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ABSTRACT 

 

Universal Programmable Battery Charger with Optional Battery Management System 

 

Michael DeSando 

 

 

In today’s world, nearly everyone owns some electronic device whether a phone, laptop, 

tablet, or any other device that uses a rechargeable battery. A problem arises when each device 

uses different batteries with different chemistry or power requirements meaning they each require 

a different charger. To create a more sustainable future, we need to reduce the number of battery 

chargers created, and thus disposed of when outdated, by reducing the number of battery chargers 

required to charge all the devices in everyday life. This project aims to reduce the number of 

battery chargers by creating a programmable system that encompasses functionality and features 

found in a variety of battery chargers currently on the market. Non-programmable chargers offer 

multi-cell operation but are limited by single types of cells rather than cells of varying voltage, 

current requirements, or chemistries. Programmable battery chargers currently on the market are 

limited to single cell or single chemistry operation. The “universal” chargers that charge a variety 

of cells of different chemistries use asynchronous topologies, which result in lower efficiency 

than a synchronous topology. These chargers also fail to offer multiple charge modes per 

chemistry allowing the tradeoff between faster charging or extending the lifetime of the battery. 

This project combines the capability of many battery chargers into a single programmable system 

that allows ultimate flexibility in terms of charge profiles and adding features as battery 

technology improves in the future. 

This report demonstrates improvements made in battery charging and battery 

management technology through the design of a universal programmable battery charger with 

optional battery management system attachment. This charger offers improvements in charge 

efficiency and unique battery charging algorithms to charge a variety of battery chemistries with 

variety of power requirements. Improvements in efficiency result from a synchronous Buck 

Controller topology as compared to previous universal chargers that use asynchronous Buck-

Boost Converter topologies. This battery charger also surpasses current universal battery chargers 

by offering different charge modes for different battery chemistries. Charge modes provide the 

user an option between extending the life of the battery by selecting a mode with a slower, less 

stressful charge rate or a shorter charge time with a fast, more stressful charging mode. The user 

can also choose a charge mode in which the battery charges to full capacity, resulting in 

maximum runtime or a less than full capacity, which puts less stress on the battery thus extending 

the lifetime. Ultimately, this system permits weighing the performance tradeoff of battery lifetime 

and charge time. The optional BMS attachment offers more precise monitoring of each cell and 

cell balancing for Li-Ion batteries. This further enhances the performance of the charger when 

integrated, but is not necessary for charger operation. 

The universal programmable battery charger consists of three subcircuits: A 

microcontroller unit, a power stage, and a current sensing circuit. A C2000 Piccolo F28069 

microcontroller controls a LM5117 Buck Controller by injecting a pulse-width modulated signal 

into the feedback node controlling the output of the buck to set a constant current or constant 

voltage thus creating a programmable battery charger. The pulse-width modulated signal changes 
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according to charge algorithms created in software for specific battery chemistries and charge 

requirements. An analog-to-digital converter on the microcontroller monitors battery voltage by 

using a voltage divider and an INA169 current shunt monitor, which outputs a voltage 

corresponding to the charge current to another analog-to-digital converter on the microcontroller, 

monitors the charge current. This allows the charger program to maintain correct and safe 

charging conditions for each charge mode in addition to measuring output power. Lights on the 

microcontroller display a real-time status to the user of which portion of the charge profile the 

charger is in. A solid red light means the charger is in the constant current portion of the charge 

profile. A blinking red light means the charger is in the constant voltage portion. No red light 

means the battery charger finished and the battery is currently charged above nominal voltage. 

The battery charger works with the battery management system in the next section to provide 

ultimate battery charging and managing capabilities.  

The battery management system consists of two subcircuits: A microcontroller and a 

battery monitoring circuit. The MSP430FR5969 microcontroller unit communicates with 

BQ76PL536 battery management integrated circuits to create a battery management system that 

monitors data such as cell voltage, pack voltage, pack temperature, state of charge, fault statuses, 

alert statuses, and a variety of other useful cell parameters. This data displays on a liquid crystal 

display screen through different menu options. The user scrolls through the menus using a 

capacitive touch slider on the microcontroller unit and selects a given option using the option 

select button. A cell balance mode allows the user to check the balance of the cells and allows 

cell balancing if the cells differ by more than a set threshold. 
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INTRODUCTION 

1.1 Contents at a Glance 

 This report gives the reader insight into batteries, battery chargers, and battery 

management systems. Chapter 1 explains the popularity and importance of batteries in today’s 

times. After convincing the reader that battery related technology is only going to grow over time, 

it gives the reader an overview of batteries and their history. This helps the reader see the 

progress batteries have made over the years and what trends to expect for the future. Chapter 1 

provides the battery knowledge basics required to understand how to charge and manage batteries 

thus allowing the reader to make comparisons between different battery chargers and battery 

management systems. Then, Chapter 1 provides a snapshot of current battery charger and BMS 

technology, which allows the reader to understand how the system described in Chapter 2 

compares to options currently on the market. Chapter 3 explains the design of the battery charger 

and Chapter 4 describes the design of the optional BMS to show the reader the design differences 

compared to other systems. By the end of this report, the reader should have a clear understanding 

of the technological advancements this design achieves with regard to battery charging and 

battery management. Specifically, the reader should understand the improvements made in 

charger efficiency along with the unique programmable algorithms this system offers to allow the 

user to make tradeoffs between charge speed, state of charge, and battery lifetime. Appendix B 

contains research supporting this tradeoff. 

1.2 All about Batteries 

1.2.1 Background 

Batteries exist in nearly every portable device, and charging batteries occurs every day by 

almost everyone. The global revenue from batteries reached $47.5 billion in 2009, and this 

market expects to grow to $74 billion by 2015 [1]. Proper management of batteries is essential to 

their performance and life along with the performance of the system and the user’s safety. A 

battery management system (BMS) is any system that monitors and manages batteries. Since 
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batteries exist in nearly all portable systems that require power, the need for battery management 

systems is tremendous.   

The requirement of a BMS is to monitor cell voltage, pack voltage, and pack temperature. 

The BMS keeps each cell within a desired voltage range through cell balancing. The cells need 

protection from cell overvoltage (COV) and cell undervoltage (CUV) by alerting the user if these 

conditions exist. This system also needs to prevent gas leakage or fires by shutting the system 

down if thermal excursions occur beyond the set temperature limits. 

A programmable battery charger differs from other battery chargers because of the 

extreme charge flexibility, which allows charging batteries of different voltages and chemistries 

with different charge currents, charge schemes and profiles, charge voltage set points, and charge 

terminations. This project focuses on the design, build, and test of a programmable battery 

charger along with a BMS that allows interfacing between the two. A microcontroller programs 

the battery charger to a specific charge profile dependent on the battery’s chemistry and charge 

capabilities. It features a wide input voltage range current mode synchronous buck controller with 

analog current monitor, which provides the charge current with cycle-by-cycle overcurrent 

protection to help protect the batteries. The BMS monitors the batteries for cell voltage, pack 

voltage, temperature, and state of charge. It also provides cell balancing to maintain even cell 

charge for the entire battery pack. The BMS displays the measurements to a LCD screen for the 

user to see using a MSP430FR5969 microcontroller unit (MCU) with a Sharp LCD BoosterPack. 

The user navigates with the capacitive touch slider and the option select button on the MCU to 

access the cell parameters. The system has set COV and CUV trip points as well as over-

temperature and under-temperature trip points so the system can alert the user or shut down 

completely to protect the batteries and the overall system. 

1.2.2 Battery History 

Batteries have existed since the 1800s with Alessandro Volta making discoveries that led 

to the invention of the first voltaic cell. Some believe batteries existed even before this with 
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discoveries of ancient devices referred to as Parthian batteries dating back to 2,000 years ago [1]. 

Table I shows the inventor and approximate time for many key inventions that led up to the 

battery technology of today. 

Table I: Battery developments over the years provided by Battery University [1] 

 

1.2.3 Battery Markets 

According to battery data analysis from Frost & Sullivan, Primary batteries made up 23.6 

percent of the global market in 2009. By 2015, the analysis estimates a 7.4 percent decline in 

battery revenue for non-rechargeable batteries. Secondary, or “rechargeable”, batteries make up 
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76.4 percent of the global market and expect to increase to 82.6 percent in 2015 [1]. Batteries are 

also categorized by the chemistry or chemical make-up with lithium being the most common. See 

Figure 1 for revenue distributions by different battery chemistries. 

 

Figure 1: Revenue contributions by different battery chemistries Courtesy of Frost & Sullivan (2009) 

[1] 

1.2.4 Battery Basics 

Batteries store electrical energy in chemical form, which then provides power to a device 

or circuit. Batteries are primary (non-rechargeable) or secondary (rechargeable) and this project 

focuses on the charging and managing of secondary cells of a variety of chemistries. The different 

chemistries provide the cells with different performance because of the resulting energy and 

power densities. Specific energy is the capacity a battery can hold in watt-hours per kilogram 

(Wh/kg) and specific power is the battery’s ability to deliver power in watts per kilogram (W/kg). 

A higher specific energy means a longer use or runtime for a given battery whereas a higher 

specific power means the battery can deliver more power or current. Figure 2 and Figure 3 

compares different chemistries of batteries to help the reader understand that batteries of different 

chemistries perform (discharge) differently, which also means they charging differently. This 
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chapter also discusses how to charge the different types of batteries so the reader understands the 

requirements of a universal battery charger. 

 

Figure 2: Relative energy density of some common secondary cell chemistries provided by 

Electropaedia [2] 

 

Figure 3: Specific energy and specific power of rechargeable batteries provided by Battery 

University [1] 
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Table II below shows how different battery specifications compare and differ between different 

battery chemistries. Note that these differences explain why most battery chargers are limited in 

the types of batteries they can charge, because they are designed to charge a specific battery. This 

makes programmable chargers, if correctly designed, far superior in the terms of flexibility and 

usability. 

Table II: Secondary battery specifications provided by Battery University [1] 
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1. Internal resistance of a battery pack varies with milliampere-hour (mAh) rating, wiring and 

number of cells. Protection circuit of lithium-ion adds about 100mΩ. 

2. Based on 18650 cell size. Cell size and design determines internal resistance. 

3. Cycle life is based on battery receiving regular maintenance. 

4. Cycle life is based on the depth of discharge (DoD). Shallow DoD improves cycle life. 

5. Self-discharge is highest immediately after charge. NiCd loses 10% in the first 24 hours, then 

declines to 10% every 30 days. High temperature increases self-discharge. 

6. Internal protection circuits typically consume 3% of the stored energy per month. 

7. The traditional voltage is 1.25V; 1.2V is more commonly used. 

8. Low internal resistance reduces the voltage drop under load and Li-ion is often rated higher than 

3.6V/cell. Cells marked 3.7V and 3.8V are fully compatible with 3.6V. 

9. Capable of high current pulses; needs time to recuperate. 

10. Do not charge regular Li-ion below freezing. See Charging at High and Low Temperatures. 

11. Maintenance may be in the form of equalizing or topping charge to prevent sulfation. 

12.  Cut-off if less than 2.20V or more than 4.30V for most Li-ion; different voltage settings apply for 

lithium-iron-phosphate. 

 

1.2.5 Battery Selection for Testing 

The Li-Ion cell used in this project is the Panasonic Lithium Ion NCR18650 shown in 

Table III. These batteries are reasonably priced at approximately $10.00 per cell and also very 

popular and used in various systems including the battery packs in Tesla cars. 

Table III: Lithium Ion 18650 specifications provided by Panasonic Datasheet [6] 

 

1.2.6 Battery Equations 

Capacity measures the amount of charge a battery can store. Calculate the maximum 

battery capacity by integrating the total charge current over the amount of time to fully charge the 

battery. 

Capacity = ∫ 𝐼 𝑑𝑡 
𝑡

0
 [Ah]                                                    (Eq. 1) 
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The energy of the battery measures its ability to do work and is calculated by integrating 

the amount of power provided over a given period of time. 

Energy = ∫ 𝑃 𝑑𝑡
𝑡

0
 = ∫ 𝐼𝑉 𝑑𝑡

𝑡

0
 [Wh]                                                       (Eq. 2) 

The voltage of the battery equals the open circuit voltage minus the voltage drop across 

its internal resistance. 

𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦  =  𝑉𝑜𝑐  –  𝐼 ∗ 𝑅𝑖𝑛𝑡  [𝑉]                                                                      (Eq. 3) 

C rate measures charging or discharging from maximum capacity in a specific amount of 

time. 

1𝐶 𝑟𝑎𝑡𝑒 =  
𝐹𝑢𝑙𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

1 ℎ
 = charge current to fully discharge the battery in 1 hour.           (Eq. 4) 

The time it takes to discharge a battery is inversely proportional to its C rate.  

𝑡𝑖𝑚𝑒 =   1/(𝐶 𝑟𝑎𝑡𝑒) [ℎ𝑟𝑠]                                                                         (Eq. 5) 

1.3 Current Technology 

This section provides the reader a snapshot of the battery charger and BMS technology 

currently on the market to allow later comparison to the system designed in this report. In today’s 

times, numerous different battery charging and battery management solutions exist in all shapes 

and sizes. Solutions range from ICs that integrate into a system or complete charger systems. This 

section explores different battery charging and management solutions. 

1.3.1 Battery Charging ICs 

Battery charger ICs charge batteries of a fixed voltage and chemistry of either single cell 

or multiple cells. Texas Instruments offers over 200 parts that charge different Li-Ion cells, lead 

acid, NiCd, or NiMH batteries. These chargers take supply voltages between 4.2V to 40V and 

provide fixed battery charge voltages between 3.5V and 8.4V. Changing hardware values makes 

some of these parts adjustable. Others charger ICs allow programming by a host controller to 

different chemistries and different charge voltages and currents but charge single cells only. The 

charge currents range from 15mA to 10A and have different charging control topologies. Other 
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companies such as Linear Technology, STMicroelectronics, Semtech, Maxim, and Toshiba offer 

other charger ICs similar to those sold by Texas Instruments. Visit their websites to see all of 

their battery related products. 

1.3.2 Battery Management ICs 

Battery management ICs monitor cell voltage and/or temperature and a variety of other 

cell characteristics. They monitor charge statuses such as low charge or fully charged, battery 

absent, charge faults and can act as capacity or charge gauges. Some management ICs can also 

provide cell balancing which can passively or actively balance up to six cells in a series 

configuration. 

1.3.3 Universal Battery Chargers 

Universal battery chargers can charge multiple chemistries at a variety of charge 

voltages. These systems resemble the closest products to the project designed in this report. Key 

differences include specifications, performance parameters, charge modes, charge and balance 

algorithms, converter topology, and user interaction and display. See Figure 4 through Figure 7 

for pictures and specifications of current universal chargers on the market. By providing pictures 

and specifications of other universal battery chargers, it permits the reader to make comparisons 

to the project designed in Chapter 3. 

Both the Tenergy and Bantam chargers mentioned in this report use an asynchronous 

Buck-Boost topology, which limits the charger efficiency to 80%. They also both have a 

minimum charge current limit of 100mA preventing the charge of low current batteries. They are 

pre-programmed to allow the user to choose different battery charging options but do not allow 

the user to create their own unique charge profiles. The charger designed in Chapter 3 solves all 

of these limitations. 
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1.3.3.1 Tenergy

 

Figure 4: Tenergy TB6AC Multifunctional Balance Charger [7] 

Figure 4 shows the size and user features for a Tenergy universal battery charger. The 

system offers buttons and LCD display for user interaction and a variety of ports to operate the 

system. 

 

Figure 5: Tenergy TB6B Multifunctional Balance Charger Supported Battery Packs [7] 

Figure 5 shows the various battery packs supported by the Tenergy charger. It charges a variety 

of battery chemistries at a variety of voltages but does not offer charge modes for the different 

chemistries to allow the user to determine the charge speed or state of charge, which ultimately 

affects the battery’s lifetime. 
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1.3.3.2 Bantam 

 

Figure 6: Bantam E-Station BC6 Dual Power AC/DC Charger [8] 

Figure 6 shows the size and user features for a Bantam universal battery charger, which looks and 

performs very similar to the Tenergy brand charger. 

 

Figure 7: Bantam E-Station BC6 Dual Power AC/DC Charger Specifications [8] 

 

Figure 7 shows that the Bantam charger allows changing the charge current or voltage to one of 

the available options, which resembles the system in this report but the does not allow the user to 
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program any charge mode or charge algorithm. The Bantam charger limits the user to choosing 

the pre-programmed options. The charger designed in Chapter 3 allows full control over the 

charge current, charge voltage, and the termination taper current in addition to lower than 100mA 

charge applications and improvements in charge efficiency. 

1.3.4 Other Battery Related Systems 

A company called Cadex offers different battery related devices that include battery 

chargers, battery testers and analyzers, battery maintenance systems, even custom products for 

special requests. Other unique features include a sorting option that can test single Li-Ion cells in 

seconds to check the performance of the battery and a boost mode that can revive dead packs. For 

nickel based batteries, setting a capacity level permits triggering a deep discharge in attempt to 

recondition the battery to restore the capacity. These special devices can also estimate the 

capacity of the battery and determine the lifetime or the remaining cycle life. 

1.3.4.1 Cadex Chargers 

These chargers range in functionality and specifications. They can support battery voltage 

ranging from 1.2V to 36V, with a charge current up to 6A per station. They have special charging 

algorithms and detection systems to charge batteries safely in hot or cold temperatures. Unique 

discharge algorithms can calibrate the cells in addition to conditioning cells that have lost 

performance over time. These chargers differ in their charge algorithms in that they use a reverse-

pulse-charge technique, which helps improve charge acceptance, speed up charge times, and 

better battery performance. Figure 8 shows an example of a Cadex charger for comparison to the 

charger designed in Chapter 3. 
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Figure 8: Duro B1 Single-Bay Battery Charger [9] 

1.3.4.2 Battery Testers 

A battery tester enables device simulation to choose the right battery and lifecycle testing 

to help characterize the battery. Custom programs allow users to monitor the battery quality and 

performance and service programs to maintain the battery. These devices have load testing 

available to determine how the batteries preform under different load conditions in addition to 

other attachments that allow a user to create an entire battery laboratory system that includes 

temperature and pressure monitoring, individual cell monitoring, and safety circuit testing. 

Although battery testers have much more functionality that the system designed in this report, 

they cost more and are much larger as Figure 9 shows. 

 

Figure 9: C8000 Battery Testing System [9] 
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Figure 10 shows an example of a battery laboratory system. This is the best system in terms of 

battery charging and managing capability but requires many subcircuits working together, which 

increases the size and cost of the system. 

 

Figure 10: C8000 laboratory system provided by Cadex [9] 

1.3.4.3 Battery Analyzers 

Cadex produces battery analyzers can handle virtually all battery testing and conditioning 

needs. They offer over 1500 custom battery adaptors, 18 automated battery testing programs, 

sorting tests that determine the performance of Li-Ion cells in as little as 30 seconds, a boost 

mode that restores batteries that have deeply discharged, and can work with online software that 

can further characterize the batteries. Setting a target capacity automatically reconditions the 

battery if the capacity drops below the set point. Figure 11 shows the programming capabilities of 

a battery analyzer, which permits comparison with the system designed in this report. Battery 

analyzers have more battery parameters to program but also cost more and require more battery 

knowledge by the user. 
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Figure 11: Programmability of C7x00 Battery Analyzer [9] 

Custom programs allow the user to define the settings for charging, discharging, and 

conditioning to make everything automatic. Lifecycle testing gives accurate estimations of the 

current state of the battery and the approximate cycle life remaining. Dynamic stress tests provide 

information of how the batteries perform under a variety of output and load conditions. These 

systems analyze batteries of all shapes and sizes using special platform adaptors as seen in Figure 

12. Special charging platforms to charge different types of batteries increases the size and cost of 

the charger but provides much more flexibility in terms of charging applications. 

Figure 12: C7400ER Battery Analyzer (a), battery adapters (b), and RIGIDARM  

Universal Adapter (c) [9] 
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Chapter 6 mentions possible connectors to connect the battery charger designed in this 

report to the various batteries on the market. The platforms in Figure 12 offer other connector 

options and provide superior connectivity but require more customization. 

1.4 Battery Charging 

This section describes how to charge various batteries to provide the fundamental 

requirements of a universal battery charger. Although this report describes the generalities for 

charging different batteries, the user should verify the correct battery specifications in the 

battery’s data sheet before charging any battery. 

1.4.1 Charge Rate 

The charge rate or “C-rate” defines the rate the battery charges or discharges compared to 

the capacity of the battery. It determines how long a battery takes to charge or discharge at a 

given current. For example, a 1C discharge of a battery rated at a capacity of 1Ah produces 1A 

for 1 hour. Discharging that same battery at 0.5C would produce half as much current, 0.5A, for 

twice as long, 2 hours. Discharging that same battery at 2C would produce twice as much current, 

2A, for half as long, 30 minutes. Charging works the same way in that the C-rate determines the 

time it takes to reach a full charge at the specified current. For example, the battery with rated 

capacity of 1Ah requires a charge of 1A for 1 hour for 1C, 0.5A for 2 hours for 0.5C, and 2A for 

30 minutes for 2C. A rule of thumb to use states a battery charges or discharges in one hour at full 

capacity or 1C. Each battery has a unique charge profile depending on the chemistry, voltage, and 

capacity. 

1.4.2 Battery Life 

The life of a battery decreases when the battery charges with higher charge rates. This 

reduction of service life results from the decrease in capacity of the battery after a given number 

of cycles. See Appendix B for more details on battery cycle lifetime. 
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1.4.3 Li-Ion 

Li-Ion cells have a nominal voltage of 3.60V/cell for Li-cobalt, 3.80V/cell for Li-

manganese, and 3.30V/cell for Li-phosphate. Some Li-ion cells advertise with a nominal voltage 

of 3.70V/cell but this comes from a slightly lower internal resistance than the standard 3.60V/cell. 

All li-ion cells have the same charge profile. Li-ion cells with nominal voltage between 

3.60V/cell and 3.80V/cell charge to 4.20V/cell with a tolerance of +/-50mV/cell while Li-

phosphate charges to 3.6V/cell [1-5]. See the voltage and current charge profile in Figure 13 to 

understand how Li-Ion batteries behave while charging. 

 

Figure 13: Charge profile for Li-Ion (Courtesy of Cadex) provided by Battery University [1] 

1.4.3.1 Stage 1  

In the first stage, known as the precharge stage, the battery charges with a small charge 

current (0.1C) if the battery voltage measures below its cutoff voltage of 2.5V until the battery 

reaches its cutoff voltage in which the charger transitions to stage 2 [2, 5]. 
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1.4.3.2 Stage 2 

In this stage, known as the constant current charge stage, the voltage rises at constant 

current. For a typical consumer Li-Ion battery, this charge rate is between 0.5C and 1C. The 

charge time for this stage lasts approximately 3 hours [1, 2]. The peak voltage threshold should 

never exceed more than 4.20V/cell [1-5]. The life of the battery extends by charging to a lower 

voltage threshold [1]. See Table IV below for approximate capacity of the battery after charging 

to different peak voltages with and without constant voltage saturation. 

Table IV: Typical charge characteristics of li-ion provided by Battery University [1] 

 

Table IV shows the difference in capacity and thus runtime for a charged battery when 

using a charge mode that completes the constant voltage saturation portion of the charge process 

and a quick charge mode that stops the charger quicker at a lower capacity by skipping the 

constant voltage saturation portion. Although runtime decreases for the quick mode, the total time 

of charge reduces and the lifetime of the battery increases due to less stress on the battery. This 

chapter also describes different charge mode options in more detail in the charge mode section.  

1.4.3.3 Stage 3  

In this stage, known as the saturation stage, the voltage peaks, and current decreases. 

When the current measures less than 10% to 3% of the rated current (0.1C to 0.03C), the charge 

terminates [1-3, 5]. Notice that the voltage remains nearly constant yet the additional charge 

provides more capacity. Figure 18 shows the capacity as a function of charge voltage, which 
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emphasizes the need for the constant voltage saturation portion of the charge process to charge a 

battery to maximum capacity. 

 

Figure 14: Capacity with respect to charge current and voltage provided by Battery University [1] 

Figure 15 shows Li-Ion charge profile with current, voltage, and capacity on separate 

axes. When the charge voltage reaches 4.2V on the cell voltage axis, the charger switches to the 

constant voltage saturation portion of the charge process, and the charge rate begins to taper. 

After the voltage remains at the charge voltage while the charge rate reduces to 0.1C, the battery 

achieves 100% charge [3]. 



20 
 

 

Figure 15: Li-Ion Current and Voltage Charge Profile [3] 

1.4.3.4 Stage 4  

In this stage, the charge current measures zero as charge has already terminated. The 

battery voltage eventually drops to between 3.60 and 3.90V/cell. Skipping stage 2 causes the 

battery voltage to drop quicker [1]. 

1.4.3.5 Stage 5  

In this stage, the charger can provide occasional “top off” charge. This accounts for the 

voltage drop that occurs over time after charge has terminated in stage 3. In this “stand-by” mode, 

the battery charges up to 4.05V/cell after dropping lower than 4.0V/cell [1, 2]. 

1.4.3.6 Full Charge 

Full charge occurs when the battery reaches the voltage threshold (4.2V for most Li-Ion) 

and the current drops to the desired termination taper current (0.03C to 0.1C for most Li-Ion) or 

when the current can’t decrease anymore [1, 5]. Battery manufactures recommend that users do 

not fully charge Li-Ion cells, because higher voltages put larger stresses on the battery. Charging 

to lower voltage threshold prolongs battery life but reduces runtime. The temperature can rise 

about 5°C (9°F) when reaching full charge [1]. 
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1.4.3.7 Overcharge 

Overcharging Li-Ion cells is very dangerous, because the cell can explode. After the cell 

fully charges, the current must terminate! The cell should only remain at 4.20V/cell for as short a 

time as possible to minimize stress. If a cell has stayed at or below 1.5V for more than a week, 

experts recommend that users do not recharge the battery. The cell might become unstable if 

charged, which results in excessive heating or other problems. Experts at Battery University 

describe what happens in detail when Li-ion cells overcharge: 

Prolonged charging above 4.30V forms plating of metallic lithium on the anode, 

while the cathode material becomes an oxidizing agent, loses stability and 

produces carbon dioxide (CO2). The cell pressure rises, and if charging 

continues, the current interrupt device (CID) responsible for cell safety 

disconnects the current at 1,380kPa (200psi).Should the pressure rise further, a 

safety membrane bursts open at 3,450kPa (500psi) and the cell might eventually 

vent with flame.                                                                                [1] 

1.4.4 Lead Acid 

Lead acid cells have nominal cell voltage of 2.0V/cell and 12V lead acid batteries consist 

of six cells placed in a series configuration. The charge voltage ranges from 2.30V/cell to 

2.45V/cell. Selecting a voltage threshold too low causes sulfation on the negative plate but setting 

the voltage threshold too high causes grid corrosion on the positive plate, which can induce 

gassing. See the Table V below for the advantages and disadvantages for charging to the low and 

high voltage thresholds [1]. By choosing different charge modes, the user picks the voltage 

threshold and thus picks the desired tradeoff. 
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Table V: Effects of charge voltage on a lead acid battery provided by Battery University [1] 

 

Lead acid charging consists of three main stages as shown in the charge profile in Figure 

16 below. 

 

Figure 16: Charge profile for a lead acid battery provided by Battery University [1] 
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1.4.4.1 Stage 1 

In this stage, known as the constant current charge stage, the voltage rises at a constant 

current. This stage applies the majority of the actual charge to the battery. In this stage, the 

battery charges to 70% in about 5 to 8 hours. When the battery reaches a pre-determined voltage 

threshold, stage 2 beings [1]. 

1.4.4.2 Stage 2 

In this stage, known as the topping or saturation stage, the current decreases after the 

voltage reaches the charge voltage threshold. This stage charges the battery the remaining 30% in 

about 7 to 10 hours. If the charger skips this stage, the battery can eventually lose the ability to 

fully charge due to sulfation, which hinders the performance and life of the battery. Once fully 

charged after stage 2, the battery must not remain at the topping voltage for more than 48 hours to 

prevent damage to the battery. The battery voltage eventually reduces to the float voltage level of 

stage 3 [1]. 

1.4.4.3 Stage 3 

In this stage, known as the trickle charge or float charge stage, a trickle charge 

compensates for self-discharge as the battery voltage decreases slightly over time. This stage 

helps keep the battery at full charge. The recommended float voltage for most low-pressure lead 

acid batteries is 2.25V/cell to 2.27V/cell. Manufactures recommend lowering the float charge at 

ambient temperatures above 29°C (85°F) [1]. 

1.4.4.4 Full Charge 

The battery reaches full charge when the current drops to a pre-determined level or when 

the current reaches 3% of the rated current of the battery. Stage 3 keeps the battery at full charge 

after already reaching full charge. Lead acid batteries should always be stored with charge and the 

charger should apply a topping charge to prevent the voltage from dropping below 2.10V/cell [1]. 

  



24 
 

1.4.5 Nickel Based 

Nickel based batteries have a unique charge profile in that they don’t have specific stages 

of constant current or constant voltage that Li-Ion or Lead acid batteries have. Nickel bases 

batteries also require a certain amount of charge/discharge cycles before reaching optimal 

performance. The number of cycles depends on the quality of the battery. After reaching peak 

capacity usually between 100 and 300 cycles, the performance begins to degrade with each 

charge/discharge cycle after that [1]. See Figure 17 and Figure 18 to see the relationship of cell 

voltage, pressure, and temperature for charging NiCd and NiMH. 

 

Figure 17: Charge profile for NiMH provided by Battery University [1] 
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Figure 18: Comparison between Ni-Cd and Ni-MH [3] 

1.4.5.1 NiCd 

New batteries should charge slowly, around 0.1C, for 16 to 24 hours before use in order 

to bring all cells in the battery pack to an equal charge level. When batteries are stored for long 

periods of time, the cells could self-discharge at different rates resulting in the electrolyte moving 

towards the bottom of the cell. Giving them an initial slow charge helps redistribute the 

electrolyte to eliminate dry spots on the separator. Many rechargeable NiCd cells have a safety 

vent that opens at 1,000–1,400kPa (150–200psi) to release excess pressure if incorrectly charged. 

This pressure releases through a resealable vent causing no damage, but some electrolyte escapes, 

and the seal can begin leaking, which creates a white powder at the vent opening. After multiple 

ventings, the cell dries out and no longer stores charge. Note that venting is a last resort safety 

feature and should never occur with proper charging [1]. 

1.4.5.2 NiMH 

Difficulties arise when slow charging NiMH batteries. When charging below 0.3C, the 

voltage and temperature profiles don’t allow for accurate full-charge state measurements. At a 

low charge rate, NiMH can still overcharge without heating up, which causes problems if relying 

solely on temperature detection [1]. 
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1.4.5.3 Full Charge Detection by Temperature 

Note that chargers relying only on temperature detection to trigger charge cut-off can 

damage the cell. For example, if the user removes a fully charged battery that has cooled down 

and reinserts it back into the charger, the charge required to raise the temperature to the given 

threshold could cause harmful overcharge [1]. 

1.4.5.3.1 Delta Temperature 

For both Ni-Cd and Ni-MH batteries, the full charge temperature is approximately 10 °C 

above ambient temperature, so use a delta of 10 °C to detect a full charge [3]. 

1.4.5.3.2 Delta Temperature over Delta Time (Slope Detection) 

This method senses a rapid temperature increase that occurs towards the end of charge to 

trigger charge cut-off rather than waiting for the battery to reach a fixed temperature threshold, 

thus keeping the cells cooler. This method, however, requires a fast charge around 1C. Charge 

cut-off triggers when the temperature rises 1°C (1.8°F) per minute [1]. 

1.4.5.3.3 Fixed Temperature 

Charger manufactures recommend 50°C (122°F) skin temperature of the cell to trigger 

charge cut-off. Any prolonged temperature above 45°C (113°F) on the skin of the cell causes 

harm to the battery. A brief overshoot is acceptable if the battery temperature quickly drops after 

the overshoot [1]. 

1.4.5.4 Full Charge Detection by Voltage 

Both of the following voltage detections used together provide a better charge 

termination than either one by itself [3]. 

1.4.5.4.1 Negative Delta Voltage (NDV) 

1.4.5.4.1.1 NiCd 

This method triggers charge cut-off when a 10mV/cell voltage drop occurs signifying the 

battery is fully charged. Experts recommend this method for “open-lead” nickel based batteries, 
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which are batteries without a thermistor. The charge rate must be 0.5C or higher to obtain the 

10mV/cell voltage drop when the battery is fully charged [1-3].  

1.4.5.4.1.2 NiMH 

This method triggers charge cut-off, when a 5mV/cell voltage drop occurs. This low 

voltage change requires additional detections for accurate charge termination [1]. Detecting the 

voltage drop in NiMH batteries typically require more accurate circuitry than for NiCd batteries 

[3]. 

1.4.5.4.2 Voltage Plateau 

If the voltage does not drop enough to reach the 5-10mV/cell threshold, the charge still 

needs to eventually terminate to prevent damage to the cell. This method terminates charge after 

the voltage remains in a steady state for one minute [1]. 

1.4.5.5 Step-differential Charge 

This charge starts with a fast charge of 1C, until the battery reaches a certain voltage 

threshold, which depends on the battery selected. Then the charge terminates for a few minutes to 

allow the battery to cool down before charging at a lower current of 0.1C. The current gradually 

reduces as the charge progresses. This method can cause slight overstress on the battery, which 

can increase capacity by about 6% but reduces battery life by about 50 to 100 cycles [1]. 

1.4.5.6 Trickle Charge 

After reaching full charge, the charger should use a trickle charge of 0.05C to compensate 

for self-discharge. For NiCd batteries, the trickle charge can be as high as 0.1C, but anything 

higher results in overcharge. This trickle charge should not last for more than 30 minutes [1]. 

NiMH cells are not as tolerant of trickle charging, and the trickle charge is typically between 

0.025C and 0.1C depending on the battery manufacturer [3]. 
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1.4.5.7 Charging Flooded NiCd 

Flooded NiCd batteries should charge with constant voltage to approximately 1.55V/cell. 

Then, current reduces to 0.1C until  the cell reaches 1.55V/cell again. Finally, the charger should 

apply a trickle charge of 0.05C to compensate for self-discharge [1] 

The next section describes different charge modes as a guide to help the user understand 

the possibilities. Ideally, the user can program any unique and original charge mode into my 

system depending on the tradeoffs desired. 

1.5 Charge Modes 

The battery charger in this project has different charge mode options, which changes how 

fast the batteries charge and the state of charge they charge to. The user should keep in mind the 

faster the batteries charge, the shorter the battery lasts in terms of battery lifetime measured in 

number of charge and discharge cycles. Also, charging to maximum state of charge gives 

maximum runtime but puts more stress on the battery and can reduce the battery’s lifetime. See 

Appendix B for more information on battery cycle lifetime. Table VI provides a table of 

recommended charge modes for user reference. 
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Table VI: Details of different charge mode options 

Type Chemistry C rate Time Temperatures Charge Information 

Slow 

(trickle 

charge) 

NiCd 

lead acid 
0.1C 14 hours 

0 C to 45 C 

(32°F to 113°F) 

Low charge for 

extended period of 

time. Reduces stress on 

battery and prevents 

overcharge. Remove 

battery when charged. 

Rapid 

Li-Ion 

NiCd, 

NiMH 

0.3C to 

0.5C 
3-6 hours 

10 C to 45 C 

(50°F to 113°F) 

Slightly quicker charge 

by rapid charging 

battery to 70% SOC 

then switching to 

trickle charge for 

remaining 30%. 

Fast 

Li-Ion 

NiCd, 

NiMH 

1C 1 hour+ 
10 C to 45 C 

(50°F to 113°F) 

Faster charge by fast 

charging to 70% SOC 

then switching to 

trickle charge for 

remaining 30%. 

Ultra-fast* 

Li-Ion 

NiCd, 

NiMH 

1C to 

10C 

10-60 

minutes 

10 C to 45 C 

(50°F to 113°F) 

Fastest full charge by 

ultra-fast charging to 

70% SOC then 

switching to trickle 

charge for remaining 

30%. Not all batteries 

can handle ultra-fast 

charging. 

Quick Rapid 
Li-Ion 

lead acid 
0.5C 

90 

minutes 

10 C to 45 C 

(50°F to 113°F) 

Quick Rapid mode 

charges using rapid 

charge to 70% SOC 

then terminates. Note 

that battery is not fully 

charged but is ready 

sooner. Extends life of 

battery by reducing 

stress resulting from 

complete full charging. 

Equalization lead acid 1.1C 
2-16 

hours 

10 C to 45 C 

(50°F to 113°F) 

Equalizes slightly 

unbalanced cells in a 

lead acid battery pack 

by slightly 

overcharging them to 

2.5V/cell or 10% more 

than the battery pack 

voltage. This removes 

sulfation that may have 

formed during low 

voltage conditions. 

*Only special types of batteries can handle Ultra-Fast charge mode. Check datasheet of battery.  
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1. PROJECT REQUIREMENTS 

This chapter discusses the design requirements for the system as a whole. These provide 

the structure for what the system needs to accomplish. Then, this chapter discusses the details of 

how the system accomplishes the design requirements by providing the specifications of each of 

the subsystems. Finally, this chapter discusses the primary constraints considered throughout the 

design process with justification. 

2.1 Design Requirements 

The design requirements for the overall system are as follows: 

1. Capable of constant current or constant voltage output 

2. Feedback to determine correct output at any given time 

3. Programmable if user desires unique charge profiles 

a. Charge current 

b. Charge voltage 

c. Termination taper current 

4. No additional hardware or replacement parts necessary 

5. Status indicator to alert user when charger is charging or finished 

6. Display BMS cell parameters on LCD screen 

2.2 System Specifications 

2.2.1 Universal Battery Charger 

The requirements for the Universal Battery Charger are as follows: 

1. Ability to charge batteries of different chemistries 

a. Lithium Ion 

i. Li-Cobalt 

ii. Li-Manganese 

iii. Li-Phosphate 

b. Lead Acid 
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c. Nickel based 

i. NiCd 

ii. NiMH 

2. Ability to charge batteries of different voltages and current requirements 

a. Max pack voltage: 20V 

b. Max charge current: 1.8A 

c. Cell voltage for Li-Ion: 1 to 4.5V  

d. Cell voltage for Pb: 1 to 20 V 

e. Cell voltage for Ni: 1 to 20 V 

3. Synchronous Buck Converter with maximum efficiency above 90% 

a. PWM controlled 

4. Input power is 40 W maximum 

a. Maximum input voltage: 65V 

b. Minimum input voltage allowed: 12V 

5. Variety of charge modes (varies with chemistry, see battery information section) 

a. Slow charge 

i. Overnight charging at a low charge rate to prolong battery life 

ii. Doesn’t require end-of-charge detection for lead acid and nickel based 

[1-3] 

iii. Charging at 0.1C rate [2, 3] 

iv. 14-16 hours (lead acid) [2] 

v. 12 hours (nickel based) [3] 

b. Rapid charge 

i. Complete full charge at a moderate charge rate 

ii. 3-6 Hours charging at 0.3C rate [2] 
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c. Fast charge 

i. Complete full charge at a high charge rate 

ii. Less than 1 hour charging at 1.0C rate [2] 

iii. 1 hour at 1.2C for nickel based [3] 

d. Quick charge 

i. Charges to approximately 70% regardless of charge rate 

ii. Prolongs battery life since battery is never stressed to maximum charge 

e. Equalization charge (lead acid only) 

i. Charges to 10% over recommended to remove sulfation that may have 

formed during low-charge conditions [1] 

ii. Recommended every 6 months or after 20 cycles to bring all cells to 

similar levels [1] 

6. Ability to act as programmable Power Supply 

a. Constant current 

b. Constant voltage 

c. Timer or user controlled 

2.2.2 BMS 

The requirements for the Battery Management System are as follows: 

1. Able to monitor battery characteristics for Li-Ion, nickel, lead acid 

a. Cell voltage 

b. Pack voltage 

c. State of charge 

d. Temperature 

2. Monitors multiple cells 

a. Maximum pack voltage: 27V 
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3. High accuracy 

a. Measuring within ±3mV 

b. 14-bit resolution ADC 

4. Cell balancing capability 

a. Imbalance detection 

b. Passive cell balancing 

c. Timer based balancing 

2.2.3 User Interface & Protection 

The requirements for the user interface are as follows: 

1. Safety features that protect the user and the system 

a. Overcurrent 

b. Overvoltage 

c. Over-temperature 

d. Automatic charge termination 

2. User friendly interface on LCD screen 

a. 1.3-inch screen with 96x96 resolution 

b. Capacitive touch for option scrolling 

c. Buttons for option selection 

2.3 Primary Constraints 

The primary constraints for this project are as follows: 

1. The system charges and monitors the batteries without any damage to the batteries, 

system, or user. 

2. Safety features prevent incorrect user operation. 

3. Voltage, current, and power levels never exceed maximum ratings for any component 

anywhere in the system. 
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Table VII: Marketing requirements & engineering specifications 

Marketing 

Requirements 

Engineering 

Specifications 
Justification 

Monitor Monitors Li-Ion cells (Cobalt, 

Manganese, Phosphate) from 1V to 

4.5V 

 

Monitors three to six cells per 

BQ76PL536 chip. The EVM has 

three BQ76PL536 chips providing 

cell monitoring for up to 18 cells. 

This is a very common  Li-Ion voltage 

range making this BMS relevant.  

 

The supply voltage for the 

BQ76PL536 chip is 7.2V to 27V 

which determines the minimum and 

maximum number of cells per chip. 

 Monitors nickel cells (Cadmium, 

Metal Hydride) from 1V to 20V 

Almost all nickel based cells are in 

this voltage range. 

 Monitors lead acid cells from 1V to 

20V 

Almost all lead acid cells are in this 

voltage range. 

 Monitors individual cell voltage, 

pack voltage, state of charge, and 

pack temperature. 

These are key characteristics to 

monitor in any BMS. These values 

determine the status of the cells and 

the overall BMS. 

Cell 

Balancing 

Cells that differ in voltage balance to 

the lowest cell through external cell 

balancing circuitry. The user chooses 

this option in the main menu. 

Cell balancing is essential in a BMS 

to make sure all of the cells are at the 

same voltage. 

 When the user chooses cell balance, 

the system detects any out of balance 

cells and balances them. 

The cells only balance if detected by 

the system to be out of balance to 

prevent user error. 

Safety 

Features 

The BMS has cell overvoltage, cell 

undervoltage, cell over-temperature, 

and cell under-temperature trip 

points that set Alert and Fault flags if 

reached.  

These are the main issues with 

batteries so this provides the most 

essential battery protection. 

 The BMS requires additional 

programming to perform tasks when 

an Alert or Fault is set. 

Recommended tasks include blinking 

an LED or shutting down the system. 

The BMS provides Alert and Fault 

statuses to help protect the system and 

the user. The user has control over the 

Alert and Fault flags via 

programming. 

User Interface The BMS displays the menus for the 

user on a LCD screen. The user 

navigates through the menus using 

the LEFT Capacitive Touch Sensor 

and the Option Select Button. 

The user needs to be able to choose 

what mode they want to execute. This 

includes all of the monitoring and cell 

balancing. 

 The user can return to the main menu 

by clicking the Menu Button. 

This allows the user to change the 

current mode. 

 The user must select battery 

chemistry, number of cells, battery 

capacity, and type of charge. 

These are the essential characteristics 

of the battery that allows the charger 

to operate correctly. 

 No maintenance is required. The user 

has the ability to change trip points 

and system tasks by changing the 

software. 
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Table VIII: Recommended Charge Modes and Charge Terminations 

 

Battery 

chemistry 

Recommended 

charge modes 

Recommended 

charge 

termination 

Li-Ion Rapid 

Fast 

Quick 

Voltage threshold 

Minimum current 

threshold 

Temperature 

threshold 

Timer 

 

lead acid Slow 

Fast 

Equalization 

Voltage threshold 

Minimum current 

threshold 

Timer 

nickel Slow (new cells) 

Rapid 

Fast 

NDV 

Voltage plateau 

dT/dt 

Temperature 

threshold 

timer 

 

Table IX to Table XIII below display the actual specifications related to charging, 

monitoring, displaying, balancing, and safety features for my system. These specifications 

directly result from testing or from datasheet specifications provided by the manufactures. 

Table IX: Charging Specifications 

Max charge 

current [A] 

Min charge 

current [mA] 

PWM 

steps 

Charge 

current 

resolution 

[mA] 

Charge 

voltage 

resolution 

[mV] 

Max charge 

efficiency 

1.816 9.91 112 ≈16.12 ≈5 >90% 
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Table X: Monitoring Specifications 

 

Battery 

chemistry 

Cell 
voltage 

[V] 

Cell 

voltage 

resolution 
[mV] 

Cell 
voltage 

accuracy 

Pack 
voltage 

[V] 

Pack 

voltage 

resolution 
[mV] 

Pack 
voltage 

accuracy 

Temperature 

[C] 

Temperature 
resolution 

[C] 

Temperature 
accuracy 

[C] 

Li-Ion 
0 to 

4.5 

0.378 

[18] 

±0.1% 

or ±3 

mV 

[18] 

0 to 

30 

1.831 

[18] 

±0.2% 

or ±6 

mV 

[18] 

 

 

40 to 90 
0.003 

[18] 
±3 [18] 

lead 

acid 

1 to 

20 
5 

±10 

mV 

1 to 

20 
5 

±10 

mV 
30 to 80 N/A N/A 

nickel 
1 to 

20 
5 

±10 

mV 

1 to 

20 
5 

±10 

mV 
30 to 80 N/A N/A 

 

Table XI: Display Specifications [23] 

 

Screen 

type 

Screen 

size 

[inch] 

Pixel 

resolution 

Measurement 

resolution 
Reflectance 

Power 

consumption 

Minimum 

environment 

lighting 

LCD 
1.3 x 

1.3 
96 x 96 2 sig figs 50% 10 µW 0.5 lux 

 
Table XII: Cell Balancing Specifications [18] 

 

Battery 

chemistry 

Output 

impedance 

[kΩ] 

Output 

voltage 

[V] 

Balance 

current 

[µA] 

Max 

number 

of cells 

Safety 

Timer [s 

or min] 

Timer 

accuracy 

Type 

of 

balance 

Li-Ion 
80  100  

120 
1 to 4.5 46 to 60 6 0 to 63 10% passive 

 
Table XIII: Safety Features and Protection [18] 

 

Battery 

chemistry 

CUV 

detection 

range 

[mV] 

CUV 

program 

step 

[mV] 

CUV 

detection 

accuracy 

[mV] 

COV 

detection 

range 

[V] 

COV 

program 

step 

[mV] 

COV 

detection 

accuracy 

[mV] 

OT set 

point 

[C] 

OT 

program 

step [C] 

OT 

accuracy 

[C] 

Li-Ion 
700 to 

3300 
100 

±100 

 
2 to 5 50 ±70 

40 to 

90 
5 2% 

Note: COV and CUV thresholds must be set such that COV – CUV ≥ 300 mV 
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2.4 System Decomposition 

This project consists of two main systems that the user interacts with to both charge and 

manage batteries. Figure 19 shows the system block diagram. 

 

Figure 19: System block diagram (level 0) 

The battery charger programs via a computer and the BMS has its own microcontroller 

controlling it. Both the battery charger and BMS require separate power sources. The power stage 

of the battery charger also requires a power source while the BMS uses the power provided by the 

battery pack. The battery charger output connects to the positive and negative terminals of the 

battery pack while the BMS has more wires to connect to each individual cell. Chapter 3 

describes the design of the battery charger and Chapter 4 describes the design of the BMS. 

  

Positive Battery Terminal 

Negative Battery Terminal 
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2. UNIVERSAL PROGRAMMABLE BATTERY CHARGER 

3.1 Hardware 

This chapter describes the design of the system along with the reasoning for the design 

choices. To see the previous design iterations, see Appendix D. The Battery Charger consists of 

separate subsystems working together. These include a controller to control the Buck converter 

that provides the output voltage or current to charge the batteries, a microcontroller unit (MCU) 

that controls the controller and allows the user to interact with the charger, and a current shunt 

monitor to provide charge current feedback to the MCU. The Battery Charger consists of the 

modules shown below in Figure 20. 

3.1.1 Design Iteration #2 

Design iteration #2 uses an external INA169 current shunt monitor, instead of using the 

current monitor internal to the LM5117, and the C2000 LaunchXL-F28069M, instead of the 

MSP430FR5969. Each section in this chapter explains the reasoning for the final design 

decisions. 

 

Figure 20: Battery charger block diagram iteration #2 
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3.1.1.1 LM5117 Wide-Vin Synchronous Buck Controller [10] 

The circuit responsible for battery charging uses the LM5117 IC, shown in Figure 21, 

from Texas Instruments. This features a 5.5V-65V wide input voltage current mode synchronous 

Buck controller with analog current monitoring capability. 

 

Figure 21: LM5117 IC and Buck Converter [10] 

 
Table XIV: LM5117 specifications [10] 
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3.1.1.2 Buck Converter 

This project uses a Synchronous Buck converter that maximizes power efficiency. The 

LM5117 Buck Controller controls the converter by varying the Buck converter’s duty cycle 

providing the necessary output to charge various batteries by either constant voltage or constant 

current. The value of the inductor determines the maximum output current and output current 

ripple. The maximum current ripple happens at the maximum input voltage. The output current 

ripple reduces further by increasing the size of the inductor or using larger output capacitors to 

smooth the output ripple voltage. A good compromise between core loss and copper loss of the 

inductor current ripple is around 20% to 40% of the full load current. Equation 6 shows the 

calculation of the inductor value. 

 

𝐿𝑜 =  
𝑉𝑜𝑢𝑡

𝐼𝑝𝑝(𝑚𝑎𝑥) 𝑥 𝑅𝑖𝑝𝑝𝑙𝑒 % 𝑥 𝑓𝑠𝑤
 𝑥 (1 − 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛(𝑚𝑎𝑥)
)       (Eq. 6) 

      =
27

1.5 𝑥 25 𝑥 200𝑘
 𝑥 (1 −  

27

48
) = 158 𝑢𝐻 

      ≈ 154 µH 

The output capacitors consist of eight 4.7 µF ceramic XR7 50V rated capacitors to 

provide a 37.6 µF effective output capacitance. These capacitors provide low ESR while help 

reduce the output voltage ripple. The capacitance must not be too large since adding a battery at 

the load increases the output capacitance significantly. Equation 7 calculates the cutoff frequency 

of the output LC network. 

 

𝑓 𝐿𝐶 𝑐𝑢𝑡𝑜𝑓𝑓 =  
1

2𝜋√𝐿𝐶
         (Eq. 7) 

                   =  
1

2𝜋√154 𝑢𝐻 𝑥 37.6 𝑢𝐹
= 2091 𝐻𝑧 
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Since the cutoff frequency is much lower than the 200 kHz operating frequency of the PWM, the 

output capacitors effectively reduce the output voltage ripple to maintain a steady output voltage. 

3.1.1.3 MCU (host device) 

The MCU provides the user with charger configuration and controls charger operation. 

The user programs the charge current, charge voltage, and termination taper current to create 

nearly any desired charge profile. Future possibilities involve the user configuring the charger by 

selecting the cell chemistry, charge mode, and number of cells using the capacitive touch slider 

and option select button. The MCU uses ADCs to read battery voltage and charge current and 

then outputs a PWM signal that lowpass filters before feeding into the feedback node of the 

LM5117 buck controller. The PWM signal essentially varies the duty cycle of the buck converter 

to follow the required charging algorithm programmed in the MCU. Each chemistry of battery 

has unique charge algorithms that vary for the charge mode selected. Chapter 1 describes various 

charge modes, and Chapter 5 shows the corresponding charge algorithms created in software to 

execute the charge modes. To see the design matrix for MCU selection, see Appendix C. 

3.1.1.3.1 Design Iteration #2 - C2000 LAUNCHXL-F28069M [11, 12] 

The C2000 LaunchXL-F28069M, shown in Figure 22, features the TMS320F28069m 

microcontroller, which offers a 90MHz operating frequency providing “real time control” and 

ADCs for sampling the charge current and battery voltage [13, 14]. The C2000 also provides 

high-resolution pulse width modulation (HRPWM) and at 200 kHz PWM switching frequency, 

chosen to match the switching frequency of the LM5117 Buck Controller, the HRPWM 

resolution is approximately 14.8 bits providing accuracy of 0.004%. Even the regular PWM 

offers 8.8 bit resolution at 200 kHz [10]. The C2000 LaunchXL-F28069M offers improved 

performance in ADC sampling, higher operating frequency for processing, and improved PWM 

output accuracy and resolution over the original design that uses the MSP430FR5969. Appendix 

C provides more details on the comparison between the MCU options. Using the C2000 provides 

a shorter delay in the control loop with better accuracy for optimum real-time control of battery 
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current and voltage. The C2000 also has many unused pins allowing the user to add features in 

the future. 

 

Figure 22: C2000 LaunchXL-F28069M MCU 

Note that the PWM signal coming from the MCU that feeds into the feedback node of the 

LM5117 Buck Controller requires a RC lowpass filter to smooth out the signal. Another option 

could use a MCU with a DAC output, which doesn’t require the additional RC lowpass filter but 

may require level shifting. 

Battery Pack 

The battery pack consists of up to six Li-Ion cells, up to 12 lead acid cells, or up to 15 

nickel based cells. The maximum pack voltage must not exceed 20V since this maximizes the 

input voltage to the battery voltage measuring ADC that comes from the voltage divider at the 

output node.  

3.2 Battery Monitoring 

Monitoring the battery voltage and charge current allows correct battery charger 

operation. Depending on what battery voltage the ADC measures, the charger changes the charge 

current accordingly to charge the batteries safely. The BMS measures temperature for Li-Ion cells 

to provide additional safety precaution but the charger does not measure temperature. If the 

temperature becomes too high, the batteries become damaged and may result in damage to the 
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charger and/or the user. Temperature measurements for all chemistries could be incorporated into 

the battery charger by using the built in temperature sensor ADC provided by the C2000 

LAUNCHXL-F28069M. 

3.2.1 Measuring Battery Voltage 

3.2.1.1 Design Iteration #2 

The C2000 LaunchXL-F28069M monitors the battery voltage by voltage dividing the 

output voltage into an ADC. The divider is set with Rbottom = 4.99kΩ and Rtop = 24.9kΩ to 

allow a 20V pack voltage at the output to represent 3.3V for the ADC input voltage reading, 

which maximizes the ADC’s input voltage range. Ideally, this provides a digital value of 4096 for 

a 12-bit resolution. Thus, the resolution of the battery voltage measurement is 4.88 mV. The 

output voltage determines the accuracy and resolution of the ADC battery voltage measurement. 

By increasing the allowed pack voltage, the accuracy and resolution of the ADC measurement 

decrease. Note that when using the BMS to measure Li-Ion cell voltage, the resolution improves 

to 0.378 mV due to a 14-bit ADC. 

3.2.2 Current Sense 

3.2.2.1 Design Iteration #2: INA169 Current Shunt Monitor [15] 

The INA169 high-side measurement current shunt monitor, shown in Figure 23, 

measures a voltage drop across a current sense resistor to provide the current sensing ADC a 

voltage proportional to the charge current. The external current monitor accurately measures 

battery current even when the LM5117 operates in discontinuous conduction mode, which is a 

limitation for Design Iteration #1 that uses the current monitor in the LM5117. Another 

advantage of using the INA169 is that the gain can be set with an external resistor allowing more 

design flexibility. Having a current monitor allows monitoring the battery current for feedback 

control of the battery charger while also providing output power efficiency measurement. 
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Figure 23: INA169 high-side measurement current shunt monitors [15] (a) and INA169 circuit (b) 

The design sets the current sense resistor, Rs to 39 mΩ and RL to 56.2 kΩ to provide a 

gain of 56.2. This means at a current of 1.5A, the voltage range of the current sense resistor is 

58.5 mV, which results in the output voltage range of 0V to 3.2877V. This output feeds into the 

ADCINA2 on the MCU, which gives current feedback to the charge algorithm in software. 

3.3 Output Control 

Controlling the output of the Buck Converter essentially controls the battery charger as a 

whole. By varying the duty cycle of the PWM output from the MCU that feeds into the feedback 

node of the LM5117 Buck Controller, the controller changes the duty cycle of the Buck 

Converter, which changes the output. The PWM output is a 0V to 3V digital signal that switches 

at a rate set by the MCU to produce a DC voltage when low-pass filtered. For example when the 

PWM has a 50% duty cycle, the DC voltage is 1.5V since the output is only 3V for 50% of the 

time. This filtered voltage feeds into the feedback pin of the LM5117 Buck Controller, which 

uses negative feedback to regulate the output of the internal error amplifier, which regulates the 

Buck converter. Figure 24 shows the output control system diagram. Refer to the complete 

system schematic in Figure 35 for component values. 
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Figure 24: Output control system diagram 

The PWM output signal is set for a frequency of 200 kHz to match the switching 

frequency of the LM5117. The RLPF and CLPF convert the digital switching signal to a DC 

voltage and set the voltage ripple, settling time, and cutoff frequency. This voltage divides down 

using RFB2 and RFB1 to create 0.8V at the FB pin ideally when the duty cycle is 50%. This 

allows room to increase or decrease the PWM duty cycle in order to change the FB pin with 

respect to the error amplifier reference voltage of 0.8V. The design chooses the RLPF resistor to 

maximize the current sourcing capability of the MCU. The MCU PWM has a voltage range from 

0V to 3.3V and the maximum high-level output source current for all GPIO/AIO pins is 4mA. 

Choosing a 1kΩ resistor for RLPF produces 3.3mA when the output voltage of the PWM is 3.3V. 

The design chooses the RFB2 resistor value to be 10x larger than RLPF to prevent loading, which 

leads to 10kΩ. 

3.3.1 DC Analysis 

The LM5117 internal error amplifier is set for a fixed dc gain and dynamic range to 

interface with the microcontroller output. Figure 25 shows the switching model created in 

SIMPLIS to simulate the DC voltage coming from the PWM and feeding into the feedback node 

of the LM5117. This simulation provides a starting point to controlling the LM5117 Buck 
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Controller with an external PWM signal. Figure 26 shows how the LM5117 Buck Controller 

responds to the varying PWM voltage inserted into its feedback node. 

 

 

Figure 25: SIMPLIS switching model used to simulate DC analysis of PWM to LM5117 interface 
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Figure 26: PWM to LM5117 interface DC simulation 

For maximum resolution when using the PWM to control the output, the amplifier output 

must go to its maximum when Vpwm=0V and its minimum when Vpwm=3.3V. This is centered 

around the internal reference of 0.8V. Since Figure 26 shows a linear region of operation for the 

LM5117 Buck Controller with linearly varying PWM voltage, the design at this point seems 

possible. If, however, the LM5117 Buck Controller showed only maximum and minimum output 

for a linearly varying PWM voltage, the design would need modification. 

3.4 Stability Analysis 

This section provides insight to the control theory and frequency analysis of the closed loop 

system to help predict the stability of the system for both the charge current loop and battery 

voltage loop. 
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3.4.1 LM5117 Controller with Buck Converter 

The actual system has both a current loop for battery current control and a voltage loop 

for battery voltage control, which both need separate stability analysis. The load also needs 

stability analysis, since a battery has a very large capacitance and varying resistance. The 

frequency analysis for this system requires accurate modeling to help predict system stability. 

The Current-Mode Modeling Reference Guide [16] provides a linear solution for current 

mode control with equations that the voltage control-loop design can use. This reference guide 

models the buck current control-loop and the buck voltage control-loop and derives the sampling 

gain pole. The SIMPLIS switching model, used to approximate the frequency response of the 

complete system, models the actual physical circuit in that the LM5117 model acts just like the 

controller in reality. The SIMPLIS averaged model comes from state-space analysis done by 

Steven Sandler in his SPICE Circuit Handbook. See Robert Sheehan’s Current Mode Reference 

Guide for more information on averaged modeling of current mode controllers [16]. 

Figure 27 shows the full simulation schematic. This SIMPLIS switching model has all the 

functions required to produce accurate frequency response for the complete system comprised of 

the LM5117 Buck controller, buck converter, analog versions of the MCU voltage loop and 

current loop compensators, and PWM output filtering. 
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Figure 27: SIMPLIS switching model for Vout = 27V and Iout = 1.5A 

The design requires the microcontroller portion since the voltage loop and current loop 

need different compensation values. The simulation model incorporates the 10 kHz lowpass 

filters required for PWM filtering to provide accurate stability analysis. The design adjusts the 

compensation values in the microcontroller portion to the bandwidth of both the current and 

voltage loops. In order to run the simulation for frequency analysis using the demo/intro version 

of SIMPLIS, an average model, shown in Figure 28, is created based on linear modeling of 

current-mode controllers.  
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Figure 28: SIMPLIS average linear model based on switching model for Vout = 27V and Iout = 1.5A 

The linear model accurately represents the switching model up to half the switching 

frequency [16]. This means the linear model accurately represents this system up to 100 kHz, 

which is more than required for observing the frequency response of the 1 kHz current and 

voltage loop bandwidths. To see how to derive the linear model from the switching model or 

verification of linear model accuracy, refer to Current Mode Reference Guide written by Robert 

Sheehan [16]. 

3.4.1.1 Current Loop 

The overall bandwidth of the charge current loop is 1 kHz. The charge current loop uses a 

single pole compensator. The compensator dc gain, set by the resistor ratio 10Meg/10k, is 1000 

(or in dB: 20 log (10Meg/10k) = 60dB) with a transfer function of  
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𝐺𝐶−𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =
10𝑀𝑒𝑔

10𝐾
 

1

1 + (58𝑛 ∗ 10 𝑀𝑒𝑔)𝑠
                                                                                (Eq. 8) 

The design adjusts the capacitor to give 1 kHz loop bandwidth after adjusting the gain to 

1000 (60 dB). The high gain provides good DC regulation resulting in the MCU set point 

accuracy to within 0.001%. The system requires high gain, usually at least 100 (40 dB), to 

converge to the set point in steady state, but having too high of gain prevents access to the linear 

region of operation. Figure 29 shows the SIMPLIS current loop simulation frequency analysis for 

an output current of 500mA. 

 

 

Figure 29: Current control loop magnitude and phase Bode plot from SIMPLIS linear model 

simulation 
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3.4.1.2 Voltage Loop 

The output voltage control-loop bandwidth is also around 1 kHz with the battery 

disconnected. The voltage loop uses a pole-zero compensator. The compensator dc gain, set by 

the resistor ratio 10Meg/10k, is 1000 (or in dB: 20 log (10Meg/10k) = 60dB) with a transfer 

function:  

𝐺𝐶−𝑣𝑜𝑙𝑡𝑎𝑔𝑒 =  −
10𝑀𝑒𝑔

10𝐾
∗  

1+(22𝑛∗500𝐾)𝑠

1+(22𝑛∗(10 𝑀𝑒𝑔+500𝐾))𝑠
                                                                           (𝐸𝑞. 9)  

When the battery is connected, the gain drops to around 18 (25 dB) due to the lower 

resistance resulting in a bandwidth of around 6 Hz. Figure 30 shows the SIMPLIS voltage loop 

simulation frequency analysis. 

 

 

Figure 30: Voltage control loop magnitude and phase Bode plot with battery disconnected (Ro = 

1kΩ) and single battery connected (Ro = 100mΩ) from SIMPLIS linear model simulation 



53 
 

3.4.2 INA169 Current Shunt Monitor 

The current sense monitor only affects the frequency analysis of the closed loop system if 

an output capacitor is used since it would create a pole at the -3dB frequency shown in Figure 31. 

 

Figure 31: INA169 current shunt monitor -3dB frequency [15] 

The design does not use an output capacitor in the external current sense circuit, so the 

INA169 has no impact on the stability analysis. The bandwidth of the INA169 is much larger 

than the bandwidth of either the current or voltage loops of the battery charger as the frequency 

response in Figure 32 shows. 

 

Figure 32: Frequency response of INA169 current shunt monitor [15] 
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3.4.3 ADC 

The ADC from the MCU affects the frequency analysis because of the input impedance 

that needs to be accounted for. See input model in Figure 33. 

 

Figure 33: ADC input impedance model [14] 

 

The input capacitance is so small that the delay caused by the ADC input filters can be 

ignored. Next is to account for the delay caused by ADC sampling. In general selecting a small 

sampling period allows the continuous system to transform to the z-domain more accurately. A 

good guideline sets the sample period to: 

𝑇𝑠𝑎𝑚𝑝𝑙𝑒 =  
1

10𝑓𝑏
 or in terms of sample frequency, 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 = 10𝑓𝑏 ,                                    (Eq. 10) 

where fb represents the frequency bandwidth of the closed-loop continuous system [14]. For both 

the current and voltage loops, the bandwidth is 1 kHz. Setting the sample rate to 10 kHz means 

the sample period is 100 µs, which is a tenth of the period of both the voltage and current loops. 

If the current loop represents a full 360° cycle, the phase shift caused by that sample rate is a 

tenth of the full cycle so 36°. When this phase shift adds to the phase margin of the current and 

voltage loops shown in Figure 29 and Figure 30, the system remains stable since the total phase 

remains less than 180°. So further increasing the sample rate would further reduce the phase shift 
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caused by sampling, which increases the phase margin. The design sets the sample rate to 198 

kHz, which is much higher than the 10 kHz example previously mentioned, to allow digital 

filtering and prevent noise interference caused by the LM5117 switching at 200 kHz. 

3.4.4 Processing Delay [17] 

The time for the MCU to process the input ADC data and make the necessary changes to 

the PWM affects stability as this processing delay adds a pure time delay in the system.  

A pure time delay without attenuation has the following transfer function: 

𝐺𝑑(𝑠) = 𝑒−𝑠𝑇 or for frequency response analysis 𝐺𝑑(𝑠) = 𝑒−𝑗𝜔𝑇                                       (Eq. 11) 

where T represents the time delay. A time delay does not add any additional poles or zeros to the 

system nor does it alter the magnitude. It does, however, add a phase shift to the frequency 

response given by: 

𝛷(𝜔) =  −𝜔𝑇 in radians or 𝛷 (
𝜋

180
) =  −2𝜋𝑓𝑇 in degrees.                                                (Eq. 12) 

For this system, the amount of time delay before the system becomes unstable is calculated as 

follows: 

𝑇𝑑𝑒𝑙𝑎𝑦 =
𝛷𝑢𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑃ℎ𝑎𝑠𝑒 𝑚𝑎𝑟𝑔𝑖𝑛°∗𝜋/180)

−2𝜋𝑓𝑐𝑢𝑡𝑜𝑓𝑓
 ,                                                                           (Eq. 13) 

where phase margin for the current loop is approximately 66° when using the simulation 

approximation after taking into account phase shift from sampling and the cutoff frequency is 

approximately 1 kHz. This means a delay of 183 µs or greater causes the system to become 

unstable due to the resulting phase shift. The time delay required for instability for the voltage 

loop uses similar calculation. When the battery is disconnected, roughly the same delay as the 

current loop is required before the system becomes unstable. When the battery is connected, the 

phase margin becomes approximately 24° and the cutoff frequency changes to approximately      

6 Hz due to the drop in gain caused by the change in load resistance and capacitance inherent to 

the battery. The time delay required for the system to become unstable is 295 µs meaning the 

system becomes more stable when the battery is connected. 
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From the addition of the delay, the resulting phase shift adds to the phase shift from the 

rest of the system, which allows for stability analysis. Because time delays introduce additional 

phase lag, they result in a less stable system. Reducing the loop gain may be required to obtain a 

stable response but this also results in larger steady state error.  

The MCU has an operating frequency of 90 MHz with a clock period of approximately 

11 ns. When taking into account the total conversion time required by the ADC of approximately 

489 ns along with the period of each clock cycle, there would need to be over 16,000 instructions 

and thus over 16,000 clock cycles to cause enough delay for the system to become unstable. 

Because the delay caused by the ADC and MCU processing is much less than the delay required 

to cause instability in the system, the system remains stable given the system’s processing delay. 

The MCU takes an ADC sample, computes the new PWM setting, and updates the PWM in much 

less time than the sample time of 100 µs, which further ensures that the MCU computation time is 

acceptable for stability. 

3.4.5 PWM 

The PWM signal from the MCU filters through a low pass RC filter then scales by a 

voltage divider then enters an error amplifier in the LM5117 with a single pole compensator as 

shown in Figure 34. The double pole combination attenuates the square wave PWM signal to 

provide a DC signal to the error amplifier but also causes a phase shift due to the poles. 
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Figure 34: PWM signal to LM5117 error amplifier 

The phase shift calculation follows: 

𝑃ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 =  − arctan(2𝜋𝑓 ∗ 𝑅𝑟𝑐 ∗ 𝐶𝑟𝑐) − arctan(2𝜋𝑓 ∗ 𝑅𝑓 ∗ 𝐶𝑓)                             (Eq. 14) 

𝑃ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 =  − arctan(2𝜋 ∗ 1𝑘𝐻𝑧 ∗ 1𝑘Ω ∗ 15𝑛𝑓) − arctan(2𝜋 ∗ 1𝑘𝐻𝑧 ∗ 10𝑘Ω ∗ 1.5𝑛𝑓) 

𝑃ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 ≈ −11° 

The system remains stable when accounting for filtering the PWM signal as shown in the 

simulation for the current and voltage loops. 

3.5 Troubleshooting 

Many problems arose during the design of this system. The first major problem resulted 

from improper configuration of the output voltage divider preventing the PWM to control the 

LM5117 Buck controller output. The next major problem resulted from too high of DC gain for 

the LM5117 Buck Controller due to improper configuration of the feedback compensation 

network. After fixing this, the next task was to stabilize the system by adding averaging digital 

lowpass filters, delays, and decoupling capacitors. Finally, the system required calibration so 

values set in software correspond to the desired behavior. Appendix E provides the 

troubleshooting details and Appendix F provides the calibration details. The next section shows 

the complete final battery charger design before discussing the performance. 
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3.6 Battery Charger Design 
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3.7 Charger Performance 

Charger testing occurs with a Panasonic Lithium Ion NCR18650 as described in Table X. 

The charger implements the Rapid and Quick Rapid charge modes described in Table XIII by 

using the charge algorithms shown in Figure 53 and Figure 54. Figure 36 shows the block 

diagram of the charger test setup. The Agilent 34972A LXI Data Acquisition/Switch Unit 

captures the battery voltage, current sense voltage, and battery temperature once every second 

then sends the data to a computer via USB. 

 

Figure 36: Battery charger test setup block diagram 

Figure 37 shows the actual test setup in reality. Note this charger uses wires to connect 

the LM5117 Buck Controller, MCU, and INA169 Current Shunt Monitor. If the system is created 

on a PCB, the losses in the wires would decrease and the efficiency of the system would increase. 

 

USB 

12V to 65V 
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Figure 37: Picture of battery charger test setup consisting of the power stage LM5117 (a), the MCU 

(b), the current sense circuit (c), and the battery (d) 

3.7.1 Charge Profiles 

3.7.1.1 Rapid Charge Mode 

 

Figure 38: Rapid charge mode profile 
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The Rapid charge mode profile, shown in Figure 38, sets the charger current to 0.5C and 

maintains constant current until the charge voltage measures 4.2V. Then the charger maintains 

the charge voltage while decreasing the charge current. Once the charger measures the charge 

voltage with the charge current less than the taper current of 0.1C or 300mA, the charger then 

terminates the charge and waits until the battery voltage drops below nominal voltage before 

charging again. The advantage of this mode is the charge rate of 0.5C offers an intermediate 

tradeoff between charge speed and stress on the battery. This mode also charges the battery to 

near 100% state of charge due to the constant voltage current taper portion of the charge profile. 

The disadvantage is that quicker charge modes exist since a 1C charge rate would charge the 

battery faster. 

3.7.1.2 Quick-Rapid Charge Mode 

 

Figure 39: Quick-Rapid charge mode profile 
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The Quick-Rapid charge mode profile, shown in Figure 39, starts the same as the Rapid 

charge mode. The charge current is set to 0.5C and maintains constant current until the charge 

voltage measures 4.2V. This signifies roughly 70% state of charge so at this point the charger 

terminates the charge current and the charging is complete. The advantage of this charge mode is 

speed in terms of finishing the charge and results in less stress on the battery since the battery 

never reaches maximum capacity. The disadvantage is that with only 70% state of charge, the 

runtime of the battery suffers, as the battery does not have as much capacity as with a full charge. 

3.8 Charger Efficiency 

3.8.1 LM5117 Buck Converter Efficiency 

Efficiency is defined as power output per power input and measures how wasteful a 

system is. This battery charger offers charge efficiency above 90%. The LM5117 Buck Controller 

uses a Synchronous Buck Converter to minimize switching losses. Other chargers use diodes or 

have Buck-Boost Converters that do not provide efficiency greater than 80%. Figure 40 shows a 

simulation of the converter efficiency. 

 

Figure 40: LM5117 efficiency simulation up to 1.5A 
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3.8.2 Charge Efficiency 

Battery University states that for the first 70% of the state of charge, the charge efficiency 

is close to 100% as the battery absorbs nearly all of the energy and remains cool. A fast charge 

however, has a higher charge efficiency than a slow charge. For example, a standard NiCd battery 

has charge efficiency around 91% when charged at 1C but around 71% when charged at 0.1C [1].  

The actual charger efficiency is calculated by measuring the input power from the power 

supply and dividing by the measured output power measured with the Agilent 34972A LXI Data 

Acquisition/Switch Unit. Figure 41 shows the efficiency measured during the PWM linear test. In 

this test, the PWM is decremented from a value of 285, which corresponds to a current of 9.91mA 

to a value of 174, which corresponds to 1.816A. As the current increases, the efficiency increases 

since power output is increasing. The battery charges from 3.3322V to 3.53V during this test so 

battery voltage does not influence output power much but as the battery charges up the output 

power increases, which increases the efficiency even more. 

 

 

Figure 41: Efficiency measured during PWM Linear Test 
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Figure 42 shows the efficiency for the Rapid charge mode. The efficiency directly corresponds to 

the charge current and slowly increases as the output voltage increases due to the battery 

charging. 

 

Figure 42: Efficiency measured during rapid charge mode with Vin = 15.05V and Iin = 0.49A to 

0.52A 
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3. BATTERY MANAGEMENT SYSTEM 

This chapter explains the design of the BMS by describing each of the components and 

their function. The reader should note that the BMS is only designed for Li-Ion batteries since 

this chemistry is the most sensitive to improper charging and management. This BMS offers 

many more features that those currently implemented and the user can add create additional 

software if desired. Chapter 5 explains the connections between the different components and the 

BMS software program. 

4.1 Hardware 

The BMS consists of the modules shown below in Figure 43. Refer to Tables XVI, XVII, 

and XVIII in Chapter 5 for component connections. 

 

Figure 43: BMS block diagram 

4.1.1 Battery Pack 

The battery pack, shown in Figure 44, contains between three and six Lithium Ion cells. 

The minimum allowed voltage for each cell is 1V, and max voltage is 4.5V. The batteries connect 

in series with the negative terminal of the first cell connecting to P7 and the negative terminal of 

the next cell connecting to P6 and so on until the positive terminal of the last cell connects to P1. 

Another pack of three to six cells can connect to the other two plugs, but this project only uses 

one pack. The pack connects to the EVM at the Port 1 plug. The batteries must remain secure and 

the user must secure the lines from the battery pack into the plug with the metal screws before 
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connecting to the EVM. The negative of the bottom cell connects to P1. For more information on 

the specific cells used see the 18650 datasheet [6]. This battery pack uses Arbin Instruments high 

power cell holders for cylindrical cells.  

 

Figure 44: Battery pack containing 6 Li-Ion 18650s 

4.1.2 BQ76PL536 EVM [19] 

The EVM shown in Figure 46 has three BQ76PL536 BMS ICs shown in Figure 45 that 

monitor the battery packs. Note that this project only uses one BMS chip, since it only uses one 

battery pack. The BMS chip connects to cell balance circuitry as shown in Figure 51, which then 

connects to the cells. The EVM has an isolated communication interface that allows SPI 

communication with a host device. The BMS chips receive power from the battery pack itself 

requiring a supply voltage between 7.2V and 27V. The communication portion of the 

BQ76PL536 receives power from a 5V output of the MSP430FR5969. Find more information 

related to the BMS chip including the cell monitoring and cell balancing in the BQ76PL536 

datasheet [18]. Find information regarding the setup of the EVM and the operation of the GUI it 

comes with in the EVM Start Up Guide [19]. 
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Figure 45: BQ76PL536 BMS IC pinout [18] 

Figure 45 shows the functionality of the BMS ICs. They offer battery cell monitoring up 

to six cells in addition to pack voltage monitoring. They offer two temperature sensors along with 

multiple fault and alert pins that allow programming to create a BMS that provides cell and user 

safety. 
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Figure 46: BQ76PL536 EVM 

4.1.3 MSP430FR5969 MCU (host device) [20-22] 

The MCU, shown in Figure 47, communicates to the EVM through SPI. The MCU reads 

in important data from the BMS chips and then uses an LCD screen to display the information to 

the user. The MCU reads cell voltage, pack voltage, and two pack temperatures. The MCU also 

calculates and displays the state of charge of the cells. The MCU has control over the cell balance 

circuitry and can make the EVM detect if cells are out of balance and start balancing them if 

needed. The MCU has an option select button (right button) and a menu button (left button), 

which helps the user navigate through the menus on the LCD screen. Find more information in 

the MSP430FR5969 Datasheet [20], MSP430fr59xx Family User’s Guide [21], and MSP-

EXP430FR5969 LaunchPad User’s Guide [22]. 
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Figure 47: MSP430FR5969 MCU LaunchPad [22] 

The MSP430FR5969 offers two separate SPI ports, which allows communication 

between both the EVM and the Sharp LCD BoosterPack. The MCU comes with two buttons that 

allow user interaction with the BMS in addition to easy interfacing with the Sharp LCD 

BoosterPack. Sharp LCD BoosterPack (user interface) [23] 

The Sharp LCD BoosterPack, shown in Figure 48, connects to the MCU through SPI and 

controls both the BMS and the battery charger in addition to displaying important measurements. 

The measurements from the EVM display on the LCD through different menus and the capacitive 

touch sliders allow the user to change measurement and cell selection. Note that the design only 

uses the left capacitive touch slider. Find more information in the Sharp LCD BoosterPack User’s 

Guide [23]. 
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Figure 48: Sharp LCD BoosterPack [21] 

The Sharp LCD BoosterPack connects directly to the MCU as shown in Figure 49 and 

can be programed without modification. It features a 1.3-inch screen of 96 x 96 pixels providing 

high-contrast images or text. Other features include low power consumption and software enabled 

by TI’s software libraries. 

 

Figure 49: Sharp LCD BoosterPack connection to MCU [23] 

4.2 Battery Balancing 

Battery balancing comprises an essential component to any BMS because having 

batteries that differ in voltage in a battery pack causes the pack performance to degrade along 

with the possibility of damaging the individual cells. 

 



71 
 

This system only balances Li-Ion cells due to their higher energy densities compared to 

the other chemistries. Overcharging Li-Ion cells can result in pressure build-up, which can lead to 

gas leaks and explosions. Other chemistries exhibit much more tolerance to overcharging in the 

form of very low currents sometime called trickle charge of approximately 0.1 C. This results 

from their lower energy densities and higher thermal capacity requiring higher temperatures for 

thermal runaway. 

This project uses a BQ76PL536 EVM, which has a passive battery-balancing scheme 

developed by Texas Instruments as shown in Figure 50. The balancing circuitry, schematic as 

shown in Figure 51, uses switches to draw current through power resistors to dissipate power 

supplied by the battery that has more charge compared to the other cells. If the cells differ by 

more than 50mV, the balancing circuitry can be enabled through the main menu as shown in the 

BMS application in Figure 55. If the cells differ by less than 50mV, the BMS displays that the 

cells are balanced if the user attempts balancing. The next chapter describes the software this 

system utilizes. The battery charger and BMS both have MCUs that require programming but 

provide endless flexibility in terms of charging and managing batteries. 
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Figure 50: Balance circuity from BQ76PL536 EVM developed by Texas Instruments 
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Figure 51: Cell balance schematic from BQ76PL536 EVM developed by Texas Instruments [18] 
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4. SOFTWARE 

This chapter discusses the software that operates the battery charger and BMS. This 

chapter starts by  providing state diagrams to help the reader understand the flow of the battery 

charger and BMS programs. Then, this chapter provides the charge algorithms to show the battery 

charger functionality and to help reader grasp the endless charge possibilities. 

5.1 Universal Programmable Battery Charger 

In order to charge batteries, the user must configure the charger to the batteries that need 

charging. The user determines the charge current, charge voltage, and termination taper current. 

Future improvements would allow the user to choose cell chemistry type, charge mode, and 

number of cells using the left capacitive touch slider and the option select button. Figure 52 

shows the configuration state diagram of the battery charger to illustrate the flow of the program. 

 

Figure 52: Charger configuration state diagram 
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5.1.1 Charge Mode Software 

Once the user configures the charger as desired, the charger begins charging. Each 

chemistry has a unique charge algorithm with different algorithms for the charge mode selected. 

Figure 53 below shows an example of Rapid charge mode for Lithium Ion Cobalt chemistry 

designed for Panasonic 18650 [6]. The algorithm uses a constant current (CC)/constant voltage 

(CV) charging algorithm, which is the recommended way to charge this type of battery [1-5] at a 

max recommended charge rate of 0.5C [6]. Chapter 1 provides the details for charging various 

types of batteries used to create these charge modes. 

 

Figure 53: Lithium Ion chemistry Rapid charge mode designed for a Panasonic 18650 
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Figure 54 shows an example of the Quick Rapid charge mode for the Li-Co chemistry 

designed for the same battery. The algorithm uses a constant current (CC) charging algorithm 

similar to the Rapid charge mode but terminates charge once the cell voltage reaches the charge 

voltage of 4.2V, which eliminates the constant voltage (CV) stage essentially charging the battery 

to 70% SOC. The advantage of charging to 70% SOC is that the battery finishes charging 

quicker, and the cycle lifetime of the battery extends due to less stress on the battery during 

charging. The disadvantage of charging to only 70% SOC is that the runtime of the battery 

shortens since the battery is not charged to the maximum 100% SOC as with Rapid charge mode. 

 

Figure 54: Lithium Ion chemistry Quick Rapid charge mode designed for a Panasonic 18650 
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5.2 Battery Management system 

Figure 55 shows the BMS application state diagram for user reference. The user should refer 

to this diagram when operating the BMS. 

 

Figure 55: State diagram of BMS application 

5.2.1 SPI Error Message: 

If an SPI error message displays before the main menu displays, the BQ76PL536 device 

is not detected. There is most likely a problem with the SPI connection between the 

MSP430FR5969 and the EVM. Check the SPI lines along with the Power and Ground lines. 

5.2.2 Main Menu: 

The main menu displays the modes of the BMS. The user uses the option select button to 

select Cell Voltage, Pack Voltage, State of Charge, Temperature, or Cell Balance. 

5.2.3 Cell Voltage: 

Once the Cell Voltage mode is selected, the user then needs to select a cell using the 

option select button. The cell voltage of the selected cell displays in mV. The cell voltage 
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displays for 4 seconds then returns to the cell selection menu. Press the exit button to go back to 

the main menu. 

5.2.4 Pack Voltage: 

When the Pack Voltage mode is selected, the pack voltage for all connected cells displays 

in mV. The user must press the exit button to return to the main menu. 

5.2.5 State of Charge: 

Once the State of Charge mode is selected, the user then needs to select a cell using the 

option select button. The state of charge of the selected cell displays by showing a battery with 

the approximate remaining charge. See Table XV below for charge remaining approximation 

information. 

 

Table XV: Voltage to state of charge conversion 

Voltage of Cell [V] Bars of Charge Remaining (State of Charge) 

<3.3 1 

3.3 to 3.4 2 

3.4 to 3.5 3 

3.5 to 3.6 4 

3.6 to 3.7 5 

3.7 to 3.8 6 

3.8 to 3.9 7 

>4.0 8 

 

5.2.6 Temperature: 

When the user selects the Temperature mode, two different pack temperatures at two 

separate locations in the battery pack display to the screen in degrees Celsius. The user must press 

the exit button to return to the main menu. 

5.2.7 Cell Balance: 

When the user selects the cell Balance mode, the system checks to see if the cells are 

imbalanced. The cell imbalance threshold is programmed to 50mV. This means that if the highest 

cell voltage differs from the lowest cell voltage by more than 50mV, the cells are considered 

imbalanced and the Cell Imbalance screen displays. If the cells are already balanced, the Cell 
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Balance screen displays. The system can control the cell balance circuitry shown in Figure 50 and 

Figure 51 but it is recommended to enable cell balancing only if the system is connected to a 

charger since the higher cells drain until reaching the lowest cell voltage.  

5.2.8 BMS Connections 

5.2.8.1 Between battery pack and EVM 

Table XVI: Connection from battery pack to EVM 

Battery Pack BQ76PL536 EVM 

Cell 6 Positive P1 

Cell 6 Negative P2 

Cell 5 Negative P3 

Cell 4 Negative P4 

Cell 3 Negative P5 

Cell 2 Negative P6 

Cell 1 Negative P7 

 

The cells connect in series and wires connect each cell in the battery pack to a port on the 

EVM allowing for individual cell monitoring in addition to pack monitoring. 

5.2.8.2 Between EVM and MCU 

 
Figure 56: MCU on top of EVM 
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The MCU communicates with the BMS chips via SPI. Figure 56 shows the MCU used for the 

BMS for user reference. 

Table XVII: Connection from EVM to MCU 

BQ76PL536 Pin Name EVM Pin # (Port) MSP430FR5969 Pin 

VCC (SPI Power) 6 (P5) VCC 

GND 2 or 10 (P5) GND 

CS_H 9 (P5) P3.0 (GPIO) 

CLK_H 7 (P5) P2.2 (UCSIB0CLK) 

SDI_H 8 (P5) P1.6 (USCIB0SIMO) 

SDO_H 5 (P5) P1.7 (UCSIB0SOMI) 

CONV_H 5 (P4) not connected* 

DRDY_H 4 (P4) not connected* 

ALERT_H 3 (P4) not connected* 

FAULT_H 2 (P4) not connected* 

*These pins are disconnected due to limited number of pins available on the MSP430FR5969. The code 

that relates to these functions is disabled. 

 

5.2.8.3 Between MCU and BoosterPack 

Table XVIII: Connection from MCU to LCD Screen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Sharp LCD BoosterPack is designed to fit directly into the socket located on the 

MSP430FR5969 MCU so no additional wires or hardware is required. 

 

 

  

MSP430FR5969 MCU Sharp LCD BoosterPack 

VCC VCC 

GND GND 

LCD Power Control P4.2 

LCD Enable P4.3 

SPI CS P2.4 

SPI CLK P2.2(UCSIB0CLK) 

SPI SIMO P1.6 (UCSIB0SIMO) 

External COM Inversion P1.2 

Left Slider 2 P3.4 

Left Slider 1 P3.5 

Left Slider 0 P3.6 
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5.2.9 Final BMS product 

Figure 57 shows the complete BMS product. 

 

 
 

Figure 57: Final BMS product 
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5. FINAL THOUGHTS 

This chapter discusses the final thoughts the reader should know relating to the system 

designed in this report. The first section briefly discusses possible connector options to connect 

the system to different batteries and other devices. The next section discusses future 

improvements that can be added by the user if desired. Then a conclusion section summarizes the 

achievement this system makes in the field of battery chargers and management systems. 

6.1 Connectors 

Unfortunately, every brand offers devices with different chargers thus creating almost as 

many connectors. Even devices made by the same company may have different connectors 

depending on the generation of the device or device power requirements. This project does not 

focus as much on how to connect the charger to a given battery or device, but options on the 

market help solve this problem. Tenergy sells an “Octopus” multiple charging harness adaptor, 

shown in Figure 58, that supports the following connector types: 

 Tamiya 

 Mini Tamiya (for Airsoft packs) 

 JST 

 Hitec 

 EC3 

 Deans 

 

Figure 58: Multiple charging harnesses “Octopus” adaptor 
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A simple internet search allows the user to find an adaptor for nearly any phone, laptop, 

or any other electronic device providing the ability to use this system to charge or power 

countless batteries or devices. The system design uses standard female Banana Jack Connectors at 

the output of the battery charger so the user can customize the adaptor needed to interface with 

those output connectors. 

6.2 Future Improvements 

6.2.1 Additional Features 

Additional safety features including temperature sensing, pressure sensing, and alarms 

that visually and verbally alert the user could be added to improve user safety along with 

preventing damage to the system or the batteries. A display that allows the user to receive real-

time feedback for charger status could also be added. 

6.2.2 Additional Programming 

This project has only two charge modes for one of the chemistries described in Chapter 1 

currently programmed. Additional software is all that is required to create more charge modes for 

more chemistries or unique charge profiles. Additional software could also be added to track 

battery health such as total Coulomb count for measuring total amount of charge in battery 

lifetime, time since last full charge, approximate capacity of the battery, approximately cycle life 

remaining in the battery, average charge rate for a given battery, average SOC for a given battery, 

etc. 

6.2.3 Power Supply Mode 

6.2.3.1 Introduction 

A power supply is a device that allows a user to change the output current and voltage to 

supply a set power within a defined range set by the system design. Power supplies have a 

constant voltage and constant current mode to accomplish this. This project demonstrates power 

supply capabilities in that the user selects different chemistries and charge modes to output 

specific current and voltage depending on the requirements to charge a given battery. This system 
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can be designed to output any constant current or constant voltage within the designed 

specifications, essentially creating a power supply. 

6.2.3.2 Applications 

All electronic device chargers that plug into the wall to charge a battery internal to the 

device are nothing more than AC/DC converters that supply a specific power to the battery in the 

device. The actual battery charger circuitry is internal to the device and located with the battery. 

This means that an intelligent power supply that knows when to charge, how much power to 

deliver while charging, and when to terminate charge is all that is required to charge these 

electronic devices. This project demonstrates the ability for a user to choose a charge mode to 

charge any battery as desired. This project can allow a user to choose a charge voltage and charge 

current to deliver the required power to charge (or power) a given electronic device.  Ideally, the 

system could act as any of the power supplies shown in Table XXXII just by modifying the 

software. 

Table XIX: Power requirements to charge (or power) various electronic devices 

Device Voltage [V] Current [A] 

Iphone5 5 1 

MacBook Pro 16.5 3.65 

Toshiba Satellite P75-A7200 19 4.74 

Samsung Galaxy Tab 10.1 5 2 

Homedics alarm clock 5 1.5 

Remington electric shaver 3.6 0.1 

 

6.3 Conclusion 

This report provides the knowledge to charge and manage a variety of batteries and the design of 

a system that accomplishes that. By comparing my system to the systems currently available, it 

has three main advantages: First, using a synchronous Buck Converter topology improves charge 

efficiency to above 90% as compared to the current systems limited to 80% with an asynchronous 

Buck-Boost Converter topology. Second, by using a PWM to control a Current-Mode Buck 

Controller, the user has linear control of the output charge current, which allows charge currents 
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as low as 10mA compared to the 100mA of other universal battery chargers. Third, having linear 

control over the current allows the user maximum flexibility in terms of choosing the charge 

current, charge voltage, and termination taper current providing a tradeoff between charge time, 

state of charge, and battery lifetime. 
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APPENDIX A: COST ESTIMATE 

 
Table XX: Cost Estimates for BMS 

Component Function Cost per 

Unit 

# of 

units 

Total 

Cost 

BQ76PL536 EVM Required for battery 

management. 

$400.00 1 $400.00 

MSP430FR5969 MCU 

LaunchPad 

Required for data processing and 

communication to the EVM. 

$20.00 1 $20.00 

Sharp LCD 

BoosterPack 

Required for displaying data to 

the user. 

$10.00 1 $10.00 

5V 2A Power Adaptor Required to power the MSP430. $10.00 1 $10.00 

Wire Required for connecting devices. $3.00 1 $3.00 

Buttons Required for user selection. $1.00 2 $2.00 

Casing Required to enclose devices. 

This is optional. 

$10.00 1 $10.00 

Total    $530.50 

 
Table XXI: Cost Estimates for charger 

 

Component Function Cost per 

Unit 

# of 

units 

Total 

Cost 

LM5117 EVM Required for battery 

charging. 

$75.00 1 $75.00 

C2000 F28069 MCU 

LaunchPad 

Required for controlling 

LM5117. 

$23.00 1 $23.00 

Current sense circuit 

board 

Required to measure 

current. 

$8.00 2 $16.00 

48V 0.83A Power 

Adaptor 

Required to power the 

charger. 

$10.00 1 $10.00 

Total    $124.00 

 
Table XXII: Cost Estimates for batteries used for testing 

 

Component Function Cost per 

Unit 

# of 

units 

Total 

Cost 

Li-Ion Cells Required for testing. $10.00 6 $60.00 

Battery 

Holders 

Required to create battery pack used 

for testing. 

$2.75 6 $16.50 

Total    $76.50 

Note: This system is designed with EVMs and LaunchPads, which significantly increases the price of the 

system. If mass produced as one complete system, the price per system reduces significantly. The price if 

the entire system is designed on one circuit board and built on the component level is less than $100. 
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APPENDIX B: BATTERY LIFECYCLE RESEARCH 

This research focuses on battery lifetime (cycle life) and how this relates to charge rate, 

state of charge (SOC), discharge rate, depth of discharge (DOD), internal resistance, temperature, 

number of cycles, and age. 

1.1 Introduction 

Batteries exist everywhere and charging batteries occurs every day by almost everyone. 

The global revenue from batteries in 2009 was $47.5 billion and this market expects to grow to 

$74 billion by 2015 [1]. Rechargeable batteries provide the most common way to power nearly all 

portable devices. These days we have phones, laptops, tablets, iPod or mp3 players, digital 

cameras, etc. that all have rechargeable batteries and we seem to prefer charging our devices in as 

little time as possible. But, does charging batteries quickly have an impact on the lifetime of the 

battery? How does the state of charge affect battery lifetime? How about the effect of rate and 

depth of discharge on battery lifetime? Does the age of the battery affect its lifetime even if the 

battery is not being used? Finding the answers to these questions can help determine the proper 

management of batteries and when a battery needs to be replaced. A manger of the Energy 

Storage Research Program at the Department of Energy said, “every year roughly one million 

usable lithium-ion batteries are sent in for recycling with most having a capacity of up to 80 

percent” [1]. Knowing the state of a battery and how much life it has is a huge problem that most 

people are not aware of. 

1.2 Capacity Loss 

Capacity is defined as the availability to store charge. A battery starts (ideally) with 

100% capacity, which means all of the space in the battery can store charge. Over time, the 

capacity decreases, which reduces the amount of space to store energy. See Figure 59 below. 



90 
 

 
Figure 59: Battery with less than 100% capacity courtesy of Cadex [1] 

 

From Figure 59, the “Rock Content” represents the decrease in capacity since this portion 

takes up space in the battery but cannot store charge.  

1.3 Battery Lifetime (cycle life) 

Battery lifetime is defined as the number of charge and discharge cycles a battery 

undergoes before its capacity, or the amount of energy it can store, drops to 80% of the rated 

capacity of the battery when it is brand new [2]. This percentage can vary however depending on 

the application and user preference. Every battery eventually become unusable in that it no longer 

accepts or stores charge above a certain capacity. Most new batteries gradually build up capacity 

in the first 100 to 200 cycles before reaching the maximum capacity of the battery. After this 

point, with each additional cycle, the capacity decreases. There is no specific timespan for how 

long a battery’s capacity lasts for but most portable batteries deliver between 300 and 500 full 

charge cycles. The decreasing capacity depends on the makeup of the battery, environmental 

conditions, and how the user charges and uses (discharges) the battery [1]. This research focuses 

on the charging and discharging, specifically the rate of charge, the state of charge (SOC), and the 

depth of discharge (DOD), since these parameters are completely controlled by the user.  
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1.3.1 Li-Ion 

Li-ion batteries start at maximum capacity and begin to decline immediately. The end of 

a lithium ion battery occurs when the transfer of ions slows down due to cell oxidation. This 

process occurs naturally as the battery is used over time and is irreversible [1]. 

1.3.2 Lead Acid 

The lead acid battery cycle lifetime has three stages called formatting, peak, and decline 

as shown in Figure 60. The formatting stage starts around 85% capacity and increases to 100% 

after charging and discharging approximately 20 to 50 times. This occurs during normal use. The 

Peak stage last for approximately 100 to 200 cycles before gradually declining.  

 

Figure 60: Three stages of lead acid cycle lifetime courtesy of Cadex [1] 

The end of a lead acid battery results from sulfation or grid corrosion. Sulfation causes a 

thin layer to form on the negative cell plate if the battery remains in a low state of charge for a 

long period. Sulfation can be reversed if an equalization charge is applied before it becomes too 

damaged. Grid corrosion can be reduced if the battery is properly charged with correct float 

voltage [1]. 
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1.3.3 Nickel Based 

Nickel based batteries require priming similar to formatting of lead acid before reaching 

full capacity if the batteries are new or stored for a long period of time (six months or longer). 

Priming requires cycling the battery 5 to 7 times if it’s a high quality battery or up to 50 cycles for 

other batteries. The end of nickel based batteries result from corrosion or crystalline formation. 

This crystalline formation can occur if the battery is not discharged enough due to an effect called 

memory [1]. 

1.4 Battery Runtime 

Battery runtime is different from battery lifetime. The runtime is defined as the time the 

battery lasts on a full charge before dying and needing to be recharged. This is the time of one 

discharge cycle. Runtimes given by manufactures assume the capacity of the battery is 100%, 

which gives a bad representation of the actual runtime since the capacity slowly decreases over 

time. This means that over time, the runtime of the battery reduces since space in the battery to 

store charge reduces as compared to when it was brand new. 

1.5 Factors that Reduce Battery Lifetime 

There are many factors that add stress to a battery, which result in a shorter lifetime. 

1.5.1 Number of Charge & Discharge Cycles 

Each time the battery charges and discharges, the battery’s capacity decreases slightly. 

The more the battery is used, the shorter the battery lasts as the battery’s performance decreases 

as seen in Figure 61. 



93 
 

 

Figure 61: Capacity compared to the number of cycles [2] 

1.5.2 Charge & Discharge Rate 

Figure 62 shows that faster rates of charge or discharge directly corresponds to shorter 

cycle lifetime of the battery [1].  

 

Figure 62: Charge and discharge rate for Li-Ion battery vs number of cycles courtesy of Cadex [1] 
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1.5.3 State of Charge & Depth of Discharge 

When Li-ion batteries fully charge and then fully discharge, they do not last as long as 

batteries that charge and discharge partially. Charging a battery to 4.2V/cell is considered fully 

charged. Discharging to 2.5V/cell is considered fully discharged. See Table XXIII and Table 

XXIII below [1]. 

Table XXIII: State of charge compared to Li-Ion cycle lifetime courtesy of Cadex [1] 

 

Table XXIV: Depth of discharge vs discharge cycles for Li-Ion courtesy of Cadex [1] 

 

Figure 63 shows the state of charge’s effect on cycle lifetime. The cycle life reduces 

significantly as the battery charges to higher SOC. 
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Figure 63: State of charge and capacity compared to Li-ion cycle lifetime courtesy of Cadex [1] 

Lead acid batteries require an equalization charge, which charges the batteries 10% over 

the recommended voltage to bring the cells to similar levels. This is required every 1 to 3 months 

depending on use [1]. Nickel based batteries require complete discharge to prevent crystallization 

formation or the “memory” effect [1]. 

1.5.4 Temperature 

Li-Ion batteries become stressed when exposed to temperatures higher than 30°C (86°F). 

See Table XXIV for temperature and capacity relationship at two different state of charges [1]. 

Table XXV: Temperature and state of charge compared to capacity courtesy of Cadex [1] 
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A Sealed Lead Acid (SLA) battery’s lifetime reduced by half for every 8°C (15°F) rise in 

temperature. For starter lead acid batteries, a 12°C (22°F) increase reduces the lifetime by 

roughly one year [1]. 

1.5.5 Internal Resistance 

Internal resistances relate to the power output of the battery and the higher the resistance, 

the worse the performance. Internal resistance increases as temperature rises and time passes. See 

Figure 64 [2]. 

 

Figure 64: Internal resistance compared to temperature over time [2] 

1.5.6 Number of Cycles 

As the number of cycles increases, the capacity of the battery decreases. Counting cycles 

could be misleading since the depth of discharge may not be consistent if referring to real world 

battery usage. A Cadex Laboratory cycles 11 Li-polymer batteries to show how capacity reduces 

as batteries cycle. These cells charge at 1C to 4.2V/cell then allowed to saturate for a full 

complete charge. They then discharge to 3V/cell at 1C. This counts for one cycle [1]. See Figure 

65 for the results. 
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Figure 65: Capacity of 11 Li-polymer batteries during cycling courtesy of Cadex [1] 

1.5.7 Age 

Figure 66 shows that as batteries age, their capacity reduces [2]. 

 

Figure 66: Capacity of lead acid Battery over time [2] 
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Batteries also self-discharge over time and the amount of discharge depends on the 

battery type and chemistry as shown in Table XXV [1]. 

Table XXVI: Self-discharge over time for different battery types courtesy of Cadex [1] 

 

1.6 Steps to Prolong Battery Lifetime 

1.6.1 Li-Ion 

 Do not discharge Li-Ion too low, charge more often. 

 A random or partial charge is fine. Li-Ion does not need a full charge. 

 Limit the time the battery resides at 4.20V/cell (full charge), especially if warm. 

 Miderate the charge current to between 0.5C and 0.8C for Cobalt-based Lithium-

Ion. Avoid ultra-fast charging and discharging. 

 If the charger allows, lower the charge voltage to prolong battery life. 

 Keep the battery cool. Move it away from heat-generating environments. Avoid 

hot cars and windowsills. 

 High heat and full state-of-charge, not cycling, cause short battery life in laptops. 

 Remove battery from laptop when used on the power grid. 

[1] 
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APPENDIX C: MICROCONTROLLER DESIGN MATRIX 

 

1.1 Design Iteration #1 - MSP430FR5969 [20-22]   

The MSP430FR5969 used in the BMS was the original MCU chosen for the battery 

charger as well. This MCU is one of the less expensive MCUs and it comes with a handy Sharp 

LCD BoosterPack for display and user interaction. Table XXVI shows the specifications, which 

permits comparison with specifications with C2000 LAUNCHXL-F28069M. 

Table XXVII: MSP430FR5969 specifications [20] 

 

 

1.1.1 ADC Specifications 

The ADC reference selected is 2.5V so the maximum analog input voltage for the MCU 

is 2.7V as shown in the tables below from the MSP430FR5969 Datasheet [20]. 

 

 



100 
 

Table XXVIII: ADC specifications for MSP430FR5969 [20] 

 
1.2 Design Iteration #2 - C2000 LAUNCHXL-F28069M [11-14] 

1.2.1 ADC Specifications 

Table XXIX: Specifications for C2000 LAUNCHXL-F28069M [14] 

 

The minimum ADC total operating time is 488.98 ns and results from a minimum sample 

window of 7 clock cycles + the conversion time + 2 additional clock cycles for the ADC result to 

change. 
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1.3 Comparing MCUs 

The MCU samples battery current and voltage using ADCs and then outputs a voltage that 

feeds into the feedback node of the LM5117 Buck Controller using a PWM and RC filter. The 

design originally used the MSP430FR5969 because of low cost but was changed to C2000 

LaunchXL-F28069M because of higher operating frequency and more available ADCs. The 

design matrix shown in Table XXIX, compares the MCUs using a rank between one , a low 

rating, and three, a high rating. The design matrix uses a weighted percentage so the total score 

for the worst possible reference equals one and the best possible reference equals three. 

Table XXX: MCU design matrix comparison 

 

Specification MSP430FR5969 

LaunchPad 

C2000 LaunchXL-

F28069M 

Rank (1-3) Weight 

% 

Operating 

frequency 

16MHz 90MHz 1 3 30 

ADC 2 channel, 12-bit 7 channel, 12-bit 1 2 5 

fADC 5.4 MHz 45 MHz 1 3 10 

tconv 3 μs (14 cycles) 488.98 ns (22 cycles) 1 3 10 

Data rate ≈200 KSPS ≈3.46 MSPS 1 3 10 

PWM/HRPWM 16MHz, 0 to 3.3V 90MHz, 0 to 3.3V 1 3 30 

Cost $15.99 $24.99 2 1 5 

Total Score 1.05 2.85  

 

The C2000 LaunchXL-F28069M clearly outperforms the MSP430FR5969, which direct 

results from improved performance in ADC sampling, higher operating frequency for processing, 

and PWM output.  
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APPENDIX D: DESIGN ITERATIONS 

This Appendix describes the various design iterations to show the initial thinking for the 

battery charger system. The various options considered include the MCU, as previously 

mentioned in Appendix C, the output voltage divider, the current sense circuitry, and the 

feedback compensation network. Through research and learning more about each of the 

subsystems, the final design modifies the initial design decisions to create the system described in 

Chapter 3. 

1.1 Hardware 

This section describes the various hardware design iterations.  

1.1.1 Design Iteration #1 

 

Figure 67: Battery charger block diagram iteration #1 

 

Battery Voltage 

Current Sense Voltage 
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Figure 67 shows the original battery charger block diagram. The original design uses the 

MSP430FR5969 MCU interfaced with the Sharp LCD BoosterPack. The final design uses the 

C2000 LaunchXL-F28069M because of increased performance resulting from higher operating 

frequency, higher resolution PWM, and more available ADCs for battery monitoring. Appendix 

C provides more detail on the MCU comparison. The original design also uses the internal current 

sense monitor provided by the LM5117. The final design uses the INA169 external current shunt 

monitor for sensing battery current because the external current shunt allows operation while the 

LM5117 runs in discontinuous conduction mode, which serves as a limitation for the internal 

current monitor in the LM5117. The INA169 external current shunt monitor also allows changing 

the gain by modifying the external gain resistor, which provides more design flexibility. 

1.1.2 Measuring Battery Voltage 

1.1.2.1 Design Iteration #1 

The battery pack voltage comes directly from the output node, which connects to the 

positive terminal of the battery pack. The battery pack voltage divides down using a voltage 

divider, shown in Figure 68, to allow a 0 to 27 V battery pack voltage to represent 0 to 2.7 V for 

ADC monitoring.  

 

Figure 68: Output voltage divider for ADC monitoring of battery pack voltage 
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This voltage divider is intended for the MSP430FR5969 MCU, since the ADC voltage 

ranges from 0V to 2.7V. For the C2000 LaunchXL-F28069M MCU, the ADC voltage range is 

0V to 3.3V, so the final design requires a different voltage divider. 

1.1.3 Current Sense 

1.1.3.1 Design Iteration #1 

By measuring the voltage drop across the sense resistor, Rs, a current sense amplifier 

internal in the LM5117 senses the current flowing through QL, which is equivalent to the current 

through the inductor and the output charge current. The output of the current sense amplifier goes 

to a conditioner before going to a current monitor amplifier internal in the LM5117 before 

outputting on the current monitor pin labeled CM. See Figure 69 below to see the current sensing 

circuitry used to measure the battery current. 

 

Figure 69: Current sense circuitry for battery current monitoring 

The output of the CM pin is a voltage proportional to average inductor current of the 

Buck converter, which represents the output current. This analog voltage then goes to an ADC on 

the MCU, which allows reading the voltage value, converting to current, and then changing the 

system accordingly. 
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This design changes in the final system because an external INA169 current shunt monitor allows 

accurate current measurements even if the converter operates in discontinuous conduction mode. 

In addition to accuracy, gain modification with an external resistor provides another advantage. 

1.1.4 Feedback Compensation 

1.1.4.1 Design Iteration #1 

The original design used the feedback compensation network shown in Figure 24 with 

Rcomp = 10kΩ, Ccomp = 0.1µF, and CHF = 22pF. The final design uses the feedback 

compensation network shown in Figure 34 to reduce the DC gain of the original design. 

Removing Ccomp allows the external resistor network to set the DC gain, rather than the gain of 

the internal error amplifier of the LM5117 Buck Controller. This gives the PWM control of the 

output of the LM5117 Buck Controller by outputting a PWM signal that accesses the linear 

region of the internal error amplifier when lowpass RC filtered. The next section discusses the 

troubleshooting steps that resulted in the various design iterations.  
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APPENDIX E: TROUBLESHOOTING 

1.1 Discharge 

The first step in testing the battery charger requires discharging a battery to prepare it for 

charging. Figure 70 shows the discharge of a Panasonic Li-Ion 18650 from its nominal voltage of 

3.6V to its cutoff voltage of 2.5V. 

 

Figure 70: Panasonic Li-Ion 18650 discharge 

1.2 ADC Testing 

This section tests the ADC of the MCU to see if a known voltage produces the expected 

digital value that so the MCU can properly control the behavior of the charger. The first input 

voltage tested is 0V (GND) shown in Figure 71. 
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Figure 71: ADC test readings for 0V 

The ADCINA2 channel used to measure current sense voltage reads 0 for ten consecutive 

readings when 0V is applied. The ADCINA4 channel used to measure battery voltage reads non-

zero for half of the readings with a maximum deviation of 2. Next, a 3.3V, which corresponds to 

the max digital value of 4096, is applied to each ADC channel as shown in Figure 72. 

 

Figure 72: ADC test readings for 3.3V 
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In this case, both channels differ from the expected digital value of 4096 in every ADC 

reading with the readings ranging from 4069 to 4074 for the battery voltage channel and 4067 to 

4070 for the current sense voltage channel. These lower than expected values require calibration 

in software as described in Appendix F. 

1.3 PWM Testing 

This section tests the PWM functionality. The charger relies on using a PWM with 

varying duty cycle to feed into the feedback node of the LM5117 Buck controller in order to 

control the buck duty cycle to properly charge the battery. Figure 73 shows the PWM range 

works correctly from 0% duty cycle to very narrow 1% to very wide 99% to 100% duty cycle and 

anything in between. The PWM is set for 200 kHz to match the switching frequency of the 

LM5117. The MCU has a system clock frequency of 90 MHz, which allows the PWM set value 

to be between and 450 providing a 0.22% step size. 

 

 

Figure 73: Example of PWM range from 0% to 1% to 99% to 100% duty cycle 
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1.4 Battery Charger System Testing 

This section tests the complete system. 

1.4.1 Charge Attempt #1 

1.4.1.1 Date: 4/9/15 

1.4.1.2 Procedure 

1. Connect MCU to LM5117 

2. Connect battery into holder and close the circuit 

3. Connect ground of battery current shunt to GND of LM5117 

4. Connect positive of battery to V- of output current sense circuit 

5. Plug in MCU 

6. Power up LM5117 by plugging power adapter into wall outlet 

7. Download charger program 

8. Start charger program 

1.4.1.3 Test Configuration 

Refer to Figure 36 for a block diagram that shows the test configuration. The battery 

connects in series with a current shunt of 5mΩ that measures 50mV for a 10A current, which 

means a measurement of 5mV corresponds to a 1A current. The current shunt measures the 

battery voltage across the positive and negative terminal of the battery. There is also a 

thermocouple temperature probe taped to the surface of the battery. An Agilent  34972A LXI 

Data Acquisition/Switch unit records each measurement every five seconds. The Y Reference is 

22.4 °C for temperature (white trace #104), 3.6VDC for battery voltage (green trace #105), and 

0mVDC for current sense voltage (yellow trace #106). The Y scale is 10 °C for temperature, 

200mVDC for battery voltage, and 0.5mVDC for current sense voltage. 
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1.4.1.4 Results 

 

Figure 74: Charge attempt #1 

1.4.1.5 Summary 

The battery charger switched between charging at 300mA and not charging (back to zero 

current) then charging again in an oscillatory manner. When the LM5117 was disconnected, the 

battery no longer charged, as shown in Figure 74 with the long period of zero current. During 

operation, the charger goes into FAULT mode, which means the charge current or battery voltage 

exceeds the software setting. When the FAULT mode is bypassed, the charger goes into 

CONSTANT_CURRENT mode, which sets a constant PWM setting for a constant current. Even 

when the PWM value is changed, the charger behavior remains unchanged, which suggests the 

PWM setting range is not properly driving the feedback node of the LM5117. 

1.4.1.6 Things to Check Before Next Charge 

 Feedback node voltage divider 
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1.4.2 Charge Attempt #2 

1.4.2.1 Date: 4/12/15 

1.4.2.2 Procedure 

1. Connect MCU to LM5117 

2. Connect battery into holder and close the circuit 

3. Connect ground of battery current shunt to GND of LM5117 

4. Connect positive of battery to V- of output current sense circuit 

5. Plug in MCU 

6. Power up LM5117 by plugging power adapter into wall outlet 

7. Download charger program 

8. Start charger program 

1.4.2.3 Test Configuration 

The test configuration is the same configuration as charge attempt #1 except a change to 

the voltage divider. The voltage divider was previously set to 32kΩ for the top resistor and 1kΩ 

for the bottom resistor. The modification changed the voltage divider feedback resistors to 10kΩ 

and 4.9kΩ since the previous values were set for a 27V output test to test the LM5117 buck 

controller by itself. The new resistor values are for driving the feedback node with the 3.3V from 

the PWM. 
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1.4.2.4 Results 

 

Figure 75: Charge attempt #2 

 

Figure 76: Switch node of LM5117 for charge #2 
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1.4.2.5 Summary 

The test shows the current switching from 0A to 300mA at the output to the battery, 

which is the same result as before the voltage divider was changed. After checking the switch 

node of the buck converter in shown in Figure 76, it becomes clear that the buck is switching at 

maximum duty cycle, which suggests a low voltage being fed into the feedback node of the 

LM5117 since the feedback node is inverted. The switch node is also only switching to 3.3V, 

which is the voltage coming from the MCU rather than the power supply voltage of 48V, which 

suggests the LM5117 is not receiving the proper power. If the fault condition is left in software, 

the system goes into the fault mode, which means the output reaches an overvoltage condition, 

which is again evident by the LM5117 switching at max duty cycle. When the MCU is removed, 

the current output becomes zero which means the PWM is influencing the LM5117 switching but 

incorrectly. 

1.4.2.6 Things to Check Before Next Charge: 

 PWM signal integrity to the LM5117 feedback node 

 Code that sets PWM 

 PWM signal after the RC low-pass filter 

1.4.3 Charge Attempt #3 

1.4.3.1 Date: 4/13/15 

1.4.3.2 Procedure 

 Connect MCU to LM5117 

 Connect battery into holder and close the circuit 

 Connect ground of battery current shunt to GND of LM5117 

 Connect positive of battery to V- of output current sense circuit 

 Plug in MCU 

 Download charger program 
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 Start charger program 

 Power up LM5117 by plugging power adapter into wall outlet 

1.4.3.3 Test Configuration 

Same configuration as charge attempt #2 except the MCU receives power and the charger 

program starts before powering up the LM5117, which provides an initial PWM to the LM5117 

feedback node upon receiving power. There is no digital filter implemented in software to 

compensate the MCU to maintain stability and the output no longer connects to the feedback 

node. The PWM is set directly to approximately 0.8V to match the reference voltage of the 

feedback node. The charger now operates in open loop configuration with no feedback. 

1.4.3.4 Results 

 

Figure 77: Charge attempt #3 
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Figure 78: Switch node of LM5117 for charge attempt #3 

 

Figure 79: Reset pin on LM5117 for charge attempt #3 
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1.4.3.5 Summary 

The test shows the charge current switching from 0A to 3A and the switch node 

switching from 0V to 48V. The switch node, shown in Figure 78, would turn off for short periods 

suggesting the LM5117 is in current limit “hiccup” mode in which the LM5117 detects an 

overcurrent condition and shuts down the switching for a certain number of switch cycles before 

coming back on again. This was verified by checking the reset pin, shown in Figure 79, which 

was also triggering confirming the current limit (hiccup mode) for the LM5117. Since the PWM 

appears to have no control over the output current, testing needs to verify that there is actually a 

linear region of operation with the LM5117 that will allow PWM control of the output  

1.4.3.6 Things to Check Before Next Charge 

 Feedback compensation for LM5117 

 PWM setting that causes current to remain constant in the linear region of operation 

1.5 Linear Region: Function Generator Test 

A function generator set to a 0V to 3.3V square wave emulates the capability of the 

PWM output from the MCU after the RC low-pass filter into the feedback node of the LM5117. 

This allows changing the duty cycle in fixed increments to replicate the PWM signal in order to 

find the linear region of operation for the LM5117. Figure 80 shows the switch node of the buck 

converter on the LM5117 when the function generator reaches 73.9% with a constant current 

electronic load set at 100mA on the output of the LM5117. 
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Figure 80: Switch node with function generator set to 73.9% and applied at feedback node of 

LM5117 

Figure 80 shows that at this function generator setting, the buck duty cycle is maximum. 

Figure 81 shows the switch node of the buck converter on the LM5117 when the function 

generator is at 74.0% with a constant current electronic load set at 100mA on the output of the 

LM5117. 

 

Figure 81: Switch node with function generator set to 74.0% and applied at feedback node of 

LM5117 

Figure 81 shows that at 74%, the buck duty cycle is minimum. Since the buck duty cycle 

is maximum at 73.9% and minimum at 74%, it becomes clear that the DC gain of the feedback 

compensation on the LM5117 is too high because the slightest voltage variation causes the 
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internal error amplifier to either rail high or rail low preventing access to the linear region. After 

checking the feedback configuration, it becomes clear that it is set for normal LM5117 operation 

with the feedback voltage feeding back into the feedback node but not set up for PWM injection 

operation. Figure 29 shows the original but incorrect type 2 compensation configuration that 

causes the DC gain to equal the internal error amplifier, which is much too high. Originally, 

Rcomp = 10kΩ, Ccomp = 0.1µF, and CHF = 22pF. After modifying the feedback compensation 

to match Figure 34 and the simulation schematic in Figure 27, the function generator test is 

repeated and the linear region occurs between the function generator duty cycle of 58% and 64%.  

1.6 Linear Region: PWM Test 

To find out what PWM values corresponds to what output charge current, the charger is 

set with the PWM at maximum duty cycle corresponding to a setting of 450. Due to the inversion 

of the inverting internal error amplifier on the LM5117, maximum duty cycle on the PWM 

corresponds to minimum output current. The PWM decrements by one value every five seconds, 

and the Agilent  34972A LXI Data Acquisition/Switch Unit monitors the battery charger current 

every second. The test shows that at a PWM value of 285, the charge current becomes 9.91mA, 

which is the first PWM value that accesses the linear region of the LM5117. Each decrement on 

the PWM steps the circuit up approximately 16.12mA. The current continues to increase until the 

PWM value reaches 173, providing a max charge current of 1.81A. As the PWM value decreases 

from this point, the charge current decreases rapidly. When the PWM value is above 285 or 

below 169, the charge current is actually negative, meaning the battery is providing 

approximately 500 µA. The PWM provides linear current control at a duty cycle between 68% 

and 38%. See Figure 82 for a summary of the PWM value and corresponding charge current. 
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Figure 82: PWM value and corresponding charge current 

Now that the MCU has full control over the output current by setting a specific PWM 

value, the charger algorithms shown in Figure 53 and Figure 54 can be implemented. Because the 

PWM value must be a whole integer value, the MCU filter from the simulation of Figure 27 

becomes difficult to implement in software. Instead, the charger uses delays to emulate the 

functionality of the filters by setting the current loop and voltage loop bandwidths to 1 kHz. 

Through testing, it becomes clear that without delays, the charger updates the PWM values faster 

than they can settle due to the 10 kHz cutoff frequency of the RC low-pass filter at the output of 

the PWM causing the output current to oscillate at an unintended set point. If the charger uses too 

much delay, the slow feedback of the battery voltage and current sense voltage causes an 

incorrect charge profile. Appendix F shows how to calibrate the ADC readings for battery voltage 

and current sense voltage to provide accurate feedback. The next section of troubleshooting 

shows how to prevent a nearly full-charged battery from prematurely triggering the constant 

voltage mode. 
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1.7 Adding Decoupling Capacitors 

During testing, it becomes clear that batteries at or above 3.9V transition to the constant 

voltage mode immediately on starting the charger. This creates a problem because the charger 

should be in constant current mode until the set charge voltage threshold of 4.2V. The output 

node of the charger where the ADC measures the battery voltage shows voltage spikes in excess 

of 300mV as shown in Figure 83. 

 

Figure 83: AC-coupled output voltage spikes of 300mA while charging battery 

The output node where these spikes occur inputs directly into the ADC that monitors 

battery voltage meaning the charger thinks the battery is at 4.2V at as low as 3.9V. This causes 

the charger to start constant voltage mode prematurely, since it thinks the battery measures 4.2V. 

Adding two 2µF decoupling capacitors directly across the bottom resistor in the output voltage 

divider, labeled “Rbottom” in Figure 35, solves this problem. These capacitors help reduce the 

voltage spikes by preventing fast switching signals from changing the output node. See Figure 84 

below to see how adding the decoupling capacitors improved the output voltage spikes. 
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Figure 84: AC-coupled output voltage spikes reduced to 100mV with decoupling capacitors 

With the addition of the decoupling capacitors, the output voltage spikes that the ADC 

measures for battery voltage reduce to 100mV. These spikes occur roughly every 5 µs 

corresponding to a 200 kHz frequency. This is a direct result of the switching frequency of the 

LM5117 set to 200 kHz. The design sets the sampling frequency of the ADC to 198 kHz so that 

the ADC never samples on a spike. With these improvements, the charger successfully charges 

batteries 4.1V and below by charging in constant current mode up to 4.2V before transitioning to 

constant voltage mode. 
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APPENDIX F: CALIBRATION 

After successfully controlling the output current of the LM5117 with the PWM, this 

section calibrates the ADC values so the feedback is accurate. The 12-bit ADCs measure battery 

voltage through a voltage divider and current sense voltage through the INA169 current shunt 

monitor circuit. Both of these measurements have losses in addition to potential noise on the 

wires that affect the actual value read by the MCU. The expected values are as follows: 

1.1 Calibrating ADC Readings 

1.1.1 Battery Voltage 

𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒 =  

𝑉𝑖𝑛 ∗
𝑅𝑏𝑜𝑡𝑡𝑜𝑚

𝑅𝑡𝑜𝑝 ∗ 𝑅𝑏𝑜𝑡𝑡𝑜𝑚

3.3
∗ 4096                                                                                (𝐸𝑞. 15) 

Rbottom = 4.9705 kΩ (4.99kΩ nominal) 

Rtop = 24.838 kΩ 9(24.9 kΩ nominal) 

Table XXXI: Expected and measured ADC values for battery voltage calibration 

 Measured voltage 

[V] 

Expected 

ADC 

Actual ADC at 

1.5 A 

Actual ADC at 

0A 

Charge Voltage 4.2 869 988 888 

Nominal 

Voltage 
3.6 745 883 773 

 

As Table XXXI shows, the expected ADC value varies significantly from the actual ADC 

reading while the circuit operates. The actual ADC reading also decreases as the current 

decreases, which is accounted for in the constant voltage mode algorithm. 

1.1.2 Current Sense Voltage 

𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒 =  

𝐼𝑜𝑢𝑡
1.5

3.2877
∗ 4096                                                                                                        (𝐸𝑞. 16) 
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Table XXXII: Expected and measured ADC values for current sense voltage calibration 

 Expected 

current [A] 

Measured 

current [A] 

Expected 

ADC 

Actual ADC PWM value 

Charge 

Current 

(0.5C) 

1.5 1.5019 4080 3861 191 

Taper Current 

(0.1C) 
0.3 0.278 816 622 277 

Taper Current 

(0.033C) 
0.1 0.0946 272 383 279 

 

Similar to the ADC readings for the battery voltage, Table XXXII shows significant 

difference from the expected ADC readings and the actual ADC readings. This affects the charge 

profile, because they determine when the charger switches from constant current mode to 

constant voltage mode in addition to the charge current and the taper current. The algorithms in 

software use the calibrated “actual” ADC readings in order to achieve the desired charge profile. 

1.2 Digital Filtering 

Another way to improve accuracy is to use digital filters for averaging. Instead of using a 

single ADC reading for both current sense voltage and battery voltage monitoring, the final 

design increases the sample frequency and takes more readings. The MCU adds these readings 

and divides by the total number of readings for each ADC to provide a more precise average. By 

increasing the sample frequency proportional to the number of samples, the system keeps the 

bandwidth the same to maintain stability. For example, using a sampling frequency of 1 kHz and 

taking one battery voltage reading and one current sense reading gives a bandwidth of 500 Hz but 

uses only one sample for both battery voltage and current sense voltage. Instead, the final design 

increases the sampling frequency to 198 kHz and takes 100 battery voltage readings and 100 

current sense voltage readings, adds them up, and divides by 100 to provide an average for both 

battery voltage and current sense voltage while maintaining the approximate 1 kHz bandwidth. 

Note that the monitoring bandwidth is set for 1 kHz, and if the PWM updates, delays limit the 

actual voltage or current loop bandwidths to 1 kHz as well to match the bandwidths from the 

simulation to maintain stability.  
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APPENDIX H: LIST OF ACRONYMS 

Acronym 

ADC: Analog-to-digital converter 

BMS: Battery Management system 

DAC: Digital-to-analog converter 

COV: Cell Overvoltage 

CUV: Cell Undervoltage 

EVM: Evaluation Module 

IC: Integrated Circuit (chip) 

LCD: Liquid crystal display 

LED: Light emitting diode 

Li-Ion: Lithium Ion 

 Li-Co: Li-Cobalt 

 Li-Mg: Li-Manganese 

 Li-P: Li-Phosphate 

MCU: Microcontroller Unit 

NDV: Negative Delta Voltage 

NiCd: Nickel-Cadmium 

NiMH: Nickel-Metal Hydride 

Pb: Lead-acid 

PCB: Printed circuit board 

PWM: pulse-width modulation 

SLA: Sealed Lead-Acid 

SPI: Serial Peripheral Interface 

SOC: State of Charge 

USB: Universal Serial Bus 
 

 

 


