz 

Median filter size 10 
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4.4 Impulse Response Windowing 

4.4.1 Overview 

One undesirable result of the environmental filter transfer function is that, due to 

the non-ideal loudspeaker and microphone, it behaves like an infinite impulse response 

(IIR) filter.  This project requires the filter to behave like a relatively low-order finite 

impulse response (FIR) filter to minimize the impact of circular convolution when 

rebuilding the output waveform from multiple FFTs.  Tests show that the impulse 

response (found by taking the IFFT of the transfer function) typically contains significant 

information beyond 100000 samples.  In LabVIEW, the impulse response shows peaks at 

indices 0 and 262144 and nearly symmetrically fades out toward index 131072, as shown 

in Figure 4-10. To properly window the impulse response, we must swap the first and 

second halves of this waveform, set the first and last 131072 – M/2 values to zero, and 

apply the window to the middle section of M values, where M is the window size.  Then, 

we rebuild the waveform and swap the two halves back.  Figure 4-9 shows the LabVIEW 

implementation of this process. 

After windowing the transfer function’s impulse response, we again take its FFT 

to convert it back to the frequency domain. 
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4.4.2 LabVIEW Block Diagram 

 

Figure 4-9: Impulse Response Windowing.vi block diagram. 

4.4.3 Parameters chosen 

The two main parameters in this subsystem are the window type and window size.  

We choose to use a Hanning Window with a size of 5000.  The equation for the Hanning 

Window is shown in Eq. 4-2 below, where M is the window size.  

   
 

 
        (

   

 
)  Eq. 4-2 

 

Figure 4-10: Impulse response of environmental filter before and after windowing. 
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Figure 4-10 shows the impulse response of the environmental filter before and 

after windowing.  We can see that without windowing, the impulse response does not 

decay to zero.  The following table summarizes the parameters chosen for this block. 

Table 4-4: Parameters chosen for impulse response windowing block. 

Parameter Value 

Window type Hanning 

Window size 5000 

 

4.5 Secondary Offset Calculation 

4.5.1 Overview 

The goal of this block is to determine the amount of time that has elapsed since 

the initial data acquisition block so that it can compensate by adding an offset to the 

starting index of the future cancellation waveform.  Recall from Figure 4-3 that “Acquire 

Microphone Data (6sec).vi” initializes a microsecond timer.  Before we can apply the 

environmental filter to the WAVE file to generate the cancellation waveform, we must 

find the total elapsed time and convert it to its equivalent number of samples.  Eq. 4-3 

shows the conversion from the total elapsed microseconds (t) to the equivalent sample 

offset value. 

       
    
   

 Eq. 4-3 

4.5.2 LabVIEW Block Diagram 

Figure 4-11 shows the LabVIEW implementation of Eq. 4-3.  The purpose of 

“FFT values in” and “FFT values out” is to guarantee that LabVIEW processes this block 
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only after the FFT values have been determined, since the VI will not be executed until 

all inputs are ready. 

 

Figure 4-11: Initial Offset.vi block diagram. 

4.6 Cancellation Waveform Generation 

4.6.1 Overview 

The next step is to generate the cancellation waveform from the environmental 

filter transfer function.  The LabVIEW implementation of this process is quite simple:  

Given the full song WAV data, the found starting index, and the calculated secondary 

offset, we extract the future excerpt and take its FFT.  We then perform complex 

multiplication with the FFT of the future WAV excerpt and the filter transfer function.  

Lastly, we take the IFFT of the result and negate the time-domain signal.  The reason we 

cannot simply convolve the impulse response of the environmental filter with the rest of 

the WAVE file is that this operation would take up too much memory.  This is the same 

reason we had to parse the WAVE file for the cross-correlation in the initial 

synchronization block. 
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4.6.2 LabVIEW Block Diagrams 

 

Figure 4-12: Recreate Waveform.vi block diagram. 

 

Figure 4-13: WAV from TF.vi block diagram. 

4.7 Overlap and Save Method for Successive FFTs 

4.7.1 Overview 

The previous step generates a cancellation waveform of length 262144, or about 6 

seconds of cancellation audio at 44.1 kHz.  In order to continue the cancellation, we must 

repeat the same process to subsequent portions of the WAV data.  However, due to the 

effects of circular convolution, we cannot simply compute the next 262144 values and 

append the result to the previous computation.  Multiplication in the frequency-domain 

multiplication is equivalent to convolution in the time-domain, and the convolution has 

some lead-in and lead-out depending on the length of the filter’s impulse response.  In the 

overlap and save method, we overlap the successive FFTs, throw away the lead-in and 
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lead-out of each convolution result, and save the parts of the waveform unaffected by the 

wrapping effect of the circular convolution. 

Figure 4-14 shows an illustration of the overlap and save method implemented in 

this project [14]. 

 

Figure 4-14: Overlap and save method schematic diagram [14]. 

Using half of the window length (M/2) from the impulse response windowing 

block as the number of samples to throw away from the beginning and end of each 

convolution result, we can make use of LabVIEW’s array subset function to extract the 

desired portion of each convolution result.  Figure 4-15 shows the basic LabVIEW 

implementation of the overlap and save method.  We convert each saved portion of the 

convolution result from WAV values to 32-bit integers (required for WaveIO playback 

[15]), and we then fill a buffer by concatenating each result to dynamically build an 

output array.  In this implementation, we separately compute the first section so that it is 

immediately available for playback.  This gives the overlap and save block a 6 second 
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head start to fill up the output buffer.  The output buffer array, called “I32 values” is a 

local variable, which can be accessed from other locations within the same VI. 

4.7.2 LabVIEW Block Diagram 

 

 

Figure 4-15: Overlap and save method block diagram. 

4.7.3 Parameters chosen 

The only parameter in the overlap and save block is the overlap size, or the 

number of samples to throw away from the beginning and end of the signal.  We choose 

M/2 for this parameter, where M is the window length chosen in Section 4.4.3.  M/2 is 

the smallest value for which you can guarantee avoiding the effects of circular 

convolution, because it is also the maximum length of the environmental filter’s impulse 

response. 

4.8 Final Synchronization and Playback 

4.8.1 Overview 

As the output buffer fills up, the system can begin playing the cancellation 

waveform.  This block attempts to find the optimal index offset to synchronize the 

cancellation waveform with the noise signal.  We achieve this by first calculating an 

M/2 

Sections Remaining 

Excerpt [Size] Bits M/2 
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updated offset compensation value based on the delay since the previous calculation in 

Section 4.5.  Then, we perform a coarse sweep (Sweep 1) of the sample index above and 

below the approximate best index value while measuring the resulting audio.  We locate 

the region within the recorded waveform where it exhibits the best cancellation, and 

repeat with a fine sweep (Sweep 2) around the located region.  This procedure will only 

work if 1) the sample index that produces perfect synchronization/cancellation falls 

within the range of the first sweep, 2) the step size of Sweep 1 is not larger than the width 

of the cancellation “sweet spot,” and 3) the total sweep range of Sweep 2 is at least twice 

the step size of Sweep 1. 

Figure 4-16 shows an illustration of the principle behind the dual-sweep 

algorithm for the final synchronization block.  The red region represents the indices 

where there is no cancellation, while the green region represents the cancellation “sweet 

spot,” or the range of indices where partial and complete cancellation occurs.  The origin 

index labeled as “0” is the approximate pre-sweep sample index including the initial 

offset compensation.  Note that we may require a constant offset index value if the pre-

sweep value is consistently off by the same (or nearly the same) value. 

 

Figure 4-16: Basic principle of sweep algorithm for final synchronization. 
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4.8.2 LabVIEW Block Diagrams and Detailed Description 

While the concept of the dual-sweep algorithm is fairly straightforward, its 

implementation in LabVIEW is complicated.  This block consists of two important loops 

that must communicate between one another.  Figure 4-17 shows the block diagram of 

first important loop in this final synchronization process.  This loop sets the sweep 

parameters for each sweep, performs both Sweep 1 and Sweep 2, adjusts the sample 

index offset value based on the value found in the second loop (shown in Figure 4-19), 

and plays the cancellation waveform. 

 

Figure 4-17: Block diagram of first loop in final synchronization. 

Figure 4-18 shows the case structure that calculates the best approximate pre-

sweep index (origin of Figure 4-16) during the first iteration of the loop shown in Figure 

4-17 (bottom right) and plays the buffered cancellation audio during all subsequent 

iterations. 
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Figure 4-18: Offset compensation calculation on i=0, buffer playback on subsequent 

iterations. 

In Figure 4-17, we define the parameters for each sweep.  There are 4 different 

sweep parameters: start iteration, stop iteration, speed adjust, and step size.  The start and 

stop iterations define the iteration range within the first loop that the sweep will occur.  

The speed-adjust parameter defines the rate at which the index will sweep by skipping 

iterations within the specified range that do not divide evenly into the difference between 

the current iteration and the start iteration.  For example, a speed-adjust value of 2 would 

make it so that the index will only step during even iterations.  The step size is simply the 

number of samples the sweep steps by during each iteration.  With a speed adjust value of 

2, the index will step by the step size every 8000 samples (2   buffer size), or every 181 

milliseconds of real time. 
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For this project, we choose the following parameters in Table 4-5 below. 

Table 4-5: Parameters chosen for dual-sweep algorithm. 

Parameter Sweep 1 Sweep 2 

Start iteration 10 160 

Stop iteration 110 220 

Speed adjust 2 2 

Step size 10 2 

With these parameters, Sweep 1 will step from  250 samples by 10 samples.  

This is because with a speed-adjust value of 2, there will only be 50 steps during the 100 

iterations, which equates to a total Sweep 1 range of 500 samples.  Similarly, Sweep 2 

will step from  15 samples by 1 sample.  We wait 50 iterations between Sweep 1 and 

Sweep 2 to allow the second important loop to process the recorded audio and return the 

best found index. 

The sweep parameters are set in a case structure with the Boolean variable “end 

sweep 1” as the case selector.  For Sweep 1, “end sweep 1” is False.  The variable is set 

to True after processing the measured audio from Sweep 1 in the second loop. 

When the first loop iteration equals the start iteration, this triggers a Boolean 

variable “start?” to be True.  When “start?” is True, the sample index at start of the sweep 

is stored to the variable “Sweep Start Index” and the processing within the second main 

loop begins. 

 

Figure 4-19: Block diagram of second important loop in final synchronization process. 
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Figure 4-19 shows the block diagram of the second loop, which records audio 

during each sweep, compares the averaged and normalized measured waveform to the 

averaged and normalized playback waveform, and determines the index location where 

the best cancellation occurs.  The entire process must be contained within a while loop 

because it must check the values of the local variables at the start of each iteration. 

 

Figure 4-20: Left part of block diagram in Figure 4-19. 

Figure 4-20 shows the left side of the block diagram in Figure 4-19.  This is 

where the sound input is configured and the microphone data is read similarly to the 

initial data acquisition step in Section 4.1. 
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Figure 4-21: Middle part of block diagram in Figure 4-19. 

Figure 4-21 shows the portion of the block diagram that compares the measured 

audio to the playback audio (expected audio), and finds the best cancellation index.  We 

must compare the measured and expected audio because songs typically have a variable 

dynamic range and thus by only taking the minimum value of the measured audio after 

smoothing, we increase the risk of finding a false positive.  This project uses a moving 

average filter size of 10000.  We locate the index where the optimal cancellation occurs 

within the averaged result by finding the location of its minimum value. 

The following are some important details within Figure 4-21: 

 We subtract an experimentally-determined constant value (14000 in this case) 

from “Sweep Start Index” to account for the delay in Figure 4-20.  This better 

aligns the measured audio with the playback audio. 

 We disregard the first (24000 = 3   step size) samples of the averaged result, 

where: step size = buffer size   speed adjust = 4000   2 = 8000 samples. 

This is because the beginning portion of the outcome of the moving average filter 

returns small values, which will likely result in false positives.  Additionally, 

depending on the synchronization of the microphone recording and the sweep, it 

is possible that the microphone might record a cancellation signal at the beginning 
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if it begins the recording slightly before the start of the sweep and if the optimal 

cancellation index is near the origin of the sweep.  See Section 5.2.2 for an 

example of why disregarding the first 24000 samples is important. 

 Because both sweeps are designed to step the sample index value down from 

     to     , the final index of each sweep is     below the initial 

approximation (origin of Sweep 1).  We must add the appropriate number of 

indices to (         ) to produce the best index.  Figure 4-22 shows an 

example where the best cancellation index is 108 samples above the origin.  Using 

the sweep parameters from Table 4-5, we expect the best coarse cancellation 

index to be 36 steps (step size of 10) above the final sweep value of  250.  Sweep 

2 centers around the sum of the two values, which will be 110 samples above the 

initial approximation.  Lastly, we expect the best Sweep 2 cancellation index to be 

13 steps above the final sweep value of  15, producing a final found index value 

of  2 with respect to the origin of Sweep 2, and +108 with respect to the origin of 

Sweep 1.  The total range of the loop is 400,000 samples in real-time, since there 

are 50 total steps with (2   buffer size = samples/step). 
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Figure 4-22: Dual-sweep synchronization example. 

The final part of the second loop is to set “end sweep 1” to True, shown in Figure 

4-23.  Recall, that this value will trigger the sweep parameter case structure to switch 

from the Sweep 1 parameters to the Sweep 2 parameters. 

 

Figure 4-23: Right part of block diagram in Figure 4-19. 
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Figure 4-24 summarizes the basic flow diagram of the final synchronization step.  

Note that the blue blocks represent the processing that takes place in Figure 4-17, while 

the green blocks represent the processing that occurs in Figure 4-19. 

 

Figure 4-24: Summary of final synchronization block diagram. 

Figure 4-25 shows the accumulative offset correction within the first loop in 

Figure 4-17.  Here we add 7 different values together: the offset compensation value 

calculated during the first iteration, the index values for each sweep (final values are 

 250 and  15 for Sweeps 1 and 2 respectively), the sample index corrections for each 

sweep, the constant offset value, and the current playback iteration multiplied by the 

buffer size. 
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Figure 4-25: Accumulative offset correction within first loop in Figure 4-17. 
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CHAPTER 5: SYSTEM VERIFICATION/TESTING 

In this chapter, we will show and discuss the experimental test results for the 

amplitude matching calibration step, the dual-sweep synchronization algorithm, and the 

complete system performance. 

5.1 Amplitude Matching Calibration 

5.1.1 Overview and Setup 

To avoid the need for amplitude synchronization, we perform an amplitude 

calibration step, which matches the amplitude of the microphone signal to that of the 

loudspeaker signal.  This will ensure that there is a 1:1 ratio between the measured audio 

and the cancellation audio and will allow magnitude variations in the frequency domain 

to accurately reflect the amplitude variation required for cancellation in the time domain.  

In this project, the final amplitude value is controlled by four different level-controls: 1) 

the volume setting on the PC, 2) the volume knob on the loudspeaker, 3) the gain-control 

knob on the microphone preamplifier, and 4) the microphone gain setting within 

Windows’ sound control panel. 

To perform the calibration step, we set 3 of the 4 level-controls previously listed 

to constant settings – We choose the volume knob on the loudspeaker as the only 

variable.  Next we play a 1 kHz sine wave signal through the loudspeaker and record the 

output audio with the microphone.  We compare the RMS of the recorded waveform to 

that of the original waveform, and manually adjust the volume knob on the loudspeaker 

until the RMS values match.  We can sweep the input level of the sine wave from -30 dB 

to 0 dB to ensure the amplitude matches over a wide dynamic range. 
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We create a data collection VI to sweep the input level from  30 dB to 0 dB in 

steps of +3 dB and store the input and output RMS values in an array.  This is shown in 

Figure 5-1 below. 

 

Figure 5-1: Amplitude matching calibration block diagram. 

5.1.2 Test Results 

Table 5-1 shows the final amplitude matching calibration test results.  For this 

test, the PC volume level was set to 16 (out of 100) and both microphone gain levels were 

set to their maximum. 

Table 5-1: Amplitude matching calibration results with 1 kHz reference signal. 

Input Level (dB) Input RMS Output RMS RMS percent error (%) 

-30 0.0224 0.0224 0.0295 

-27 0.0316 0.0315 0.4015 

-24 0.0446 0.0443 0.7475 

-21 0.0630 0.0625 0.8638 

-18 0.0890 0.0881 0.9795 

-15 0.1257 0.1242 1.2327 

-12 0.1776 0.1749 1.5089 

-9 0.2509 0.2467 1.6748 

-6 0.3544 0.3483 1.7272 

-3 0.5006 0.3982 20.4596 

0 0.7071 0.3985 43.6386 
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We can see that the input and output RMS levels are very similar to each other for 

input levels between  30 dB and  6 dB.  However, as the input level approaches 0 dB, 

the output RMS no longer increases linearly.  This is shown visually in Figure 5-2 and 

Figure 5-3.  The most likely reason why the output RMS values level off as the input 

approaches 0 dB is that this particular soundcard or codec has built-in compression or 

limiting as the input level approaches peak gain. 

 

Figure 5-2: Output RMS vs. Input RMS for amplitude matching at 1 kHz. 

The trend line representing the linear region between  30 dB and  6 dB has a 

slope of 0.9813, which is a 1.87% error from the desired value of 1.0. 
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Figure 5-3: Linear region of Figure 5-2. 

Figure 5-4 below shows the RMS percent error as the input level is swept from 

 30 dB to 0 dB.  The error is less than 2% until the input level reaches  6 dB, where it 

begins to increase due to the peak compression. 

 

Figure 5-4: RMS percent error vs. input level (dB). 
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In this test, we developed a reliable way to calibrate the amplitude of the speaker 

output to match that of the microphone measurement.  We discovered that the soundcard 

or codec introduces compression as the input level approaches 0 dB.  This mismatch at 

high amplitude levels will negatively affect the overall system’s ability to attenuate loud 

noise, but it should not have an impact on its performance for amplitude levels below  6 

dB.  Soundcards or codecs that do not introduce compression near 0 dB will not create 

this problem. 

5.2 Final synchronization (Dual-Sweep) Testing and Analysis 

5.2.1 Overview and Setup 

To test the reliability of the dual-sweep synchronization method from Section 4.8, 

we design a test suite in LabVIEW consisting of a modified version of the complete 

system which bypasses the environmental filter transfer function block.  Bypassing this 

block simulates a perfect loudspeaker frequency response and a perfect environment. 

Next, we play a WAVE file with Windows Media Player at 100% volume before 

running the LabVIEW program.  The cancellation loudspeaker is connected to the 

computer’s audio-out jack and the measurement microphone is placed near the woofer (as 

opposed to the tweeter) of the loudspeaker.  The woofer outputs frequencies at the lower 

end of the audible range, which are more likely to be attenuated.  Here, the cancellation 

occurs within the soundcard – the loudspeaker is used to play the canceled audio so that 

the microphone can detect the optimal cancellation region for each sample index sweep.  

Figure 5-5 shows the physical setup configuration for this test. 
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Figure 5-5: Test setup for dual-sweep synchronization. 

5.2.2 Test Results 

The first test uses a white noise source as the unwanted audio.  Out of 20 trials, 

the dual-sweep synchronization method was successful in all but 1 of them (95% success 

rate).  The only failure was due to the cancellation “sweet spot” not falling within the 

range of the first sweep.  Possible reasons for this include: 1) variable processing speeds 

within Windows, 2) large deviation between the cross-correlation result and the expected 

value, and 3) additional unwanted noise interfering with the initial audio measurement. 

Recall from Section 4.8.2 that the sweep may require a constant index offset.  

This particular test required a constant offset of -3500 samples.  The following two 

figures show the recorded microphone signals (averaged and compared to the original 

sweep signal) for both Sweep 1 and Sweep 2.  Here the cancellation region falls within 

the range of Sweep 1, and the system is able to correctly locate the optimal cancellation 

sample index. 
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Figure 5-6: Sweep 1 test (white noise source, ideal environment/devices) – #1. 

 

Figure 5-7: Sweep 2 test (white noise source, ideal environment/devices) – #1. 

In the following example, the microphone recording for Sweep 2 begins slightly 

before the index sweep begins, which means that the microphone records a short period 

of cancellation at the beginning of the measurement.  Since we do not want this false 

positive to be identified as the best cancellation index, we disregard the first 24000 

samples and use the remaining samples to determine the best index (shown in Figure 

5-9). 

 

Figure 5-8: Sweep 1 test (white noise source, ideal environment/devices) – #2. 
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Figure 5-9: Sweep 2 test (white noise source, ideal environment/devices) – #2. 

From Figure 5-7 and Figure 5-9, we see that the unwanted white noise appears to 

be reduced by approximately 80%, or 14 dB.  However, recall that this waveform is 

normalized, averaged, and compared to the normalized and averaged input waveform, so 

it doesn’t reflect the actual attenuation.  To get a better idea of the attenuation this 

produces, we must compare the frequency responses of the measured noise and the 

measured cancellation waveforms.  Figure 5-10 shows the attenuation in the frequency 

domain. 

 

Figure 5-10: Attenuation of white noise source in the frequency domain. 
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From Figure 5-10, it is still difficult to understand how well the system attenuates 

noise.  The best metric to understand the overall noise cancellation performance is to 

compare the total power of the noise signal with the cancellation signal.  To do this, we 

simply square and every element in both waveforms, sum the array elements and divide 

the result from the cancellation waveform with that of the noise waveform.  In the 

example above, the total signal power is attenuated by 9.4 dB.  For this case, the total 

signal power attenuation ranges from 8-15 dB. 

For the next test, we replace the white noise sound source with a low-pass-filtered 

version of an actual song and run an additional 20 trials.  Theoretically, we should expect 

the system to produce better cancellation because perfect synchronization is not required 

to significantly attenuate low-frequency sound.  However, the filtered signal has much 

less frequency content than the unfiltered WAVE file version and this could reduce the 

reliability of the cross-correlation result – i.e. the system may no longer consistently and 

accurately locate the starting index of the recorded excerpt within the unfiltered WAVE 

file.  We will most likely require different sweep parameters and a different constant 

sample index offset value to compensate for this.  After many tests, we find that the 

constant sample index which yields the most consistent results is -4750 samples.  This 

result was found to deviate by as much as  1000 samples.  To accommodate for this 

wide sample offset deviation, we could increase the step size of Sweep 1, or increase the 

start-to-stop iteration range.  The main drawback of increasing the sweep range is a 

longer sweep time.  For this test, however, we will leave the sweep parameters as they 

were and only adjust the constant offset value. 
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After 20 trials, we find that the dual-sweep algorithm located the best cancellation 

index 14 times (70%).  6 tests failed because the desired sample index was outside of the 

range of the sweep.  As we hypothesized, the following graphs show a wider cancellation 

“sweet spot.”  We also see that we can achieve better attenuation than in the previous test. 

 

Figure 5-11: Sweep 1 test (low-pass song source, ideal environment/devices) – #1. 

 

Figure 5-12: Sweep 2 test (low-pass song source, ideal environment/devices) – #1. 

The following two figures show another successful sweep in which the 

normalized and averaged unwanted noise shows a reduction of 96%, or 28 dB.  Again 

this metric does not accurately reflect the actual noise cancellation performance given 

this particular input signal; it simply serves as an estimate for the magnitude of the 

attenuation as well as proof that cancellation is present. 
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Figure 5-13: Sweep 1 test (low-pass song source, ideal environment/devices) – #2. 

 

Figure 5-14: Sweep 2 test (low-pass song source, ideal environment/devices) – #2. 

Figure 5-15 shows the noise attenuation in the frequency domain.  We see that 

when the unwanted sound signal is low-pass in nature, the cancellation performance is 

much better than when the signal has a lot of high-frequency content.  If we compare the 

input noise power with the cancellation noise power, we find that this system attenuates 

the noise power by 64 dB.  Section 2.2 of this report shows a similar result. 

 

Figure 5-15: Attenuation of low-pass filtered song in the frequency domain. 
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From these tests, we see typical attenuation between 50-70 dB for low-pass 

filtered songs.  Keep in mind that these tests simulate a perfect environment where the 

noise and cancellation audio occur within the soundcard. 

5.3 Complete System Testing 

Lastly, we test the performance of the entire system for both a white noise source 

and a low-pass filtered song. We also perform the test with and without loudspeaker 

equalization.  The test-setup is similar to the one shown in Figure 5-5 except that now 

instead of playing the noise within Windows, we have an external sound source. 

 

Figure 5-16: Complete system test-setup with external noise source. 

5.3.1 White Noise Source 

For this test, we use a white noise signal for the unwanted noise source.  The 

following two figures show the measured environmental filter frequency response before 

and after windowing the impulse response.  We observe that windowing has a greater 

impact on the low frequency response than the high frequency response. 
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Figure 5-17: Measured environmental filter frequency response (before windowing). 

 

Figure 5-18: Measured environmental filter frequency response (after windowing). 

The following two figures show results similar to those produced in the dual-

sweep test section.  We see that the first sweep correctly locates the general cancellation 

region, and the second sweep finds the precise location.  This example shows the best 

noise reduction achieved over 20 trials. 
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Figure 5-19: Full system test (white noise, Sweep 1). 

 

Figure 5-20: Complete system test (white noise, Sweep 2). 

Here, the noise power is attenuated by 14 dB.  Figure 5-21 shows the attenuation 

of the white noise in the frequency domain.  Out of 20 trials, this was the best case noise 

attenuation.  The average attenuation is approximately 10 dB. 

 

Figure 5-21: Attenuation of white noise source in the frequency domain (complete 

system). 



73 

5.3.2 Low-Pass Filtered Song Source 

Here, we repeat the previous test for a low-pass filtered song.  As demonstrated in 

Section 5.2, we expect the system to provide better noise attenuation because active 

attenuation is better at canceling low-frequency noise.  We can achieve the best noise-

cancellation performance if we anticipate low-pass filtered noise and lower the band-pass 

filter’s high cutoff frequency from 12 kHz to 2 kHz.  This helps because any high-

frequency noise the microphone picks up will not be factored into the environmental 

filter transfer function and thus the cancellation waveform will not include the song’s 

high-frequency content.  Put another way, if we know that the unwanted noise is low-pass 

filtered and does not contain high-frequency content, then we can take advantage of this 

by lowering the high frequency cutoff of the transfer function so that the system does not 

attempt to cancel the song’s low-frequency content with any high-frequency content. 

Figure 5-22 shows the measured environmental filter transfer function (after 

windowing) with the high cutoff frequency set to 12 kHz (left) and 2 kHz (right).  Both 

show strong frequency content at the low end of the audible range below 2 kHz.  

However, the plot on the left exhibits significant frequency content above 2 kHz. 

  

Figure 5-22: Environmental filter frequency response for low-pass filtered song with fh = 

12 kHz (left) and 2 kHz (right) after windowing. 
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The plot on the right is a better representation of the actual unwanted song’s 

frequency response and thus will provide better cancellation performance. 

The following two figures show the results of the dual-sweep synchronization 

step.  We observe that Sweep 1 locates the cancellation region, and Sweep 2 finds the 

optimal sample index.  Here, we see that the noise appears to be attenuated by 

approximately 90%, or 20 dB. 

 

Figure 5-23: Complete system test (low-pass filtered song, Sweep 1). 

 

Figure 5-24: Complete system test (low-pass filtered song, Sweep 2). 

This system is very sensitive to additional noise:  For example, the existence of 60 

Hz noise will cause the environmental filter transfer function to amplify the song’s 60 Hz 

frequency content, which is not desirable.  Also, there is a possibility that random 

impulses of noise may occur during the cancellation region, which could prevent the 

system from correctly locating the best possible cancellation index. 
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It also appears that the overall system performance depends on the available 

resources within Windows.  For example, if there are too many tasks running in the 

background that require a significant amount of system memory and processor demands, 

then the processing within LabVIEW will take longer.  Luckily, the system is designed to 

handle these slight fluctuations in processing performance.  However, tests show that 

varying the system’s resources affects the constant sample index offset required for time-

synchronization.  A dedicated processor would not have this problem.  The dual-sweep 

synchronization step also requires that the system completes the post-Sweep-1 processing 

before the start of Sweep 2, since Sweep 2 uses the result from Sweep 1 to determine its 

sweep location.  
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CHAPTER 6: CONCLUSIONS 

6.1 Summary 

In this report, we introduced a novel frequency domain method for the active 

acoustic cancellation of known audio sources and demonstrated a system prototype in 

LabVIEW running on a Windows PC using Dayton Audio’s EMM-6 measurement 

microphone and M-Audio’s AV-30 loudspeakers.  We showed that in a perfect 

environment with a perfect measurement microphone and loudspeaker, i.e. flat frequency 

responses with high signal-to-noise ratios, we can achieve roughly 300 dB noise 

attenuation, where the error associated with the 32-bit floating point computations is the 

only thing preventing perfect cancellation. 

We also showed that representing the environmental filter frequency response by 

a low-order linear filter changes the typical noise attenuation to 50-70 dB.  In this case, 

small errors in the environmental filter recreation have a greater impact on the system’s 

ability to attenuate noise. 

Finally, for the complete system implementation, we achieved typical wideband 

(white noise) attenuation between 8-15 dB with low-frequency attenuation in the range of 

10-20 dB.  For the most part, these attenuation values exceed the goal of 10 dB and are 

within the range of the typical performance of active noise-canceling headphones. 

6.2 Limitations of Current Design 

6.2.1 Hardware 

The most significant limitation on the current design is the quality of the 

microphone and loudspeaker.  Although both the EMM-6 and AV-30 offer great 
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performance for their respective prices, a cancellation system utilizing this frequency 

domain method requires perfect measurement and playback devices.  If the microphone 

cannot detect certain frequencies, then the computed environmental filter transfer 

function will filter those frequencies out.  Similarly, if the loudspeaker cannot reproduce 

certain frequencies, then it will not be able to attenuate noise at those frequencies.  The 

performance of this cancellation system is heavily debilitated by the worst-performing 

device. 

6.2.2 Mono vs. Stereo 

Another limitation of this implementation is that it only takes into account 1 

channel (mono).  Songs typically have left and right channels that together produce a 

stereo sound field.  Therefore, any unwanted song in the environment will contain a 

combination of phase-shifted and attenuated audio from both the left and right channels.  

In this general case, the location of the microphone within the stereo field becomes 

important.  Furthermore, this project does not take into account the multipath effects of 

an audio waveform reflecting off of objects in the environment. 

6.2.3 Microsoft Windows OS 

Another major limitation of this design is the non-real-time processing within 

Windows.  The nondeterministic timing within Windows makes audio synchronization a 

difficult task.  This project makes use of microsecond timers to track the amount of time 

elapsed between key processes; however, even with these corrections, the offset required 

for perfect synchronization still deviates by a few thousand samples, depending on 

system resources, i.e. available memory and processor bandwidth.  One obvious solution 

would be to switch to a real-time operating system.  However, one important goal of this 
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project is to make use of software that most people already have, and most people do not 

use real-time operating systems. 

6.3 Future Improvements 

6.3.1 Microphone and Loudspeaker Array 

One possible future improvement is to implement the cancellation system with an 

array of microphones and speakers.  This array of devices could potentially expand the 

zone of silence, or the region in space where significant cancellation occurs. [16] shows a 

robust MIMO control framework for the compensation of loudspeaker-room responses.  

It is shown that increasing the number of support loudspeakers results in better 

loudspeaker-room equalization.  It was previously mentioned that the most important 

loudspeaker requirement is that it have a flat frequency response. 

6.3.2 Loudspeaker Equalization with Inverse Filtering 

A possible alternative of supplementary loudspeaker equalization technique is to 

use inverse filtering to “undo” the frequency response of the loudspeaker [17] [18].  

While it is possible to attenuate frequencies that are overrepresented in the loudspeaker 

frequency response, it is not feasible to boost frequencies that the loudspeaker cannot 

reproduce.  Refer to Appendix B, for an investigation on loudspeaker equalization using 

Wiener deconvolution. 

6.3.3 Improved Initial Synchronization 

This project relies heavily on the ability of the cross-correlation procedure to 

accurately locate the recorded excerpt within the original WAVE file.  A large error in 

this step will propagate throughout the rest of the signal chain: First, the frequency 
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content of the mismatched excerpts will likely be different, and thus the calculated 

environmental filter transfer function will not accurately represent the actual 

environmental filter response.  Additionally, miscalculating the exact location of the 

excerpt will lead to timing synchronization errors which must be corrected by the dual-

sweep algorithm. 

Another improvement that must be made on the initial synchronization procedure 

is to account for the repetitive structure of songs.  A poorly made song may have 

repetitive elements that are exact copies throughout the song.  This will cause multiple 

peaks in the cross-correlation function, which could cause the system to find the wrong 

starting index location.  Unfortunately, there is no easy solution to this problem.  To 

account for this potential repetition, a future implementation of this design must store all 

possible starting index locations based on a thresholded magnitude of the cross-

correlation result.  The cancellation system will work as long as the repeated structure of 

the song remains identical to the found location.  However the cancellation will no longer 

work when the song changes, and at this point, the system must jump to the other 

possible locations. 

6.4 Concluding Remarks 

This thesis provides strong evidence that the acoustic cancellation of known audio 

sources in the frequency domain is a viable method for canceling unwanted songs in an 

environment.  The 8-15 dB broadband attenuation and 10-20 dB low-frequency 

attenuation compares favorably with the typical performance of existing active noise 

cancellation systems.  A future implementation of this system can only improve upon 

these results.  
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 LABVIEW SUB-VIS APPENDIX A.

 Microphone Data Acquisition A.1

LabVIEW uses three built-in functions to record microphone audio.  The 

following is a detailed description of the functionality and IO of each VI according to the 

LabVIEW 2012 help file [19]. 

A.1.1 Sound Input Configure VI 

This VI configures a sound input device to acquire data and send the data to the 

buffer. 

 

Figure A-1: Sound Input Configure.vi IO for microphone input. 

number of samples/ch: specifies the number of samples per channel in the buffer. Use a 

large number of samples for continuous operations. Use a smaller number of samples if 

you want to use less memory.  

sample mode: specifies whether the VI acquires samples just once (Finite Samples) or 

continuously (Continuous Samples). In Finite Samples mode, call Sound Input Read 

only until you have written the number of samples specified in number of samples/ch. 

In Continuous Samples mode, you can call Sound Input Read repeatedly as needed.  

device ID: is the input or output device you access for a sound operation. In general, 

most users should select the default value of 0. The value ranges from 0 to n–1, where n 

is the number of input or output devices on the computer.  

sound format: sets the acquisition rate, the number of channels, and the bits per sample 

of the sound operation. The values for each of these controls is dependent on your sound 

card.  

sample rate (S/s) sets the sampling rate for the sound operation.  

number of channels specifies the number of channels. This input can accept as many 

channels as the sound card supports. For most sound cards 1 is Mono and 2 is Stereo.  

bits per sample specifies the quality of each sample in bits. Common resolutions are 16 

bits and 8 bits. The default is 16 bits.  
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error in describes error conditions that occur before this node runs. This input provides 

standard error in functionality.  

task ID returns an identification number associated with the configuration on the 

specified device. You can pass task ID to other sound operation VIs.  

error out contains error information. This output provides standard error out 

functionality.  

A.1.2 Sound Input Read VI 

This VI reads data from a sound input device. 

 

Figure A-2: Sound Input Read.vi IO for microphone input. 

number of samples/ch specifies the number of samples per channel to read from the 

buffer.  

task ID is the sound operation from the configured device you want to manipulate or 

input. You generate task ID with the Sound Input Configure VI.  

error in describes error conditions that occur before this node runs. This input provides 

standard error in functionality.  

timeout (sec) specifies the time, in seconds, that the VI waits for the sound operation to 

complete. This VI returns an error if the time elapses. The default is 10. If you set timeout 

(sec) to -1, the VI waits indefinitely.  

task ID out is the manipulated sound operation originally passed to the task ID 

parameter.  

data reads any sound data from the internal buffers. For multi-channel sound data, data 

is an array of waveforms where each element of the array is a single channel.  

 

t0 is the start time for the first sample read. LabVIEW approximates the initial 

time that the first sample was read because the sound file does not contain this 

data.  

 

dt is the sampling interval. It is the inverse of the sampling rate specified by the 

Sound Input Config VI.  

 

Y is the sound data. If the array data type is a floating-point numeric, Y ranges 

from -1.0 to 1.0.  

 

The specified data type determines the range of values for the sound data.  
 

error out contains error information. This output provides standard error out 

functionality.  
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A.1.3 Sound Input Clear VI 

This VI stops acquisition of data, clears the buffer, returns the task to the default 

state, and clears the resources associated with the task. The task becomes invalid. 

 

Figure A-3: Sound Input Clear.vi IO for microphone input. 

task ID is the sound operation from the configured device you want to manipulate or 

input. You generate task ID with the Sound Input Configure VI.  

error in describes error conditions that occur before this node runs. This input provides 

standard error in functionality.  

error out contains error information. This output provides standard error out 

functionality.  

 Audio Playback Via WaveIO v0.70 A.2

WaveIO is a soundcard interface for LabVIEW.  While the default sound library 

lvsound.dll has some limitations in I/O channels, sampling rates, and resolutions, the 

WaveIO library overcomes these shortcomings by providing flexible access to the 

soundcard with all possible hardware supported features. The connection between the 

LabView VI and actual sound hardware is done via the standard Windows API. 

Therefore, all sound systems providing drivers for Windows should be accessible via the 

WaveIO interface. This applies to on-board sound, PCI sound cards as well as USB 

sound systems [15].  WaveIO also allows for a direct write to the output buffer with low 

latency. 
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The WaveIO package contains the following Soundcard Interface VIs in waveio.llb:  

WaveIO_Open: opens a sound device for recording or playback. The device has to be 

started before actually reading/writing data to it. The open will return an error if the 

device is not existing, already open or the selected sound format is not supported by the 

device. A watchdog thread is started, if the specified timeout is greater than zero. The 

watchdog will close the device, if the no call to DLL for the specific device is recorded 

within the given time window. For each device (and I/O mode) a separate watchdog 

thread is started. 

WaveIO_Start: starts the opened sound device. 

WaveIO_Play: sends the provided data to the soundcard. An error will occur,  

if the size of the provided data does not match the buffer setting of the open  

command. 

WaveIO_Record: waits and retrieves data from the soundcard. 

WaveIO_Stop: stops the sound device. Required before closing the device. 

WaveIO_Close: closes the sound device. 

 

Figure A-4 shows the VI used in this project that formats the output audio 

(sample rate, number of channels, bits per sample, and buffer size) and configures 

WaveIO for audio playback.  In the project signal chain, this block goes between the first 

cancellation block and the audio playback loop (before the overlap and save method as 

well).  The sample rate is set to 44.1 kHz, the number of channels is set to 2, the bit size 

is set to 16 bits, and the buffer size is set to 4000 samples. 

 

Figure A-4: Play Data Format & Setup.vi block diagram. 



86 

 Built-in Signal Processing VIs A.3

This project utilizes many built-in signal processing VIs.  These VIs include: 

 Cross-correlation 

 FFT and Inverse FFT 

 Median filter 

 Butterworth filter 

 Smoothing filter 

 Windowing (Hanning Window) 

 Interpolation 

A.3.1 Cross-Correlation VI  

This VI computes the cross correlation of the input sequences X and Y.  The cross 

correlation Rxy(t) of the sequences x(t) and y(t) is defined by the following equation: 

                 ∫               

 

  

 

 

Eq. A-1 

The discrete implementation is as follows: 

                

                

   ∑   
 

   

   

      

                                           Eq. A-2 

 

Figure A-5: CrossCorrelation.vi IO. 
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X is the first input sequence.  

Y is the second input sequence.  

algorithm specifies the correlation method to use. When algorithm is direct, this VI 

computes the cross correlation using the direct method of linear correlation. When 

algorithm is frequency domain, this VI computes the cross correlation using an FFT-

based technique. If X and Y are small, the direct method typically is faster. If X and Y 

are large, the frequency domain method typically is faster. Additionally, slight 

numerical differences can exist between the two methods.  

0 direct 

1 frequency domain (default) 
 

normalization specifies the normalization method to use to compute the cross correlation 

between X and Y.  

0 none (default) 

1 unbiased 

2 biased 
 

Rxy is the cross correlation of X and Y.  

error returns any error or warning from the VI. 

 

A.3.2 FFT VI 

This VI computes the fast Fourier transform (FFT) of the input sequence X.  For 

1D signals, the FFT VI computes the discrete Fourier transform (DFT) of the input 

sequence with a fast Fourier transform algorithm. The 1D DFT is defined as:  

   ∑            

   

   

                    

 

Eq. A-3 

where x is the input sequence, N is the number of elements of x, and Y is the transform 

result.  The frequency resolution is: 

   
  
 

 Eq. A-4 

where fs is the sampling frequency. 
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Figure A-6: FFT.vi IO. 

X is a real vector.  

shift? specifies whether the DC component is at the center of FFT {X}. The default is 

FALSE.  

FFT size is the length of the FFT you want to perform. If FFT size is greater than the 

number of elements in X, this VI adds zeros to the end of X to match the size of FFT 

size. If FFT size is less than the number of elements in X, this VI uses only the first n 

elements in X to perform the FFT, where n is FFT size. If FFT size is less than or equal 

to 0, this VI uses the length of X as the FFT size.  

FFT {X} is the FFT of X.  

error returns any error or warning from the VI.  

 

A.3.3 Inverse FFT VI 

This VI computes the inverse discrete Fourier transform (IDFT) of the input 

sequence FFT {X}. For a 1D, N-sample, frequency domain sequence Y, the IDFT is 

defined as: 

   
 

 
∑    

       

   

   

                   

 

Eq. A-5 

 

Figure A-7: Inverse FFT.vi IO. 

FFT {X} is the complex valued input sequence.  

shift? specifies whether the DC component is at the center of FFT {X}. The default is 

FALSE.  

X is the inverse complex FFT of FFT{X}.  

error returns any error or warning from the VI. 
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A.3.4 Median Filter VI 

This VI applies a median filter of rank to the input sequence X, where rank is 

right rank if right rank is greater than zero, or left rank if right rank is less than zero. The 

Median Filter VI obtains the elements of Filtered X using the following equation: 

                                      Eq. A-6 

where Y represents the output sequence Filtered X, n is the number of elements in the 

input sequence X, Ji is a subset of the input sequence X centered about the i
th

 element of 

X, and the indexed elements outside the range of X equal zero. The following equation 

describes Ji: 

       –       –             –                       –             Eq. A-7 

where rl is the filter left rank, and rr is the filter right rank.  The value given to either 

left rank or right rank defines the order of the median filter. 

 

Figure A-8: Median Filter.vi IO. 

X is the input signal to filter. The number of elements, n, in X must be greater than right 

rank. If the number of elements in X is less than or equal to right rank, the VI sets 

Filtered X to an empty array and returns an error.  

left rank is the number of elements used to compute the median filter to the left side. left 

rank must be greater than or equal to 0. The default is 2.  

right rank is the number of elements used to compute the median filter to the right side. 

If right rank is less than 0, the VI assumes right rank is equal to left rank. right rank 

must be less than X. The default is -1.  

Filtered X is the output array of filtered samples. The size of this array is the same as the 

input array X.  

error returns any error or warning from the VI. 
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A.3.5 Butterworth Filter VI 

This VI Generates a digital Butterworth filter by calling the Butterworth 

Coefficients VI. 

 

Figure A-9: Butterworth Filter.vi IO. 

filter type specifies the passband of the filter.  

0 Lowpass 

1 Highpass 

2 Bandpass 

3 Bandstop 
 

X is the input signal to filter.  

sampling freq: fs is the frequency in Hz at which you want to sample X and must be 

greater than 0. The default is 1.0 Hz. If sampling freq: fs is less than or equal to 0, this 

VI sets Filtered X to an empty array and returns an error.  

high cutoff freq: fh is the high cutoff frequency in Hz. The default is 0.45 Hz. The VI 

ignores this parameter when filter type is 0 (Lowpass) or 1 (Highpass). When filter type 

is 2 (Bandpass) or 3 (Bandstop), high cutoff freq: fh must be greater than low cutoff 

freq: fl and observe the Nyquist criterion.  

low cutoff freq: fl is the low cutoff frequency in Hz and must observe the Nyquist 

criterion. The default is 0.125 Hz. If low cutoff freq: fl is less than or equal to 0 or 

greater than half the value of sampling freq: fs, the VI sets Filtered X to an empty array 

and returns an error. When filter type is 2 (Bandpass) or 3 (Bandstop), low cutoff freq: 

fl must be less than high cutoff freq: fh.  

order specifies the filter order and must be greater than 0. The default is 2. If order is 

less than or equal to 0, the VI sets Filtered X to an empty array and returns an error.  

init/cont controls the initialization of the internal states. The default is FALSE. The first 

time this VI runs or if init/cont is FALSE, LabVIEW initializes the internal states to 0. If 

init/cont is TRUE, LabVIEW initializes the internal states to the final states from the 

previous call to this instance of this VI. To process a large data sequence that consists of 

smaller blocks, set this input to FALSE for the first block and to TRUE for continuous 

filtering of all remaining blocks.  

Filtered X is the output array of filtered samples.  

error returns any error or warning from the VI. 
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A.3.6 Smoothing Filter VI 

This VI generates a smoothing filter and yields forward-only (FIR) coefficients. 

This option is available only when you select Smoothing from the Filtering Type pull-

down menu within the Filter Express VI. You can then choose to specify the smoothing 

filter as moving average or exponential.  Figure A-11 shows the smoothing filter 

configuration window within the Filter Express VI. 

 

Figure A-10: Filter Express VI IO. 

 

Figure A-11: Smoothing filter configuration window within Filter Express VI. 

A.3.7 Hanning Window VI 

This VI applies a Hanning window to the input signal X.  The Hanning window is 

defined by the following equation:  
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)                    Eq. A-8 

The following figure shows the Hanning window and its Fourier transform [20]. 

 

Figure A-12: Hann (Hanning) window and its Fourier transform [20]. 

 

Figure A-13: Hanning window.vi IO. 

X is a real vector.  

Windowed X is the input signal with the window applied.  

error returns any error or warning from the VI. 

A.3.8 Interpolation VI 

This VI linearly interpolates a decimal y value from an array of numbers or 

points using a fractional index or x value. 

 

Figure A-14: Interpolate 1D Array.vi IO. 
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array of numbers or points can be an array of numbers or an array of points where each 

point is a cluster of x and y coordinates. If this input is an array of points, the function 

uses the first element in the cluster (x) to obtain a fractional index by linear interpolation. 

The function then uses this fractional index to compute the output y value from the 

second cluster element (y).  

fractional index or x is the index or x-value at which the function should return a y-

value. For example, if array of numbers or points contains two double-precision, 

floating-point numeric values, 5 and 7, and fractional index or x is set to 0.5, the 

function returns 6.0, which is halfway between the values at elements 0 and 1. 

 

If array of numbers or points contains an array of data point sets, the function returns 

the linearly interpolated y value at the x-value corresponding to fractional index or x. 

For example, if the array contains two points, (3,7) and (5,9), and fractional index or x 

is set to 3.5, the function returns 7.5. 

 

fractional index or x does not interpolate beyond the bounds of an array or data point 

set. For example, if the parameter is set lower than the first element or x-value in an 

array, the function returns the value of the first element or the y-value of the first data 

point. Similarly, if the parameter is set too high, the function returns the value in the final 

element or the final y-value. fractional index or x must be located directly on a point or 

between two points for the function to work correctly.  

y value is the interpolated value of the element at the fractional index or the interpolated 

y-value of the fractional data point, in array of numbers or points.  

 Additional User-Created VIs A.4

This project requires some miscellaneous VIs that are not completely discussed in 

Chapter 4 but are critical to the functionality of the system.   

A.4.1 Bit Weight Converter VI 

One such VI is the bit weight converter VI, which converts the WAVE values 

(double precision floating point) to 32-bit integer values and vice versa.  This function is 

necessary because WaveIO requires 32-bit integers for audio playback, while all FFT 

computations are with double precision floating point values.  Figure A-15 shows the VI 

for the conversion from WAVE file to 32-bit integers according to the following 

equation. 
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))  Eq. A-9 

 

Figure A-15: Bit Weight Converter (WAVE to I32).vi block diagram. 

A.4.2 Sweep Parameters VI(s) 

The dual-sweep algorithm discussed in Section 4.8 uses nested VIs to compute 

important values required to produce a successful sweep based on the given sweep 

parameters.  These computations are located in sub-VIs to minimize the visual clutter 

within the main VI. 

Figure A-16 shows the block diagram of the VI which computes values such as 

the total size of the microphone recording required to capture the entire sweep.  It also 

show the calculation for the equivalent step size in the microphone recording that 

corresponds to one step of the sweep. 

 

Figure A-16: Sweep parameter calculation block #1. 
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Figure A-17 shows the block diagram for the VI that performs the Boolean 

comparisons which determine the start of the sweep and the continuation of the sweep 

based on the sweep parameters. 

 

Figure A-17: Sweep parameter calculation block #2.  
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 LOUDSPEAKER EQUALIZATION INVESTIGATION APPENDIX B.

 Overview B.1

In an attempt to equalize the loudspeaker frequency response, we investigate 

using an inverse filtering method known as Wiener deconvolution.  The frequency 

response of a Wiener deconvolution filter is defined by Eq. B-1 [12]. 

     
     

|    |       
 Eq. B-1 [12] 

where      is the frequency response of the loudspeaker and     is its signal-to-noise 

ratio.  We can simplify Eq. B-1 by approximating       with a constant.  We can see 

that as the SNR goes to infinity, the Wiener deconvolution filter becomes an inverse 

filter. 

B.1.1 LabVIEW Implementation 

The first step is to obtain the loudspeaker frequency response     .  We do this 

by simultaneously playing and recording a logarithmic frequency sweep from 20 Hz to 

20 kHz.  We collect multiple measurements to obtain an average. Figure B-1 shows the 

LabVIEW block diagram that collects data from 5 separate chirps. 
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Figure B-1: Data collection block diagram for multiple 20 Hz to 20 kHz chirps. 

Figure B-2 shows the block diagram that finds the average loudspeaker frequency 

response by comparing the FFT of the average of 5 microphone recordings with the FFT 

of the original chirp signal. 

 

Figure B-2: Loudspeaker average transfer function block diagram. 

Figure B-3 shows the resulting frequency response of the M-Audio AV-30 

loudspeaker.  Figure B-4 shows the same plot with the amplitude in dB. Note that the 
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amplitude values depend on the volume of the chirp signal as well as the gain of the 

microphone. 

 

Figure B-3: Average measured frequency response of M-Audio AV-30 loudspeaker. 

 

Figure B-4: Loudspeaker frequency response from Figure B-3 in dB. 

We must resize the transfer function to 262144 so that it matches with the size of 

the transfer function in Section 4.3.  We use LabVIEW’s built-in 1D interpolation VI and 

interpolate both the magnitude and phase components of the complex transfer function.  

Figure B-5 shows the block diagram of this interpolation step. 
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Figure B-5: Transfer function interpolation block diagram. 

 Next, we apply the Wiener deconvolution filter from Eq. B-1 to the interpolated 

transfer function, shown in Figure B-6 below.  Here we choose a constant value of 0.002 

for      .  This is equivalent to a SNR value of approximately 54 dB. 

 

Figure B-6: Wiener deconvolution block diagram. 

The last steps are to window (Hanning, size 5000) and filter (band-pass 

Butterworth, 50 Hz – 12 kHz, 5
th

 order) the iFFT of the Wiener deconvolution filter 

values and to normalize the final frequency response, all shown in Figure B-7. 



100 

 

Figure B-7: Block diagarm of windowing, band-pass filtering, and normalization of 

Wiener deconvolution filter. 

Figure B-8 shows the resulting Wiener deconvolution filter for a large window 

size of M=80000.  Notice how it mirrors the loudspeaker frequency response from 

Figure B-3 – i.e. frequencies at which the magnitude of the loudspeaker frequency 

response is large show attenuation, while frequencies at which the magnitude of the 

loudspeaker frequency response is small show little to no attenuation.  The filter is 

designed to only attenuate frequencies because amplification could introduce unwanted 

distortion.  From this, we expect the amplitude of the equalized loudspeaker audio to be 

reduced. 

When this large filter is applied to the chirp signal, the resulting audio exhibits 

harmonic distortion and it sounds very different from the original chirp.  
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Figure B-8: Normalized Wiener deconvolution filter with window size M=80000. 

 

Figure B-9: Wiener deconvolution filter from Figure B-8 in dB. 

Figure B-10 shows the resulting Wiener deconvolution filter for a window size of 

M=5000.  We observe that we lose significant resolution in the low-frequency range, 

characterized by the smooth low-frequency response.  There is a trade-off between the 

window size (which must be small enough to limit the effects of circular convolution) 

and the low-frequency resolution of the Wiener deconvolution filter. 
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Figure B-10: Normalized Wiener deconvolution filter with window size M=5000. 

 

Figure B-11: Wiener deconvolution filter from Figure B-10 in dB. 

B.1.2 Test Results 

We apply the Wiener deconvolution filter determined in the previous section to 

the frequency chirp signal, re-play and re-measure the filtered audio, and observe the 

resulting transfer function to determine if this deconvolution step improves the 

loudspeaker frequency response. 
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Figure B-12: Wiener-deconvolved loudspeaker transfer function (M=5000). 

 

Figure B-13: Frequency response from Figure B-12 in dB. 

Figure B-14 shows a comparison between the loudspeaker frequency response 

before and after Wiener deconvolution.  We observe marginal improvement in the low-

frequency response as well as better performance in the frequency range between 400-

600 Hz.  However, there are many frequencies at which the magnitude response is very 

small.  We expect the frequency nulls to remain uncompensated for as this filter does not 
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perform any amplification.  This result is desired because the loudspeaker will not be 

equalized by boosting frequencies which it cannot reproduce. 

 

Figure B-14: Comparison between unfiltered (left) and filtered (right) loudspeaker 

frequency responses. 


