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ABSTRACT 

 

 

A Comparison of Image Processing Techniques for Bird Detection 

Elsa Reyes 

 

 

Orchard fruits and vegetable crops are vulnerable to wild birds and animals. 

These wild birds and animals can cause critical damage to the produce. Traditional 

methods of scaring away birds such as scarecrows are not long-term solutions but short-

term solutions.   This is a huge problem especially near areas like San Luis Obispo where 

there are vineyards.  Bird damage can be as high as 50% for grapes being grown in 

vineyards.  The total estimated revenue lost annually in the 10 counties in California due 

to bird and rodent damage to 22 selected crops ranged from $168 million to $504 million 

(in 2009 dollars). 

A more effective and permanent system needs to be put into place. Monitoring 

systems in agricultural settings could potentially provide a lot of data for image 

processing. Most current monitoring systems however don’t focus on image processing 

but instead really heavily on sensors.  Just having sensors for certain systems work, but 

for birds, monitoring it is not an option because they are not domesticated like pigs, cows 

etc. in which most these agricultural monitoring systems work on.  Birds can fly in and 

out of the area whereas domesticated animals can be confined to certain physical 

regions.   
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The most crucial step in a smart scarecrow system would be how a threat would 

be detected.  Image processing methods can be effectively applied to detecting items in 

video footage. This paper will focus on bird detection and will analyze motion detection 

with image subtraction, bird detection with template matching, and bird detection with 

the Viola-Jones Algorithm.  Of the methods considered, bird detection with the Viola-

Jones Algorithm had the highest accuracy (87%) with a somewhat low false positive 

rate.  This image processing step would ideally be incorporated with hardware (such as a 

microcontroller or FPGA, sensors, a camera etc.) to form a smart scarecrow system. 

 

Keywords: bird detection, bird recognition, Viola Jones, template matching, motion 

detection  
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1.0 

Introduction 

 

Traditional methods of scaring away birds such as scarecrows are only a short-

term fix.  Scarecrows, raptor models, eye balloons (raptor models and eye balloons are 

usually shaped to look like hawks and owls), and predator models of cats and snakes are 

only short term solutions as discussed in [1].   This is a huge problem especially near 

areas where there are vineyards.  Bird damage can be as high as 50% for grapes being 

grown in vineyards [2].  “The total estimated revenue lost annually in the 10 counties [in 

California] due to bird and rodent damage to 22 selected crops ranged from $168 million 

to $504 million (in 2009 dollars)” [3].  Because of this some California counties have 

even seen an increase in employment for pest control [3].   

A more effective and permanent system needs to be put into place. As said before 

solutions like scarecrows only temporarily scare away the birds until the birds become 

comfortable with habitat again.  Therefore in the long term these methods essentially 

have an almost 0% success rate.  The use of chemicals and netting as a method of bird 

management in fruit crops is discussed in [4, 5].  They concluded chemicals gave mixed 

results.  They found that the non-treated control system had about 65% undamaged food 

fruit and the crops with the netting had 80% undamaged fruit.  Therefore if we assume 

that 45% of that damage is from birds, of that 45% netting decreased the amount of 

damaged fruits by 30% ([80%- 65%] /45%). 

Ideally farmers would want a much higher amount of undamaged fruit.  Although 

netting has been proven to be successful, the article [4] mentions how netting can be 
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expensive.  With the combination of labor to put on (and take off) and material costs of 

wire the cost is over $500 a year for a 10 year period.  Netting costs thousands of dollars.  

A smart scarecrow system would potentially be much cheaper and much more accurate. 

Monitoring systems in agricultural settings could potentially provide a lot of data 

for image processing. Most current monitoring systems however don’t focus on image 

processing but instead really heavily on sensors [6-8] such as temperature/humidity 

sensors and motion sensors.  Just having sensors for certain systems work, but for bird 

monitoring it is not enough because they are not domesticated like pigs, cows etc. in 

which most of the current agricultural monitoring systems work on. 

The end product to really be able scare away birds would be to setup a smart 

scarecrow system.  The system would have an IP-camera monitoring an agricultural field, 

a processing component (which is what this paper focuses on) would determine if there 

are birds in a scene.  This would most likely run on an FPGA or microcontroller (out near 

the agricultural area and receiving data from the IP-camera). The FPGA or 

microcontroller would then scare away the bird, by sending a message to sound an alarm, 

shoot water at the area where the birds are located, “walk” toward the birds (like by 

attaching the FPGA/microcontroller to an autonomous robot) etc.   The system diagram 

of this proposed system is shown in Figure 1. 

 



3 

 

FPGA/
Microcontroller

Image Processing 
Component

FPGA Scares Away 
Bird/s Through 
Audio/Water

IP Camera Bird is Scared Away

If Bird Detected

If Bird Not Detected

 

Figure 1: System Diagram of Smart Scare Crow System 

 

The most crucial step in a smart scarecrow system would be how a threat would 

be detected. Image processing methods can be effectively applied to detecting items in 

video footage. This paper will focus on bird detection and will analyze motion detection 

with image subtraction, bird detection with template matching, and bird detection with 

the Viola-Jones Algorithm.  This is why in Figure 1, the image processing component is 

red because this is what this paper focuses on. 

This paper will give a brief overview of what has already been done in this area 

(this current section). Then it will discuss image difference subtraction, then template 

matching, and finally the Viola-Jones Algorithm. Next a brief overview of the 

experimental setup will be given followed by the results and conclusions for the topics 

previously mentioned. 

Some smart scarecrow systems that have been developed in the past are [9, 10]. 

These systems either did not contain an image processing step or the image processing 

step was not fully developed. Past scarecrow systems also did not have training data that 

had backgrounds similar to agricultural backgrounds.  As talked about in [11, 12], 
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pigeons, swallows, starlings, and crows are a threat to central coast agriculture. 

The Motion Detection section (Chapter 2) used videos as data because the video 

frames needed to come from a static video camera and have to be video sequences.  It 

was difficult to find videos of birds which is why the dataset is so small compared to the 

other two chapters Template Matching (Chapter 3) and Bird Detection Using the Viola-

Jones Algorithm (Chapter 4).  Both the template matching and Viola-Jones algorithm 

section used the same data sets as far as bird images.  The Viola-Jones algorithm requires 

additional images of non-birds (unlike the other two methods) as well.  The run times 

shown in this paper do not include the time it takes to load needed images or the time it 

takes to display figures to Matlab.  To insure the run times were correct, the algorithm 

was run 20 times each time recording the run times.  The 20 run times were then average 

together for an average run time of the algorithm. 
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2.0 

Motion Detection 

2.1. Introduction 

One of the traditional motion detection algorithms used for tracking objects 

(usually humans) has been the Kalman Filter [13]. Optical flow and Mean Shift tracking 

has also been used for bird detection [14, 15]. These methods however are much more 

computationally intensive than other simpler methods such as background subtraction, or 

difference subtraction because of all the extra calculations in trying to predict the object’s 

next future positions.  Both of these studies’, [14, 15], main goal was to be able to track 

birds.  For our case, tracking the bird is not necessary because bird detection should be 

enough for a smart scarecrow to operate properly.  In our case we can avoid storing past 

information and calculations when new image frames come in from video footage.   

Background subtraction would not be a good solution for outdoor video footage. 

The lighting in the scene would cause the background image to be potentially inaccurate 

of what the current background is. Motion detection can instead be accomplished by 

subtracting back to back images as shown in equation 1. The absolute value of this 

difference then becomes a difference image that can be used to find blobs which are 

objects in the scene. 

𝑑𝑖,𝑗(𝑥, 𝑦) = {
1, 𝑖𝑓 |𝑓(𝑥, 𝑦, 𝑡𝑖) − 𝑓(𝑥, 𝑦, 𝑡𝑗)| > 𝑇

𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                      (1) 

This method can be further improved by adding up the accumulative differences. 

An accumulative difference image (ADI) is formed by comparing this reference image 

with every subsequent image in the sequence. A counter for each pixel location in the 

accumulative images is incremented every time a difference occurs at that pixel location 
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between the reference and an image in the sequence.  Often useful is consideration of 

three types of accumulative difference images: absolute, positive, and negative ADIs.  

These equations are shown below. 

𝐴𝑘(𝑥, 𝑦) = {
𝐴𝑘−1(𝑥, 𝑦) + 1, 𝑖𝑓 |𝑅(𝑥, 𝑦) − 𝑓(𝑥, 𝑦, 𝑘)| > 𝑇

𝐴𝑘−1(𝑥, 𝑦), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (2) 

𝑃𝑘(𝑥, 𝑦) = {
𝑃𝑘−1(𝑥, 𝑦) + 1, 𝑖𝑓 [𝑅(𝑥, 𝑦) − 𝑓(𝑥, 𝑦, 𝑘)] > 𝑇

𝑃𝑘−1(𝑥, 𝑦), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (3) 

𝑁𝑘(𝑥, 𝑦) = {
𝑁𝑘−1(𝑥, 𝑦) + 1, 𝑖𝑓 [𝑅(𝑥, 𝑦) − 𝑓(𝑥, 𝑦, 𝑘)] < −𝑇

𝑁𝑘−1(𝑥, 𝑦), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (4) 

 

2.2. Experimental Setup 

 Four videos of birds moving with a still non-changing background were used to 

adjust the threshold value that came from [16]. It’s important to make sure minimal 

movement in the background isn’t detected as a moving object.  Sample images of the 

videos used are showed in Figure 1 below. 



7 

 

 

Figure 2: Sample Images from Videos Used for Thresholding 

  

Ten videos of various birds of different backgrounds were used for the actual testing of 

the motion detection. Most videos only contained one bird in the footage but some 

contained multiple birds in the footage. Like the videos used for testing, the background 

is still (static) in the whole footage.  

 To see if any improvements could be made in motion detection, mathematical 

morphology operators, opening and closing, were done on the binary image.   The reason 

these morphology operators were added to this experiment were to see if it removed noise 

and imperfections to the potential “blobs” that represent moving objects.  The 

morphology operators do a good job of region filling in some cases on binary images.  
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Thinning and/or thickening might better allow for birds to be detected as separate birds 

and it might better detect the whole bird instead of multiple regions of the bird moving. 

Seven different cases were run for testing. The first case did not contain 

mathematical morphology operators. Two cases contained the opening operator, one with 

the structuring element being a disk shape and the other a diamond shape. Two cases 

contained the closing operator, one with the structuring element being a disk shape and 

the other a diamond shape. Another case used the opening operator and then the closing 

operator (both with the structuring element being a disk shape). The last case used the 

closing operator and then the opening operator (both with the structuring element being a 

disk shape). 

As far as other parameters when creating the morphological structuring element, 

the value 10 was used.   This seemed like a number not too big or too small for most of 

these extra parameters.  The code used to make these templates with morphology is in 

Appendix B4.  The code running the templates on bird images is shown in Appendix B5. 

 For the ADI testing, 5 of the 10 videos used for motion detection were also used.  

The threshold was set to the optimal threshold found from the initial motion detection 

testing.  As shown from equations 2-4, the testing was done for Absolute, Positive, and 

Negative cases with varying k values. 

 

2.3. Results 

 The results for motion detection did not have a column for the average amount of 

false positives because there were no false positives found in any of tests run.  Because 

the background of the videos were still and the only motion in the videos were birds, 



9 

 

there were not false positives for any of the results in this chapter.  Table 1 shows the 

overall results of motion detection via image subtraction. The cases with the highest 

accuracies were the case with no morphology operators, both of the closing operators, 

and the closing then opening operators. The possible reason closing performed better 

could have been that dilation must be done first to fill in holes in the image. Beginning 

with erosion makes the blobs in the binary image into smaller blobs causing the object to 

not be detected as moving. 

 

Table 1: Motion Detection w/Morphology Results 

No. Technique Accuracy Run Time in Seconds 

1 No Morphology 81.8% 0.18 

2 Opening (Disk) 63.6% 0.2948 

3 Opening (Diamond) 54.5% 0.1022 

4 Closing (Disk) 81.8% 0.1144 

5 Closing (Diamond) 81.8% 0.1024 

6 Opening then Closing 63.6% 0.1382 

7 Closing then Opening 81.8% 0.1336 

 

The image below shows the video sample video at the top and the ADI for technique 

number 1 (no morphology).  The outline of the bird can be seen and ideally morphology 

will enhance the ADI. 
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Figure 3: Sample Video Frame for Morphology Operators 

 

As shown in the figure below, only morphology operators number 4 and 5 (the two type 

of closing) were able to properly find the bird for this sample video frame. 
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Figure 4: Background Subtraction Results for Morphology Operator for Sample Video 

Frame 

 The next table shows the results for the Absolute ADI, Positive ADI and Negative 

ADI with various k values.  K represents the number of frames accumulated to form the 

reference image.  Therefore the kth frame is then compared with the reference.  The 

Absolut ADI seemed to in general have the best results.  As the k value decreased, the 

accuracy seemed to increase.  Therefore the Absolute ADI with a k value of 10 had the 

best results. 
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Table 2: ADI Testing Results 

k 10 15 20 25 30 35 40 

Absolute 

ADI 

100% 100% 99.57% 99.50% 99.67% 100% 98.82% 

Positive 

ADI 

100% 100% 99.39% 99.15% 99.55% 100% 99.05% 

Negative 

ADI 

96.29% 97.59% 96.53% 100% 98.32% 95.54% 95.27% 

 

 The table below shows the run times of the ADI testing.  Overall the run times 

were very similar to the background subtraction run times shown in Table 1.  The 

negative ADI consistently had lower run times.  This could be because the equation for 

calculating the ADI is somehow computationally faster than the other ADI equations. 

 

Table 3: ADI Testing Run Times in Seconds 

k 10 15 20 25 30 35 40 

Absolute 

ADI 

0.1592 0.1484 0.1438 0.1288 0.1134 0.1144 0.1140 

Positive 

ADI 

0.1708 0.1720 0.1196 0.1450 0.1610 0.1360 0.1672 

Negative 

ADI 

0.0684 0.0743 0.0737 0.0710 0.0737 0.0808 0.782 
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 The errors in accuracy were caused when multiple birds were in the scene. For 

example if two birds were moving closely to each other, they were detected as one object 

moving as shown in Figure 2 and 3 below. Overall this error would not be too bad if 

developing a smart scarecrow system. Since at least one bird would be detected, the 

system would still alert that there is a threat. 

 The figure below shows an example of the ADI at the same frame location all 

with the same k value of ten.  The upper-left corner shows the video frame.  The upper-

right corner shows the absolute ADI.  The lower-left corner shows the negative ADI.  

The lower-right corner show the negative ADI.  The absolute ADI is a combination of 

both the positive ADI and negative ADI which is why it mostly likely had a higher 

success rate. 
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Figure 5: ADI Implementation Comparisons 

 

 The figure below shows one example of that the absolute ADI looks like for 

varying k values.  These ADIs are from the same video frame as shown in the previous 

figure.  The upper-left image is with a k value of 10.  The upper-right image is with a k 

value of 20.  The lower-left image is with a k value 30.  The lower-right image has a k 

value of 40.   The two lower images are starting to pick up more pixels from the 

background.  Lower k value are less likely to pick up minimal background noised. 
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Figure 6: Absolute ADI with Varying K Values 

 

 

Figure 7: Binary image with Two Birds Blending 
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Figure 8: Binary image with Two Birds Blending 

 

Although motion detection gives really high accuracy results, motion detection 

needs to be supplemented with another image processing technique (such as template 

matching and bird detection using the Viola-Jones algorithm) because anything moving 

in the scene will be detected as a bird.  This is why the next chapters go into object 

detection tailored to birds specifically. 
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3.0 

Template Matching 

3.1. Introduction 

Object recognition and object detection has had an increased importance with 

many fields such as biometrics, robotics, and other image processing applications. One of 

the oldest methods of object recognition is template matching.  Template matching 

consists of sliding the template over the search area (usually an image in which we are 

trying to locate an object in) and, at each position, calculating a “distortion” or 

“correlation” measure that estimates the degree of dissimilarity or similarity, between the 

template and the candidate. Then the minimum distortion or maximum correlation 

position (depending on the implementation) is taken to represent the instance of the 

template into the image under examination.  There are various ways of calculating the 

degree of dissimilarity or similarity like Sum of Absolute Differences (SAD) and the 

Sum of Squared Differences (SSD).  The Normalized Cross Correlation (NCC) is by far 

one of the most widely used correlation measures [17, 18]. In the paper [19] they 

compared various image processing techniques for bird recognition.  One of the 

techniques was template matching and they were able to in some cases get high 

accuracies. 

With Normalized Cross Correlation the template sub image is located into the 

image under examination by searching for the maximum of the NCC function: 

NCC(x, y) =
∑  𝑁

𝑗=1 ∑ 𝐼(𝑥+𝑖,𝑦+𝑗)∙ 𝑇(𝑖,𝑗)𝑀
𝑖=1

√∑  𝑁
𝑗=1 ∑ 𝐼(𝑥+𝑖,𝑦+𝑗)2𝑀

𝑖=1
∙√∑  𝑁

𝑗=1 ∑ 𝑇(𝑖,𝑗)2𝑀

𝑖=1

                                         (5) 

where x and y are the coordinates, i and j are integers, I and T denote the image and the 

template array matrix, and the original image is of dimensions MxN.  Since there might 
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be multiple matches between the template and the image, the points with a normalized 

cross correlation above a certain threshold are considered matches. 

 Another way the NCC can be calculated in a way more tailored to the image that 

is discussed in [20] and is as follows: 

 

𝜌(𝑥, 𝑦) =
φ(x,y)

σ1σT
                                                                     (6)                                                              

 

where the numerator φ(x, y) represents the cross correlation between the template and the 

current sub-window of position (x, y) in the input image. It can be calculated as 

following: 

 

φ(x, y) =
1

𝑚𝑛
∑  

𝑚

𝑖=1

∑[I(x + i, y + j) − I]̅[T(i, j) − T̅]

𝑛

𝑗=1

                                 (7) 

 

 

And the terms σ1 and σT represent standard deviation of the current sub-window of the 

input image and the template. 

 

σ1 = ∑  

𝑛

𝑗=1

∑[I(x + i, y + j) − I(x, y)̅̅ ̅̅ ̅̅ ̅̅ ]
2

𝑛

𝑖=1

                                              (8) 

 

σT = ∑  

𝑁

𝑗=1

∑[T(i, j) − T̅]2

𝑁

𝑖=1

                                                         (9) 



19 

 

 

 

 

where  I(x, y)̅̅ ̅̅ ̅̅ ̅̅  and T̅ represent the mean of the current sub-window of the input image and 

the template as follows: 

 

I(x, y)̅̅ ̅̅ ̅̅ ̅̅ =  
1

𝑚𝑛
∑  

𝑚

𝑖=1

∑ I(x +  i, y + j)                                                (10)

𝑛

𝑗=1

 

 

T̅ =  
1

𝑚𝑛
∑  

𝑚

𝑖=1

∑ T(i, j)

𝑛

𝑗=1

                                                           (11) 

 

The standard deviation and mean of the current sub-window allow the NCC to be less 

affected by the lighting conditions in the image.  The value of the NCC is between -1 and 

1. 

 While template matching is typically carried out in the spatial domain, it was 

found in [21-23] that template matching calculations are much faster in the Fourier 

Domain. [20, 24] show how the NCC specifically could be calculated much quicker and 

more robustly in the Fourier domain. 

 Below are the main steps in implementing the algorithm for each image that needs 

to be analyzed. 

I. Load the original image and template. 

II. The next steps are then done independently on each color space (the first one run 
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for red, the second run for green, and –the third run for blue). 

a. Calculate the Fast Fourier Transform (FFT) of both the image and 

template 

b. Pad the image on all the sides with zeroes so that the center of the 

template falls on the very first pixel of the main image when kept on the 

top-left corner 

i. Calculate the size of the template. 

ii. Pad rows of zeroes on the top and bottom of main image. The 

number of rows is equal to the size of template in y-direction 

divided by 2. 

c. Now, move the mask over the entire image and simultaneously multiply 

both the padded image and the template and store it in an array. 

d. Normalize NCC values such that they lie in the range from 0 (template 

and image are not similar at all) to 1 (the template is exactly the same as 

the current area of the template) using mean compensation. 

e. Unpad the array where the NCC values are being stored. 

III. Combine R, G, and B pieces by averaging the NCC results. 

IV. Find the positions where the value is above the selected threshold.  These 

coordinates will be the locations where potential desired objects, similar to the 

template, are located. 

V. Combine coordinate points that are clustered near each other  

VI. Repeat previous steps with scaled (resized) template. 
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Although template matching can potentially give better accuracy results if more 

templates are added, template matching is not a reasonable solution for real time 

processing.  Many templates have to be passed though the image which would make the 

processing time on one image too long for the results to be relevant to the current scene.  

For example, if the images are coming from a live video stream, by the time the template 

matching solution would determine whether there is a bird in the image or not, the birds 

could have left or entered the scene.  Ideally the template is also scaled and rotated about 

each coordinate point in the image making template matching highly computationally 

intensive.  In this template matching implementation, the templates are scaled to various 

sizes but not rotated about different degrees at each coordinate point. 

 

3.2. Experimental Setup 

  After looking at various template matching implementations, Dr. Kroon’s 

fast robust template matching [25] was selected.  He implemented a template matching 

algorithm that performed the normalized cross correlation in the Fast Fourier Transform.  

Dr. Kroon’s implementation is also considered fast and robust because the 

implementation allows for the storage of temporary variables from the image and faster 

search for multiple templates in the same image.  The implementation also padded the 

image with zeroes to allow for normalized cross correlation to be calculated on the edge 

pixels.  After the normalized cross correlation values are calculated, the results are then 

“unpadded”. 

 In our implementation, two templates in the RGB color space are used.  One 

template was an average image of all birds facing right (35 images) and the other 
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template was an average image of all birds facing left (24 images).  The images were 

averaged by summing all of the images of the same bird orientation and then dividing by 

the number of images.  The images were resized to be the same length and width.  The 

lengths/widths chosen were 480, 240, and 120 (and 60 was also tested with).  The two 

templates are shown below in Figure 1.  Some sample images used to make the templates 

can be seen below in Figure 2 and 3. 

 

Figure 9: Left Oriented Template 
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Figure 10: Right Oriented Template 

 As seen in the previous figures, it is hard to see the pixel value spread. The two 

figures below show the histogram equalized versions of the templates and the histogram 

of where the red, green, and blue values lie.  Most pixels are clustered around the color 

dark brown (red: 65, green: 65, blue: 65). 
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Figure 11: Equalized Image and Histogram of Left Template 

 

 

Figure 12: Equalized Image and Histogram of Right Template 

 After looking at the sample images below, most of the birds (for this specific 

project) are dark brown so it makes sense that this is where most of the pixel values in the 
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templates are in the dark brown region.  Because various kinds of backgrounds were 

used, the backgrounds seem to cancel each other out in the templates.  Although the 

templates could have been constructed with images of simple uniform backgrounds, this 

would potentially affect the accuracy because the majority of the bird images do not have 

simple uniform backgrounds.  The majority of the images are of birds in an outdoor 

environment. 

 

 

Figure 13: Sample Images Used to Make Right Template 
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Figure 14 Sample Images Used to Make Left Template 

 

 The templates were resized and the implementation was tested using 3 different 

sizes of the template and then 4 different sizes of the templates to see if this would 

improve the accuracy.  The four image sizes were 60x60, 120x120, 240x240, and 

480x480.  The images were resized using the imresize function available in Matlab.  The 

testing with only 3 different sizes excluded the 60x60 templates.  188 images containing 

various numbers of birds were used to test and these images were resized to be 640x480 

because this is the size the camera uses that will be eventually used for the project 

switching over to real time data.  An area in the image is considered a bird if the 

normalized cross correlation is above the specified threshold.  The threshold can range 

from zero to one with one meaning the template and the specified image area are exactly 

the same and zero that they are total opposites.  The specific threshold values tested were 
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0.7, 0.725, 0.75 and 0.8.  These numbers were selected after doing quick testing with this 

threshold value on a dozen images.   

Whenever a new area in the image passed the threshold, its normalized cross 

correlation value was compared with other areas considered nearby and the area with the 

lower normalized cross correlation value would be discarded.  Two areas are merged if 

the center points of these areas’ distance was less than or equal to the new area’s radius.  

The radius would be the length/width of the current template being used.  Figure 4 shows 

two images on the left that are unaltered (unpruned) showing all potential birds found.  

The red dot is the center pixel and the blue square is supposed to roughly enclose the area 

around the “found bird”.  The images on the right show the “pruned” results in which 

neighboring points are combined into one point. 
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Figure 15: Example of Unpruned Image and Pruned Image 

 Most of the images used for template matching and the Viola-Jones Algorithm are 

from the Caltech-UCSD Birds 200 (CUB-200), [26], an image dataset and the University 

of California Berkeley’s CalPhotos (an image database), [27].  

  

3.3. Results 

From the 188 images used to test both the threshold and number of template sizes 

for each sizes, the accuracy and false positives were recorded.  The Accuracy was 
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calculated by summing the total number of birds the algorithm was able to find and then 

dividing by the total number of actual birds in these 188 images.  The false positive value 

recorded in the table was the average amount of false positives found in the images.  The 

false negatives were not added in the table because the false negative percentage is just 

100% minus the accuracy percentage.  A high percentage in accuracy means a low 

percentage in false positives and vice versa. 

 

Table 4: Accuracy and False Positives Results 

Threshold Accuracy 

w/4 template 

sizes 

False positives 

w/4 template 

sizes 

Accuracy 

w/3 template 

sizes 

False Positives 

w/3 template sizes 

0.7 0.59 4.65 0.58 2.46 

0.725 0.54 3.62 0.43 0.9 

0.75 0.46 2.26 0.35 0.38 

0.8 0.11 0.37 0.03 0.02 

 

 As shown in the table below, in general, higher thresholds resulted in higher run 

times.  For an algorithm to be able to keep up in run time, it definitely needs to keep the 

detection under a second like motion detection (and as we will later see bird detection 

using the Viola-Jones algorithm). 
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Table 5: Run Time for Template Matching with Varying Template Sizes 

Threshold Run Time in Seconds 

w/4 template sizes 

Run Time in Seconds 

w/4 template sizes 

0.7 979.297 367.89 

0.725 224.06 44.87 

0.75 44.21 8.64 

0.8 6.32 5.49 

 

As shown in Table 4, as the threshold increases, the accuracy decreases and the 

false positives per frame decrease as well.  Adding an extra template size slightly 

increased both the accuracy and the number of false positives.  Images below show the 

output of some of the successful and unsuccessful runs of the algorithm. 
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Figure 16: Images Showing Successful or Partially Successful Bird Recognition 
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Images Showing Unsuccessful or Partially Unsuccessful Bird Recognition  

 

 

Figure 17: Images Showing Unsuccessful or Partially Unsuccessful Bird Recognition 

On Figure 7 below, the upper left image was the result of using a threshold value 

0.7.  The upper right image was the result of using a threshold value 0.725.  The lower 

left image was the result of using a threshold value 0.75. The lower right image was the 

result of using a threshold value 0.8.  The Figure shows that as the threshold increases, 

the accuracy decrease and the number of false positives decrease. 
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Figure 18: Various Thresholds on Same Image 

 As shown in Table 6 the accuracy and the number of false positives (FPs) 

increases as the number of bird images averaged together increases.  The first column 

shows how many bird templates were averaged together that were oriented to the left and 
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the second column shows how many bird templates were averaged together that were 

oriented to the right.   

 

Table 6: Template Averaging Results 

Avg. Amount of 

Left 

Avg. Amount of 

Right 

Accuracy Avg. Number of 

FPs 

1 1 0.39 1.78 

2 2 0.2 0.92 

3 4 0.29 1.03 

5 8 0.43 2.990 

24 35 0.54 3.62 

 

After analyzing where some of the false positives were located, some false 

positives would be near the edge of the image.  This meant the way the image was 

padded for calculating normalized cross correlation at those edge points were causing 

false positives.  The original method used to pad image was to pad with zeroes (which 

would look like a black frame around the image).  Run times were not shown in Table 6 

because changing what the template looks like has minimal change in the run time. 

Other methods used to try to decrease the number of false positives was a circular 

border, replicate border, a symmetric border, and a padding of “255” (which would look 

like a white frame around the image).  The white padding seemed to have the lowest 

numbers of false positives (FPS).  This is most likely due to the fact that the templates are 
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on the darker side of the spectrum and therefore white padding makes it very unlikely for 

an edge pixel have a high cross correlation. 

 

Table 7: Padding Techniques Results 

Method Number of FPs Avg. Number of FPs 

Original (0 Value Padded) 353 3.76 

Padded in White (255 Value 

Padded) 

345 3.67 

Circular 348 3.7 

Replicate 350 3.72 

Symmetric 348 3.7 

 

 The resolution of both the templates and the images were decreased as further 

experimentation in trying to increase accuracy.  The original resolution used for this 

project was 640x480.  The resolution was reduced in half for both the templates and the 

images (the images therefore where 320x240).  Another test was run with half the 

resolution of this previous resolution for both the templates and the images (the images 

where therefore 160x120).  The table below shows the results. For all three cases the 

same threshold was used (0.725).  ).  Run times were not shown in Table 7 because 

changing the padding technique has minimal change in the run time. 
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Table 8: Resolution Change Results 

 Accuracy Average Number of 

FPs 

Run Time in 

Seconds 

160x120 0.49 5.04 491.55 

320x240 0.49 4.88 417.30 

640x480 0.54 3.64 224.06 

 

As shown in the table, the smaller resolutions had a lower accuracy than the higher 

resolution.  The average number of false positives also increased, as the resolution 

decreased.  Template matching therefore works best with the original (and highest) 

resolution. 

 

3.4. Analysis and Future Work 

 With further testing the accuracy could be increased to a higher percentage by 

adding more templates however, each template added to the system also greatly slows 

down the system because of the extra computations needed for each additional template.  

Also it is important to note that in images with multiples birds, the algorithm was able to 

usually find a least one bird in the frame.  For a smart scarecrow this would be enough 

because scaring off one bird has the same procedure as scaring off multiple birds so the 

accuracy can be lower than expected to still perform successfully. A lot of the false 

positives were caused by branches, water backgrounds, and some birds occlude other 

birds. 

 For this project high false positives is not as damaging as false negatives.  It is 
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more fatal to not catch a bird attacking produce then the smart scarecrow indicating there 

is a bird when there isn’t one.  As the threshold increases, the false positives decrease but 

the accuracies decrease as well.  Therefore a lower threshold is optimal for this project 

because the accuracy of the system is more important than how many false positives are 

detected. 

 More templates could be added which would increase the accuracy and might or 

might not increase the false positives.  Possible templates that could be added to the 

collection are an average of birds that are facing straight (are centered) and templates 

with birds with their wings open.  Further testing could lead to a more fine-tuned optimal 

threshold that would most likely increase the accuracy of the algorithm.   
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4.0 

Bird Detection Using the Viola-Jones Algorithm 

4.1. Introduction 

After template matching, more research was done on more modern face detection 

techniques that could possibly be applied to bird detection.  Template matching works 

best with many templates and this is not optimal for a real time solution.  A popular face 

recognition algorithm that has competitive detection rates in real-time, is the Viola-Jones 

algorithm [32], The Viola-Jones algorithm has shown to be successful especially in face 

detection.  Although the training for the object classifier is slow, the actual detecting is 

fast which is why there have been some web browser implementations like [33] and 

mobile implementations like [34].   The Viola-Jones algorithm is also traditionally used 

for finding human body parts in a scene [35-37] and not just faces.  The Viola-Jones 

algorithm can be trained for almost any object as long as there is enough similar positive 

images that can be used for training the classifier. 

The classifier learns (via machine learning) from labeled data.  Images with the 

desired object labeled are called positive data. Ideally the training data should be large 

(thousands of images).  The labeled data is encouraged to have many variations across 

the desired object to detect such as variations in the pose of the object, the illumination in 

the image, etc.  Images not containing the desired object are also needed and are 

considered negative images. 

Then the AdaBoost algorithm is used.  A set of weak classifiers are made and then 

iteratively combines classifiers.  The final classifier is a linear combination of weak 

classifiers.  Image features are used by AdaBoost that are “rectangle filters” similar to 
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Haar wavelets.  The integral image is also used by AdaBoost. The integral image 

computes a value at each pixel (x, y) that is the sum of the pixel values above and to the 

left of (x, y), inclusive.  This can quickly be computed in one pass through the image. 

 

Figure 19: Integral Image Computation at x, y 

 These classifiers are then cascaded for even higher accuracies.  Usually the higher 

cascade level (higher feature classifier) will have a lower false positive rate.  

 

4.2. Experimental Setup 

Matlab r2013a introduced Viola-Jones object detection training functions in its 

Computer Vision System Toolbox.  The Cascade Training GUI made by Shoelson [38] 

was used to train the cascade detector.  This project helps you set up all the parameters 

that go into the trainCascadeObjectDetector function.  This function is used to train a 

cascade object detector model.  The first step of the Viola-Jones algorithm, is to gather 

positive images and label the desired object (in this project’s case, birds) as the region of 

interest (ROI) as shown in the figure below. 
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Figure 20: Selecting Images/ROIs 

 After all of the positive images have been labeled ROIs, a folder with negative 

images is made.  Images of trees, branches, and other animals such as rabbits and deer 

were used as negative images.  It is important for the detector to know the difference 

between for example of an image of a branch and an image of a bird on a branch.  All of 

these negative images were put into the same folder.  Below are sample images of the 

positive images used for this experiment. 
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Figure 21: Horizontal Positive Samples 
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Figure 22: Vertical Positive Samples 
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Below are examples of samples used in the negative folder (non-bird images). 

 

Figure 23: Horizontal Negative Samples 
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Figure 24: Vertical Negative Samples 

 

There is an option to add the positive images in the negative images pool with the 

ROIs deleted.  This is the first step needed for running the filter as shown in in the figure 

below.  The next figure is zoomed in on step two which is to select parameters for the 

training detector. 
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Figure 25: Training a Cascade Detector 
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Figure 26: Variables in Viola-Jones Algorithm 
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All the parameter settings shown in the figure above are the default settings.  The first 

parameter seen in the top figure is the per-stage false alarm rate, which is the acceptable 

false alarm rate at each stage.  The false alarm rate is the fraction of negative training 

samples incorrectly classified as positive samples.  The overall false alarm rate is 

calculated using the false alarm rate per stage and the number of case stages.  The lower 

this number is, the higher the complexity of each stage. 

The next parameter is the per-stage true positive rate.  Minimum true positive rate 

required at each stage.  The overall resulting target positive rate is calculated using the 

true positive rate per stage and the number of cascade stages.  The higher the value this 

variable has, the higher the complexity of each stage.  As [39] explains this increased 

complexity could result in longer training and detection times. 

The next parameter is the number of cascade stages.  The false alarm rate and the true 

positive rate need to be adjusted accordingly when the number of cascade stages are 

changed. Increasing the number of stages may result in a more accurate detector but also 

increases training time.  More stages may require more training images, because at each 

stage, some number of positive and negative samples may be eliminated.  Increasing the 

number of stages also increases the false negative rate. 

The next parameter is the feature type.  The Viola-Jones algorithm Matlab version 

feature types are shown in table below.  

Table 9: Feature Types 

'Haar' Haar-like features 

'LBP' Local Binary Patterns 

'HOG' Histogram of Oriented Gradients 
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As the Mathworks documentation explains in [39], historically, Haar and LBP 

features have been used for detecting faces.  The HOG features have been used for 

detecting objects such as people (whole body instead of just a person’s face) and cars.  

They are useful for capturing the overall shape of an object.  The results will show 

whether bird detection will perform better with Haar, LBP, or HOG feature type.  These 

feature types have been used in the past for birds as shown in [40, 41]. 

The next parameter is the negative samples factor.  This is the number of negative 

sample to use at each stage.  This number is calculated by multiplying the negative 

samples factor by the number of positive samples used at each stage. The object training 

size can also be adjusted to a certain size (by specifying the height and width) or the  

“auto” option then the algorithm will determine the size automatically based on the 

median width-to-height ratio of the positive instances. 

 One last parameter specific to this CascadeTrainGui is that there is an “auto-

include ROI-deleted positives as negatives?” option.  If selected this means that the 

positive images will also be used as negative images with the ROI/s specified area/s 

removed.   

When the function trainCascadeObjectDetector is run, as shown in the figure 

below, the automatic training size, the maximum amount of positive samples per stage, 

and the maximum amount of negative samples per stage it outputted.  The function then 

goes through the number of cascade stages set and outputting the amount of positive and 

negative samples it actually used.  An xml file is outputted which is then used to detect 

birds into images. 
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Figure 27: Output of trainCascadeObjectDetector Function 

 

The figure below shows how to use the xml file from training and how to detect 

birds in the image.  First a bird detector object is made from the xml file, the image to be 

tested is read, and then birds are detected.  The last step allows you to visually the bird 

being annotated as the figure below the code. 
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Figure 28: Matlab Code on How to Detect Bird 

 

 

Figure 29: Detected Bird Example 

% Create a detector object. 
birdDetector = vision.CascadeObjectDetector('bird_detector.xml');    

 
%Read input image. 
I = imread('bird1.jpeg'); 

  
%Detect bird. 
bboxes = step(birdDetector, I); 
 

%Annotate detected bird/s. 
index = 1; 
IBirds = insertObjectAnnotation(I, 'rectangle', bboxes, 'bird');    
figure(index), imshow(IBirds), title('Detected birds'); 
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 As seen in the figure above, all of the images were converted to grayscale.  The 

reason the bird detector was trained in grayscale was so that it would not be overly 

sensitive to variations in bird color.  860 images were used as negative images and 208 

images were used as positive images.  98 bird images were used as test images.  The test 

images are a different set of images used from the training stage.   

Only the images in the positive folder (contained the positive images) were used 

for training.  The majority of the test images and positive images came from the same 

two databases used in template matching (UC Berkeley’s CalPhotos and the Caltech-

UCSD Birds 200).    Negative images were acquired from the following image databases 

[28-31] and Google search.  The reason there was so many negative images compared to 

positive images was because there are more image databases of nature scenes without 

birds than without birds.  One potential task for future work would be to try to find more 

bird image databases such that the positives images and/or test images pile could be 

larger.  Another reason for such a high amount of negative images is to ensure that the 

cascaded training stages don’t get truncated prematurely.  In early stages of testing, when 

only about 200-400 images were used, these amounts of negative images were not 

enough for certain parameter changes.  In one run for example, a 25 cascaded stage 

detector was truncated to 19 cascaded stage detector. 

 

4.3 Results 

The first parameter that was experimented was the feature type because it is the 

parameter that is the most diverse.  The rest of the parameters have a number range 
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whereas the feature type directly changes how computationally the bird detector is 

trained. 

   

Figure 30: Feature Type Testing 

 

As shown in the figure above. Haar and LBP were in the lower 80s as far as 

percentage in accuracy while HOG was about half of that.  However, when looking at the 

average number of false positives (FPs) in the images, LBP had the highest average while 

Haar and HOG were somewhat low.  The next parameter to be experimented with was 

the number of cascade stages.  Because LBP and Haar had such better accuracies than 

HOG, HOG was eliminated as a good match for bird detection. 
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Figure 31: Chart Showing Accuracies as Cascade Stage Number Changes 

  

In general Haar had a higher accuracy regardless of the amount of cascade stages 

(25 cascade stages was the exception).  Twenty-five cascade stages resulted in the highest 

accuracy for both LBP and Haar.  Although usually increase the number of cascade 

stages will increase the accuracy, it seems like after 25 cascade stages, the accuracy starts 

to decrease.  This could be because after that point, the accuracy becomes so rigorous that 

many birds are overlooked that are slightly different from the birds in the training data.   
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Figure 32: Chart Showing the Average Number of FPS as Cascade Stage Changes 

 

As the number of cascade stages increased, the average number of FPs decreased.  

The more cascade stages the detector has, the more the average number of FPs decrease. 

This is because as the number of cascade stages gets increased, the bird detector becomes 

more complex and more rigorous because the false alarm rate (FAR) decrease as the 

number of cascade stages get increased.  In further testing only Haar was used with a 25 

cascade stages.  For bird images, Haar almost consistently gave a better accuracy and a 

lower value of false positives compared to LBP.  Because the amount of images used for 

testing, 25 cascade stages seemed to be the most optimal number.  If a more extensive 

positive bird images database was found and added to this project, the optimal number of 

cascade stages would increase. 

A low FAR number will result in less FPs.   The FAR parameter was the next 

parameter that was changed in order to find the optimal setting.  This optimal number 

seemed to be 0.5 therefore the rest of the testing used this value for the FAR parameter. 
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Figure 33: Chart Showing the Accuracy as Per-Stage False Alarm Rate (FAR) Changes  

 

As expected, the figure below shows the increasing the false alarm rate, increases 

the number of false positives.  The false alarm rate is the percentage of “allowable false 

positives” therefore it makes sense that increasing it would lead to a higher amount of 

false positives. 
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Figure 34: Chart Showing the Average Number of False Positives as Per-Stage False 

Alarm Rate (FAR) Changes 

 

The next parameter that experimented with to find the optimal value was the per-

stage true positive rate (TPR).  As expected, for the most part as the TPR value was 

increased, the accuracy increased.  However the optimal value seems to be 0.995 because 

after this value the accuracy starts to drop off.  Therefore the rest of the testing is done 

with this TPR value. 
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Figure 35: Chart Showing the Accuracy as Per-Stage True Positive Rate (TPR) Changes 

 

 The number of false positives increase as the true positive rate increases.  This 

could be because as the bird detector tries to increase the accuracy, it finds as many birds 

as it can resulting in more false positives (non-bird areas detected as birds). 
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Figure 36: Chart Showing the Average Number of False Positives as Per-Stage True 

Positive Rate (TPR) Changes 

 

 The last parameter to be modified is the negative samples factor (NSF).  Besides 

the feature type, this the only other parameter that is not dependent on other parameter 

settings.  This is why this was the last parameter to be modified is the NSF.  For the most 

part changing the NSF parameter only slightly affected both the accuracy and average 

number of FPs.  The only exception being the value one (because this value had a 

considerably lower accuracy and a considerably higher average number of FPs compared 

to the other values).  In further testing an NSF value of 7 was used since this gave the 

best accuracy. 
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Figure 37: Chart Showing the Accuracy as the Negative Samples Factor (NSF) Changes 

 

 

Figure 38: Chart Showing the Average Number of False Positives as the Negative 

Samples Factor (NSF) Changes 
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helped the detector better train what wasn’t a bird.  The results show however, the bird 

detector worked best when the ROI-deleted positives as negatives were not used as 

training data.  The average amount of false positives was also lower for the case without 

the ROI-deleted positives as negatives. 

 

Figure 39: Chart Showing the Accuracy with and without ROI-Deleted Positives as 

Negatives 
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Figure 40: Chart Showing the Average Number of False Positives with and without ROI-

Deleted Positives as Negatives 

 

 Once the parameters where modified, the next parameters that were modified to 

hopefully decrease the number of false positives without majorly affecting the accuracy 

of the bird detector.  The Matlab function vision.CascadeObjectDetector has three 

parameters that could potentially help decrease the number of false positives which are 

MinSize, ScaleFactor, and MergeThreshold. 

 MinSize sets the minimum size a bird detection can be. The [height width] must 

be greater than or equal to [32 35] because this is the object size used to train the 

classification model.  Various lengths/widths were tested however none had a better 

accuracy than the default value which was to not have a minimum size restriction on 

detected objects (birds).  Because the bird images have birds of various sizes, it is hard to 
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Figure 41: Chart Showing the Accuracy as the Length and Width Changes of the 

Minimum Size 

 

 

Figure 42: Chart Showing the Average Number of False Positives as the Length and 

Width Changes of the Minimum Size 
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 The MergeThreshold parameter controls the number of detections required before 

combining or rejecting the detections. As shown in the figure below. 

 

Figure 43: MergeThreshold Visual from Matlab Documentation 

 

 When trying different values of the merge threshold parameter, the accuracy in 

general increased as this parameter decreased.  However as the merge threshold 
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parameter decreased, the number of false positives increased.  Therefore the optimal 

value for the merge threshold is very subjective.  If false positives are not wanted, merge 

threshold should be set to 4 or greater (but this will not give you the highest possible 

accuracy).  If accuracy is the only goal, a value below 4 is needed (a value of 2 seems 

most optimal), but will have a high number of false positives. 

 

 

Figure 44: Chart Showing Accuracy as the Merge Threshold Changes 
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Figure 45: Chart Showing the Average Number of False Positives as the Merge 

Threshold Changes 

 

 The detector incrementally scales the input image to locate target objects (in this 

case birds). At each scale increment, a sliding window, whose size is the same as the 

training image size, scans the scaled image to locate objects. The ScaleFactor as 

explained in [42], the Matlab documentation for detecting objects using the Viola-Jones 

algorithm, determines the amount of scaling between successive increments. 
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Figure 46: Search Window Example from Matlab Documentation 

 

 As with the previous two parameters the default value (1.1) turned out to be 

already the most optimal parameter.  In general the accuracy and the number of false 

positives seemed to decrease as the scale factor increased. 

 

 

Figure 47: Chart Showing the Accuracy as the Scale Factor Changes 
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Figure 48: Chart Showing the Average Number of False Positives as the Scale Factor 

Changes 

 

Run times for training the detector varied anywhere from 2-7 hours depending on 

the parameter settings.  Increasing or decreasing certain parameter adds complexity and 

more time on the run time.  The bird detector that produced an accuracy of 87% took 4 

hours to train.  The average run time for the actual detection of birds is similar to results 

in the Motion Detection section, 0.1950 seconds.  In the figure below there are examples 

of successful bird detections. 
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Figure 49: Examples of Successful Bird Detection 

 

The figure below shows images in which the bird detection was unsuccessful or 

partially unsuccessful.  The upper left image shows a bird being detected by one bird.  

Although it was able to detect the bird in the image successfully.  The upper right image 

shows an example of a bird not being detected at all by the bird detector.  In general bird 

images with water as part of the background usually had detection problems like this 

image.  The lower left image shows a bird being detected correctly and a branch 

incorrectly being detected as a bird.  The lower right image shows some of the birds 

being detected in the image and some false positives in the image.  When birds are very 

close together, it is harder for the bird detector to properly detect birds. 



69 

 

 

Figure 50: Examples of Unsuccessful/Partially Unsuccessful Changes 

 

4.4 Analysis and Future Work 

Overall an accuracy of 87% percent with the average number of false positives 

below 3 is quite useful in real world applications.  Some of the difficulties in finding bird 

in a scene are that birds overlap each other, there are various positions birds can be in 

(flying, standing, etc.), lighting can vary depending on the camera and time of the day, 

etc.  Overall it would be important for a scarecrow to be able to detect at least one bird.  It 

does not necessarily need to detect all of the birds on the scene to effectively scare them 

away.  In this case the accuracy is more important than the number of false positives 
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because there is a bigger penalty in not capturing a bird than incorrectly guessing a bird is 

in the scene. 

 As far as future work the parameters of the bird detector could be further fine-

tuned and experimented with.  What might make a bigger potential impact however is 

more positive and negative images.  With more positive images to train the bird detector, 

the accuracy might potentially greatly improve.  Negative images of natural scenes could 

also potentially help the accuracy of the bird detector.  The parameters MinSize, 

ScaleFactor, and MergeThreshold could have been potentially combined for the 

possibility of finding a combination with a higher accuracy and lower false positives then 

when tested all individually. 

 The bird detector could also be tested in the RGB color space to see if the 

accuracy of the bird detector would improve. Although, there is also the possibility that 

the accuracy could worsen instead.  Another possible modification to this project would 

be to have multiple bird detectors (one for left oriented birds, one for right oriented birds, 

etc.) like there are multiple templates in template matching.  This option was not tested 

because of the small amount of bird images each bird detector would potentially have.  

This modification was suggested by the Matlab documentation, however the Viola-Jones 

algorithm should be able handle images with the object of different orientation so this 

was another reason this option was not testes.  This would also further complicate how to 

merge false positives and multiple detections on the same bird.  Another possibility in 

taking advantage of using the RGB color space is using color as a possible way to remove 

some of the false positives that are not in the typically bird color range (such as brown, 

black, white, dark blue etc.). 
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 The bird detector could also be combined with a motion detection algorithm (like 

the one mentioned in this paper).  This option was not tested because of the minimal 

amount of eligible footage found of birds.  The background needs to be for the most part 

still (therefore the camera capturing the footage should be stationary) in order for motion 

detection algorithms to work properly.  Most available footage of birds are not taken with 

a video camera. 

 Future students can further add to this project in various ways.  Many papers 

focused on bird detection through audio instead of images.  A whole thesis can be written 

on using signal processing techniques to identify birds via audio.  An Audio component 

could be added to this system to further improve the accuracy and/or lower the number of 

false positives.  There are also other popular face detection algorithms that could be 

explored and experimented with. 

 This project could also be made into a full system with the addition of an FPGA 

or microcontroller that could react when birds are detected in real time by scaring away 

the birds.  The system could possibly move towards the bird and try to throw water at it 

or make alarming noises. 
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5.0 

Summary and Future Work 

Using the Viola-Jones algorithm as a bird deterrent is cheaper than netting, a 

long-term solution unlike the traditional scarecrow, and will deter birds at a rate of 87% 

(if one bird of many is selected this is still for a real world implementation so in a way 

the accuracy is actually higher) which is higher than what netting (30%) and scarecrows 

(0% long term) can accomplish.  The motion detection algorithm that had the highest 

accrucacy was the absolute ADI with a k value of 10.  It was able to able to find objects 

in a scene at a rate of 100%.  However as mentioned before, a motion detection algorithm 

is not enough alone for detecting birds in the scene.  Template matching at a threshold of 

0.7 (with scaling the templates to four different sizes) achieved the highest accuracy (for 

template matching specifically) of 59% with a false positive rate per frame of 4.65.  

Padding the image with white borders instead of black borders lowered the false positive 

rate per frame to 3.67.  The template matching technique would not be suitable for the 

smart scarecrow system because of the fact that it cannot be run in real time the absolute 

ADI and the Viola-Jones algorithm. 

In this paper, three different image processing techniques were implemented for 

bird detection.  Overall this paper addressed the image processing component that would 

be part of an overall smart scarecrow system.  This component is the most crucial step in 

the system because the image processing component is what determines whether or not 

the bird gets detected as a threat or not. 

 As far as future work, ideally the motion detection component (the absolute ADI) 

and the bird detection with the Viola-Jones algorithm component should be combined.  
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These two components can be run in real time.  Although template matching could also 

be potentially used, it would slow down the system too much to be able to keep up in real 

time.  Once a physical smart scarecrow system is implemented, the image processing 

component (the absolute ADI algorithm combined with the Viola-Jones algorithm) would 

have to trained and tailored with images and videos from the locations in which the 

camera will be placed.  This will allow for optimal parameters and higher accuracies 

when setup to run autonomously. 
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Appendix A: Motion Detection Code 

A1: absolute_adi_testing.m 

function [ numbirds] = absolute_adi_testing( file1, maxframes ) 

    %example input 

    %maxframes = represents the k value from the ADI equations; 

    %file1 = 'Duncrafts Swallow Bird House 2107.flv(360p_H.264-AAC).mpg'; 

     

    %base code is from:  

    %http://www.mathworks.com/matlabcentral/fileexchange/36786-kalman-filter-in-

tracking/content/tracking.m 

    %file1:  name of video for which the motion will be looked for 

     

    %% Read video into MATLAB using mmreader 

    % user tag set to 'myreader1'. 

    readerobj = mmreader(file1, 'tag', 'myreader1'); 

    

    % Read in all video frames. 

    vidFrames = read(readerobj); 

  

    % Get the number of frames. 

    nframes = get(readerobj, 'NumberOfFrames'); 

  

    % Create a MATLAB movie struct from the video frames. 

    images = cell(maxframes,1);  

  

    for k = 1 : (nframes - 10) 

         video(k).cdata = vidFrames(:,:,:,k); 

         video(k).colormap = []; 

    end 

%  

      temp1 = zeros(size(video(1).cdata)); 

     [M,N] = size(temp1(:,:,1)); 

       for i = 1:maxframes 

          %images{i} = im2bw(zeros(M,N)); 

          images{i} = double(video(k).cdata); 

       end 

  

    counter = 1; 

    imbkg = images{counter}; 

  

    % Calculate the background image by averaging the first 5 images    

    temp = zeros(size(video(1).cdata)); 

    [M,N] = size(temp(:,:,1)); 

    for i = 1:10 
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        temp = double(video(i).cdata) + temp; 

    end 

     

    th = 100; 

    th_area = 23000; 

    total_adi = im2bw(zeros(M,N)); 

    for i=1:nframes-10 

      imshow(video(i).cdata); 

      hold on 

      imcurrent = double(video(i).cdata); 

       

      cur_adi = (abs(imcurrent(:,:,1)-imbkg(:,:,1))>th) ... 

          | (abs(imcurrent(:,:,2)-imbkg(:,:,2))>th) ... 

          | (abs(imcurrent(:,:,3)-imbkg(:,:,3))>th); 

       

      images{counter} = cur_adi; 

  

      if counter == maxframes, 

          counter = 1; 

          total_adi = cur_adi; 

      else 

          counter = counter + 1;   

      end 

     total_adi = im2bw(images{counter}) +  total_adi; 

     

     total_adi_thresholded = im2bw(total_adi); 

     markimg = regionprops(total_adi_thresholded,['basic']); 

     [MM,NN] = size(markimg); 

  

      % The larger regions are objects 

      for nn = 1:MM 

          if markimg(nn).Area > th_area%markimg(1).Area 

              tmp = markimg(1); 

              markimg(1)= markimg(nn); 

              markimg(nn)= tmp; 

               % Get the upper-left corner, the measurement centroid and bounding window 

size 

              bb = markimg(1).BoundingBox; 

              xcorner = bb(1); 

              ycorner = bb(2); 

              xwidth = bb(3); 

              ywidth = bb(4); 

              cc = markimg(1).Centroid; 

              centroidx(i)= cc(1); 

              centroidy(i)= cc(2); 

              numbirds = numbirds + 1; 
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              if counted == 0; 

                 loopcounter = loopcounter + 1; 

                 counted = 1; 

              end 

  

              % Plot the rectangle of background subtraction algorithm -- blue 

              hold on 

              rectangle('Position',[xcorner ycorner xwidth ywidth],'EdgeColor','b'); 

              hold on 

              plot(centroidx(i),centroidy(i), 'bx'); 

              drawnow; 

          end 

      end 

    end 

 end 
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A2: negative_adi_testing.m 

function [ ] = negative_adi_testing( file1, maxframes ) 

    %example input 

    %maxframes = represents the k value from the ADI equations; 

    %file1 = 'Duncrafts Swallow Bird House 2107.flv(360p_H.264-AAC).mpg'; 

     

    %base code is from:  

    %http://www.mathworks.com/matlabcentral/fileexchange/36786-kalman-filter-in-

tracking/content/tracking.m 

     

    %file1:  name of video for which the motion will be looked for 

    close all; 

  

    %% Read video into MATLAB using mmreader 

    readerobj = mmreader(file1, 'tag', 'myreader1'); 

     

    % Read in all video frames. 

    vidFrames = read(readerobj); 

  

    % Get the number of frames. 

    nframes = get(readerobj, 'NumberOfFrames'); 

  

    % Create a MATLAB movie struct from the video frames. 

    images = cell(maxframes,1);  

  

    for k = 1 : (nframes - 10) 

         video(k).cdata = vidFrames(:,:,:,k); 

         video(k).colormap = []; 

    end 

%  

      temp1 = zeros(size(video(1).cdata)); 

     [M,N] = size(temp1(:,:,1)); 

       for i = 1:maxframes 

          images{i} = double(video(k).cdata); 

       end 

  

    counter = 1; 

    imbkg = images{counter}; 

  

    % Calculate the background image by averaging the first 5 images     

    temp = zeros(size(video(1).cdata)); 

    [M,N] = size(temp(:,:,1)); 

    for i = 1:10 

        temp = double(video(i).cdata) + temp; 

    end 
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    th = 100; 

    th_area = 23000; 

    total_adi = im2bw(zeros(M,N)); 

    for i=1:nframes-10 

      imshow(video(i).cdata); 

      hold on 

      imcurrent = double(video(i).cdata); 

       

      cur_adi = ((imcurrent(:,:,1)-imbkg(:,:,1))<-th) ... 

          | ((imcurrent(:,:,2)-imbkg(:,:,2))<-th) ... 

          | ((imcurrent(:,:,3)-imbkg(:,:,3))<-th); 

       

      images{counter} = cur_adi; 

  

      if counter == maxframes, 

          counter = 1; 

          total_adi = cur_adi; 

      else 

          counter = counter + 1;   

      end 

     total_adi = im2bw(images{counter}) +  total_adi; 

     

     total_adi_thresholded = im2bw(total_adi); 

       markimg = regionprops(total_adi_thresholded,['basic']); 

      [MM,NN] = size(markimg); 

  

      % The larger regions are objects 

      for nn = 1:MM 

          if markimg(nn).Area > th_area%markimg(1).Area 

              tmp = markimg(1); 

              markimg(1)= markimg(nn); 

              markimg(nn)= tmp; 

              % Get the upper-left corner, the measurement centroid and bounding window 

size 

              bb = markimg(1).BoundingBox; 

              xcorner = bb(1); 

              ycorner = bb(2); 

              xwidth = bb(3); 

              ywidth = bb(4); 

              cc = markimg(1).Centroid; 

              centroidx(i)= cc(1); 

              centroidy(i)= cc(2); 

  

              % Plot the rectangle of background subtraction algorithm -- blue 

              hold on 
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              rectangle('Position',[xcorner ycorner xwidth ywidth],'EdgeColor','b'); 

              hold on 

              plot(centroidx(i),centroidy(i), 'bx'); 

              drawnow; 

          end 

      end 

    end 

 end 
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A3: positive_adi_testing.m 

function [ numbirds] = positive_adi_testing( file1, maxframes ) 

    %example input 

    %maxframes = represents the k value from the ADI equations; 

    %file1 = 'Duncrafts Swallow Bird House 2107.flv(360p_H.264-AAC).mpg'; 

     

    %base code is from:  

    %http://www.mathworks.com/matlabcentral/fileexchange/36786-kalman-filter-in-

tracking/content/tracking.m 

    %file1:  name of video for which the motion will be looked for 

  

    %% Read video into MATLAB using mmreader 

    % user tag set to 'myreader1'. 

    readerobj = mmreader(file1, 'tag', 'myreader1'); 

  

    vidFrames = read(readerobj); 

  

    % Get the number of frames. 

    nframes = get(readerobj, 'NumberOfFrames'); 

  

    % Create a MATLAB movie struct from the video frames. 

    images = cell(maxframes,1);  

  

    for k = 1 : (nframes - 10) 

         video(k).cdata = vidFrames(:,:,:,k); 

         video(k).colormap = []; 

    end 

  

      temp1 = zeros(size(video(1).cdata)); 

     [M,N] = size(temp1(:,:,1)); 

       for i = 1:maxframes 

          images{i} = double(video(k).cdata); 

       end 

  

    counter = 1; 

    imbkg = images{counter}; 

  

    % Calculate the background image by averaging the first 5 images 

    temp = zeros(size(video(1).cdata)); 

    [M,N] = size(temp(:,:,1)); 

    for i = 1:10 

        temp = double(video(i).cdata) + temp; 

    end 
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    th = 100; 

    th_area = 23000; 

    total_adi = im2bw(zeros(M,N)); 

    for i=1:nframes-10 

      imshow(video(i).cdata); 

      hold on 

      imcurrent = double(video(i).cdata); 

       

       cur_adi = ((imcurrent(:,:,1)-imbkg(:,:,1))>th) ... 

          | ((imcurrent(:,:,2)-imbkg(:,:,2))>th) ... 

          | ((imcurrent(:,:,3)-imbkg(:,:,3))>th); 

    

      images{counter} = cur_adi; 

  

      if counter == maxframes, 

          counter = 1; 

          total_adi = cur_adi; 

      else 

          counter = counter + 1;   

      end 

     total_adi = im2bw(images{counter}) +  total_adi; 

     

     total_adi_thresholded = im2bw(total_adi); 

       markimg = regionprops(total_adi_thresholded,['basic']); 

      [MM,NN] = size(markimg); 

  

      % The larger regions are objects 

      for nn = 1:MM 

          if markimg(nn).Area > th_area%markimg(1).Area 

              tmp = markimg(1); 

              markimg(1)= markimg(nn); 

              markimg(nn)= tmp; 

              % Get the upper-left corner, the measurement centroid and bounding window 

size 

              bb = markimg(1).BoundingBox; 

              xcorner = bb(1); 

              ycorner = bb(2); 

              xwidth = bb(3); 

              ywidth = bb(4); 

              cc = markimg(1).Centroid; 

              centroidx(i)= cc(1); 

              centroidy(i)= cc(2); 

              numbirds = numbirds + 1; 

              if counted == 0; 

                 loopcounter = loopcounter + 1; 

                 counted = 1; 
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              end 

  

              % Plot the rectangle of background subtraction algorithm -- blue 

              hold on 

              rectangle('Position',[xcorner ycorner xwidth ywidth],'EdgeColor','b'); 

              hold on 

              plot(centroidx(i),centroidy(i), 'bx'); 

              drawnow; 

          end 

      end 

    end 

 end 
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Appendix B: Template Matching Code 

B1: template_matching.m 

function [I_SSD,I_NCC,Idata]=template_matching(T,I,IdataIn) 

% TEMPLATE_MATCHING is a cpu efficient function which calculates matching  

% score images between template and an (color) 2D or 3D image. 

% It calculates: 

% - The sum of squared difference (SSD Block Matching), robust template 

%   matching. 

% - The normalized cross correlation (NCC), independent of illumination, 

%   only dependent on texture 

% The user can combine the two images, to get template matching which 

% works robust with his application.  

% Both measures are implemented using FFT based correlation. 

% 

%   [I_SSD,I_NCC,Idata]=template_matching(T,I,Idata) 

% 

% inputs, 

%   T : Image Template, can be grayscale or color 2D or 3D. 

%   I : Color image, can be grayscale or color 2D or 3D. 

%  (optional) 

%   Idata : Storage of temporary variables from the image I, to allow  

%           faster search for multiple templates in the same image. 

% 

% outputs, 

%   I_SSD: The sum of squared difference 2D/3D image. The SSD sign is 

%          reversed and normalized to range [0 1]  

%   I_NCC: The normalized cross correlation 2D/3D image. The values 

%          range between 0 and 1 

%   Idata : Storage of temporary variables from the image I, to allow  

%           faster search for multiple templates in the same image. 

% 

% Example 2D, 

%   % Find maximum response 

%    I = im2double(imread('lena.jpg')); 

%   % Template of Eye Lena 

%    T=I(124:140,124:140,:); 

%   % Calculate SSD and NCC between Template and Image 

%    [I_SSD,I_NCC]=template_matching(T,I); 

%   % Find maximum correspondence in I_SDD image 

%    [x,y]=find(I_SSD==max(I_SSD(:))); 

%   % Show result 

%    figure,  

%    subplot(2,2,1), imshow(I); hold on; plot(y,x,'r*'); title('Result') 

%    subplot(2,2,2), imshow(T); title('The eye template'); 
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%    subplot(2,2,3), imshow(I_SSD); title('SSD Matching'); 

%    subplot(2,2,4), imshow(I_NCC); title('Normalized-CC'); 

% 

% Example 3D, 

%   % Make some random data 

%    I=rand(50,60,50); 

%   % Get a small volume as template 

%    T=I(20:30,20:30,20:30); 

%   % Calculate SDD between template and image 

%    I_SSD=template_matching(T,I); 

%   % Find maximum correspondence 

%    [x,y,z]=ind2sub(size(I_SSD),find(I_SSD==max(I_SSD(:)))); 

%    disp(x); 

%    disp(y); 

%    disp(z); 

% 

% Function is written by D.Kroon University of Twente (February 2011) 

  

if(nargin<3), IdataIn=[]; end 

  

% Convert images to double 

T=double(T); I=double(I); 

if(size(T,3)==3)  

    % Color Image detected 

%     disp('got in color'); 

    [I_SSD,I_NCC,Idata]=template_matching_color(T,I,IdataIn); 

else 

    % Grayscale image or 3D volume 

%     disp('got in here?'); 

    [I_SSD,I_NCC,Idata]=template_matching_gray(T,I,IdataIn); 

end 

  

function [I_SSD,I_NCC,Idata]=template_matching_color(T,I,IdataIn) 

if(isempty(IdataIn)), IdataIn.r=[];  IdataIn.g=[]; IdataIn.b=[];  end 

% Splite color image, and do template matching on R,G and B image 

[I_SSD_R,I_NCC_R,Idata.r]=template_matching_gray(T(:,:,1),I(:,:,1),IdataIn.r); 

[I_SSD_G,I_NCC_G,Idata.g]=template_matching_gray(T(:,:,2),I(:,:,2),IdataIn.g); 

[I_SSD_B,I_NCC_B,Idata.b]=template_matching_gray(T(:,:,3),I(:,:,3),IdataIn.b); 

% Combine the results 

I_SSD=(I_SSD_R+I_SSD_G+I_SSD_B)/3; 

I_NCC=(I_NCC_R+I_NCC_G+I_NCC_B)/3; 

  

     

function [I_SSD,I_NCC,Idata]=template_matching_gray(T,I,IdataIn) 

% Calculate correlation output size  = input size + padding template 

T_size = size(T); I_size = size(I); 
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outsize = I_size + T_size-1; 

  

% calculate correlation in frequency domain 

if(length(T_size)==2) 

    FT = fft2(rot90(T,2),outsize(1),outsize(2)); 

    if(isempty(IdataIn)) 

        Idata.FI = fft2(I,outsize(1),outsize(2)); 

    else 

        Idata.FI=IdataIn.FI; 

    end 

    Icorr = real(ifft2(Idata.FI.* FT)); 

else 

    FT = fftn(rot90_3D(T),outsize); 

    FI = fftn(I,outsize); 

    Icorr = real(ifftn(FI.* FT)); 

end 

  

% Calculate Local Quadratic sum of Image and Template 

if(isempty(IdataIn)) 

    Idata.LocalQSumI= local_sum(I.*I,T_size); 

else 

    Idata.LocalQSumI=IdataIn.LocalQSumI; 

end 

  

QSumT = sum(T(:).^2); 

  

% SSD between template and image 

I_SSD=Idata.LocalQSumI+QSumT-2*Icorr; 

  

% Normalize to range 0..1 

I_SSD=I_SSD-min(I_SSD(:));  

I_SSD=1-(I_SSD./max(I_SSD(:))); 

  

% Remove padding 

I_SSD=unpadarray(I_SSD,size(I)); 

% I_SSD = 0; 

  

if (nargout>1) 

    % Normalized cross correlation STD 

    if(isempty(IdataIn)) 

        Idata.LocalSumI= local_sum(I,T_size); 

    else 

        Idata.LocalSumI=IdataIn.LocalSumI; 

    end 

     

    % Standard deviation 
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    if(isempty(IdataIn)) 

        Idata.stdI=sqrt(max(Idata.LocalQSumI-(Idata.LocalSumI.^2)/numel(T),0) ); 

    else 

        Idata.stdI=IdataIn.stdI; 

    end 

    stdT=sqrt(numel(T)-1)*std(T(:)); 

    % Mean compensation 

    meanIT=Idata.LocalSumI*sum(T(:))/numel(T); 

    I_NCC= 0.5+(Icorr-meanIT)./ (2*stdT*max(Idata.stdI,stdT/1e5)); 

  

    % Remove padding 

    I_NCC=unpadarray(I_NCC,size(I)); 

end 

  

function T=rot90_3D(T) 

T=flipdim(flipdim(flipdim(T,1),2),3); 

  

function B=unpadarray(A,Bsize) 

Bstart=ceil((size(A)-Bsize)/2)+1; 

Bend=Bstart+Bsize-1; 

if(ndims(A)==2) 

    B=A(Bstart(1):Bend(1),Bstart(2):Bend(2)); 

elseif(ndims(A)==3) 

    B=A(Bstart(1):Bend(1),Bstart(2):Bend(2),Bstart(3):Bend(3)); 

end 

     

function local_sum_I= local_sum(I,T_size) 

% Add padding to the image 

% Original packing technique padded image with zeroes but since the 

% template leans more toward lower intensity values, padding with 

% 255 (white border) gave better results 

% B = padarray(I,T_size); 

B = padarray(I,T_size, 255); 

  

  

% Calculate for each pixel the sum of the region around it, 

% with the region the size of the template. 

if(length(T_size)==2) 

    % 2D localsum 

    s = cumsum(B,1); 

    c = s(1+T_size(1):end-1,:)-s(1:end-T_size(1)-1,:); 

    s = cumsum(c,2); 

    local_sum_I= s(:,1+T_size(2):end-1)-s(:,1:end-T_size(2)-1); 

else 

    % 3D Localsum 

    s = cumsum(B,1); 
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    c = s(1+T_size(1):end-1,:,:)-s(1:end-T_size(1)-1,:,:); 

    s = cumsum(c,2); 

    c = s(:,1+T_size(2):end-1,:)-s(:,1:end-T_size(2)-1,:); 

    s = cumsum(c,3); 

    local_sum_I  = s(:,:,1+T_size(3):end-1)-s(:,:,1:end-T_size(3)-1); 

end 
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B2: template_matching_testing.m 

function [] = template_matching_testing( thresh ) 

  

%using the first template_matching.m 

%function [I_SSD,I_NCC,Idata]=template_matching(T,I,IdataIn) 

%http://www.mathworks.com/matlabcentral/fileexchange/24925-fastrobust-template-

matching 

close all; 

%thresh = 0.75; 

x_max = 480; 

y_max = 640; 

points = zeros(x_max, y_max); 

% This excel list consists a list of images in the same directory as this 

% code that will be used to test template matching. 

[~,data, ~] = xlsread('list_of_images.xlsx'); 

[M,~] = size(data); 

T1_left_120 = im2double(imread('left_template_120.jpg')); 

T1_right_120 = im2double(imread('right_template_120.jpg')); 

T1_left_60 = im2double(imread('left_template_60.jpg')); 

T1_right_60 = im2double(imread('right_template_60.jpg')); 

T1_left_480 = im2double(imread('left_template_480.jpg')); 

T1_right_480 = im2double(imread('right_template_480.jpg')); 

T1_left_240 = im2double(imread('left_template_240.jpg')); 

T1_right_240 = im2double(imread('right_template_240.jpg')); 

  

  

for index = 1:M 

    I = im2double(imresize(imread(data{index,1}), [x_max y_max])); 

    [~, I_NCC_L_120, Idata]=template_matching(T1_left_120,I); 

    [~, I_NCC_R_120]=template_matching(T1_right_120,I, Idata); 

    [~, I_NCC_L_60, Idata]=template_matching(T1_left_60,I); 

    [~, I_NCC_R_60]=template_matching(T1_right_60,I, Idata);   

    [~, I_NCC_L_480, Idata]=template_matching(T1_left_480,I); 

    [~, I_NCC_R_480]=template_matching(T1_right_480,I, Idata);   

    [~, I_NCC_L_240, Idata]=template_matching(T1_left_240,I); 

    [~, I_NCC_R_240]=template_matching(T1_right_240,I, Idata); 

     

    [x,y]=find((I_NCC_L_120 >= thresh) |(I_NCC_L_60 >= thresh) | (I_NCC_L_240 >= 

thresh) | ((I_NCC_L_480) >= thresh)... 

            | (I_NCC_R_120 >= thresh) |(I_NCC_R_60 >= thresh) | (I_NCC_R_240 >= 

thresh) | ((I_NCC_R_480) >= thresh)); 

     

   final_120 = ones(size(x)); 

    radius = 120; 

    for i=1:length(x), 
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        for j=1:length(x), 

            distance = sqrt((x(i,1) - x(j,1)) .^ 2 + (y(i,1) - (y(j,1))) .^ 2); 

            if distance <= radius, 

                max_vali = find_max(I_NCC_L_120(x(i, 1), y(i, 1)), I_NCC_L_60(x(i, 1), y(i, 

1)), I_NCC_L_240(x(i, 1), y(i, 1)), I_NCC_L_480(x(i, 1), y(i, 1)),... 

                I_NCC_R_120(x(i, 1), y(i, 1)), I_NCC_R_60(x(i, 1), y(i, 1)), 

I_NCC_R_240(x(i, 1), y(i, 1)), I_NCC_R_480(x(i, 1), y(i, 1))); 

                max_valj = find_max(I_NCC_L_120(x(j, 1), y(j, 1)), I_NCC_L_60(x(j, 1), y(j, 

1)), I_NCC_L_240(x(j, 1), y(j, 1)), I_NCC_L_480(x(j, 1), y(j, 1)),... 

                I_NCC_R_120(x(j, 1), y(j, 1)), I_NCC_R_60(x(j, 1), y(j, 1)), 

I_NCC_R_240(x(j, 1), y(j, 1)), I_NCC_R_480(x(j, 1), y(j, 1)));   

                if(max_vali < max_valj)  

                    final_120(i, 1) = 0; 

                end 

           end 

        end 

    end 

  

    figure(index),  

    imshow(I);  

    hold on; 

    for i=1:length(x), 

        if(final_120(i, 1) == 1) 

            plot(y(i, 1),x(i,1),'r*'); 

            points(y(i, 1),x(i,1)) = 1; 

            max_val = find_max(I_NCC_L_120(x(i, 1), y(i, 1)), I_NCC_L_60(x(i, 1), y(i, 

1)), I_NCC_L_240(x(i, 1), y(i, 1)), I_NCC_L_480(x(i, 1), y(i, 1)),... 

                I_NCC_R_120(x(i, 1), y(i, 1)), I_NCC_R_60(x(i, 1), y(i, 1)), 

I_NCC_R_240(x(i, 1), y(i, 1)), I_NCC_R_480(x(i, 1), y(i, 1))); 

            if((max_val == max(I_NCC_L_120(x(i, 1), y(i, 1)))) || (max_val == 

max(I_NCC_R_120(x(i, 1), y(i, 1))))); 

                rectangle('Position',[(y(i,1) - 60) (x(i,1) - 60) 120 120],'EdgeColor','b'); 

            elseif((max_val == max(I_NCC_L_60(x(i, 1), y(i, 1)))) || (max_val == 

max(I_NCC_R_60(x(i, 1), y(i, 1))))); 

                rectangle('Position',[(y(i,1) - 30) (x(i,1) - 30) 60 60],'EdgeColor','b'); 

            elseif((max_val == max(I_NCC_L_240(x(i, 1), y(i, 1)))) || (max_val == 

max(I_NCC_R_240(x(i, 1), y(i, 1))))); 

                rectangle('Position',[(y(i,1) - 120) (x(i,1) - 120) 240 240],'EdgeColor','b'); 

            elseif((max_val == max(I_NCC_L_480(x(i, 1), y(i, 1)))) || (max_val == 

max(I_NCC_R_480(x(i, 1), y(i, 1))))); 

                rectangle('Position',[(y(i,1) - 240) (x(i,1) - 240) 480 480],'EdgeColor','b');                

            end 

        end 

    end  

    saveas(index, sprintf('withright%d_1size_2temp_%dthresh.jpg',index, thresh)); 

end 



96 

 

B3: find_max.m 

function [ max7 ] = find_max( a, b, c, d, e, f, g, h ) 

%UNTITLED3 Summary of this function goes here 

  max1 = max(a, b); 

  max2 = max(c, d); 

  max3 = max(e, f); 

  max4 = max(g, h); 

  max5 = max(max1, max2); 

  max6 = max(max3, max4); 

  max7 = max(max5, max6); 

  

end 
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B4: making_morphology_templates 

%This code shows how the templates with morphology were used 

  

% All of the different posibilities in using the strel function (which creates  

% morphological structuring element)below. 

% Some of these options below cannot be used because some use nonflat  

% structuring Elements 

% this code only makes templates of size 240x240 

  

% SE = strel('arbitrary', NHOOD) 

% SE = strel('arbitrary', NHOOD, HEIGHT) 

% SE = strel('ball', R, H, N) 

% SE = strel('diamond', R) 

% SE = strel('disk', R, N) 

% SE = strel('line', LEN, DEG) 

% SE = strel('octagon', R) 

% SE = strel('pair', OFFSET) 

% SE = strel('periodicline', P, V) 

% SE = strel('rectangle', MN) 

% SE = strel('square', W) 

  

 left = im2double(imread('left_template_edge_240.jpg')); 

 right = im2double(imread('right_template_edge_240.jpg')); 

close all; 

  

  

%  

% left = im2double(imread('left_template_edge_240_solo_1.jpg')); 

% right = im2double(imread('right_template_edge_240_solo_1.jpg')); 

R = 10; H = 10; N = 10; NHOOD = 10;  

 LEN = 10; DEG = 10; OFFSET = 10; P = 10;  

 V = 10; MN = [10 10]; W = 10; HEIGHT = 10; 

  

 SE1 = strel('arbitrary', NHOOD); 

 SE2 = strel('diamond', R); 

 SE3 = strel('disk', R, 8); 

 SE4 = strel('line', LEN, DEG); 

 SE5 = strel('octagon', 12); 

 SE6 = strel('rectangle', MN); 

 SE7 = strel('square', W); 

  

eroded_left1     = imerode(left,    SE1 ); 

eroded_left2     = imerode(left,    SE2 ); 

eroded_left3     = imerode(left,    SE3 ); 

eroded_left4     = imerode(left,    SE4 ); 
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eroded_left5     = imerode(left,    SE5 ); 

eroded_left6     = imerode(left,    SE6 ); 

eroded_left7     = imerode(left,    SE7 ); 

  

             

eroded_right1    =imerode(right,    SE1 ); 

eroded_right2    =imerode(right,    SE2 ); 

eroded_right3    =imerode(right,    SE3 ); 

eroded_right4    =imerode(right,    SE4 ); 

eroded_right5    =imerode(right,    SE5 ); 

eroded_right6    =imerode(right,    SE6 ); 

eroded_right7    =imerode(right,    SE7 ); 

  

dilate_left1     =imdilate( left,   SE1 ); 

dilate_left2     =imdilate( left,   SE2 ); 

dilate_left3     =imdilate( left,   SE3 ); 

dilate_left4     =imdilate( left,   SE4 ); 

dilate_left5     =imdilate( left,   SE5 ); 

dilate_left6     =imdilate( left,   SE6 ); 

dilate_left7     =imdilate( left,   SE7 ); 

                 

dilate_right1    =imdilate( right,  SE1 ); 

dilate_right2    =imdilate( right,  SE2 ); 

dilate_right3    =imdilate( right,  SE3 ); 

dilate_right4    =imdilate( right,  SE4 ); 

dilate_right5    =imdilate( right,  SE5 ); 

dilate_right6    =imdilate( right,  SE6 ); 

dilate_right7    =imdilate( right,  SE7 ); 

  

index = 1; 

figure(index) 

imshow(dilate_left1) 

saveas(index, sprintf('left_template_combo_240_arbritary.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_left2) 

saveas(index, sprintf('left_template_combo_240_diamond.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_left3) 

saveas(index, sprintf('left_template_combo_240_disk.jpg' )); 

index = index + 1; 

  

figure(index) 
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imshow(dilate_left4) 

saveas(index, sprintf('left_template_combo_240_line.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_left5) 

saveas(index, sprintf('left_template_combo_240_octagon.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_left6) 

saveas(index, sprintf('left_template_combo_240_rectangle.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_left7) 

saveas(index, sprintf('left_template_combo_240_square.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_right1) 

saveas(index, sprintf('right_template_combo_240_arbritary.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_right2) 

saveas(index, sprintf('right_template_combo_240_diamond.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_right3) 

saveas(index, sprintf('right_template_combo_240_disk.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_right4) 

saveas(index, sprintf('right_template_combo_240_line.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_right5) 

saveas(index, sprintf('right_template_combo_240_octagon.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_right6) 
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saveas(index, sprintf('right_template_combo_240_rectangle.jpg' )); 

index = index + 1; 

  

figure(index) 

imshow(dilate_right7) 

saveas(index, sprintf('right_template_combo_240_square.jpg' )); 

index = index + 1; 
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B5: template_matching_testing_morphology 

function [] = template_matching_testing_morphology( thresh , num) 

% this is the code that tested various templates that used various kinds of 

% image morphology 

%using the first template_matching.m 

%function [I_SSD,I_NCC,Idata]=template_matching(T,I,IdataIn) 

%http://www.mathworks.com/matlabcentral/fileexchange/24925-fastrobust-template-

matching 

close all; 

% thresh = 0.75; 

% num = 1; 

x_max = 480; 

y_max = 640; 

points = zeros(x_max, y_max); 

[~,data, ~] = xlsread('list_of_images.xlsx'); 

[M,~] = size(data); 

  

if(num == 1) 

    T1_left_120 = 

rgb2gray(im2double(imread('left_template_combo_120_arbritary.jpg'))); 

    T1_right_120 = 

rgb2gray(im2double(imread('right_template_combo_120_arbritary.jpg'))); 

    T1_left_480 = 

rgb2gray(im2double(imread('left_template_combo_480_arbritary.jpg'))); 

    T1_right_480 = 

rgb2gray(im2double(imread('right_template_combo_480_arbritary.jpg'))); 

    T1_left_240 = 

rgb2gray(im2double(imread('left_template_combo_240_arbritary.jpg'))); 

    T1_right_240 = 

rgb2gray(im2double(imread('right_template_combo_240_arbritary.jpg'))); 

elseif(num == 2) 

    T1_left_120 = 

rgb2gray(im2double(imread('left_template_combo_120_diamond.jpg'))); 

    T1_right_120 = 

rgb2gray(im2double(imread('right_template_combo_120_diamond.jpg'))); 

    T1_left_480 = 

rgb2gray(im2double(imread('left_template_combo_480_diamond.jpg'))); 

    T1_right_480 = 

rgb2gray(im2double(imread('right_template_combo_480_diamond.jpg'))); 

    T1_left_240 = 

rgb2gray(im2double(imread('left_template_combo_240_diamond.jpg'))); 

    T1_right_240 = 

rgb2gray(im2double(imread('right_template_combo_240_diamond.jpg'))); 

elseif(num == 3) 

    T1_left_120 = rgb2gray(im2double(imread('left_template_combo_120_disk.jpg'))); 
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    T1_right_120 = rgb2gray(im2double(imread('right_template_combo_120_disk.jpg'))); 

    T1_left_480 = rgb2gray(im2double(imread('left_template_combo_480_disk.jpg'))); 

    T1_right_480 = rgb2gray(im2double(imread('right_template_combo_480_disk.jpg'))); 

    T1_left_240 = rgb2gray(im2double(imread('left_template_combo_240_disk.jpg'))); 

    T1_right_240 = rgb2gray(im2double(imread('right_template_combo_240_disk.jpg'))); 

elseif(num == 4) 

    T1_left_120 = rgb2gray(im2double(imread('left_template_combo_120_line.jpg'))); 

    T1_right_120 = rgb2gray(im2double(imread('right_template_combo_120_line.jpg'))); 

    T1_left_480 = rgb2gray(im2double(imread('left_template_combo_480_line.jpg'))); 

    T1_right_480 = rgb2gray(im2double(imread('right_template_combo_480_line.jpg'))); 

    T1_left_240 = rgb2gray(im2double(imread('left_template_combo_240_line.jpg'))); 

    T1_right_240 = rgb2gray(im2double(imread('right_template_combo_240_line.jpg'))); 

elseif(num == 5) 

    T1_left_120 = rgb2gray(im2double(imread('left_template_combo_120_octagon.jpg'))); 

    T1_right_120 = 

rgb2gray(im2double(imread('right_template_combo_120_octagon.jpg'))); 

    T1_left_480 = rgb2gray(im2double(imread('left_template_combo_480_octagon.jpg'))); 

    T1_right_480 = 

rgb2gray(im2double(imread('right_template_combo_480_octagon.jpg'))); 

    T1_left_240 = rgb2gray(im2double(imread('left_template_combo_240_octagon.jpg'))); 

    T1_right_240 = 

rgb2gray(im2double(imread('right_template_combo_240_octagon.jpg'))); 

elseif(num == 6) 

    T1_left_120 = 

rgb2gray(im2double(imread('left_template_combo_120_rectangle.jpg'))); 

    T1_right_120 = 

rgb2gray(im2double(imread('right_template_combo_120_rectangle.jpg'))); 

    T1_left_480 = 

rgb2gray(im2double(imread('left_template_combo_480_rectangle.jpg'))); 

    T1_right_480 = 

rgb2gray(im2double(imread('right_template_combo_480_rectangle.jpg'))); 

    T1_left_240 = 

rgb2gray(im2double(imread('left_template_combo_240_rectangle.jpg'))); 

    T1_right_240 = 

rgb2gray(im2double(imread('right_template_combo_240_rectangle.jpg'))); 

elseif(num == 7) 

    T1_left_120 = rgb2gray(im2double(imread('left_template_combo_120_square.jpg'))); 

    T1_right_120 = 

rgb2gray(im2double(imread('right_template_combo_120_square.jpg'))); 

    T1_left_480 = rgb2gray(im2double(imread('left_template_combo_480_square.jpg'))); 

    T1_right_480 = 

rgb2gray(im2double(imread('right_template_combo_480_square.jpg'))); 

    T1_left_240 = rgb2gray(im2double(imread('left_template_combo_240_square.jpg'))); 

    T1_right_240 = 

rgb2gray(im2double(imread('right_template_combo_240_square.jpg'))); 

end 
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for index = 1:M 

    I = rgb2gray(im2double(imresize(imread(data{index,1}), [x_max y_max]))); 

    I    =  edge(   I   ,'roberts'  ); 

    I = 255 * uint8(I); 

    [~, I_NCC_L_120]=template_matching(T1_left_120,I); 

    [~, I_NCC_R_120]=template_matching(T1_right_120,I);  

    [~, I_NCC_L_480]=template_matching(T1_left_480,I); 

    [~, I_NCC_R_480]=template_matching(T1_right_480,I);   

    [~, I_NCC_L_240]=template_matching(T1_left_240,I); 

    [~, I_NCC_R_240]=template_matching(T1_right_240, I); 

     

    [x,y]=find((I_NCC_L_120 >= thresh) | (I_NCC_L_240 >= thresh) | ((I_NCC_L_480) 

>= thresh)... 

            | (I_NCC_R_120 >= thresh) | (I_NCC_R_240 >= thresh) | ((I_NCC_R_480) >= 

thresh)); 

     

        final_120 = ones(size(x)); 

  

    radius = 120; 

    for i=1:length(x), 

        for j=1:length(x), 

            distance = sqrt((x(i,1) - x(j,1)) .^ 2 + (y(i,1) - (y(j,1))) .^ 2); 

            if distance <= radius, 

                max_vali = find_max(I_NCC_L_120(x(i, 1), y(i, 1)), I_NCC_L_120(x(i, 1), 

y(i, 1)), I_NCC_L_240(x(i, 1), y(i, 1)), I_NCC_L_480(x(i, 1), y(i, 1)),... 

                I_NCC_R_120(x(i, 1), y(i, 1)), I_NCC_R_120(x(i, 1), y(i, 1)), 

I_NCC_R_240(x(i, 1), y(i, 1)), I_NCC_R_480(x(i, 1), y(i, 1))); 

                max_valj = find_max(I_NCC_L_120(x(j, 1), y(j, 1)), I_NCC_L_120(x(j, 1), 

y(j, 1)), I_NCC_L_240(x(j, 1), y(j, 1)), I_NCC_L_480(x(j, 1), y(j, 1)),... 

                I_NCC_R_120(x(j, 1), y(j, 1)), I_NCC_R_120(x(j, 1), y(j, 1)), 

I_NCC_R_240(x(j, 1), y(j, 1)), I_NCC_R_480(x(j, 1), y(j, 1)));   

                if(max_vali < max_valj)  

                    final_120(i, 1) = 0; 

                end 

           end 

        end 

    end 

  

    figure(index),  

    imshow(I);  

    hold on; 

    for i=1:length(x), 

        if(final_120(i, 1) == 1) 

            plot(y(i, 1),x(i,1),'r*'); 

            points(y(i, 1),x(i,1)) = 1; 
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            max_val = find_max(I_NCC_L_120(x(i, 1), y(i, 1)), I_NCC_L_120(x(i, 1), y(i, 

1)), I_NCC_L_240(x(i, 1), y(i, 1)), I_NCC_L_480(x(i, 1), y(i, 1)),... 

                I_NCC_R_120(x(i, 1), y(i, 1)), I_NCC_R_120(x(i, 1), y(i, 1)), 

I_NCC_R_240(x(i, 1), y(i, 1)), I_NCC_R_480(x(i, 1), y(i, 1))); 

            if((max_val == max(I_NCC_L_120(x(i, 1), y(i, 1)))) || (max_val == 

max(I_NCC_R_120(x(i, 1), y(i, 1))))); 

                rectangle('Position',[(y(i,1) - 60) (x(i,1) - 60) 120 120],'EdgeColor','b'); 

            elseif((max_val == max(I_NCC_L_240(x(i, 1), y(i, 1)))) || (max_val == 

max(I_NCC_R_240(x(i, 1), y(i, 1))))); 

                rectangle('Position',[(y(i,1) - 120) (x(i,1) - 120) 240 240],'EdgeColor','b'); 

            elseif((max_val == max(I_NCC_L_480(x(i, 1), y(i, 1)))) || (max_val == 

max(I_NCC_R_480(x(i, 1), y(i, 1))))); 

                rectangle('Position',[(y(i,1) - 240) (x(i,1) - 240) 480 480],'EdgeColor','b');                

            end 

        end 

    end  

    saveas(index, sprintf('edge%d_1size_3temp_%dthresh.jpg',index, thresh)); 

end 
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Appendix C: Viola-Jones Algorithm 

C1: detecting_birds.m 

% Create a detector object. 

% xml created from the training code CascadeTrainGUI.m from 

% http://www.mathworks.com/matlabcentral/fileexchange/39627-cascade-training-gui--

specify-ground-truth 

birdDetector = 

vision.CascadeObjectDetector('gray_marking_everything_haar_NSF7_0.995TPR_25stag

es_0.6FAR.xml'); 

  

%go to the directory where the test images in grayscale 

cd('gray_test_images'); 

  

%the excel file has a list of all the test images in grayscale 

[~,data, ~] = xlsread('gray_test_images.xlsx'); 

[M,~] = size(data); 

index = 1; 

  

  

for index_image = 1:M 

    close all; 

    I = (imread(data{index_image,1})); 

    %Detect bird. 

    bboxes = step(birdDetector, I); 

  

    %Annotate detected birds. 

    IBirds = insertObjectAnnotation(I, 'rectangle', bboxes, 'bird'); 

   

    figure(index), imshow(IBirds), title('Detected birds'); 

  

    saveas(index,     sprintf('testing_%d_188.jpg', index_image)); 

end 

disp('finished'); 

cd('..'); 

 


