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ABSTRACT 

A Pareto-Frontier Analysis of Performance Trends for Small Regional Coverage LEO 

Constellation Systems 

 

Christopher Alan Hinds 

 

As satellites become smaller, cheaper, and quicker to manufacture, constellation systems 

will be an increasingly attractive means of meeting mission objectives.  Optimizing satellite 

constellation geometries is therefore a topic of considerable interest.  As constellation systems 

become more achievable, providing coverage to specific regions of the Earth will become more 

common place.  Small countries or companies that are currently unable to afford large and 

expensive constellation systems will now, or in the near future, be able to afford their own 

constellation systems to meet their individual requirements for small coverage regions.   

The focus of this thesis was to optimize constellation geometries for small coverage 

regions with the constellation design limited between 1-6 satellites in a Walker-delta 

configuration, at an altitude of 200-1500km, and to provide remote sensing coverage with a 

minimum ground elevation angle of 60 degrees.  Few Pareto-frontiers have been developed and 

analyzed to show the tradeoffs among various performance metrics, especially for this type of 

constellation system.  The performance metrics focus on geometric coverage and include revisit 

time, daily visibility time, constellation altitude, ground elevation angle, and the number of 

satellites.  The objective space containing these performance metrics were characterized for 5 

different regions at latitudes of 0, 22.5, 45, 67.5, and 90 degrees.  In addition, the effect of 

minimum ground elevation angle was studied on the achievable performance of this type of 

constellation system.  Finally, the traditional Walker-delta pattern constraint was relaxed to allow 

for asymmetrical designs.  These designs were compared to see how the Walker-delta pattern 

performs compared to a more relaxed design space. 
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The goal of this thesis was to provide both a framework as well as obtain and analyze 

Pareto-frontiers for constellation performance relating to small regional coverage LEO 

constellation systems.  This work provided an in-depth analysis of the trends in both the design 

and objective space of the obtained Pareto-frontiers.  A variation on the εNSGA-II algorithm was 

utilized along with a MATLAB/STK interface to produce these Pareto-frontiers.  The εNSGA-II 

algorithm is an evolutionary algorithm that was developed by Kalyanmoy Deb to solve complex 

multi-objective optimization problems.   

 The algorithm used in this study proved to be very efficient at obtaining various Pareto-

frontiers.  This study was also successful in characterizing the design and solution space 

surrounding small LEO remote sensing constellation systems providing small regional coverage.   
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1. INTRODUCTION 

 Space based systems provide an extremely unique opportunity for data collection and 

transmission, that cannot currently be accomplished without the efficiency that satellites provide.  

Spacecraft have the ability to view large amount of the Earth’s surface at a given time, and thus 

fulfill certain niches in our modern world including communication, navigation, and remote 

sensing.  Many mission requirements can be met by using multiple spacecraft working together 

in concert, known as satellite constellations.  Constellation systems allow either continuous 

coverage over a given region or discontinuous coverage that is improved over what a single 

satellite may achieve.  Satellite constellations provide an attractive means of accomplishing 

many different types of mission goals.  The GPS constellation system for example has 

revolutionized the field of navigation by providing a variety of users with the ability to 

efficiently and accurately locate their exact position on the Earth.  Constellation systems such as 

RapidEye allow users in agriculture, environmental studies, emergency response, infrastructure, 

and other fields to obtain geospatial data which provide a basis for studying the environment.  

Remote sensing constellations such as RapidEye have made it possible to study our planet on a 

very large scale, from which we have obtained a vast amount of knowledge relating to the 

sustainability of our environment.  The Iridium and Globalstar constellations have allowed users 

to communicate via satellite phones in regions where traditional communication methods would 

not allow.  These specific niches that constellation systems fulfill will only continue to grow as 

satellites become smaller, cheaper, and quicker to manufacture.   

 As constellation systems become more achievable, providing coverage to specific regions 

of the Earth will become more common place.  Small countries or companies that are currently 

unable to afford large and expensive constellation systems will now, or in the near future, be able 
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to afford their own constellation systems to meet their individual requirements.  Small satellite 

constellation systems will provide a cheap and viable solution to meet a variety of goals 

including regional remote sensing, communications, and navigation.  As these constellation 

systems are developed for small regions of the Earth, it is important to understand the tradeoffs 

in the cost and performance of these systems.  Providing coverage to small regions of the Earth 

will become increasingly prevalent for small imaging constellation systems.  Very few studies 

exist which analyze the trends in performance tradeoffs for constellation systems, especially for 

regional remote sensing systems constellations.   

The purpose of this study is to provide mission designers with not only the methodology 

to analyze these trends for their specific system, but also present and characterize the design 

space surrounding these types of systems.  The main goal of this work is to characterize the 

design space surrounding small regional LEO remote sensing constellation designs.  A secondary 

goal is to see how the latitude of a small region of interest affects the achievable performance 

and geometrical design of a small regional LEO remote sensing constellation system.  Obtaining 

Pareto-frontiers that show trends in conflicting performance metrics such as the number of 

satellites in the constellation, altitude/resolution, daily visibility time, revisit time, and minimum 

elevation angle can be incredibly useful to mission designers.  Comparing these metrics for small 

regions of interest at varying latitudes will show interesting trends, in addition to providing 

mission designers with an indication of the performance that is achievable at specific latitudes.  

In this study, an evolutionary algorithm is implemented in MATLAB and a connection to STK is 

established to compute constellation performance.  MATLAB is a numerical computing 

programming language, developed by Analytical Graphics Inc. (AGI), which allows for easy 

implementation of algorithms, mostly intended for engineering and science users.  STK is a 
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physics-based software that was created by Analytical Graphics, Inc. to compute spatial 

relationships, or accesses, between assets through numerical simulations.  STK was originally 

developed to provide access information for Earth-orbiting spacecraft, but has since expanded to 

many other applications including the analysis of ground, sea, and air assets.   

In this study a variation on an evolutionary algorithm called the εNSGA-II, is shown to 

be very effective at obtaining Pareto-frontiers for these conflicting performance metrics.  The 

εNSGA-II is an evolutionary algorithm that was developed by Kalyanmoy Deb to solve complex 

multi-objective optimization problems.  Many previous studies have explored satellite 

constellation design using evolutionary algorithms.  In the later part of the 1990s, Frayssinhes et 

al. investigated the use of genetic algorithms in developing new satellite constellation geometries 

through several studies [25, 26, 27].  Frayssinhes et al. found that gains in constellation 

performance beyond traditional designs could be found using the approach of genetic algorithms.  

Smith utilized a parallel genetic algorithm to design and optimize a variation on the Ellipso 

constellation [43].  Asvial, Tafazolli, and Evans have produced several studies appling genetic 

algorithms to optimize non-GEO satellite constellations as well as hybrid constellation designs 

[5, 6].  In a Master’s Thesis, Pegher and Parish utilize a genetic algorithm to optimize coverage 

and revisit time in sparse military satellite constellations [38].  In a Master’s Thesis, Bruccoleri 

utilized a genetic algorithm to optimize specific flower constellation designs [10].  In addition to 

constellation design, genetic algorithms have been extremely effective at optimizing the orbit of 

a single satellite for various missions and constraints [1, 2, 47]. 

 Several studies have used Pareto-based analysis to characterize the objective space 

surrounding constellation design.  Mason et al. show how Pareto-based genetic algorithms along 

with STK can be used to analyze tradeoffs in constellation performance for continuous global 
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coverage [36].  In several studies, De Weck shows how Pareto-frontiers can be used to visualize 

how design choices can affect the final design, especially relating to the life cycle cost of 

constellation development [13,14].  Mao developed an improved NSGA-II algorithm to obtain 

Pareto-frontiers to help solve constellation design problems [35].  The focus of Mao’s work was 

on determining the best operators and structure of the genetic algorithm when applied to 

constellation design problems.  Wang utilized the NSGA-II algorithm along with STK to design 

regional coverage reconnaissance satellite constellations [48].  In multiple studies, Ferringer has 

utilized Pareto-frontier analysis through the use of genetic algorithms to try and analyze the 

objective space surrounding several specific constellation design problems.  In Ferringer’s 

Master’s Thesis he obtained a general framework, along with Pareto-frontiers, for reconfiguring 

a constellation for optimal performance after suffering a spacecraft loss [20].  In addition, 

Ferringer et al. have analyzed conflicting performance trends between revisit time and spatial 

resolution for sparse-coverage constellations [23].  Ferringer et al. have also attempted to 

characterize the design space surrounding global Walker constellations using Pareto-frontier 

analysis [22].  As seen, a decent amount of past work has gone into Pareto-frontier analysis of 

constellation design.  Although a lot of work has been done in this field, there is generally a lack 

of constellation performance tradeoff analysis due to the vast field that is constellation design.   

 The rest of this paper is structured as follows.  Chapter 2 provides a background from 

which the rest of the study is built on.  An introduction to astrodynamics, along with 

constellation design methodologies and performance metrics will be presented.  Chapter 3 

provides an introduction as well as a detailed description of the tools used to obtain the results of 

this study.  Multi-objective optimization techniques will be presented, along with a detailed 

discussion of the algorithm utilized in this study.  In addition, an introduction to the software 
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used in this study, specifically MATLAB and STK, will be presented.  Chapter 4 contains a 

detailed analysis and discussion of the results of this study.  Here, the results are presented and 

several conclusions are made.  Chapter 5 provides a reflection on the results of this study, along 

with suggestions made for future constellation design based on these results.  Suggestions for 

future work brought about by this study are also presented. 
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2. BACKGROUND 

 This chapter presents a brief introduction to orbital mechanics, necessary to understand 

the complex interaction between the orbits of multiple satellites in a constellation.  In addition, 

several fundamental assumptions will be presented which will allow the derivation of the 

Equations of Motion (EOM) of a satellite.  Finally, a discussion of specialized orbits, 

constellation design methodologies, and constellation performance metrics will be presented. 

 

2.1 Introduction to Astrodynamics 

 Celestial mechanics is a field within astronomy that deals with the motion of celestial 

objects, and has provided the foundation of modern day orbital mechanics.  Orbital mechanics, 

or astrodynamics, is the study of dynamics and orbits concerning artificial satellites.  Spacecraft 

are subject to an incredibly complex set of natural forces, along with artificial forces, which must 

be fully understood in order to accurately model and design space missions.  This section 

presents the basic formulation of satellite dynamics. 

   

2.1.1 Defining an Orbit 

The six classical orbital elements (COE’s) are the most common way of defining the orbit 

of an object in space and time.  With the following six parameters, an objects location and 

trajectory in space may be exactly determined.  Figure 2.1 depicts four of the six COE’s, along 

with several other key terms. 
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Figure 2.1.  Classical Orbital Elements Diagram.  This diagram was created based on [44], and depicts several of 

the classical orbital elements used to define an object in orbit.  The orbital elements shown in this diagram include 

inclination, argument of perigee, right ascension of the ascending node, and the true anomaly. 

 Semimajor Axis (a):  The semimajor axis describes the size of the orbit, and is determined 

by half the distance along the axis between the periapsis and the apoapsis.  The periapsis 

is the point in the orbit closest to the center of the body about which the satellite is 

orbiting; the apoapsis is the point farthest from the center of the body.  For circular orbits 

the semimajor axis is the distance between the centers of the two bodies.  The semimajor 

axis is usually expressed in units of kilometers. 

 Eccentricity (e):  Eccentricity describes the shape of the orbit.  An eccentricity of 0 is a 

circular orbit, an eccentricity between 0 and 1 is an ellipse, an eccentricity of 1 is a 

parabolic orbit, and an eccentricity greater than 1 is a hyperbolic orbit.  The eccentricity 
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is mathematically given by the ratio of the distance between two foci and the semimajor 

axis. 

 Inclination (i):  The inclination describes the angular tilt of the orbital plane with respect 

to a reference plane.  It is the angle between the plane of the coordinate system and the 

orbital plane, between 0 and 180 degrees.  For an Earth centered inertial (ECI) system, a 

satellite with an inclination of 0 would be orbiting in the same plane as the equator, 

whereas an inclination of 90 would be passing directly over the poles.  It is important to 

note that an inclination of ° < ° is said to be prograde, with the satellite orbiting 

in the same direction of the rotation of the primary body; an inclination of ° <° is retrograde, with the satellite orbiting in the opposite direction of the rotation of 

the primary body. 

 Argument of Perigee (ω):  The argument of perigee describes the orientation of the 

ellipse with respect to the orbital plane.  It is defined as the angle between 0 and 360 

degrees between the ascending node (the point at which the satellite passes upwards from 

the southern hemisphere to the northern hemisphere) and the periapsis in the orbital 

plane. 

 Right Ascension of the Ascending Node (Ω):  The RAAN is used to describe the point in 

the orbit where the satellite passes upwards through the reference plane.  It therefore 

describes the angular orientation where the reference plane and the orbital plane intersect.  

It is measured as the angle between 0 and 360 degrees between the vernal equinox (the 

vector between the Earth and Sun on the first day of spring) and the ascending node.   

 True Anomaly (υ):  Finally, the true anomaly describes the satellites location in the orbit.  

It is defined as the angle between 0 and 360 degrees within the orbital plane between the 
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periapsis point and the satellite’s position vector (from the center of the primary body to 

the satellite), measured in the direction of the satellite’s motion. 

 

2.1.2 Two-Body Problem 

The two-body problem in classical mechanics is determining the motion of two bodies 

that interact only with each other.  Several assumptions are required to reduce this problem to its 

simplest form; the two objects are modeled strictly as point masses and there are no external or 

internal forces besides gravitational forces which act along a line between the two point masses.  

A satellite orbiting the Earth or an electron orbiting an atomic nucleus are examples of the two-

body problem.  Here, the EOM for a two-body system will be presented before more 

complicated models are introduced.   

Newton’s second law of motion can be mathematically represented by, 

∑ ⃑ = ⃑̈      (2.1)         

where the force, ⃑, acting on a body is equal to the mass, m, multiplied by the acceleration, ⃑̈, of 

the body.   

From the laws of motion Newton developed the Universal Law of Gravitation, which 

states that any two masses will attract each other with a force that is proportional to the product 

between their masses and inversely proportional to the square of the distance between them.  

This can be represented mathematically by, 

�⃑⃑⃑⃑ = − � ⃑
                         (2.2) 
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where the gravitational force, Fg, is equal to the product of the two masses M and m, the 

universal gravitational constant which is equal to 6.67384x10
-11

  , divided by the distance 

between the two masses squared, .  The universal law of gravitation applies to any two mass 

objects.  Newton’s universal law of gravitation along with his three laws of motion enabled 

future scientists and astronomers to model the dynamic interaction among celestial bodies and 

satellite motion.  These fundamental equations are used as the building blocks for complex 

satellite motion. 

 The geometry for the two-body system is shown in Figure 2.2 for the Earth-satellite 

system along with the reference frames.   

 

Figure 2.2.  Geometry for Two-Body Problem with Inertial Reference Frame.  This diagram was created based 

off Vallado [45], and depicts the various vectors and reference frames used in the derivation of the two-body 

solution.  XYZ is an inertial reference frame, where IJK is a reference frame removed from XYZ and does not rotate 

or accelerate with respect to XYZ. 
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The solution to the two-body problem is given as, 

⃑̈⊕ = − �⊕ � ( ⃑⊕ �⊕ � )                     (2.3) 

where the standard gravitational parameter, µ, is the product of the gravitational constant, G, and 

the mass of the primary body; in the case of the Earth, = , .  .   

Equation 2.3 provides a formulation for a numerical solution to the two-body problem, 

where the position and velocity as a function of time for a satellite may be solved using 

integration.  It must be remembered however, this equation represents a solution for pure 

Keplerian motion.  In reality there are many other forces acting on a satellite which act to perturb 

the orbit.  The four main perturbing forces include atmospheric drag, solar radiation pressure 

(SRP), third body effects, and Earth oblateness. 

 

2.1.3 Orbital Perturbations 

 In order to more accurately model the orbital motion of a satellite, the assumptions made 

in the two-body problem will be relaxed and additional forces will be added to produce a more 

complex, yet accurate model.  The four main perturbing forces as previously stated are 

atmospheric drag, solar radiation pressure (SRP), n-body effects, and the non-spherical Earth.  

Although these are the main perturbing forces, additional forces of much smaller magnitude act 

on a satellite.  These smaller forces include tidal friction, magnetic field interactions, relativistic 

effects, and artificially produced forces.  The only perturbative forces that are utilized in this 

study are the forces due to the Earth as an oblate spheroid.  For this reason a derivation will be 

provided only for this perturbative force, with brief explanations of the other main perturbative 

forces. 

Non-Spherical Earth: 
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 The two-body problem relied on the key assumption that the two masses involved are 

considered to be point masses.  This resulted in a simplified gravitational potential, 
�
, which does 

not account for the actual shape of the Earth.  In reality the Earth is not spherically symmetrical 

but is bulged at the equator, flattened in the polar regions, and contains large and seemingly 

random variations in the gravitational potential.  The largest perturbative force due to the 

variation in the gravitational potential is the bulge at the equator, which is known as the J2 

perturbation.  The oblateness of the Earth causes large changes over time in several orbital 

elements when compared to pure Keplerian motion.  It is therefore often necessary to include the 

J2 effect in order to get an accurate model.  The following derivation from [9] provides a new 

relationship for the satellite EOM, which includes the secular effects of the Earth’s oblateness. 

 Take the gravitational potential function for a spheroid, Φ ℎ = �          (2.4) 

where the gravitational potential function, Φ, is equal to the standard gravitational parameter 

divided by the distance between the two bodies.  The acceleration of the secondary body is then 

found by taking the gradient of the potential function as follows, ⃑̈ =  ⃑⃑⃑ Φ =  �Φ� ̂ + �Φ� ̂ + �Φ� ̂           (2.5) 

where  is the gradient operator.  It follows that the gradient of the potential function of a perfect 

spheroid in the ECI coordinate frame is, ⃑̈ ℎ = ⃑⃑⃑ Φ ℎ = − �+ + ⁄ [ ̂ + ̂ + ̂] =  − � ⃑.      (2.6) 

Note that this acceleration vector is the same solution found for the two-body problem in Eqn. 

2.3.  In order to derive the EOM for an asymmetrical body, a different gravitational potential 

function must be used.  One potential function for the Earth given by Vinti [46] that is based 

solely on the zonal harmonics is, 
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Φ = � [ − ∑ � � sin �∞= ]               (2.7) 

where Jn are coefficients determined by experimental observation, re is the equatorial radius of 

the Earth, Pn are the Legendre polynomials, and � is the geocentric latitude where, sin � =  .          (2.8) 

The first 6 J coefficients for the zonal harmonics are displayed below as given by Baker [7]: = .  ± . × −  = − .  ± . × −  = − .  ± . × −  = − .  ± . × −  = .  ± . × −  = − .  ± . × −  

It is seen that the J2 coefficient is over 400 times larger than the J3 coefficient.  The J2 coefficient 

represents the equatorial bulge and is the only term that will be considered for the rest of the 

derivation due to its significance over the other coefficients.  The Legendre polynomial for the 

second term is given by, � [sin � ] =  [ sin � − ].         (2.9) 

Using just the J2 term and substituting the Legendre polynomial into Eqn. 2.7, the first term of 

the potential function due to the equatorial bulge is, 

� =  � [ − � sin � − ].                (2.10) 

Given that the acceleration is equal to the gradient of the gravitational potential function, and 

noting that, = √ + +       (2.11) 

along with the relationship given for the geocentric latitude in Eqn. 2.8, we obtain the following, 
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̈ = �Φ� = − � [ − � − ]               

̈ = �Φ� = − � [ − � − ]      (2.12) 

̈ = �Φ� = − � [ + � − ] .     

Similar to Similar to Eqn. 2.3, Eqn. 2.12 may 

be integrated numerically to determine the 

position and velocity of a satellite given some 

initial conditions.  This will provide a more 

accurate model of the orbit due to the fact that 

the secular effects of the J2 term are included 

in the propagation.  The method of adding in 

acceleration terms to the two-body 

acceleration is known as Cowells Method and 

is shown in Eqn. 2.12. 

 It should be noted that the J2 – J7 equations provide only the zonal harmonics, which 

depend on the mass distribution that varies only with latitude.  Other harmonics include the 

sectorial harmonics which are dependent only on longitude, and the tesseral harmonics which are 

dependent on both latitude and longitude.  Figure 2.3 shows a representation of the gravitational 

potential field over the Earth that includes the zonal, sectorial, and tesseral harmonics. 

N-Body Effects: 

 Another perturbation force that can affect the orbit of a satellite is the influence of 

gravitational fields other that of the Earth.  When modeling the orbit of a satellite that is in Earth 

orbit but has a relatively large semimajor axis, it is important to take into account the 

 

Figure 2.3.  Earth’s Gravitational Potential Field.  
This image depicts the anomalies in Earth’s 
gravitational potential as the geoid height in meters.  

This model was developed by NASA in 1996 and 

utilizes a spherical harmonic model to order and 

degree 360. [37] 
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gravitational attraction of the moon.  For interplanetary trajectories, modeling the gravitational 

attractions of other planets or the sun is a must.  In order to further modify the satellite EOM to 

account for n-body interactions, you must add both direct and indirect accelerations due to the 

presence of additional bodies.  The direct acceleration is due to the force acting on the satellite 

by the additional body, and the indirect acceleration is due to the force on the primary body by 

the additional body.   

Atmospheric Drag: 

 For satellites orbiting below an altitude of about 1,500 km, atmospheric drag can play an 

important role in the forces acting on the satellite.  Although the atmosphere has a relatively 

small density, the satellite is traveling at extremely high speeds which can introduce a large drag 

force.  Drag acts in the direction opposite of the velocity vector, thereby slowing the satellite and 

removing energy from the orbit.  For objects traveling in an orbit below 150 km, the lifetime is 

on the order of several days and the object will reenter the atmosphere quickly.  Developing 

accurate drag models is extremely difficult due to the fluctuations in atmospheric density along 

with uncertainties in the frontal area of the orbiting object.  Several models for the atmospheric 

density which vary by time and altitude exist.  The most basic model is the exponential model 

which varies in altitude, with more complicated models based on time in addition to altitude 

being the Russian GOST model, US Naval Research Laboratory Mass Spectrometer and 

Incoherent Scatter Radar 2000 model (NRLMSISE-00), and the Jacchia Reference model. 

Solar Radiation Pressure: 

 One of the smaller perturbative forces is a pressure force due to solar radiation.  SRP is a 

non-conservative force that varies with the sun angle and is larger at higher altitudes.  SRP can 

be extremely difficult to model due to the varying cross sectional area of the satellite, modeling 
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satellite reflectivity, solar flux variations, and passages into the umbra and penumbra of the 

Earth.   

 

2.2 Orbital Classification 

 This section presents several ways in which orbits are classified along with specialized 

types of orbits.  One of the most common ways to categorize an Earth centered orbit is by 

altitude.  Altitude is defined as the distance between the surface of the primary body and the 

center of the secondary body, whereas the radius of an orbit is defined as the distance between 

the centers of the two bodies.  In the case of Earth orbiting spacecraft, the altitude of a satellite is 

the mean radius of the Earth (~6,378 km) subtracted from the orbital radius.  The following 

classifications are based on altitude and are defined in SMAD [50]. 

 Low Earth Orbit (LEO):  The LEO orbital regime includes orbits with an altitude less 

than 3,000 km, with most being below 1,400 km.  The benefits of using a LEO orbit 

include cheaper launch cost, better resolution for remote sensing, quicker relay times for 

communications, and faster revisit times.  Disadvantages of using a LEO orbit are the 

smaller viewing area, shorter mission lifetimes due to atmospheric drag, and a large 

number of satellites are required in a constellation to achieve global coverage.  An 

example of a constellation system in LEO is the Iridium communications constellation. 

 Medium Earth Orbit (MEO):  The MEO orbital regime includes orbits with an altitude 

between 3,000 km and GEO (at 35,856 km).  GPS constellations are typically placed in 

MEO orbits just above 20,000 km and have an orbital period of 12 hours.  The 

advantages of using a MEO orbit are satellites can see a greater area of the Earth than in 

LEO and will therefore require fewer satellites in a constellation to obtain whole Earth 
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coverage.  A satellite in a MEO orbit has the disadvantages of requiring more energy to 

get into orbit, more power to transmit signals, and less resolution compared to LEO 

satellites. 

 Geosynchronous Earth Orbit (GEO):  A satellite in GEO has a precise altitude of 35,856 

km.  At this altitude, the orbital period of the satellite is exactly equal to the period of the 

Earth’s rotation about its axis.  The satellite will therefore be orbiting about the Earth at 

the same rate that the Earth is rotating.  If the satellite has an inclination of 0 degrees, it is 

referred to as Geostationary, and the sub-satellite point will always be over the same 

point on the Earth.  This has a huge advantage as a satellite can cover about 1/3 of the 

Earth and will always be looking at the same surface.  Geosynchronous satellites are 

typically communications and weather satellites.  The disadvantages of using a GEO 

orbit include poor resolution compared to LEO and MEO, large power requirements to 

transmit data, and expensive launch costs.   

 Super-Synchronous Orbit:  A super-synchronous orbit has an altitude above the GEO 

band but below the moon.  The uses for this orbital regime are limited and few satellites 

exist here.   

 In addition to classification based on orbital altitude, there are many different specialized 

orbits that have specific purposes in Earth orbiting space missions.  These specialized orbits rely 

on the use of orbital perturbations to produce specific geometrical patterns and trajectories, and 

are defined in SMAD [50]. 

 Repeating Ground Track:  In a repeat ground track orbit, an object’s sub-satellite point 

will return to the same location on the surface of the Earth after a certain time frame.  

Once the object has returned to the same location, it will repeat the same path with a 
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certain repeating ground track period.  This specific periodicity arises from the orbital 

period of the spacecraft, where the ground track will repeat after k orbits in n days, where 

k and n are integers. 

 Sun Synchronous Orbit:  A sun synchronous orbit relies on the J2 perturbation to cause 

a rotation in the orbital plane.  If the orbit of the satellite is prograde, right ascension of 

the ascending node will experience a negative regression.  Similarly if the orbit is 

retrograde the regression in the node will be positive.  It is therefore possible to maintain 

a specific combination of altitude and retrograde inclination such that the node will 

regress by 360 degrees in one year.  If this occurs, the orientation of the orbital plane will 

remain fixed with respect to the Sun as the Earth travels in its orbit about the sun.  This 

has particularly useful applications in remote sensing, where the angle of the sun relative 

to the Earth and satellite can remain fixed.  Additionally, the satellite will cross the 

ascending node at the equator at the same mean local time in each orbital pass. 

 Molniya Orbit:  A Molniya orbit utilizes the J2 perturbation to cause the apogee and 

perigee points to remain constant with respect to the Earth.  This occurs when the 

inclination of the orbit is at 63.4 degrees.  In this orientation, the orbital plane will not 

rotate.  This is useful for space systems that provide communications to high latitude 

regions, where the apogee can be maintained over a local region and provide long dwell 

times.  Soviet communications satellites therefore utilized Molniya orbits to provide long 

dwell times directly over the former Soviet Union.   

 Frozen Orbit:  Circular LEO orbits are unstable due to the aspherical nature of the 

Earth’s gravitational potential.  Objects in a circular LEO orbit will therefore have small 

oscillations in eccentricity.  In order to negate this often unwanted effect, satellites may 
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be placed in a specific orbit with an argument of perigee equal to 90 or 270 degrees and a 

low orbital eccentricity.  In this configuration, the orbit will be stable and the oscillations 

in eccentricity will be much smaller.   

 

2.3 Constellation Design 

 Now with a brief understanding of orbital mechanics, multiple satellites may be 

combined to create a working system called a constellation.  A satellite constellation is a system 

of two or more spacecraft that interact to achieve a common goal.  As noted by Wertz [49], 

constellation design has become a topic of significant interest as constellations become more 

achievable through smaller and cheaper satellites.  Wertz also stated that no set rules exist for 

constellation design.  Companies have invested billions of dollars into LEO communication 

systems trying to solve the same problem, and have come up with very different solutions.  

Constellation design is such a difficult problem due to the seemingly infinite design space and 

solutions that exist.  For example, a communications company may wish to achieve 100% global 

coverage, while minimizing the number of satellites, and simultaneously minimizing the altitude 

of the satellites.  These design considerations are conflicting in nature and lead to a diverse set of 

solutions based on diverse requirements.   

 

2.3.1 Traditional Constellation Patterns 

 A multitude of standard design methods and geometries for constellation systems have 

been created over the past several decades.  The most common of these patterns will be 

discussed here.   
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Walker Constellation: 

 One of the most notable constellation geometries are Walker constellations, created by 

John Walker in the late 1960s to the early 1980s [49].  The most common of these constellation 

designs is the Walker Delta Pattern.  The Walker Delta Pattern is a symmetric pattern, where 

several parameters can specify the design of the entire constellation.  The Walker Delta Pattern 

consists of a total of T satellites, with S satellites evenly spaced in P orbital planes.  Each satellite 

in the constellation has a common inclination (i), altitude, and occupies a circular orbit.  The 

orbital planes are evenly spaced by ascending node around the equator at intervals of 360/P 

degrees.  Additionally, the satellites in each plane are evenly distributed at intervals of 360/S 

degrees.  Finally, the spacing between satellites in adjacent planes is given by the phasing 

difference, ∆�, which is the phase angle between satellites in adjacent planes.  To ensure that all 

orbital planes have the same relationship with each adjacent plane, ∆�  must be an integer 

multiple, F (between 0 and P-1), of 360/T degrees.  The number of satellites in each orbital 

plane, S, is thereby given as S = T/P.  The constellation is fully specified with 4 parameters, for a 

given altitude, written in the notation i:T/P/F.   

 Walker constellations are the most symmetric type of constellation design, and exhibit 

total symmetry for coverage in longitude.  Additionally, due to the characterization of the Walker 

Delta Pattern, there are a finite number of patterns which may be fully studied.   

Streets of Coverage Constellation: 

 The streets of coverage design pattern is used to provide 100% global coverage.  In the 

streets of coverage pattern, there are n satellites in each of the m polar orbital planes.  The orbital 

planes are separated by the distance DmaxS at the ascending node, which is given by 
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� = +        (2.13) 

where λstreet is the half width of the street of coverage, and λmax is the swath half width.  

Additionally, in order provide continuous global coverage the following equation must be 

satisfied: 

+ + + >  .         (2.14) 

Figure 2.4 demonstrates the “street” of coverage based on swath width, along with the 

parameters used to characterize the design. 

 

With this configuration, the spacecraft are spread out near the equator with little overlap 

in coverage, but there is great overlap near the poles.  Due to the configuration of the pattern, 

half the satellites will be traveling north while half the satellites will be traveling south at any 

given point.  Two orbital seams will therefore exist where adjacent planes will have satellites 

traveling in opposite directions.  The streets of coverage method is however efficient at 

producing 100% global coverage. 

Geosynchronous Constellation: 

 
 

Figure 2.4.  Streets of Coverage Pattern.  These two diagrams show the basic geometry of the streets of coverage 

design.   The diagram on the left shows the “street” of coverage and the diagram on the right shows the relationship 
of two orbital planes at maximum separation [49]. 
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 The simplest form of constellation design is the geosynchronous constellation.  This 

pattern uses several satellites placed in a GEO orbit to achieve a common goal.  GEO 

constellations have the advantage of being able to see a large area of the Earth from such high 

altitudes, and are therefore used extensively for communications and weather systems.  Due to 

the fact a satellite in GEO can observe roughly 1/3 of the Earth, a few number of satellites are 

required to perform a given mission.  GEO constellation systems perform very well in low and 

mid latitude regions, but perform poorly over the poles.  Most GEO constellations are placed in 

orbit near 0 degree inclination; GEO constellations may employ high inclination orbits in order 

to observe higher latitude regions.   

Elliptical Orbit Constellation: 

 Another type of constellation design utilizes elliptical orbits to introduce an additional 

degree of freedom which can be useful for providing coverage over specific areas.  One of the 

most popular elliptical orbit constellations is the Molniya constellation.  With several spacecraft 

placed in similar Molniya orbits, continuous coverage over high latitude regions may be obtained 

which geosynchronous systems cannot provide.  Using elliptical orbits, the coverage may be 

tailored to specific longitude and latitude areas by placing the apoapsis over the desired location.  

With the apogee placed over the area of interest, a satellite will experience longer dwell times 

over the specific region.  However, elliptical constellations add complexity to the spacecraft 

design.  Elliptical orbits often pass through the Van Allen radiation belts, requiring spacecraft 

hardware to be radiation hardened.   

 

2.3.2 Constellation Mission Classification 
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 Constellation systems may be categorized by the type of mission the entire system is 

trying to fulfill.  The different main types of missions include remote sensing, navigation, and 

communications.  Here a brief overview of these types of constellations along with 

planned/flown LEO designs will be presented. 

Remote Sensing: 

 Remote sensing in satellite constellation design is the ability to gather information with 

the use of multiple satellites through on-board sensors capable of recording electromagnetic 

radiation.  Remote sensing constellation systems have the advantage of being able to view 

extremely large portions of the Earth at a given time, with very good revisit characteristics.  

From the standpoint of an entire system trying to capture data of large areas of land, a satellite 

constellation system is completely unparalleled.  Since on-board sensors are acquiring data, 

usually over the surface of the Earth, it is often necessary to have high ground elevation angles 

along with the area of interest being illuminated.   

 Several examples of planned/flown LEO remote sensing constellations include RapidEye, 

the Disaster Monitoring Constellation for International Imaging (DMCii), GeoEye, Discoverer 

II, and the Indian Remote Sensing (IRS) constellation.  These systems provide both global and 

regional, high resolution imagery data. 

 Navigation: 

 Navigation constellation systems are one of the greatest technological feats for satellite 

constellation systems.  Navigation constellations allow ground based receivers to determine their 

exact location with great accuracy.  All navigation constellation systems are in a MEO orbit with 

near 12 hour orbital periods.   
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 Examples of navigation systems include the United States Global Positioning System 

(GPS) constellation, the Russian Federation Global Navigation Satellite system (GLONASS) 

constellation, the China BeiDou constellation, the Indian Regional Navigation Satellite System 

(IRNSS) constellation, and the planned European Union Galileo constellation.  These systems 

allow ground based receivers to determine their exact location. 

Communications: 

 One of the major uses of employing multiple satellites in orbit is the ability to relay 

communications data quickly over extremely long distances.  Communications constellations 

usually employ a great number of satellites in LEO to uplink data from a target on the ground, 

transfer data between satellites, and downlink the data to another target at a different location on 

the Earth.   

 The three main LEO communications constellation systems that are currently operational, 

with successive generations underway, include Iridium, Globalstar, and Orbcomm.  Iridium and 

Globalstar provide voice and data communications, while Orbcomm provides asset monitoring 

and messaging communications.    

   

2.3.3 Constellation Performance Metrics 

 This section is intended to provide an understanding of how the performance of a 

constellation is assessed.  Earth coverage is one of the key parameters in assessing constellation 

performance.  The following adapted from Wertz [49], will present basic coverage parameters 

and notation along with numerical coverage figures of merit.   
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 Earth coverage is defined as the area of the Earth the satellite payload can “see” over 

some time frame.  Payload here refers to an instrument such as a camera or antenna.  The field of 

view (FOV), or footprint, is the area on the Earth’s surface the payload can see at any given 

instant.  Additionally, the access area is the area on the Earth’s surface the satellite can see at any 

given instant.  The subsatellite point is the point where the spacecraft radius vector intersects the 

Earth’s surface.  A two dimensional ground track is simply a trace of the subsatellite point over 

time.  The spacecraft elevation angle, ε, is the angle between the local horizon and the satellite 

for a given point on the ground; also called the grazing angle or ground elevation angle.  The half 

cone angle, ρ, represents a sensor parameter for conical sensors that defines the half angle of the 

sensor FOV.  Figure 2.5 presents basic Earth coverage geometries and parameters. 

 
Figure 2.5.  Earth Coverage Geometry.  The diagram on the left depicts the difference between access area and 

the satellite footprint; the subsatellite point is also included.  The diagram on the right depicts a cutaway view of the 

Earth with several parameters used to describe coverage.  These diagrams are adapted from Wertz [49].   

  

 The following formulation provides a simplified analytical approach to calculating the 

access area.  The entire access area on the surface of the Earth is given by 
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� = [ − sin ]        (2.15) 

where Aaccess is the access area, and ρ is the angular radius of the Earth.  This equation may be 

modified to determine the footprint area if the payload has a specified FOV.  The vector from the 

satellite to the ground point is given as, 

⃑⃑⃑ =  �⃑⃑ − ⨁⃑            (2.16) 

where the vectors are defined in Fig. 2.5, and ⃑⃑⃑  is the slant range vector.  The spacecraft 

elevation angle is then given by, 

� =  cos− (�̂ ⋅ ̂) − °.      (2.17) 

Using Fig. 2.5, it can be seen that as long as the spacecraft elevation angle is positive, the 

satellite will be in view to the observer located at the ground point.  It is often the case however 

that buildings or mountains are in the line of sight between the observer and the spacecraft for 

low elevation angles.  A minimum elevation angle may therefore be specified; if the spacecraft 

elevation angle is greater than the minimum elevation angle, the spacecraft will have access to 

the ground point.  It should be noted that these equations assume a spherical Earth and no 

obstructions.  These equations represent the most basic approach to Earth coverage, and can be 

further complicated by introducing specific spacecraft instruments with different patterns and 

requirements.   

   Performing a numerical simulation is a reliable and effective way to obtain coverage 

and performance characteristics of a constellation.  A grid of ground points can be spread over a 

desired region, where access between each grid point and each satellite in the constellation is 

computed at each time step in the simulation.  This data can then be converted into meaningful 

statistical data, such as the average percent coverage of the region of interest over the simulation 
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run.  Several considerations, as brought up in [49], must be made in order to produce accurate 

simulation results including grid point spacing, simulation step size, and simulation time span.   

 The spacing of grid points is extremely important in obtaining accurate data.  Ideally, you 

would like to use an infinite number of grid points in your coverage region, such that every gap 

in coverage may be recorded and an accurate assessment of percent coverage may be 

determined.  For example, say the region of interest is the entire globe and ten grid points are 

placed evenly over this region.  Ten grid points to cover the entire globe is very few, and as a 

result through the optimization process, the satellites providing coverage will be optimized to 

provide coverage over those grid points.  The simulation might return data concluding that 100 

percent coverage has been achieved.  In reality, gaps in coverage might exist where there are no 

grid points, thereby resulting in an incorrect interpretation of the results.  More accurate results 

will be achieved with more grid points, however more grid points means greater computational 

complexity and time.  Beyond a certain point, adding grid points will not affect the results.  The 

number of grid points to produce accurate results can be determined by performing a grid 

independence study.  The number of grid points is simply increased until adding additional 

points does not impact the final results.  Understanding the resolution and location of the grid 

points is crucial in providing a correct interpretation of the results. 

 The simulation time span is also a very important consideration in providing accurate 

simulation results.  Constellation systems provide coverage that is periodic in nature, as the 

satellites orbit the Earth and the geometry of the system changes.  Additionally, gaps may exist at 

the beginning or end of the simulation run that are not fully recorded.  Providing a long enough 

time span to provide unbiased simulation results due to this periodic nature and gaps in coverage 

is necessary to produce accurate simulation data.  An example given in [49] states that if the 
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simulation time span along with the period of the constellation geometry is 24 hours, and there is 

a 4-hour coverage gap at the beginning of the simulation, then this will be registered as two 2-

hour gaps.  If the simulation is run for a longer period of time however, the gaps in the beginning 

and end of the simulation will have little impact on the final statistical results. 

 The simulation step size is similar in nature to the spacing of grid points.  If the 

simulation time step is too large, it is possible that the satellite will miss access between a grid 

point, and therefore coverage that actually exists will be skipped.  The simulation step size must 

be kept small enough relative to the size of the coverage region and the minimum elevation 

angle.  As the size of the coverage region decreases and the minimum elevation angle increases, 

the simulation step size must be decreased.  As the step size is decreased however, the 

computational complexity is increased. 

 Finally, statistical figures of merit must be taken with a grain of salt, as Earth coverage is 

indeed not statistically distributed in nature.  A thorough analysis and understanding of the 

constellation geometry and the way it provides coverage is necessary to ensure that the statistical 

data actually represents the real nature of the system.  Several figures of merit are often used 

together in order to better statistically represent the performance of a constellation.  Analytical 

techniques may also be applied to the problem in order to ensure that the statistical data is a good 

representation of the system.  The following coverage figures of merit, discussed in detail in 

[49], characterize the performance of a constellation, and several of these metrics will be used 

later in the study.   

Gap Time or Revisit Time:  Gap time, also known as revisit time, for a single grid point is the 

length of time when no access to the constellation is reported.  This can also be applied to the 
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entire coverage grid, where if one or more grid points have no access a gap is recorded.  For non-

continuous coverage, there are often multiple gaps during a given time span.  Gap time can 

therefore be broken down into Mean Gap Time and Max Gap Time.  Mean gap time is simply the 

time averaged gap time over the entire simulation run.  Maximum gap time is the longest period 

with no access to one or more grid points over the entire simulation run.  If the max gap time 

over the entire simulation run is 0 seconds, 100% coverage exists at all times.  Max gap time is a 

useful performance metric because it characterizes what the longest period of no observability 

will be for all points within the coverage grid. 

Daily Visibility Time:  Daily visibility time (DVT) is the total time, during a given day, when 

access exists between the constellation and the grid point.  This metric may be applied to the 

entire grid where DVT may be the total time, during a given day, when access exists between the 

grid points and the satellites in the constellation.  Daily visibility time might be expressed as 

Minimum DVT, which is the shortest daily visibility time over a multi-day simulation run, or 

Mean DVT, which is the average daily visibility time over a multi-day simulation run.  This 

metric gives an indication of the percent coverage on a daily basis, and therefore gives some 

insight into the revisit time.   

  



 

30 

 

3. METHODOLOGY 

 This chapter presents an introduction to Multi-Objective Optimization (MOO) and 

Evolutionary Computing (EC) methods which will be used to obtain the results of this study.  An 

introduction to various optimization techniques will be presented along with a detailed overview 

of the specific methods that will be used in this study.  In addition, the software Systems Tool 

Kit (STK) and MATLAB will be presented as they are the tools used to perform this work.   

 

3.1 Multi-Objective Optimization  

 Due to the extensive amount of work and literature relating to optimization techniques, a 

brief overview will be presented here followed by a more detailed review of the chosen method.  

Multi-objective optimization problems (MOPs) are concerned with obtaining an optimal solution 

among two conflicting objectives.  An example of a MOP for instance might be buying a car.  In 

this case, quality and cost are the two objective functions.  Typically, as the quality of the car 

increases the cost of the car will also increase.  You would like to purchase the best quality car 

for the lowest cost; however these are two conflicting objectives.  MOO techniques can therefore 

be used to find an optimal design or set of optimal designs that find the best tradeoff between 

high quality and low cost.  MOPs exist in nearly all fields of study and a large variety of 

techniques exist to characterize and solve these problems.  MOPs are especially prevalent in 

engineering due to the conflicting nature of system design; where the four main objectives are 

performance, cost, risk, and schedule [18].   

 The goal in multi-objective optimization is to minimize m objective functions, 

⃑ ⃑ =  [ ⃑⃑⋮ ⃑ ]       (3.1) 
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with, ⃑          (3.2) 

subject to k inequality, ⃑ , = , , … ,         (3.3) 

and p equality constraints,  ⃑  = 0, w=1,2,…, p      (3.4) 

 

where ⃑ is the set of solution vectors and X is the set of all feasible solution vectors.  For the 

purpose of this study, all objective functions are considered to be minimization problems; if the 

objective function needs to be maximized, the sign is simply changed to force a minimization 

problem.   

 Different optimization techniques may be classified into the following categories [8]: 

 Calculus-Based Methods 

 Enumerative Methods 

 Guided Random Search Techniques 

Calculus-based methods, also known as analytical methods, utilize a set of necessary and 

sufficient conditions to find the optimal solution to a given problem.  Calculus-based methods 

can be further divided into direct and indirect methods, which have been extensively studied over 

many years [8].  Direct search methods use hill climbing techniques by moving the solution in a 

direction related to the local gradient.  Indirect search methods use a set of equations based on 

setting the gradient of the objective function to zero and solving these equations.  Both direct and 

indirect methods require an analytical objective function which must be differentiable.  In 

addition, calculus-based methods provide solutions for local minima as opposed to global 

minima.  The scope of calculus-based methods is therefore limited in practical problems.   
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Enumerative methods rely on evaluating the objective function at every point on a 

discretized search space in order to find the optimal solution.  Enumerative methods are simple 

to implement and can be very efficient for problems with a small search space.  Due to the fact 

that enumerative methods rely on many objective function evaluations, they will break down for 

problems with complex and large search space.   

Finally, guided random search is a stochastic approach to solving MOPs.  Guided random 

search relies on randomization to guide the search space towards an optimal solution.  

Evolutionary algorithms (EAs) are one of the most popular types of guided random search 

techniques which will be discussed later.  Guided random search techniques are very robust and 

perform well for problems that have a large search space and are discontinuous in nature [8]. 

In single-objective optimization, there will be one clear solution that lies at the minimum 

of the objective function.  With multi-objective optimization however, no solution will be 

optimal in all objectives and thus a solution with the least amount of objective conflict needs to 

be found.  The classical method of dealing with this problem is to weight the objective functions 

based on importance and sum them together into a single objective function.  This now single 

objective function may be minimized and a single solution will be found.  The mathematical 

relationship of combining the objective functions is given by, = ∑ =       (3.5) 

where F is the combined objective function, M is the number of objective functions, and wi is the 

weight of objective function, fi.  The sum of all the weights must equal 1.  Using the method of 

objective weighting can be advantageous if knowledge of the importance of objective functions 

is known.  This method however gives no indication of the solution space in multiple objectives 

which is important to many decision makers.   
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Often a better way of obtaining a solution to the 

multi-objective optimization problem is to find a 

diverse set of solutions that are said to be Pareto-

optimal, and then allow decision makers to analyze and 

choose from among these solutions.  A solution that is 

Pareto-optimal cannot be improved in any objective 

without degrading another objective.  Each Pareto-

optimal point is therefore equal and is said to be non-

dominated with respect to each other Pareto-optimal 

point.  If a point is worse in all objectives it is 

dominated.  Additionally, the set of all Pareto-optimal 

points is called the Pareto-front.  Figure 3.1 demonstrates a theoretical Pareto-front, with the red 

points representing Pareto-optimal solutions and the blue points representing dominated 

solutions; take note the two objective functions are to be minimized.  In Fig. 3.1, point A is 

therefore non-dominated with respect to point B and vis-versa.  Point C however is dominated by 

both A and B because it is worse in all objectives.  Pareto-optimality applies for any number of 

objective functions that are to be minimized.  Formally, if P is the set of Pareto-optimal points, 

then [29]:  

 Any two solutions in P must be non-dominated with respect to each other. 

 Any solution not in P is dominated by at least one solution in P. 

Additionally, a solution x1 dominates another solution x2 iff [29],   for all [ , , … , ],    (3.6) <  for at least one [ , , … , ],         (3.7) 

where fj is the j
th

 objective function and M is the total number of objective functions. 

Figure 3.1.  Pareto Optimality.  This plot 

demonstrates a Pareto-front along with non-

dominated and dominated solutions shown in 

red and blue respectively.  Point A and B are 

both Pareto-optimal and non-dominated with 

respect to each other, while point C is 

dominated by both A and B. 
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By finding the Pareto-front for a multi-objective optimization problem, the solution space 

may be analyzed and decision makers may use this information to select an optimal solution 

from among the front.  The Pareto-front’s shape helps to show how the objective functions 

interact as well as show tradeoffs in the solutions.  For these reasons, Pareto-frontiers will be 

developed in this study to show trends in various constellation performance metrics.  In order to 

obtain a Pareto-front, the method of objective weighting may be used by varying the weights and 

solve for a single Pareto-optimal point in the front many times until the front is full.  This is 

however computationally expensive and may result in a Pareto-front that is not uniform in 

nature.  Multi-objective evolutionary algorithms are very good at solving this type of problem 

and obtaining a true Pareto-frontier.  The goal with these types of algorithms is to minimize 

computation time, provide a true set of Pareto-optimal solutions, and provide a diverse and 

uniformly spaced Pareto-frontier. 

 

3.2 Evolutionary Algorithms 

 Evolutionary algorithms are a class of population based, meta-heuristic, global 

optimization algorithms in artificial intelligence that model the biological mechanisms of 

evolutionary theory.  Evolutionary algorithms are the class of algorithms within the field of 

evolutionary computing, and the subcategories of EAs include evolutionary programming, 

evolution strategies, genetic algorithms, and genetic programming.  An extremely helpful 

reference is a book called Introduction to Evolutionary Computing by Eiben and Smith [19].  

This resource provides an in depth analysis of the many different aspects to EAs, which will be 

discussed in detail in this chapter.  The main components of EA’s are [19]: 

 Representation 
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 Objective fitness function 

 Population 

 Parent selection mechanism 

 Recombination and mutation 

 Survivor selection mechanism 

where a specific algorithm has a given order of these components along with a given 

initialization procedure and termination conditions. 

 The constellation design space is characterized by an exceptionally large search space 

that can be continuous/discontinuous, discrete, and nonlinear in nature.  Due to the extremely 

complex nature of the constellation design objective functions, along with the use of numerical 

simulation to provide the objective functions, calculus-based methods are ruled out.  In addition, 

due to the large search space enumerative methods prove to be much too computationally 

expensive.  Additionally, past research in constellation design utilizing EAs state that 

enumerative and deterministic techniques prove to perform poorly compared to EAs [20, 41, 42].  

EAs provide a stable and robust approach to solving the constellation design problem.  Several 

global optimization alternatives to EAs are Simulated Annealing (SA) and Particle Swarm (PS).  

Simulated annealing is a probabilistic search algorithm that guides the search towards the area of 

minimum energy.  It does this by simulating the process of annealing in metallurgy to reduce the 

defects in materials by heating and controlled cooling of the material.  Particle swarm 

optimization is a strategy that guides the search through interaction among individual particles, 

each with a given position, velocity, and fitness.   These three global optimization techniques 

perform at similar levels, however EAs have been shown to be extremely effective in solving 

constellation design problems along with being easy to implement [21, 23, 24, 20, 10, 38, 43, 48, 
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34, 6, 5, 35, 36, 26, 11].  The most common type of EA, especially in past constellation design 

research, is the Genetic Algorithm (GA).  The genetic algorithm relies on a population of 

individuals which undergo fitness based selection and genetic operations including 

recombination and mutation to guide the search.  In a GA, the idea of ‘survival of the fittest’ and 

environmental pressure guide the individuals in the population toward the optimal solution over 

a set of generations.  The GA has been used for many decades and is very effective at solving 

problems similar to the problem in this study.  For these reasons, it is reasonable that a GA has 

been selected as the primary tool in this study and will be discussed in more detail in the 

following section.   

 

3.3 Genetic Algorithms 

 The original genetic algorithm was devised by Holland [19] as a way to study adaptive 

behavior.  It has since been used for decades as an effective way of solving many different 

optimization problems.  Many different variations on the genetic algorithm exist, some of which 

are quite complex.  Figure 3.2 and Fig. 3.3 demonstrate the basic implementation of a GA; the 

arrangement and implementation of each operator may vary among more complex variations of 

the GA.   

 

 

Figure 3.2.  Basic Genetic Algorithm Flow Chart.  This diagram depicts the flow of a basic GA.   
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BEGIN 

   INITIALIZE population from random potential solutions 

   EVALUATE individuals and determine fitness 

      WHILE termination condition is not met 

         SELECT parents based on fitness 

         RECOMBINE two parents to create two children 

         MUTATE the new offspring 

         EVALUATE individuals and determine fitness 

         SELECT individuals for next generation 

      END 

END 

 

Figure 3.3.  Basic Genetic Algorithm Pseudo Code.  The above pseudo code, adapted from [19], demonstrates the 

basic structure of a genetic algorithm. 

 

 The algorithm begins with an initial randomized set of potential solutions to the problem 

called individuals or phenotypes.  Each individual has a set of genetic properties called the 

chromosomes or genotype.  Each individual therefore has two main properties associated with it, 

the phenotype and the genotype.  The phenotypic properties are those that are expressed on the 

outside, while genotypic properties are expressed on the inside as the genetic makeup of the 

individual; the individual’s genotype is said to encode its phenotype.  The chromosome is made 

up of multiple genes that determine the phenotypic properties of the individual.  It is possible and 

also likely that a single gene affects more than one phenotypic property, and a single phenotypic 

property may be affected by multiple genes.  Care must be taken when deciding how to represent 

the phenotype in the chromosome. 

 After the initial population is randomly generated, the iterative process begins by 

evaluating each individual’s fitness using the objective functions.  The fitness or objective 

function is used to rank individuals based on how well they conform to the environment or 

requirements of the problem being solved.  Next, selection takes place where parent individuals 

are selected based on a stochastic fitness-based selection scheme.  In this process, an individual 
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has a higher chance of being selected if it has a higher fitness value.  Once two parents are 

selected, the genetic operations take place.  Recombination involves performing crossover on the 

two parent individuals to produce two children individuals.  Recombination occurs on the 

genotypic level, where the chromosomes of the two parents are effectively mixed to produce two 

children chromosomes that are made from parts of the parents.  Two parents are typically used to 

produce two children until the child population is the same size as the parent population.  

Mutation then takes place where each gene of each child chromosome has a certain chance of 

being mutated, or altered.  Next, the termination criteria for the iterative process of the algorithm 

are assessed.  If the termination criteria are met, the algorithm is stopped and the final population 

is given.  If the termination criteria are not met, the algorithm continues the iterative process by 

evaluating the child population and selecting new parents from the child population.  The process 

described above is the basic algorithm for a GA.  Many complex and novel algorithms exist 

which greatly improve the performance of the GA.  Some of these improved algorithms will be 

discussed in future sections, along with the specific algorithm used in this study. 

 Now that the basic algorithm is defined, more detail will be provided about the basic 

operators involved in the algorithm as detailed in [19].  Optimizing the orbit of a single satellite 

will be used as an example to help better understand the GA process. 

 

Representation: 

The process of representation is how the real world problem is linked to the world of the 

EA.  As stated earlier, care must be taken when deciding how to represent the phenotype as part 

of the chromosome.  The genotype is said to encode the phenotype, and there are several 

different ways of encoding of the phenotypic variables as part of the chromosome.  These 
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options include binary, integer, real valued, and permutation representations.  Consider a satellite 

in orbit that is represented fully by the six COEs: 1000 km, 0, 45 deg, 230 deg, 60 deg, and 100 

deg.   The phenotype for this example would be the six COEs which represent the geometry of 

the satellite in orbit.  The phenotype would then be mapped to a genotype which would be either 

a binary, integer, real valued, or permutation representation.  If a binary representation is used, 

the six COEs would be mapped from their real values into a binary form.  The chromosome 

would then take on a string of ones and zeros that make up the six COEs or genes as follows: ⏟        ⏟ ⏟    ⏟      � ⏟    Ω ⏟      � . 

Binary representation is the earliest form of representation used in a GA and is very simple to 

use.   

 Integer representation can be useful to map a genotype to a phenotype that is restricted to 

a finite set or represents non-number phenotypes such as words.  For example mapping a set of 

directions could be done by letting the values [1, 2, 3, 4] represent [Left, Right, Up, Down]. 

 Real valued representation is similar to binary representation, and is often the simplest 

method if the solution space is a set of continuous real values.  For the example of a satellite with 

the six earlier defined COEs, the chromosome would take on a string of real values as: ⏟  ⏟ ⏟⏟� ⏟Ω ⏟� . 

With real valued representations, it is also possible to let all genes be expressed as any real 

number on the set [0,1].  A mapping is then created that allows the transformation between a 

gene with bounds of [0,1] and the real problem value.  For example if the inclination is allowed 

to vary between 0 and 180 degrees.  The genotypic value may vary from 0 to 1, and the 

inclination is given by the genotypic value multiplied by 180.  With this mapping, care must be 

taken to allow a large enough precision in the genotypic values since they are usually represented 
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on a smaller set than the phenotypic values.  For example, if the inclination is needed at a 

precision of four decimal places, the genotype for inclination would need to have six decimal 

places since it is two orders of magnitude smaller than the phenotype.  Finally, the genetic 

operators will be performed on the genes that are expressed on the set [0,1], and when the fitness 

evaluation takes place the genotypic values will be transformed to the real world set via the 

mapping operator.   

 Finally, permutation representations are useful for problems in which the decision is 

placed on the order in which something occurs, such as optimizing directions or an order of 

events.  Care must be placed on deciding the genetic operators, since integers in the permutation 

cannot occur more than once.   

 

Selection: 

 In order to produce a new generation of solutions in a GA, parents must be selected for 

mating in order to produce a child population.  A variety of selection strategies exist which will 

be discussed here.   

Fitness proportional selection, also known as roulette wheel selection, is a method where 

an individual has the probability of being selected based on its fitness compared to the fitness of 

the entire population: 

⃑∑ ⃑�=          (3.8) 

where ⃑  is an individual in the population and N is the number of individuals in the population.  

This was one of the first selection methods introduced, but it does carry several problems.  If 

several individuals have much higher fitness than the rest of the population, the population may 

become overrun with these solutions causing premature convergence.  In addition, when fitness 
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values for all individuals in the population are very similar, worse individuals have nearly the 

same chance as better individuals of being selected.  This means there is effectively no selection 

pressure and the algorithm will progress very slowly.   

 Rank based selection corrects several of the limitations of fitness proportional selection.  

The individuals in the population are sorted based on fitness and then assigned a selection 

probability based on the rank of the individual.  The selection probability can be applied to the 

rank of an individual in either a linear or exponential fashion.  With a linear scheme, the 

selection pressure is very little, but with exponential schemes, the selection pressure can be 

varied based on the shape of the exponential curve. 

 Tournament based selection provides a simple implementation and effective way of 

creating the mating pool.  In tournament based selection, k individuals are selected to go into a 

tournament pool.  The individual with the best fitness in the tournament pool is selected as a 

parent.  This is performed iteratively until the mating pool is full.  The size of the tournament 

pool, k, controls the amount of selection pressure.  This method is widely used in GAs today due 

to its simplicity and effectiveness.   

 

Recombination: 

 Recombination, or crossover, is a genetic operator which creates a set of child 

chromosomes from a set of parent chromosomes.  Recombination is the primary method of 

introducing genetic diversity into the population.  Many different methods of recombination exist 

for different types of representations.  The most common methods for binary and real-valued 

representations will be discussed here. 
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 For binary representations, the standard types of crossover include single-point crossover, 

n-point crossover, and uniform crossover.  Single-point crossover is the standard crossover 

method used in binary recombination.  A random crossover point is selected in the binary 

chromosome string.  The bits to the left of the point are copied from parents 1 and 2 to children 1 

and 2 respectively, while the bits to the right of the point are copied from parents 1 and 2 to 

children 2 and 1 respectively.  Single-point crossover is depicted in Fig. 3.4.  Similar to single-

point crossover is n-point crossover, where multiple crossover points are selected and alternating 

sections of genetic material are swapped between the parents to produce the child chromosomes.  

N-point crossover is depicted in Fig. 3.5.  Finally, uniform crossover presents each bit with an 

equal chance of being inherited from either parent.  For each bit location, there is a 50% chance 

the child will inherit the bit from parent 1 and a 50% chance the child will inherit the bit from 

parent 2.  The first child is created based on this uniform crossover mechanism, and the second 

child is simply the inverse of the first child.  Uniform crossover is depicted in Fig. 3.6. 

 

Figure 3.4.  Single-Point Crossover.  This diagram depicts the mechanism of single-point crossover for a binary 

representation of a chromosome.  Note that the gray shaded bits are from parent 1 and the white shaded bits are 

from parent 2. 
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Figure 3.5.  N-Point Crossover.  This diagram depicts the mechanism of n-point crossover for a binary 

representation of a chromosome.  Note that the gray shaded bits are from parent 1 and the white shaded bits are 

from parent 2.  In this case, n is equal to two. 

 

Figure 3.6.  Uniform Crossover.  This diagram depicts the mechanism of uniform crossover for a binary 

representation of a chromosome.  Note that the gray shaded bits are from parent 1 and the white shaded bits are 

from parent 2.  In this case, there are no crossover points, but rather each bit has a chance to come from either 

parent.  Note that child 2 is simply the inverse of child 1. 

 

 For real-valued representations, the most common forms of recombination are simple 

arithmetic, single arithmetic, and whole arithmetic.  Simple arithmetic recombination involves 

picking a crossover point along the chromosome.  The values to the left of the crossover point 

are taken directly from parent 1 and placed into child 1 and directly from parent 2 and placed 

into child 2.  The values to the right of the crossover point are the arithmetic average of the two 

parents given by, ℎ  =  � ∙ + − � ∙       (3.9) ℎ  =  � ∙ + − � ∙               (3.10) 

where xi represents the i
th

 bit of parent 1, yi represents the i
th

 bit of parent 2, and α is a value in 

[0,1].  For simple arithmetic recombination, in Eqn. 3.9 and 3.10 the i
th

 term would be for every 

term to the right of the crossover point.  In single arithmetic recombination, instead of picking a 
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crossover point, only a single gene is averaged using Eqn. 3.9 and 3.10.  In whole arithmetic 

recombination, every gene in the entire chromosome is the arithmetic average of the two parent 

chromosomes, such that in Eqn. 3.9 and 3.10, the i
th

 term would be for every single gene.  

Figures 3.7,  3.8, and  3.9 and demonstrate these three methods of recombination.   

 

Figure 3.7.  Simple Arithmetic Recombination.  This diagram depicts the mechanism of simple arithmetic 

recombination for a real valued representation of a chromosome.  Note that the light gray bits are from parent 1, 

the white bits are from parent 2, and the dark gray bits are an average of parent 1 and 2.  In this case, α=.5. 

 

Figure 3.8.  Single Arithmetic Recombination.  This diagram depicts the mechanism of single arithmetic 

recombination for a real valued representation of a chromosome.  Note that the light gray bits are from parent 1, 

the white bits are from parent 2, and the dark gray bit is an average of parent 1 and 2.  In this case, α=.5. 

 

Figure 3.9.  Whole Arithmetic Recombination.  This diagram depicts the mechanism of whole arithmetic 

recombination for a real valued representation of a chromosome.  Note that the light gray bits are from parent 1, 

the white bits are from parent 2, and the dark gray bits are an average of parent 1 and 2.  In this case, α=.5.  Note 
how the children chromosomes lie within the area of the parent due to an α value of .5. 

 

It should be noted that a potential drawback of these methods is that since α is a value in 

[0,1], the potential area of the offspring is restricted to inside the area of the parents.  This is 
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evident in Fig. 3.8 as the offspring chromosomes are all within the bounds of the parents.  Over 

time, the area will shrink due to the fact that child chromosomes won’t be generated on the 

border of this area.  In order to overcome this, a new set of α values are used where, �  [− , + ]     (3.11) 

where a value of d=0.25 statistically 

ensures that over time the possible 

area of the children is the same as the 

possible area of the parents [39].  

One interesting method similar to 

whole arithmetic recombination is to 

select a new random value of α for 

each gene on the space spanned by 

Eqn. 3.11.  It is possible with this 

method that a gene will be generated that lies outside the possible area for which a solution may 

exist, in which case the solution will be disregarded and a new value of α will be randomly 

determined.  This means that the area spanned by the children will be a hypercube that is a little 

larger than the parents, as depicted in Fig. 3.10.   

 Many other methods of recombination exist for both binary and real valued 

representations.  For permutation representations the common methods of recombination are 

partially mapped crossover, edge crossover, order crossover, and cycle crossover.  For integer 

representations, variations on the previously described methods may be used.  For more detailed 

explanations on these methods of recombination, see [19]. 

 

Figure 3.10.  Potential Area of Children from Two Parents.  

These two plots depict the potential area of the children(green 

circles) based on the two parents(blue squares).  The plot on the left 

is based on a value of d=0 in Eq. 3.6.  The plot on the right is a 

hypercube based on a value of d=.25 in Eq. 3.6.  This plot was 

adapted from [ (Pohlheim 2007)]. 
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Mutation: 

 Mutation is the secondary method of introducing new genetic material into the 

population.  Without mutation, the algorithm may prematurely converge due to a lack of new 

genetic material.  The process of mutation involves making extremely small changes to the 

genetic material.  Many different methods of mutation exist, and the most common methods for 

binary and real valued representations will be discussed here.   

 The most common method of mutation for binary representations is bit flipping.  Using 

this technique, each bit in the chromosome string is subject to a bit flip (changing 1 to 0 or 0 to 

1).  The probability that a bit flip will occur for each bit in the string is pm and is usually very 

small.  A standard value for pm is 1/L, where L is the number of bits in the chromosome string; 

this makes it so that on average 1 bit will be flipped for each chromosome string.  By changing a 

single bit, the value for a given gene is thus altered and new genetic material is introduced into 

the population.  Figure 3.11 depicts a bit flip mutation for a chromosome string. 

 

Figure 3.11.  Bit Flip Mutation for Binary Representation.  This image depicts a single bit flip in a chromosome 

string.  In this case, the 4
th

 bit in the string was selected for mutation and was changed from a 1 to a 0. 

 

 The two types of mutation techniques for real valued representation are uniform mutation 

and non-uniform mutation.  In uniform mutation, each gene has a probability of being mutated, 

pm.  It is common practice to let pm in this case to be equal to 1/L where L is the number of genes 

in the chromosome string.  When a gene is selected for mutation, a new value for the gene is 

randomly created from the entire space in which the gene exists.  In non-uniform mutation, the 

probability for selection is the same, but the mutation operator is based on a Gaussian 

distribution instead of a random alteration.  Non-uniform mutation works by adding a value to 
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the gene that is randomly selected from a Gaussian distribution with a mean of zero and a 

defined standard deviation.  This ensures that most of the time small changes are made in either 

direction, with the possibility of large changes being made.  The larger the standard deviation, 

the higher the chance of making relatively larger changes to the gene.  It is possible to alter the 

gene beyond the limits of the space in which the gene is allowed.  If this occurs, depending on 

the algorithm, the gene may either be truncated to the boundary or the mutation operator is 

applied again until a value is found within the boundaries.   

 

3.4 Multi-Objective Genetic Algorithms 

 This section presents the various multi-objective genetic algorithms (MOGAs) that are 

being used today, along with a detailed overview of the algorithm used in this study. 

 

3.4.1 Variations on the Multi-Objective Genetic Algorithm 

 Common Pareto-based evolutionary algorithms include the Strength Pareto Evolutionary 

Algorithm (SPEA) [51], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [52], Non-

Dominated Sorting Genetic Algorithm (NSGA) [17], Non-Dominated Sorting Genetic Algorithm 

II (NSGA-II) [15], Pareto Archived Evolution Strategy (PAES) [31], Vector Evaluated Genetic 

Algorithm (VEGA) [40], Non-Dominated Rank Based Sorting Genetic Algorithm (NRSGA) 

[29], along with epsilon dominance (ε) variations on these algorithms.  Several studies exist [32] 

which compare these different algorithms, of which the εNSGA-II performs consistently well.  

Several studies described in the Introduction are successful in using the εNSGA-II algorithm for 

similar types of constellation design problems.  For these reasons a variation on the εNSGA-II 

will be used which is discussed in detail in the following section. 
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3.4.2 Epsilon Non-Dominated Sorting Genetic Algorithm II (εNSGA-II) 

 The algorithm used in this study to obtain the various Pareto-frontier plots is most similar 

to the εNSGA-II algorithm created by Deb in [15], with modifications by Kollat and Reed in 

[33], modifications by Ghosh and Das in [29], and additional modifications to by the author to 

better fit the algorithm to the problems in this study.  In order to reduce repetition, the modified 

algorithm used in this study in its entirety will be presented 

here. 

 Firstly, the idea of epsilon-dominance will be 

presented.  Earlier in Section 3.1, the ideas of Pareto-

dominance and the Pareto-frontier were discussed.  The 

final goal of a Pareto-based EA is to produce an optimal, 

well-spaced, and diverse Pareto-frontier.  If the objective 

space is continuous in nature, it is possible that an infinite 

number of points will exist along the Pareto-frontier.  

Traditional EAs ran into the problem that if all of the 

never-dominated solutions are stored in an archive, the 

archive will grow without bound and searching or adding to the archive would become too 

computationally expensive.  By thinning out the Pareto-frontier, the user has the ability to 

specify the resolution of the final frontier.  Additionally, convergence will occur with fewer 

function evaluations with a smaller Pareto-frontier and population size.  One very successful 

method of thinning the Pareto-frontier is the idea of epsilon-dominance.  Epsilon-dominance is 

depicted in Fig. 3.12.  A grid is placed over the objective space, with grid spacing determined for 

Figure 3.12.  Epsilon-dominance.  This 

plot depicts a Pareto-frontier of points, 

where the red points are solutions that are 

removed using the epsilon-dominance 

technique.  The blue points are the 

solutions that will remain.  
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each objective, where only one solution may exist within each grid block.  If two or more 

solutions exist within a grid block, the solution closest to the minimum point in the grid block is 

chosen.  A modification to the traditional epsilon-dominance function in this algorithm is that 

two solutions are allowed to exist in the first, or minimum, grid block in each objective function.  

This allows the absolute minimum solution of each objective to be retained instead of being 

deleted for a solution that is slightly larger than the true minimum.  The epsilon-dominance 

function is applied to the offline archive which will be discussed shortly. 

Figure 3.13, from [32] depicts the basic structure of the εNSGA-II algorithm.   

 

Figure 3.13.  Diagram of the εNSGA-II algorithm as shown in [32].  This diagram depicts the basic structure 

and flow of the algorithm that is used in this study.  The series of connected runs, dynamic population sizing, and 

offline archiving of the Pareto-frontier is shown. 



 

50 

 

Now that the idea of epsilon-dominance has been presented, the structure of the algorithm 

used in this study will be discussed.  The basic flow of the εNSGA-II algorithm is as follows: 

 An initial parent population of N individuals is randomly created.   

 The fitness of the parent population is computed and an adjusted fitness value is given to 

each individual based on non-dominated fronts, rank, and crowding distance.  The 

individuals that are non-dominated in this initial population are added to an offline 

archive.   

 A child population of size N is then created from the parent population using the 

selection, recombination, and mutation operators.   

 The fitness of the child population is computed.   

 The parent and child populations are then merged into a single population of size 2N.  

The merged population is classified and each individual is given an adjusted fitness 

value.  The worst N individuals are eliminated from the merged population to create a 

new elite population of N individuals.   

 This elite population is then compared to the offline archive, and individuals in the elite 

population are added to the archive based on non-dominance.  Epsilon-non-domination is 

applied to the archive.   

 Next, the elite population becomes the parent population for the next generation and the 

process is repeated.   

 Once the algorithm fails to produce a given number of additions to the offline archive in a 

single generation, the archive is used to seed a new run of the algorithm.  The entire 

archive represents 25% of the new initial population and 75% of the individuals are 

randomly generated.   
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 The series of connected runs are then performed until the Pareto-frontier is obtained.   

  Now that the basic structure of the algorithm has been presented, a more detailed 

analysis of the structure and operators used in this study will be presented.  The initial size of the 

first random population is N=5 individuals.  By starting with such a small population size, the 

algorithm is able to quickly progress towards the optimal Pareto-frontier.  Past work [12] along 

with studies performed in this work have shown that by starting with a small population of N=5 

individuals, faster convergence is achieved.  The initial population is randomly generated, by 

creating 5 individual chromosomes.  For a Walker constellation study, seven genes make up the 

entire chromosome of an individual consisting of constellation altitude, constellation inclination, 

seed right ascension of the ascending node, seed mean anomaly, number of spacecraft, number 

of planes, and the phasing between satellites in adjacent planes.  A real valued representation is 

selected for this study, due to the continuous nature of the phenotype.  A real valued 

representation is also selected due to the simplicity in performing the genetic operations and 

altering the chromosome structure between case studies.  In order to provide simplicity, along 

with uniform resolution for the genetic operators between genes, each gene is scaled to exist on 

the set [0,1].  A mapping therefore exists in order to convert the real valued genotypic 

representation between 0 and 1 to the actual phenotypic values.  For instance, the inclination on 

the genotypic level is expressed as a value between 0 and 1.  To convert this to a phenotypic 

value, the genotypic value is simply multiplied by 180 in order to obtain an inclination value that 

is bounded by [0,180] degrees.  The following depicts how the chromosome is structured as a 

vector,   

 ℎ = [⏟   ⏟     Ω⏟        �⏟     /⏟     �⏟    ⏟].        (3.12) 
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The random initial population is therefore a 5x5 matrix, with each row representing an individual 

chromosome and each column representing a single gene.  The initial population is simply 

created by generating a random 5x5 matrix, with each value a random value between 0 and 1. 

 In this study, the fitness of an individual is performed by numerical simulation in STK, 

which will be discussed in more detail in a later section.  Once the fitness has been computed, an 

adjusted fitness value is given to each individual based on several factors.  First, the population is 

classified into fronts based on non-domination.  All of the individuals in the population that are 

non-dominated are placed into front 1.  The solutions in front 2 are then all of the non-dominated 

solutions in the population with the individuals from front 1 removed.  All of the solutions are 

classified into fronts using this same iterative method.  Next, a rank is assigned to each 

individual where the rank is given by [29], 

= + ,            (3.13) 

where ni is the number of solutions that dominate solution 

i.  Next the density of the region in the objective space 

surrounding each individual is computed based on a 

crowding distance function given by Deb in [16].  The 

crowding distance for each individual, di, is a measure of 

the perimeter of the cuboid that is formed by the vertices 

of the nearest solutions in the objective space.  Figure 

3.14 provides an illustration of the cuboid in a two-

dimensional objective space.  The crowding distance is 

simply the distance between consecutive solutions in a given objective, normalized by the span 

Figure 3.14.  Crowding Distance Cuboid.  

This plot, adapted from [16], depicts the 

cuboid formed by the vertices of the nearest 

solutions to i in the 2D objective space. 
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of solutions in that objective, and summed across all objectives.  The crowding distance for an 

individual, in reference to Fig. 3.14, is given explicitly as the sum of distance d1 and d2 

normalized by the total span of the solutions in objective 1 and objective 2 respectively.  This 

function is applicable to any number of dimensions by simply summing these distances for each 

objective.  The solutions that lie on the end of each objective are assigned an infinite crowding 

distance.  Once the front, rank, and crowding distance for each individual in the population are 

determined, the adjusted fitness is computed as outlined in [29].   

 Each individual in front 1 is assigned an average fitness value equal to the number of 

individuals in the population; Favg = N for the individuals in front 1. 

 Each individual in the current front is then assigned an adjusted fitness which is 

computed from the average fitness and the rank of the individual; Fadj = Favg – g, where g 

is the number of individuals in the same front that have a rank less than or equal to the 

given individual. 

 The final fitness value for each individual in the current front, F, is computed from the 

adjusted fitness value and the crowding distance for each individual; F = Fadj – 1/d, 

where d is the crowding distance for a given individual. 

 If Fm is the minimum fitness of an individual m, and Fm is negative, then 0-Fj is added to 

the fitness of all individuals in the population to make the fitness of all individuals 

positive. 

 This process is repeated for each front until every individual in the population is assigned 

a new fitness value, F.  The average fitness value, Favg, for the solutions in the next front 

are given as the minimum fitness value, F, from the previous front minus a small positive 
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value.  This ensures all individuals in front 2 will have a fitness that is worse than the 

individuals in front 1, and so on for all fronts. 

It should be noted that although the objective fitness is to be minimized, a larger fitness value, F, 

corresponds to a more fit individual.  This approach of applying the front, rank, and crowding 

distance to each individual in the population to produce a single fitness value helps to apply 

selection pressure to individuals that are less dominated and that are in less crowded regions of 

the objective space. 

 The specific genetic operators used are given as follows: 

 The selection operator is tournament based selection.  Two parent individuals are 

randomly selected, and the individual with the higher fitness value, F, is selected for 

mating.  This occurs twice to obtain two parent individuals which will be used to generate 

two child individuals. 

 The recombination operator is whole arithmetic recombination, as shown in Fig. 3.9.  A 

new alpha value is selected for each gene as given in Eqn. 3.11, with d=0.25. 

 The mutation operator is non-uniform mutation.  The chance of a gene being selected for 

mutation is given as 1/Ngene, where Ngene is the length of the chromosome given by the 

number of genes.  Statistically, over time each chromosome will have one gene mutated 

on average.  The standard deviation used in the Gaussian distribution is 0.25.   

Additional properties of this algorithm are the use of elitism, an offline archive, time 

continuation, and auto-adaptive population sizing.  Elitism is the idea that the parent individuals 

have a chance at becoming members of the population in the next generation.  This ensures that 

if the parent population produces a child population that is less fit, the search will not regress to a 



 

55 

 

worse population.  The use of an offline archive is necessary in order to save solutions that are in 

the Pareto-frontier, maintain well spread solutions through epsilon-domination, and have a way 

of measuring how well the algorithm is performing.  Additionally, time continuation is utilized 

by adding new random solutions to the population once the algorithm fails to produce new 

solutions to the archive.  Time continuation helps to periodically progress the search and 

prevents a poor random initial population from limiting the search from finding the true global 

optimums.  Finally, auto-adaptive population sizing stems from the fact that the population size 

is directly proportional to the size of the archive.  The population size will be four times the size 

of the archive, except in the first run.  This eliminates the need to manually change or set the size 

of the population. The changing size of the population will not waste computational resources 

when the archive is very small, and the algorithm will not be underutilized when the archive is 

very large.   

 

3.5 Algorithm Verification 

 The algorithm was written in MATLAB and several mathematical benchmark problems 

were used to test the algorithm.  The benchmark problems used were the Viennet function along 

with ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, SCH, and FON found in [15].   
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Figure 3.15.  ZDT4 Test Function Verification.  This plot is the Pareto-frontier for the ZDT4 benchmark test 

function found in [15].  The blue circles represent the optimal solutions found by the algorithm, and the black line 

represents the exact analytical solution. 

Figure 3.15 is an example of one of the benchmark test functions, specifically ZDT4, 

used to test the speed and accuracy of the algorithm used in this study.  The algorithm performed 

extremely well with the optimal solutions produced by the algorithm matching the analytical 

solution within roughly 20,000 function evaluations.  This performance is on par with similar 

genetic algorithms this algorithm is based on.   

 

 

 



 

57 

 

3.6 Implementation in MATLAB and STK 

 The algorithm described in section 3.4.2 is written in MATLAB and is the primary tool 

used to obtain the Pareto-frontiers for this study.  Systems Tool Kit (STK) is utilized in this study 

to perform numerical simulations of the satellite constellations and obtain the necessary objective 

fitness data.  An interface between MATLAB and STK is established in MATLAB in order to 

send and receive data relating to the objective functions.  The phenotypic information about each 

satellite in the constellation is sent via this interface to STK, where a numerical simulation in 

STK will determine the objective fitness data, which will be returned to MATLAB via the 

interface.  There are two different connections types for MATLAB/STK, the COM and TCP/IP 

connections.    The MATLAB/STK interface used in this study is the COM connection, with 

both connect and object model commands.  A very helpful resource for using the 

MATLAB/STK interface along with a detail list of commands is given by AGI in the STK 

Programming Interface 10.1.1 [4].  The possible connections between MATLAB and STK are 

visualized in Fig. 3.16, from [3].  
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Figure 3.16.  MATLAB/STK Interface Schematic.  This diagram from [3], depicts the different ways in which 

data can be sent and received in MATLAB from STK. 

 

 In addition to providing the objective fitness data through numerical simulation, STK 

provides a powerful tool for visualizing satellite constellation systems.  The obtained Pareto-

optimal solutions may be visualized in STK in order to better understand and visualize the 

phenotypic traits of the optimal solutions.   

In this study, a scenario in STK is created which contains a coverage grid over a region 

on the Earth along with satellite objects in space.  Many parameters may be specified such as the 

time span of the scenario, simulation step size, orbital propagation model, orbital elements of the 

satellites, locations of grid points, access geometry constraints, and many more parameters.  

Once the scenario is fully specified in MATLAB through the interface to STK, the physics 
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engine will propagate the orbits of the satellites and compute access to the coverage grid points 

for the length of the simulation.  Once the numerical simulation takes place, statistical coverage 

data may be reviewed in the Coverage Report and Graph Manager in STK.  This data may also 

be requested and accessed in MATLAB via the interface.  Several visualizations of an example 

scenario containing a global coverage grid with a 60:5/5/1 Walker constellation are provided in 

Fig. 3.17 and 3.18. 

 

Figure 3.17.  STK Walker Constellation 3D Visualization.  This image depicts the  

STK GUI for a 60:5/5/1 Walker constellation and a global coverage grid. 
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Figure 3.18.  STK Walker Constellation 2D Ground Track Visualization.  This image depicts the STK GUI for a 

60:5/5/1 Walker constellation and a global coverage grid. 

 

STK and the MATLAB/STK interface is a very powerful tool for providing numerical 

simulation coverage data, especially for a constellation system.  The ease in changing parameters 

and the ability to create nearly every imaginable system scenario makes STK ideal for this 

application. 
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4. RESULTS 

 This chapter presents the results of this study, broken into several case studies, which 

include the obtained Pareto-frontiers along with a detailed analysis of the observed trends.  In 

addition to an analysis of the objective space, the optimal design space will be characterized.   

It should be noted that the Pareto-frontier plots presented in this study are approximated 

frontiers, as true Pareto-optimal frontiers would require an enumerative method to ensure Pareto-

optimality over the entire search space.  Although the Pareto-frontiers are approximated, they 

have still be developed over thousands of function evaluations and the trends they exhibit are 

worth discussing.  Even though they may not be truly Pareto-optimal over the entire search 

domain, they are still solutions that exist within that domain.  As such the obtained Pareto-

frontiers may be treated as solutions where the true optimal solutions are at least this good if not 

better. 

 

4.1 Case 1 

 The main goal of performing this case study is to characterize the design and objective 

space surrounding small LEO regional imaging constellation systems.  Another goal is to see 

how the latitude of a target region has an impact on the performance of a small LEO 

constellation system providing coverage to that region.  In this study, the Walker constellation 

design will be used to optimize the small LEO regional constellation system at a range of latitude 

target points.  The objectives will include minimizing the number of satellites, minimizing the 

altitude of the constellation, maximizing the minimum daily visibility time, and minimizing the 

maximum revisit time.  A discussion of the setup and parameters used in the Case 1 study will be 
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presented in Section 4.1.1.  The results of Case 1 will then be presented and discussed in Section 

4.1.2. 

 

4.1.1 Case 1 Problem Formulation 

In order to see how the latitude of a small target region affects the performance of a 

regional constellation system, five different targets at varying latitudes of 0, 22.5, 45, 67.5, and 

90 degrees will be used.  These targets were selected as they provide an even spread over the 

entire latitude range.  Since the dynamics of the satellite motion rely only on the two-body EOM 

coupled with the J2 perturbation, there exists total symmetry on either side of the equator in 

latitude, as well as total symmetry in longitude.  Thus, a target region at 45 degrees versus -45 

degrees latitude will exhibit the same performance over time for a circular constellation.  If an 

elliptical constellation is utilized, the achievable performance over time will be identical for two 

targets at 45 and -45 degrees latitude, as long as the argument of perigee is rotated by 180 

degrees.  Additionally, a target region at a specified latitude will show the exact same achievable 

performance at any given longitude.  For this reason, the target regions are spread evenly 

between 0 and 90 degrees in latitude and are located at an arbitrarily selected longitude of 0 

degrees. 

A minimum ground elevation angle of 60 degrees is utilized throughout this case study.  

For a remote sensing satellite, the minimum ground elevation angle plays a huge role in the 

quality and type of image that is gathered by the space-based sensor.  High elevation angles are 

often required in order to gather usable data.  According to [30], the typical minimum ground 

elevation angle for a remote sensing system is 60 degrees.  For the purpose of this study, a 60 

degree minimum ground elevation angle is used as it provides a high enough angle for good data, 
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while not too high so that revisit times are in excess.  Note that a minimum ground elevation 

angle of 0 degrees, which provides the maximum in pure geometrical access, would provide 

much better constellation performance at the cost of poor image quality.   

 In order to reduce computational complexity due to the fact that so many simulations 

must be run for varying latitudes, the target region is represented by a single grid point.  This 

grid point can easily represent a target city, and the trends that will be analyzed in the Pareto-

frontiers can be extrapolated to small regions, perhaps the size of a small country.   

 The measure of constellation performance will be based on maximizing the minimum 

daily visibility time (MDVT) and minimizing the maximum revisit time (MRT).  The MDVT is 

simply the smallest amount of total time in a single day that coverage will be provided.  The 

MRT is simply the largest gap in coverage that will occur.  These two performance metrics are 

used because they provide a very good indication of the worst case performance, specifically in 

the amount of access that will be provided along with the size of the coverage gaps.  In addition, 

the altitude of the constellation and the number of satellites are used to help quantify 

performance.  Constellation at lower altitude will provide better resolution images, and hence 

increased performance.  Additionally, fewer satellites will result in decreased cost of the overall 

system. 

 To characterize this type of problem, several restrictions will be placed on the orbital 

elements of the spacecraft in the constellation.  The constellation design space will be limited to 

the Walker Delta Pattern.  Walker-delta patterns are widely used patterns that result in very 

symmetrical constellation designs.  This symmetry allows the constellation to maintain the same 

geometry over long periods of time, in addition to providing very good coverage.  Figure 4.1 
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shows the structure of the chromosome along with the resulting makeup of the orbital elements 

for each satellite in the constellation.  Table 4.1 shows the boundaries of the design search space. 

 Chromosome Structure =  [           Ω      �      �     �     ] 
Constellation COEs =  [ ⏟    �  �      ⏟    �  �      Ω � Ω � … Ω �⏟                     � ] 
Figure 4.1.  Case 1 Chromosome Structure and Resulting Makeup of Constellation COEs.  Here the variables 

to be optimized are represented in the chromosome structure.  These variable result in corresponding orbital 

elements for each satellite in the constellation, which is shown as the constellation COEs. 

Table 4.1.  Case 1 Design Search Space. 

Variable Search Space Value Units 

a Bounded 6578-7878 km 

ecc Constant 0 - 

inc Bounded 0-90 deg 

w Constant 0 deg 

Ωseed Bounded 0-360 deg 

θseed Bounded 0-360 deg 

T Bounded 1-6 - 

P Bounded Factors of T (1-6) - 

F Bounded 0-(P-1) - 

 

 It is shown that the decision space has several bounds and constraints in order to simplify 

and characterize the problem.  The design space is limited strictly to Walker-delta patterns, 

resulting in all of the satellites having the same altitude, inclination, eccentricity, and argument 

of perigee.  The altitude of the constellation is bounded between 200km and 1500km.  Almost all 

spacecraft in LEO and constellation systems are below 1500km in altitude, and the search will 

therefore take place within this range.  The inclination of the constellation is bounded between 0 

and 90 degrees.  Although you can get slightly better revisit times with retrograde orbits, it is 

costly to place spacecraft into retrograde orbits.  Nearly all spacecraft are prograde with the 
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exception of sun-synchronous spacecraft, with inclinations just above 90 degrees.  The 

eccentricity of the constellation is constant at 0; only circular orbits will be studied.  It is possible 

to get better performance with eccentric orbits, but adding eccentricity into the constellation can 

greatly complicate the system.  Since the altitude is bounded between 200 and 1500 km, the 

maximum eccentricity available would be approximately 0.09.  The performance would be 

minimally affected by introducing this slight eccentricity, and several unwanted effects would 

occur.  If the perigee point was at 200km and apogee was at 1500km, the variation in drag over 

the entire orbit would cause unwanted oscillations and variations in the mean orbital elements 

that would affect the geometry of the constellation over time.  This study will therefore be 

restricted to circular orbits in order to reduce these unwanted effects.  Due to this restriction to 

circular orbits, the argument of perigee and the mean anomaly provide the same information, and 

therefore only one of these elements is needed.  The argument of perigee will therefore be kept 

constant at 0 and the mean anomaly will be allowed to vary between 0 and 360 degrees.  The 

orbital elements of a seed satellite will be optimized in the design process, with the other 

satellites built around the seed satellite in a Walker-delta pattern.  The other variables that need 

to be optimized are thus the number of spacecraft, T, the number of orbital planes, P, and the 

relative spacing between satellites in adjacent planes, F.  The number of spacecraft is bounded in 

this study between 1 and 6 satellites.  Since the region of interest is a single target point, it can be 

assumed that mission designers would want to launch a minimal number of spacecraft to provide 

this type of coverage.  In addition, placing the bounds between 1 and 6 spacecraft reduces the 

computational cost and allows a more detailed analysis on a more specific problem.  Although 

one satellite is not a constellation, coverage for a single satellite is included in this study as a 

baseline to compare performance between a single satellite and larger constellation systems.  The 
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number of orbital planes is simply bounded based on the number of satellites in the constellation 

as defined by the Walker-delta pattern.  Similarly, the relative spacing between satellites in 

adjacent planes is bounded based on the allowable Walker-delta pattern values.  The 

chromosome is made up of the seven values shown in Figure 4.1.  These seven variables will be 

optimized and can be mapped to the individual COEs of each satellite in the constellation as also 

shown in Fig. 4.1.  The problem is therefore defined as optimizing coverage for small, circular, 

common inclination, regional, LEO, Walker constellations.   

The propagation of the satellites will be performed using the J2Perturbation orbit 

propagator in STK.  The J2Perturbation orbit propagator was chosen because it represents the 

largest perturbative force in this problem.  Since it causes such a large change over time in the 

ascending node, it cannot be neglected and must be used in this study.  The other perturbations 

are either too small to be considered, or can be countered to maintain a constant constellation 

geometry with relatively small station keeping maneuvers.  A minimum propagation step size, as 

well the minimum access computation step size will be set to 60 seconds.  The propagator will 

automatically determine the best step size at each point in the propagation, without going below 

60 seconds.  An informal study was conducted that determined for this altitude range and for the 

ground elevation angles used in this study, the trends in the Pareto-frontiers were not noticeably 

affected when the step size was reduced below 60 seconds.  The simulation time span is given as 

30 days.  Due to the fact that the altitude is restricted to a maximum of 1500km, the orbital 

period of the spacecraft is relatively small and the spacecraft in the constellation will orbit the 

Earth many times each day.  A time span of several days is shown to be produce consistent 

results, however a time span of 30 days is used to ensure consistent and accurate statistical 
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results.  A time span longer 30 days shows no noticeable affect on the trends of the Pareto-

frontier.  Table 4.2 summarizes the parameters used in the STK simulation. 

 

Table 4.2.  STK Simulation Parameters. 

Parameter Value Units 

Propagator Type J2Perturbation - 

Propagation Step Size 60 sec 

Access Computation Step Size 60 sec 

Simulation Time Span 30 days 

 

 The constellation performance metric, minimum daily visibility time will be obtained by 

a numerical simulation in STK.  The MDVT will be determined by breaking the simulation run 

into 30, 24-hour time segments.  The amount of time the target region is visible to the 

constellation during each 24-hour time segment is recorded as the DVT.  The MDVT is thus the 

maximum DVT of all 30 segments.  The constellation performance metric, maximum revisit 

time (MRT), will also be obtained by a numerical simulation in STK.  The MRT will be 

determined by simply obtaining the longest period with no access to the ground point (largest 

gap in coverage) over the entire simulation run.   

 The εNSGA-II algorithm used in this study has several tuning parameters that are defined 

in Table 4.3.   

Table 4.3.  εNSGA-II Tuning Parameters. 

Parameter Value 

Initial Population Size 5 

Crossover Probability 1 

Mutation Probability (Ngenes is the numer of genes) 1/Ngenes 

Whole Arithmetic Recombination α bounds [-.25, 1.25] 

Gaussian Mutation Standard Deviation 0.2 
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Table 4.4 shows the design objectives along with the corresponding epsilon grid values.  

The range of the MDVT is simply bounded between 0 and 1440 minutes due to the number of 

minutes in a given day.  Additionally, the MRT has no set range; although due to a simulation 

time span of 30 days the largest MRT possible is 30 days.  An MDVT of 1440 minutes and MRT 

of 0 minutes would mean there is 100% coverage over the entire simulation run.  The epsilon 

values shown in Table 4.4 were chosen as they allow good visualization of the Pareto-frontiers 

without resulting in too many points to be computationally expensive.  The main limiting epsilon 

grid dimension is the constellation altitude at 25km. 

Table 4.4.  Case 1 Design Objectives and Corresponding Epsilon Grid Values.   

Design Objective 
Optimization 

Direction 
Range Epsilon Value Units 

Number of Spacecraft Minimize 1-6 1 - 

Constellation Altitude Minimize 200-1500 25 km 

Min Daily Visibility Time Maximize 0-1440 1 min 

Max Revisit Time Minimize - 1 min 

 

  

4.1.2 Case 1 Results 

First, several hypotheses will be presented followed by the actual results.  It is expected 

that the best revisit times and daily visibility times will be for a target region located at the poles.  

This is due to the fact that the target region will remain stationary with respect to the 

constellation.  Additionally, the worst achievable revisit times and daily visibility times should 

be for a target region directly in between the poles and the equator, at 45 degrees latitude.  High 

altitudes should provide better daily visibility times and worse revisit times, similarly low 

altitudes should provide better revisit times but worst daily visibility times.  At lower altitudes, 

the satellite will have a smaller orbital period and will thus be able to visit the target site more 
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frequently, but will not spend as much time over the target site.  Increasing the number of 

satellites should also result in better revisit times and daily visibility times, although by how 

much is unknown.  The optimal inclination should be similar to the latitude of the target region, 

and the optimal number of orbital planes is unknown.  Finally, some discontinuity in the Pareto-

frontier should exist due to the fact that symmetric Walker constellation patterns are being used. 

The obtained Pareto-frontiers will now be displayed.  The first set of plots shown, Fig. 

4.2-4.6, will be Pareto hypervolumes, which provide a visualization of the four-dimensional 

objective space.  Note that each point in the plot represents an entire constellation design that is 

characterized by a given number of satellites, each with its own unique orbital elements.  In order 

to obtain these plots, the algorithm was run over a period of several hours to a full day, with the 

number of function evaluations ranging between 30,000 and 100,000.  Each plot depicts the four 

design objectives, along with arrows indicating the optimization direction.  Five plots are 

therefore shown, Fig. 4.2-4.6, for each latitude region (0, 22.5, 45, 67.5, and 90 degrees), and are 

shown in order of increasing latitude.  Note that the scale of the axis for MDVT and MRT are 

different for all five plots. 
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Figure 4.2.  Number of Spacecraft vs. Constellation Altitude vs. MDVT vs. MRT for 0 Degree Latitude 

Target.  This plot shows the four-dimensional Pareto-hypervolume, with arrows indicating the optimization 

direction. 

 

Figure 4.3.  Number of Spacecraft vs. Constellation Altitude vs. MDVT vs. MRT for 22.5 Degree Latitude 

Target.  This plot shows the four-dimensional Pareto-hypervolume, with arrows indicating the optimization 

direction.  
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Figure 4.4.  Number of Spacecraft vs. Constellation Altitude vs. MDVT vs. MRT for 45 Degree Latitude 

Target.  This plot shows the four-dimensional Pareto-hypervolume, with arrows indicating the optimization 

direction. 

 

Figure 4.5.  Number of Spacecraft vs. Constellation Altitude vs. MDVT vs. MRT for 67.5 Degree Latitude 

Target.  This plot shows the four-dimensional Pareto-hypervolume, with arrows indicating the optimization 

direction. 
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Figure 4.6.  Number of Spacecraft vs. Constellation Altitude vs. MDVT vs. MRT for 90 Degree Latitude 

Target.  This plot shows the four-dimensional Pareto-hypervolume, with arrows indicating the optimization 

direction. 

 

 These Pareto-frontiers show several basic trends, which are generalized as follows: 

 The Pareto-frontier has both obvious and not obvious discontinuities that exist.  There are 

obvious discontinuities in the number of satellites in the constellation, as only integer 

numbers may be represented.  Non-obvious discontinuities exist for the target regions at 

latitudes of 22.5, 45, and 67.5 degrees, which will be discussed in more detail later. 

 As expected, as the number of satellites in the constellation increases the minimum daily 

visibility time increases and the maximum revisit time decreases, resulting in better 

performance.   

 The constellation altitude has a strong correlation with the minimum daily visibility time; 

as the altitude increases, the minimum daily visibility time also increases.   
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 The maximum revisit time correlates most strongly with the number of satellites in the 

constellation; with more satellites providing lower revisit times.   

 It can be deduced that target regions near the equator and near the poles have much better 

daily visibility times and revisit times that target regions located in between these 

regions.   

 The target regions at 22.5, 45, and 67.5 degrees latitude all have similar performance, 

with slight differences.  The target region at 45 degrees latitude results in the worst 

achievable performance, followed by the target region at 22.5 degrees, and then the target 

region at 67.5 degrees. 

 The target region at 90 degrees latitude slightly out performs the target region at 0 

degrees latitude. 

 These basic trends will now be discussed in more detail by breaking the Pareto-

hypervolumes into lower dimensional states.  In addition to showing fewer dimensions, several 

optimization parameters will be shown such as the constellation inclination and the number of 

planes, in order to better characterize the optimal design space.   

 The next figure, Fig. 4.7, shows the target region at 45 degrees latitude, with the number 

of orbital planes represented by the colorbar.  This plot is identical to Fig. 4.4 except the 

colorbar, which shows constellation altitude, is simply replaced by the number of orbital planes 

in the constellation; the constellation altitude is omitted.   
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Figure 4.7.  Number of Spacecraft vs. MDVT vs. MRT for 45 Degree Latitude Target, with the Number of 

Planes Shown in Color.  This plot shows how the objective space is affected by the number of orbital planes in the 

constellation, with arrows indicating the optimization direction. 

Figure 4.7 shows the objective space affected by the optimization variable, which is the 

number of planes (P) in a Walker-delta pattern.  The objective space for the target regions at 

22.5, 45, and 67.5 degrees latitude all show this similar discontinuity.  It is evident that as the 

number of orbital planes increases, the maximum revisit time decreases.  It is interesting to note 

the discontinuities due to the number of orbital planes being constrained to factors of the number 

of satellites in the constellation.  These obvious groupings show six groups of 1-plane 

constellations, three groups of 2-plane constellations, two groups of 3-plane constellations, and 

one group of both 4-plane, 5-plane, and 6-plane constellations.  It can be concluded from this 

that if minimizing the revisit times are of interest, it is best to maintain diversity in the number of 

orbital planes in the constellation. 
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 The rest of the plots in this section will show the objective space in lower dimensional 

states in order to better characterize the trends that are present.  Figures 4.8-4.12 show 

specifically how the altitude and number of spacecraft affect the minimum daily visibility time.  

Note that these plots do not show the MRT objective because it has been omitted to more easily 

show the trends of interest.  Also note that the MDVT axis scale differs between the 0 and 90 

degree latitude cases, and the 22.5, 45, and 67.5 degree latitude cases. 

 

Figure 4.8.  Number of Spacecraft vs. MDVT vs. Constellation Altitude for 0 

Degree Latitude Target.  This plot shows the trends between these three objectives 

with the MRT omitted.  The arrows indicate the optimization direction. 
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Figure 4.9.  Number of Spacecraft vs. MDVT vs. Constellation Altitude for 22.5 

Degree Latitude Target.  This plot shows the trends between these three objectives 

with the MRT omitted.  The arrows indicate the optimization direction. 

 

Figure 4.10.  Number of Spacecraft vs. MDVT vs. Constellation Altitude for 45 
Degree Latitude Target.  This plot shows the trends between these three objectives 

with the MRT omitted.  The arrows indicate the optimization direction. 
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Figure 4.11.  Number of Spacecraft vs. MDVT vs. Constellation Altitude for 67.5 

Degree Latitude Target.  This plot shows the trends between these three objectives 

with the MRT omitted.  The arrows indicate the optimization direction. 

 

Figure 4.12.  Number of Spacecraft vs. MDVT vs. Constellation Altitude for 90 

Degree Latitude Target.  This plot shows the trends between these three objectives 

with the MRT omitted.  The arrows indicate the optimization direction. 
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 Several interesting trends emerge by looking at Fig. 4.8-4.12, which show the 

relationship between the number of spacecraft, minimum daily visibility time, and the altitude of 

the constellation at varying latitude target regions.  These trends are characterized as follows: 

 As the altitude of the constellation increases, the MDVT always increases with a near 

linear relationship.  For the target regions at 0 and 90 degrees latitude, this relationship is 

slightly concave in nature.  For the target regions at 22.5, 45, and 67.5 degrees latitude, 

this relationship is slightly convex in nature. 

 The spread in MDVT between 1 and 6 spacecraft is small at low constellation altitudes 

and is much larger at higher constellation altitudes.   

 The relationship between the number of spacecraft and MDVT is also very linear in 

nature.  Increasing the number of spacecraft from 1 to 2 causes the MDVT to increase 

roughly two-fold.  Similarly, increasing the number of spacecraft from 1 to 6 causes the 

MDVT to increase roughly six-fold. 

 For the target regions at 0 and 90 degrees latitude, the achievable MDVT is very similar, 

with slightly increased performance at 90 degrees latitude. 

 The worst achievable performance is for a target region at 45 degrees latitude, followed 

by 22.5 degrees and 67.5 degrees.  These three regions perform very similarly, with the 

spread in MRT for the six satellite constellation design going from several minutes at low 

altitudes to nearly 20 minutes at higher altitudes.   

 

The following five plots, Fig. 4.13-4.17, show the same previous five plots, Fig. 4.8-4.12, 

except the colorbar showing the number of spacecraft is replaced by the constellation inclination.  

The number of spacecraft may be deduced in these plots by referring to Fig. 4.8-4.12 or by 
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simply noting the six obvious curved groupings.  The purpose of showing the inclination here is 

to see how this variable parameter that is to be optimized in the optimization process affects the 

performance trends.  Note that the axis scale of the colorbar changes between for each of the five 

plots in order to better visualize the small differences in inclination for each latitude region. 

 

Figure 4.13.  Number of Spacecraft vs. MDVT vs. Constellation Altitude 

for 0 Degree Latitude Target, with the Constellation Inclination in Color.  

This plot shows how constellation inclination influences the objective space, 

with arrows indicating the optimization direction. 
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Figure 4.14.  Number of Spacecraft vs. MDVT vs. Constellation Altitude 

for 22.5 Degree Latitude Target, with the Constellation Inclination in 

Color.  This plot shows how constellation inclination influences the objective 

space, with arrows indicating the optimization direction. 

 

 

Figure 4.15.  Number of Spacecraft vs. MDVT vs. Constellation Altitude for 

45 Degree Latitude Target, with the Constellation Inclination in Color.  This 

plot shows how constellation inclination influences the objective space, with 

arrows indicating the optimization direction. 
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Figure 4.16.  Number of Spacecraft vs. MDVT vs. Constellation Altitude for 

67.5 Degree Latitude Target, with the Constellation Inclination in Color.  
This plot shows how constellation inclination influences the objective space, 

with arrows indicating the optimization direction. 

 

 

Figure 4.17.  Number of Spacecraft vs. MDVT vs. Constellation Altitude for 

90 Degree Latitude Target, with the Constellation Inclination in Color.  This 

plot shows how constellation inclination influences the objective space, with 

arrows indicating the optimization direction. 
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 Several very interesting trends emerge from Fig. 4.13-4.17 by observing how the 

inclination of the constellation affects the objective space.  These trends can be characterized as 

follows: 

 For the target regions at 0 and 90 degrees latitude, the optimal constellation inclination is 

0 and 90 degrees respectively. 

 For the target regions at 22.5, 45, and 67.5 degrees latitude, the optimal constellation 

inclination is slightly higher than the corresponding target latitude.  As the altitude of the 

constellation increases, the optimal inclination also increases. 

 For the target region at 22.5 degrees latitude, the optimal inclination ranges from roughly 

23 degrees to 27 degrees between an altitude of 200 and 1500 km respectively.   

 For the target region at 45 degrees latitude, the optimal inclination ranges from roughly 

45 to 49 degrees between an altitude of 200 and 1500 km respectively. 

 For the target region at 67.5 degrees latitude, the optimal inclination ranges from roughly 

68 to 72 degrees between an altitude of 200 and 1500 km respectively. 

 For the target regions at 45 and 67.5 degrees latitude, there are several solutions with 

slightly larger inclinations for the single satellite case at higher altitudes. 

 

Next, the objective space surrounding the MRT will be characterized with similar three-

dimensional plots.  The following five plots, Fig. 4.18-4.22, are similar to Fig. 4.8-4.12 except 

they replace MDVT with MRT.  The purpose of these plots is to show how the number of 

satellites in the constellation, the constellation altitude, and the MRT all interact in the objective 

space.  As before, the following five plots are shown in order of increasing target region altitude.   
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Figure 4.18.  Number of Spacecraft vs. Constellation Altitude vs. MRT for 0 

Degree Latitude Target.  This plot shows the trends between these three objectives 

with the MDVT omitted.  The arrows indicate the optimization direction. 

 

Figure 4.19.  Number of Spacecraft vs. Constellation Altitude vs. MRT for 22.5 

Degree Latitude Target.  This plot shows the trends between these three objectives 

with the MDVT omitted.  The arrows indicate the optimization direction. 
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Figure 4.20.  Number of Spacecraft vs. Constellation Altitude vs. MRT for 45 

Degree Latitude Target.  This plot shows the trends between these three objectives 

with the MDVT omitted.  The arrows indicate the optimization direction. 

 

Figure 4.21.  Number of Spacecraft vs. Constellation Altitude vs. MRT for 67.5 

Degree Latitude Target.  This plot shows the trends between these three objectives 

with the MDVT omitted.  The arrows indicate the optimization direction. 
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Figure 4.22.  Number of Spacecraft vs. Constellation Altitude vs. MRT for 90 
Degree Latitude Target.  This plot shows the trends between these three objectives 

with the MDVT omitted.  The arrows indicate the optimization direction. 

 

 

 Figures 4.18-4.22 show the relationships in the three dimensional objective space 

between the MRT, constellation altitude, and number of spacecraft.  For target regions at 

latitudes of 0 and 90 degrees, the objective space is very clean.  Here, increasing the altitude of 

the constellation actually decreases the maximum revisit time and degrades performance.  As 

seen for target regions at latitudes other than 0 and 90 degrees, the objective space is extremely 

cluttered.  It can be seen that increasing the constellation altitude in some cases results in reduced 

revisit times, while in other cases will result in increased revisit times.  The complex objective 

space in these plots can be shown to be a result of the number of orbital planes.  It has been 

discussed previously that these discontinuous groupings of designs are due to the symmetrical 

designs of Walker-delta patterns, given by the number of orbital planes.  The following five 

plots, Fig. 4.23-4.27, show these trends in MRT from a different perspective, including the 
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number of orbital planes.  Here, the MRT is shown on the x-axis, the number of spacecraft is 

shown on the y-axis, and the number of orbital planes is shown in color.  Again, the following 

five plots show the differences in the latitude of the target region in order of increasing latitude. 

 

Figure 4.23.  Number of Spacecraft vs. MRT for 0 Degree Latitude Target, 

with the Number of Planes Shown in Color.  This plot shows how the number 

of orbital planes influences the objective space, with arrows indicating the 

optimization direction.  
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Figure 4.24.  Number of Spacecraft vs. MRT for 22.5 Degree Latitude 

Target, with the Number of Planes Shown in Color.  This plot shows how the 

number of orbital planes influences the objective space, with arrows indicating 

the optimization direction. 

 

 

Figure 4.25.  Number of Spacecraft vs. MRT for 45 Degree Latitude Target, 

with the Number of Planes Shown in Color.  This plot shows how the number 

of orbital planes influences the objective space, with arrows indicating the 

optimization direction. 



 

88 

 

 

Figure 4.26.  Number of Spacecraft vs. MRT for 67.5 Degree Latitude 

Target, with the Number of Planes Shown in Color.  This plot shows how the 

number of orbital planes influences the objective space, with arrows indicating 

the optimization direction. 

 

 

Figure 4.27.  Number of Spacecraft vs. MRT for 90 Degree Latitude Target, 
with the Number of Planes Shown in Color.  This plot shows how the number 

of orbital planes influences the objective space, with arrows indicating the 

optimization direction. 
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 Fig. 4.23-4.27 show how the number of orbital planes influences the objective space 

surrounding the MRT and number of spacecraft in the constellation.  It is evident that Walker-

delta patterns produce a discontinuous objective space in the MRT due to the number of orbital 

planes being symmetrical and factors of the total number of spacecraft in the constellation.  

Several interesting trends emerge here from Fig. 4.23-4.27 which are characterized as follows: 

 For target regions at latitudes near the equator or poles, the optimal number of orbital 

planes is one in order to reduce the MRT.  This makes sense because if one orbital plane 

is used, the satellites will be evenly distributed in this plane and every gap in coverage 

will be constant.  If multiple planes were used here and the satellites were asymmetrically 

distributed, there would be several small gaps with one large gap, and therefore the MRT 

would be greater than for a single plane.   

 For target regions at latitudes of 22.5, 45, and 67.5 degrees latitude, increasing the 

number of orbital planes always reduces the MRT, resulting in increased performance.   

 As the number of satellites in the constellation increases, the best achievable MRT 

independent of altitude, increases while increasing at a lower rate for more satellites.  

This indicates that it will take many more satellites than six to achieve continuous 

coverage in LEO for a single target point at latitudes that are somewhat far from the 

equator or poles.   

 Similar to the MDVT performance metric, the worst achievable performance for the 

MRT is at a latitude of 45 degrees, followed by 22.5 degrees, and then 67.5 degrees; 

these three targets however are still very similar in terms of performance.   
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The goals in performing this case study were to characterize the design and objective 

space surrounding small regional LEO remote sensing Walker constellation systems.  In addition 

to characterizing the design and objective space, another goal was to see how the latitude of the 

region of interest affects the achievable performance.  Both of these goals were met by providing 

numerous Pareto-frontiers that depicted the various trends and tradeoffs in performance for these 

conflicting objectives.  In addition, these trends were observed for target regions at latitudes of 0, 

22.5, 45, 67.5 and 90 degrees.  It was shown that target regions at 0 and 90 degrees provide far 

increased performance over the other three mid latitudes.  The 90 degree target region provided 

slightly improved performance over the 0 degree target region.  This is most likely due to the fact 

that the target region on the equator is moving in a prograde motion as the Earth rotates, whereas 

the target region on the pole remains relatively fixed.  Slightly increased coverage can therefore 

be maintained for target regions near the poles as opposed to target regions near the equator.  

Additionally, the worst achievable coverage is seen for a target region at a latitude directly in 

between the equator and the poles at a latitude of 45 degrees.  The results of this case study 

confirm the original hypotheses made in addition to quantifying the achievable performance 

metrics associated with this type of problem.  In addition, the solution spaced proved to be not 

smooth and very discrete in nature.  This could mean that analytical techniques would have been 

very difficult in solving for the solution space for this type of problem.  The use of numerical 

methods here proved to be very useful and were considered successful. 

 

4.2 Case 2 

 The goal in performing this case study is to observe the effects of minimum ground 

elevation angle on both daily visibility time and revisit time, for a small LEO regional Walker 
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constellation system.  The previous study utilized five different target points at varying latitudes 

to represent small regions and show the effects of varying latitude on the performance of a 

constellation.  This study will use a single target point at 45 degrees latitude, which was shown 

to have the worst achievable performance of the five target latitude points.  Additionally, this 

study will only show the effects of minimum ground elevation angle on daily visibility time and 

revisit time for a constellation of 6 satellites.  Two separate studies will be performed, Case 2a 

and 2b.  The objective functions in Case 2a are mean daily visibility time, constellation altitude, 

and minimum ground elevation angle.  The objective functions in Case 2b are mean revisit time, 

constellation altitude, and minimum ground elevation angle. 

 

4.2.1 Case 2a Problem Formulation 

 The problem formulation for this case is very similar to the formulation provided for 

Case 1.  The STK simulation parameters and the εNSGA-II tuning parameters are kept the same.  

The structure of the chromosome is kept the same except an 8
th

 gene is added at the end for the 

minimum ground elevation angle, ε, and is shown as below in Fig. 4.28.  The design search 

space, shown in Table 4.5 is also similar to Case 1 except the minimum ground elevation angle is 

added and is bounded between 0 and 90 degrees.  This range for the minimum ground elevation 

angle represents all possible angles when access between the satellite and the ground point is 

possible. 

 Chromosome Structure =  [           Ω      �      �     �          �] 
Figure 4.28.  Case 2 Chromosome Structure.  This vector represents the 8 genes that make up the chromosome for 

a single individual.  These are the variable parameters that are to be optimized in the εNSGA-II algorithm. 
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Table 4.5.  Case 2 Design Search Space. 

Variable Search Space Value Units 

a Bounded 6578-7878 km 

ecc Constant 0 - 

inc Bounded 0-90 deg 

w Constant 0 deg 

Ωseed Bounded 0-360 deg 

θseed Bounded 0-360 deg 

T Constant 6 - 

P Bounded Factors of T (1-6) - 

F Bounded 0-(P-1) - 

ε Bounded 0-90 deg 

 

 The objective functions and corresponding epsilon grid values are shown in Table 4.6.  In 

Case 2a, the objective functions are minimum ground elevation angle, constellation altitude, and 

mean daily visibility time.  Case 2 differs from Case 1 in that the mean performance metrics are 

used as opposed to the max and min performance metrics.  This is done in order to get a better 

idea of the average effects the minimum ground elevation angle has on constellation 

performance.   

 The mean DVT is found in a similar way as the min DVT in Case 1.  Instead of the 

lowest DVT across the entire simulation run being used, the daily visibility times for each day 

over the entire simulation run are averaged to obtain the mean DVT. 

Table 4.6.  Case 2a Design Objectives and Corresponding Epsilon Grid Values.   

Design Objective 
Optimization 

Direction 
Range Epsilon Value Units 

Minimum Ground Elevation Angle Maximize 0-90 2 deg 
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Constellation Altitude Minimize 200-1500 25 km 

Mean Daily Visibility Time Maximize 0-1440 10 min 

 

4.2.2 Case 2a Results 

First several hypotheses will be made followed by the results of this case study.  It is 

obvious that increasing the minimum ground elevation angle will result in lower daily visibility 

times, although the nature of the relationship between these two is unknown.  This is due to the 

fact that with higher minimum ground elevation angles, the chance of viewing the target region 

is simply reduced.   

Although Case 2a represents a single simulation run, the resulting Pareto-frontier will be 

shown from several different angles and perspectives in order to better visualize the resulting 

trends.  Note that each point in the plot represents an entire constellation design that is 

characterized by a given number of satellites, each with its own unique orbital elements.   

 

Figure 4.29.  Minimum Ground Elevation Angle vs. Constellation Altitude vs. Mean DVT for Target Region 

at 45 Degrees Latitude.  Note that the arrows represent the optimization direction. 
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Figure 4.30.  Minimum Ground Elevation Angle vs. Constellation Altitude vs. Mean DVT for Target Region 

at 45 Degrees Latitude.  Note that the Constellation Altitude is represented on both an axis and in color. 

 

 

Figure 4.31.  Minimum Ground Elevation Angle vs. Constellation Altitude vs. Mean DVT for Target Region 

at 45 Degrees Latitude.  Note that the Constellation Altitude is represented on both an axis and in color. 
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 Figures 4.29-4.31 show the effect of minimum ground elevation angle and constellation 

altitude on the mean DVT.  Several basic trends emerge which are characterized as follows: 

 As the altitude of the constellation increases, the mean DVT also increases in a near 

linear nature for a given minimum ground elevation angle. 

 The best achievable mean DVT is given by high constellation altitudes at low ground 

elevation angles. 

 The Pareto-frontier for this six-satellite constellation in this objective space appears to be 

continuous in nature, with the frontier being a smooth thin surface.   

 As the minimum ground elevation angle increases, the mean DVT decreases for a given 

altitude.  This relationship is non-linear in nature; for low minimum ground elevation 

angles the slope is steep and for high minimum ground elevation angles the slope is 

nearly flat.  This means there is a large difference between constellation performance 

between 0 and 10 degree minimum ground elevation angles, and a small difference 

between constellation performance between 80 and 90 degree minimum ground elevation 

angles.   

 The spread in mean DVT between 200 and 1500km is roughly 700 minutes for a 

minimum ground elevation angle of 0 degrees.  The spread in mean DVT between 200 

and 1500km is roughly 150 minutes for a minimum ground elevation angle of 45 degrees.   

The results of this case study confirm the original hypotheses in addition to providing an 

insight into the nature of the relationship between these three performance metrics.  It should be 

noted however, that the smoothness of the solution space indicates that it may have been possible 

to obtain these results through analytical methods as opposed to the numerical techniques used.  
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Analytical methods could possibly be quicker at obtaining solutions to this problem, as well as 

similar problems, in addition to providing exact solutions.   

 

4.2.3 Case 2b Problem Formulation 

 The problem formulation for Case 2b is identical to Case 2a with one difference.  The 

mean DVT objective function is simply replaced with the mean revisit time.  Again, the mean 

revisit time is found in a similar way as the max revisit time in Case 1.  Instead of the largest gap 

being found, all of the gaps in the simulation run are averaged together to obtain the mean revisit 

time.  The chromosome structure, optimization variables, and design search space are identical to 

those in Case 2a.  The design objectives and epsilon grid values are shown in Table 4.7.  In this 

case, the mean revisit time is actually constrained to a maximum value of 1440 minutes, or a 

single day.  At very high elevation angles, the mean revisit time will be several days to weeks, 

and these designs are thus omitted.   

 

Table 4.7.  Case 2b Design Objectives and Corresponding Epsilon Grid Values.   

Design Objective 
Optimization 

Direction 
Range Epsilon Value Units 

Minimum Ground Elevation Angle Maximize 0-90 2 deg 

Constellation Altitude Minimize 200-1500 25 km 

Mean Revisit Time Minimize 0-1440 10 min 

 

4.2.4 Case 2b Results 

It is hypothesized that increasing the minimum ground elevation angle will reduce the 

average revisit time.  The nature of the relationship between the minimum ground elevation 

angle and the mean revisit time for a given altitude is however unknown.  It is expected that as 
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the minimum ground elevation angle increases, the average revisit time will increase 

exponentially in nature.  

The following Pareto-frontier shown in Fig. 4.32 depicts how the minimum ground 

elevation angle and constellation altitude impact the mean revisit time for a constellation of 6-

satellites and a target region at a latitude of 45 degrees.  Figure 4.33 shows a small section of the 

entire Pareto-frontier shown in Fig. 4.32; the minimum ground elevation angle is zoomed in to 

show the region between 0 and 45 degrees.  Note that each point in the plot represents an entire 

constellation design that is characterized by a given number of satellites, each with its own 

unique orbital elements.   

 

Figure 4.32.  Minimum Ground Elevation Angle vs. Constellation Altitude vs. Mean Revisit Time for Target 

Region at 45 Degrees Latitude.  Note that the arrows represent the optimization direction. 
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Figure 4.33.  Minimum Ground Elevation Angle vs. Constellation Altitude vs. Mean Revisit Time for Target 

Region at 45 Degrees Latitude.  This plot shows a small section of the entire Pareto-frontier, where the minimum 

ground elevation angle is shown between 0 and 45 degrees.  Note that the arrows represent the optimization 

direction.  

 

 The Pareto-frontier shown in this case exhibits several interesting trends which are 

characterized as follows: 

 As the minimum ground elevation angle increases, the mean revisit time also increases.  

The relationship between minimum ground elevation angle and mean revisit time is linear 

in nature for minimum ground elevation angles between 0 and roughly 45 degrees.  

Above a 45 degree minimum ground elevation angle, the mean revisit time increases 

more rapidly as the minimum ground elevation angle increases, and is seemingly 

exponential in nature. 

 The spread in mean revisit time between 200 and 1500km altitude is roughly 20 minutes 

at a 0 degree minimum ground elevation angle and is roughly 50 minutes at a 45 degree 

minimum ground elevation angle. 
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 The best achievable mean revisit time for a six-satellite Walker constellation and a target 

region at 45 degrees latitude is at an altitude of 1500km and a minimum ground elevation 

angle of 0 degrees. 

The results of this case study confirm the hypothesis made, in addition to providing 

quantifiable insight into the relationship between these metrics.  As seen in Case 2a, it may have 

been possible to use analytical methods in finding the solution space for Case 2b.   

 

4.3 Case 3 

 The goal of this case study is to see how relaxing several of the constraints on the 

traditional symmetric Walker-delta pattern will affect the achievable performance of the 

constellation for a similar setup as in Case 1; a small regional LEO remote sensing constellation 

system.  In this case study, the symmetric Walker-delta pattern will be applied alongside a more 

relaxed constellation pattern in order to characterize the differences in the traditional design and 

a more unconstrained design.  A single target region at 45 degrees latitude will be used in this 

study, the number of satellites in the constellation will be fixed at 6, and the minimum ground 

elevation angle is fixed at 60 degrees.  The design objectives are max revisit time (MRT), min 

daily visibility time (MDVT), and constellation altitude. 

 

4.3.1 Case 3 Problem Formulation 

 The problem formulation for this case is very similar to the formulation provided for 

Case 1.  The STK simulation parameters and the εNSGA-II tuning parameters are kept the same.  

Two separate runs are performed in this case with very different chromosome structures and 
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genes which will be discussed shortly.  The design objectives are the same for both simulation 

runs, and are given in Table 4.8. 

 

Table 4.8.  Case 3 Design Objectives and Corresponding Epsilon Grid Values.   

Design Objective 
Optimization 

Direction 
Range Epsilon Value Units 

Constellation Altitude Minimize 200-1500 25 km 

Max Revisit Time Minimize - 1 min 

Min Daily Visibility Time Maximize 0-1440 1 min 

 

 For the Walker-delta pattern design space, the chromosome structure is identical to that in 

Case 1.  For reference the chromosome structure and mapping will be presented here in Fig. 

4.34.  Additionally, Table 4.9 shows the design search space for the Walker-delta Pattern. 

 Chromosome Structure =  [           Ω      �      �     �     ] 
Constellation COEs =  [ ⏟    �  �      ⏟    �  �      Ω � Ω � … Ω �⏟                     � ] 
Figure 4.34.  Case 3 Chromosome Structure and Resulting Makeup of Constellation COEs for the Walker-

Delta Pattern.  Here the variables to be optimized are represented in the chromosome structure.  These variable 

result in corresponding orbital elements for each satellite in the constellation, which is shown as the constellation 

COEs. 

 

Table 4.9.  Case 3 Design Search Space for the Walker-Delta Pattern. 

Variable Search Space Value Units 

a Bounded 6578-7878 km 

ecc Constant 0 - 

inc Bounded 0-90 deg 

w Constant 0 deg 

Ωseed Bounded 0-360 deg 

θseed Bounded 0-360 deg 

T Constant 6 - 

P Bounded Factors of T (1-6) - 

F Bounded 0-(P-1) - 
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For the relaxed constellation design space the altitude, inclination, eccentricity, and 

argument of perigee will be the same for all satellites in the constellation.  The right ascension of 

the ascending node and the mean anomaly for each satellite will be allowed to vary in any 

manner.  This is different from the Walker-delta pattern where the right ascension of the 

ascending node and the mean anomaly are fixed to symmetric patterns that are evenly spaced 

over 360 degrees as defined by the Walker-delta pattern.  For the relaxed constellation design 

space, the altitude and inclination make up the first two genes of the chromosome, which is the 

same for the Walker-delta pattern.  The eccentricity and argument of perigee will both be fixed at 

0, which is also the same for the Walker-delta pattern.  Since the number of satellites in the 

constellation is fixed at 6, there will be 1 gene for the right ascension of the ascending node and 

1 gene for the mean anomaly for each of the six satellites.  There will therefore be 2+2*6, or 14 

genes, that compose the chromosome for the relaxed constellation design space, as shown in Fig. 

4.35.  Additionally, Table 4.10 shows the design search space for the relaxed constellation design 

space. 

 Chromosome Structure =  [           Ω � Ω � … Ω � ], ℎ  =  

Constellation COEs =  [ ⏟    �  �      ⏟    �  �      Ω � Ω � … Ω �⏟                     � ] 
Figure 4.35.  Case 3 Chromosome Structure and Resulting Makeup of Constellation COEs for the Relaxed 

Constellation Design.  Here the variables to be optimized are represented in the chromosome structure.  These 

variable result in corresponding orbital elements for each satellite in the constellation, which is shown as the 

constellation COEs. 
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Table 4.10.  Case 3 Design Search Space for the Relaxed Constellation Design. 

Variable Search Space Value Units 

a Bounded 6578-7878 km 

ecc Constant 0 - 

inc Bounded 0-90 deg 

w Constant 0 deg 

Ωi Bounded 0-360 deg 

θi Bounded 0-360 deg 

 

 A single target point at 45 degrees latitude will be used in this study, the number of 

satellites in the constellation will be fixed at 6, and the minimum ground elevation angle is fixed 

at 60 degrees.  These two simulation runs will be run independently, and the resulting Pareto-

frontiers will be compared in order to distinguish differences in performance between the 

traditional symmetric Walker-delta pattern and the relaxed constellation pattern.  Due to the 

nature of the problem formulation, the relaxed constellation design actually contains the set of all 

potential solutions in the design and objective space for the Walker-delta design, in addition to 

solutions that are not permissible with the Walker-delta design. 

 

4.3.2 Case 3 Results 

 It is expected that the relaxed Walker-delta pattern will perform very similarly to the 

Walker-delta pattern, without the discontinuous breaks due to the symmetric nature of the 

Walker-delta pattern.  The relaxed Walker-delta pattern may exhibit slightly improved 

performance over the symmetrical pattern, but the two should be very similar in nature. 

 The following two Pareto-frontiers show how the Walker-delta constellation pattern and 

the relaxed design pattern perform for providing coverage to a single target point at 45 degrees 
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latitude, with a minimum ground elevation angle of 60 degrees, and for 6 satellites in the 

constellation.  Figure 4.36 shows the tradeoff in altitude, min daily visibility time, and max 

revisit time for the symmetric Walker-delta pattern.     Figure 4.37 shows the tradeoff in altitude, 

min daily visibility time, and max revisit time for the relaxed design pattern.  Note that each 

point in the plot represents an entire constellation design that is characterized by a given number 

of satellites, each with its own unique orbital elements.   

 

Figure 4.36.  Constellation Altitude vs. MRT vs. MDVT for the Walker-Delta Pattern.  This three-dimensional 

Pareto-frontier shows the achievable performance of a Walker-delta constellation design for a target point at 45 

degrees latitude and a minimum ground elevation angle of 60 degrees. 
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Figure 4.37.  Constellation Altitude vs. MRT vs. MDVT for the Relaxed Constellation Design.  This three-

dimensional Pareto-frontier shows the achievable performance of a relaxed constellation design for a target point at 

45 degrees latitude and a minimum ground elevation angle of 60 degrees.  Note that the scale of the axes is kept 

identical to that in Fig. 4.36. 

 

 The Pareto-frontiers presented above for both cases show several interesting results.  The 

basic trends and tradeoffs have been discussed previously for the Walker-delta pattern; most 

notably you can see discrete groups based on 1, 2, 3, and 6 symmetrical orbital planes.  Similar 

trends are seen for the relaxed constellation design, without these discrete groupings.  The 

Pareto-frontier for the relaxed constellation design space is more continuous than the 

discontinuous Walker-delta design space.  If asymmetric designs are permitted, as in the relaxed 

constellation design space, a more continuous Pareto-frontier will be obtained.  It is also 

important to note that roughly the same performance is achieved between the traditional Walker-

delta pattern and the relaxed constellation design pattern.  This means that Walker-delta patterns 

perform very well for the small regional coverage LEO constellation design problem.  Note 
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however, that the Walker-delta pattern performs poorly in revisit time when there is no diversity 

in the number of orbital planes, which is expected. 

 The hypotheses of this case study match the observed results.  It was seen that the 

performance between the two designs are very similar in nature, and the relaxed Walker-delta 

configuration is more continuous.  Although the performance is very similar, it is important to 

note that the optimal design space may differ which could provide significant advantages for a 

particular design.  It is important to remember that the solution space alone cannot be used to 

determine whether or not the Walker-delta pattern versus the relaxed design space provided a 

more optimal design.  Although the two solutions spaces are nearly identical, the design space 

between the two may vary significantly.  Upon further investigation however, the optimal 

relaxed design variables showed striking similarities to the optimal Walker-delta design 

variables, thereby resulting in similar constellation geometries between the two designs.  It can 

therefore be concluded that the Walker-design pattern provides a good initial solution to this 

problem, where further investigation may yield slightly improved results. 
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5. FUTURE WORK 

 This thesis provided a characterization of a very small problem relating to satellite 

constellation design.  As such, there is still a lot of work to be accomplished in this field.  As this 

thesis studied how the latitude of the region of interest affected the performance of the 

constellation, similar work in this area has yet to be accomplished.  It would be interesting to see 

how the size or even the shape of the target region would affect the coverage.  It would also be 

interesting to study additional objective functions such as delta-v for stationkeeping.  Since the 

only orbital perturbation used in this study was the J2 perturbation, it would be interesting to 

include additional perturbations and try to optimize the delta-v with these additional 

perturbations in mind.  As constellation systems become more achievable, small satellites or 

CubeSats might be used to fulfill mission goals.  As such, it would be interesting to place 

constraints on the constellation design space to study specific designs in line with these 

constraints.  This thesis focused heavily on remote sensing constellation systems by utilizing a 

minimum ground elevation angle of 60 degrees.  It would be interesting to study other types of 

constellation systems for either regional or even zonal coverage.  Finally, it would be very 

interesting to apply an evolutionary algorithm to more specific designs that have actually been 

flown to see if they could account for increased performance.  While evolutionary algorithms 

provide a very useful tool in solving these types of problems, it would also be interesting to 

consider analytical methods in some instances where the solution space is smooth and 

continuous in nature.  The constellation design problem is seemingly infinite in nature, and there 

are surely additional studies that need to be performed in order to better characterize this 

problem.  As additional studies are performed, the use of evolutionary algorithms is very well 

placed to solve these types of problems.     
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6. LESSONS LEARNED 

In order to aid people performing similar studies in future work, several suggestions may 

be made related to this study or creating a thesis in general. 

 When starting a thesis, understand and accept that your thesis topic and the direction of 

your thesis may change as you make new discoveries.  These discoveries may come from 

researching various literature similar to your thesis or from working on your thesis and 

obtaining results.   

 It is essential to understand every aspect of the evolutionary algorithm and know how 

every single parameter and function impacts the computation time and resulting solution 

space of the specific problem you are trying to solve.  The best way to do this is to write 

your own algorithm from scratch and experiment with these different parameters and 

functions.  I could not stress enough how important it is to have a full understanding of 

the algorithm you are using. 

 When implementing an evolutionary algorithm to obtain Pareto-frontiers, try to utilize the 

most powerful computing hardware available to you, and utilize parallel-processing to 

reduce computation time if possible. 

 Try to understand how the simulation time span, step size, and grid spacing affects the 

solution space.  It is imperative to understand the affects these parameters have on the 

solutions space so that you do not mischaracterize the final solutions. 

 Spend time thinking about whether or not the obtained solutions make sense.  Often the 

most powerful tool available to you is your own common sense. 



 

108 

 

 Do not place constraints on the design space unless you know for certain the effects that 

will have in limiting the solution space.  Often times the best solutions are ones that are 

the opposite of what you might expect. 

 Be sure to carefully select the epsilon grid sizes for the various objective functions.  A 

grid size that is too large will result in a Pareto-frontier that does not fully characterize 

the objective space.  Similarly, a grid size that is too small will result in long computation 

times that may not reach the true optimal solutions. 

 Make sure to consider the optimal design space in addition to the optimal solution space 

for a solution to the entire problem.  When comparing two different design spaces to a 

common solution space, the design variable must be taken into account when trying to 

determine the optimal solution. 
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7. CONCLUSION 

 The constellation design problem for providing coverage to a small target region, with 1-

6 satellites in a Walker-delta pattern, a minimum ground elevation angle of 60 degrees, and in 

LEO has been characterized in this study.  This problem provides a good basis for a small remote 

sensing constellation system providing coverage to a specific region on the Earth.  The 

achievable performance of this type of system has been discussed for target regions at 0, 22.5, 

45, 67.5, and 90 degrees latitude.  Pareto-frontiers were developed showing constellation 

performance including the number of satellites, orbital altitude, revisit times, and daily visibility 

times at each of these latitudes.  In addition, the impact of varying the minimum elevation angle 

on both the daily visibility times and revisit times was shown for a target region at 45 degrees 

latitude and a constellation of 6 satellites.  Several restrictions on the Walker-delta pattern were 

relaxed in order to see how more asymmetrical designs solve this constellation design problem.  

The obtained Pareto-frontiers were then compared between Walker-delta patterns and relaxed 

Walker-delta patterns for a target region at 45 degrees latitude, with a 60 degree minimum 

elevation angle, and for a constellation of 6 satellites.  All of the obtained Pareto-frontiers were 

displayed and the trends were characterized in the results section of this thesis.   The main results 

of this study are: 

 Although several solutions may be lost by restricting the design space to Walker-delta 

patterns, these patterns provide very good coverage to the small regional LEO 

constellation design problem in terms of daily visibility time and revisit time.  Most 

notably, significant computational savings are achieved by restricting the design to the 

symmetrical Walker-delta patterns because only 7 genes are needed to fully characterize 

a constellation design.  If anything, the Walker-delta pattern provides an extremely good 
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baseline to approach the small regional LEO constellation problem.  In addition, the 

Walker-delta pattern is very symmetric in nature which provides perhaps the best solution 

in terms of maintaining constellation geometry over time, and thus reducing the required 

fuel for stationkeeping.  Walker patterns rely on common altitude, common inclination, 

and circular orbits among all of the satellites in the constellation.  This can be extremely 

important to maintain a constant geometry, and thus maintain constant performance.  It is 

also efficient to have all of the satellites in several planes at a common inclination and 

altitude in terms of launch costs.   

 It is shown that the Walker-delta pattern produces a very discontinuous Pareto-frontier in 

the objective space surrounding the min daily visibility time, max revisit time, 

constellation altitude, and number of spacecraft.  This was found to be a result of the 

symmetrical design of the Walker-delta pattern itself.   

 Perhaps the most important trends observed were that the altitude of the constellation has 

a significant impact on the min daily visibility time, whereas the number of orbital planes 

has a significant impact on the max revisit time.  By increasing the altitude of the 

constellation, the min daily visibility time is increased.  By providing diversity in the 

number of orbital planes, the max revisit time may be reduced.   

 Increasing the number of satellites in the constellation provided better daily visibility 

times as well as revisit times.  Going from five to six satellites in the constellation 

provided a much larger improvement in daily visibility time, whereas it provided very 

little increase in the revisit time. 

 The optimal inclination of the constellation was found to be 0 degrees if the target region 

is visible at a given altitude from a satellite with an orbital plane in the equatorial plane.  
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Therefore for a target region at 0 degrees latitude, the optimal inclination of the 

constellation is 0 degrees, for both increasing the daily visibility time and reducing the 

revisit time.  Similarly, if the target region is near the poles, the optimal inclination will 

be 90 degrees. 

 The optimal inclination of the constellation was found to vary with altitude for target 

regions in between the equator and the poles.  The optimal inclination is always slightly 

greater than the target latitude, and increases with increasing altitude.   

 The minimum ground elevation angle has a significant impact on the performance of the 

constellation, for both daily visibility time and revisit time.  Obviously, lower minimum 

ground elevation angles provide better daily visibility times and revisit times.  It was 

found that the daily visibility time is greatly affected by changing the minimum ground 

elevation angle at low angles, whereas the revisit time was greatly affected by changing 

the minimum ground elevation angle at high angles.   

 The symmetric nature of the Walker-delta pattern was relaxed to show how a more 

relaxed constellation design could improve performance.  It was found that the relaxed 

constellation design resulted in a more continuous Pareto-frontier.  The Walker-delta 

pattern still provided very similar performance.  The optimal design variables between 

the two designs proved to be very similar, with similar constellation geometries 

produced. 

 In addition to the Pareto-frontiers being characterized and different trends discussed, 

actual values for the maximum revisit time and minimum daily visibility time were 

obtained.  This performance was quantified in the Pareto-frontier plots and shown in the 

results section.   
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The Pareto-frontiers shown in this study were obtained with a variation of the εNSGA-II 

algorithm, which proved to be extremely effective at solving this type of constellation design 

problem.  In addition, STK proved to be a very useful tool in assessing the access between a 

satellite and a target region on the ground.   
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