
PLATFORMS FOR TEACHING DISTRIBUTED COMPUTING CONCEPTS TO

UNDERGRADUATE STUDENTS

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Jeffrey Forrester

March 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32434259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2015

Jeffrey Forrester

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Platforms for Teaching Distributed Com-

puting Concepts to Undergraduate Stu-

dents

AUTHOR: Jeffrey Forrester

DATE SUBMITTED: March 2015

COMMITTEE CHAIR: Chris Lupo, Ph.D.,

Associate Professor of Computer Science

COMMITTEE MEMBER: Alex Dekhtyar, Ph.D.,

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.,

Professor of Computer Science

iii

ABSTRACT

Platforms for Teaching Distributed Computing Concepts to Undergraduate Students

Jeffrey Forrester

Over the last two decades, information technology has been moving towards dis-

tributed computing to host their applications and services. These systems can process

more data more reliably than their central processing counterparts; however, dis-

tributed applications are more complex to design and develop because they require

additional properties like replication and fault tolerance to work effectively. These

complexities translate to the educational setting, where schools need to invest in ad-

ditional infrastructure, knowledge, and technologies to teach distributed concepts to

students.

This project presents the design and implementation of a complete educational

framework for the teaching of distributed computing concepts at Cal Poly. The

framework consists of three components: a Raspberry Pi cluster, a custom distributed

file system (DecaFS), and a set of labs that can be used to support coursework in a

distributed computing class. Each cluster is composed of five networked Raspberry

Pi computers. The DecaFS distributed file system runs on the Raspberry Pi cluster.

DecaFS provides the base functionality of a distributed file system with a design that

allows for easy modification of sections of the implementation. The lab exercises focus

on important distributed computing concepts that represent a variety of problems

encountered in distributed systems including distribution, replication, fault tolerance,

recovery, rebalancing, and efficiency. Isolation of the lab related modules allows

students to focus on the learning objectives of the labs without needing to set up

network and file system infrastructure to support the distributed aspects.

The complexities of teaching distributed computing concepts in a classroom set-

iv

ting at Cal Poly have been addressed with this project's framework. The solution

overcomes key educational challenges as it is portable, modular, scalable and afford-

able. The framework provides the ability to offer courses in distributed computing

to better prepare students for the challenges presented in industry today. Through

the use of a modular distributed file system and computing cluster that were created

for this project, students are able to solve complex distributed problems, in the form

of labs, in an isolated environment that is conducive to quarter long learning objec-

tives.This work is a major step to bringing distributed computing into the classrooms

at Cal Poly and classes are currently being designed around this curriculum. Cal Poly

can evolve the framework to keep pace with the ever advancing information technol-

ogy world so that it may continue to serve the needs of the faculty and students of

Cal Poly.

v

ACKNOWLEDGMENTS

Thanks to:

• Chris Lupo

• Alex Dekhtyar

• Halli Meth

• Peter Faiman

vi

TABLE OF CONTENTS

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Undergraduate Distributed Computing Education 1

1.2 Our Contributions . 2

1.3 Outline of Chapters . 3

2 Background 4

2.1 Distributed Systems . 4

2.1.1 Fundamental Properties . 5

2.1.1.1 Replication . 5

2.1.1.2 Fault Tolerance . 5

2.1.1.3 Availability . 6

2.1.1.4 Scalability . 6

2.1.1.5 Transparency . 7

2.2 Distributed File Systems . 7

2.3 Raspberry Pi . 8

3 Related Work 10

3.1 Distributed File Systems . 10

3.1.1 Lustre . 10

3.1.2 GFS . 12

3.1.3 HDFS . 13

3.2 Distributed Computing Education: Curriculum and Platforms 15

3.2.1 Seattle . 15

3.2.2 Beowulf Cluster . 16

4 Raspberry Pi Cluster 18

4.1 Goals & Requirements . 18

vii

4.2 Design . 19

4.3 Building the Clusters . 20

4.4 Conclusion . 22

5 DecaFS 23

5.1 Terms and Definitions . 23

5.2 Requirements . 24

5.2.1 Labs . 24

5.3 DecaFS Design . 25

5.3.1 Barista Layer . 26

5.3.1.1 Barista Core Module 27

5.3.1.2 Volatile Metadata Module 27

5.3.1.3 Persistent Metadata Module 27

5.3.1.4 Locking Strategy Module 27

5.3.1.5 I/O Manager Module 28

5.3.1.6 Distribution Strategy Module 28

5.3.1.7 Replication Strategy Module 28

5.3.1.8 Access Module . 28

5.3.1.9 Monitored Strategy Module 29

5.3.2 Network Layer . 29

5.3.2.1 Network Core Module 29

5.3.3 Espresso Layer . 29

5.3.3.1 Espresso Core Module 29

5.3.3.2 Storage Module . 30

5.4 Implementation . 30

5.4.1 Validation Tools . 31

6 Labs 34

6.1 Distribution and Replication . 34

6.1.1 Student Implementation . 35

6.1.2 Instructor Evaluation . 36

6.2 Caching . 36

6.2.1 Student Implementation . 36

viii

6.2.2 Instructor Evaluation . 38

6.3 Storage and Recovery Performance 39

6.3.1 Student Implementation . 39

6.3.2 Instructor Evaluation . 41

6.4 Adaptive Data Migration . 41

6.4.1 Student Implementation . 41

6.4.2 Instructor Evaluation . 42

6.5 RAID 4 . 42

6.5.1 Student Implementation . 44

6.5.2 Instructor Evaluation . 44

6.6 MapReduce . 45

6.6.1 Student Implementation . 45

6.6.2 Instructor Evaluation . 46

6.7 Proposed Lab Layout . 46

7 Testing and Validation 48

7.1 Terms and Definitions . 48

7.2 Google Test and Google Mock Tools 49

7.3 Test Plan . 49

7.3.1 Raspberry Pi and Raspberry Pi Cluster 49

7.3.2 DecaFS . 49

7.3.3 Labs . 51

7.3.4 Summary . 51

7.4 Unit Tests . 51

7.4.1 DecaFS . 51

7.4.1.1 Volatile Metadata Module 51

7.4.1.2 Persistent Metadata Module 52

7.4.1.3 Locking Strategy Module 53

7.4.1.4 Distribution Strategy Module 53

7.4.1.5 Replication Strategy Module 54

7.4.1.6 Storage Module . 54

7.5 Integration Tests . 55

ix

7.5.1 Raspberry Pi Computer . 55

7.5.2 DecaFS . 55

7.5.2.1 Barista Layer . 55

7.5.2.2 Network Layer . 57

7.5.2.3 Espresso Layer . 57

7.6 System Tests . 57

7.6.1 Raspberry Pi Cluster . 57

7.6.2 DecaFS . 58

8 Conclusions 59

8.1 Raspberry Pi Cluster . 59

8.2 DecaFS . 60

8.3 Labs . 61

8.4 Summary . 61

9 Future Work 62

9.1 Classroom Usability . 62

9.2 Validation Tools . 62

9.3 Testing . 63

Bibliography 64

Appendices

A APIs 67

A.1 Network Core API . 67

A.2 Barista Core API . 68

A.3 Espresso Storage API . 77

x

LIST OF TABLES

2.1 Types of Transparency . 7

4.1 Bill of Materials for 8 Clusters at the time of purchase (FALL 2013) . 21

6.1 Estimated Timeline . 46

7.1 Testing Matrix . 51

xi

LIST OF FIGURES

2.1 Model B Raspberry Pi . 8

3.1 Lustre Architecture . 11

3.2 GFS Architecture . 12

3.3 HDFS Architecture . 14

3.4 Network Architecture for Raspberry Pi Cluster. 16

3.5 Beowulf Raspberry Pi Cluster. 17

4.1 Raspberry Pi Cluster Setup. 21

5.1 Architecture for DecaFS. 26

5.2 RAID 10 Chunk Distribution. 31

5.3 decafs file stat() sample output . 32

6.1 Distribution and Replication Lab Functions 35

6.2 Caching Lab Base Code . 37

6.3 Recovery Lab Base Code . 40

6.4 Data Migration Lab Function Declarations 42

6.5 RAID 4 Chunk Distribution. 43

xii

CHAPTER 1

Introduction

1.1 Undergraduate Distributed Computing Education

Many software professionals work on large-scale distributed computing applications.

These “internet-scaled” applications run on large distributed systems and process

enormous amounts of data. To support the development of these systems, software

engineers use highly-parallel computing practices to solve issues that occur in these

types of systems [16].

At the undergraduate level, computer science students work on labs and projects

that generally run on their local computer. Universities attempt to bring the dis-

tributed computing paradigm into their classrooms, yet they encounter many barriers

including infrastructure cost, prerequisite knowledge, and rapidly changing industry

technologies that make the introduction of these classes extremely difficult.

If universities overcome these barriers, they can offer courses in distributed com-

puting to “better prepare [their] students for the challenges presented by highly par-

allel computing” [16]. To prepare computer science students for industry, courses in

distributed computing often cover the following topics:

• distributed programming models

• concurrency and synchronization

• distributed database systems

1

• network topologies

• fault tolerance, reliability, and availability

• testing methodologies

• security

• cloud computing

• peer-to-peer

1.2 Our Contributions

This thesis presents a complete educational framework for the teaching of distributed

computing programming at Cal Poly. Through the use of a modular distributed file

system and computing cluster that were created for this project, students are able to

solve complex distributed problems, in the form of labs, in an isolated environment

that is conducive to quarter long learning objectives.

The specific contributions of this thesis are:

1. Creation of a Raspberry Pi cluster that can be used in a hands-on classroom

setting.

2. Creation of Distributed Educational Component Adaptable File System (De-

caFS)

3. Outline of distributed computing classroom labs to extend the base functionality

of DecaFS.

The distributed cluster of Raspberry Pis runs DecaFS, a modular distributed file

system, which is described in detail in my colleague's work [10]. The labs described

2

later in this paper modify isolated portions of DecaFS to achieve new or different

behaviors related to the fundamental properties of distributed systems.

1.3 Outline of Chapters

CHAPTER 2 provides detailed background information on Distributed File Systems.

Related Work is documented in CHAPTER 3. CHAPTER 4 describes the Raspberry

Pi cluster used to host DecaFS. An overview of DecaFS is presented in CHAPTER 5

followed by a description of suggested labs in CHAPTER 6. CHAPTER 7 covers the

testing and validation of the Raspberry Pi clusters, DecaFS, and Labs presented in

the previous chapters. Conclusions and Future Work are presented in CHAPTER 8

and CHAPTER 9.

3

CHAPTER 2

Background

2.1 Distributed Systems

For the purposes of this paper, a loose definition of distributed systems is used: “A

distributed system is a collection of independent computers that appears to its users

as a single coherent system [21].” This definition highlights two important aspects

of distributed systems. First, distributed systems are made up of many computers

that act together; and second, that this group of computers is indistinguishable from

a single computer to its’ clients.

Distributed systems are used in all sectors of modern computing and are commonly

used to host software applications and services today. The distributed paradigm

rose to prominence due to the many advantages they offer over centralized systems.

Distributed systems make it easy to integrate applications and they scale well with

the underlying network [21].

These advantages do not come without a cost. Applications written on top of

distributed systems must deal with issues that do not exist on centralized systems,

such as network latency, inconsistent clocks, and node failure. The added complexity

increases the difficulty of design, implementation, and maintenance of these systems

as they must be taken into account by software developers. These difficulties are

multiplied because designers often make assumptions about these systems that are

known as the fallacies of distributed computing [20]:

4

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn’t change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

2.1.1 Fundamental Properties

While designers often overlook network properties that affect how a distributed system

operates, the following desirable properties are usually designed into such a system.

2.1.1.1 Replication

Replication is a desired characteristic of distributed systems because it helps systems

be fault tolerant and allows them to scale their throughput. In distributed computing,

replication refers to the duplication of data, software, or tasks across more than one

physical or virtual machine. Replication is an important aspect of the foundation of

distributed computing.

2.1.1.2 Fault Tolerance

Fault tolerance is the ability of a service to continue running at full or partial capabil-

ity in the event of node failure. Node failure is common in distributed systems and is

5

often accounted for in the design of distributed applications like Google File System

that is discussed in Section 3.1. Node failure has many causes which include: appli-

cation failure, power loss, and network connectivity loss. To achieve fault tolerance,

distributed systems replicate resources across multiple nodes and redirect usage of

the replicated resources to other nodes. In some cases, combinations of certain nodes

failing can take down access to small parts of the service (data or functionality), but

will only take down the entire system in extreme cases.

2.1.1.3 Availability

Highly available systems can achieve over 99.9% availability by being fault tolerant

and quickly resolving critical system failures [22]. Availability is measured by the

percentage of time that a service is responsive to clients within the bounds of the

program's service level agreement (SLA). What percentage of time is a service avail-

able to perform its defined function? Availability is desirable because down-time of

commercial products impacts the revenue of the product [22].

2.1.1.4 Scalability

Scalability is the ability of a system to easily adjust to increases (or decreases) in

demand. Scalability can be measured by the throughput and quality of services of

a system. Can the system be scaled to serve more clients from many regions at

the same time? A scalable system allows products to scale the throughput of their

system as demanded by its clients. As it serves more clients, it can scale to serve all

of them with the same quality of service as it did when there was less throughput or

fewer clients. Like fault tolerance and availability, scalability is also achieved using

replication.

6

2.1.1.5 Transparency

Transparency exists in many aspects of distributed systems. It is most often thought

of as the appearance of the distributed system as a single coherent system; however,

table 2.1 contains many types of transparency that can be built into distributed

systems:

Transparency Description

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use

Replication Hide that a resource is replicated

Concurrency Hide that a resource may be shared by several competitive users

Failure Hide the failure and recovery of a resource

Table 2.1: Types of Transparency [21]

2.2 Distributed File Systems

Distributed applications, written on top of distributed systems, can take advantage of

the desireable properties to offer additional functionality over their centralized counter

parts. One such distributed application, a distributed file system (DFS), can offer

users the data storage and security of a traditional file system, while also providing

the users properties like fault tolerance, scalability, and availability that a traditional

file system cannot provide.

7

Industry distributed file systems are designed to meet the needs of their designers

or their target customers. One such DFS, Google File System (GFS), is designed

to meet the data processing needs of Google with goals of: performance, scalability,

reliability, and availability [7]. While these systems share similar goals with DecaFS,

they do not provide the ability to alter their implementation to substitute other

algorithms to achieve their goals. This is the primary reason we decided to implement

our own distributed file system that provides the capability to easily modify sections

of the implementation and can run on extremely limited hardware such as a Raspberry

Pi.

2.3 Raspberry Pi

Figure 2.1: Model B Raspberry Pi [2]

A Raspberry Pi is a “low cost, credit-card sized computer” [4] capable of running

operating systems compiled for the ARM architecture such as Raspbian and Arch-

Linux. The Model B Raspberry Pi computers used in this project have the following

specifications [1, 3]:

• Full size SD card

• HDMI output port

8

• Composite video output

• Two (2) USB ports

• 26 pin expansion header exposing GPIO, I2C etc

• 3.5mm audio jack

• Camera interface port (CSI-2)

• LCD display interface port (DSI)

• One microUSB power connector for powering the device

• 512 MB of SDRAM

• One ethernet port

• 750 MHz ARMv6 CPU

A basic Raspberry Pi system can be built with a very small budget of around

$50 USD. A simple system includes a Raspberry Pi ($35 USD), a SD card, and an

ethernet cable. A free open source operating system, such as Raspbian or Arch-Linux,

can be installed to keep costs minimal. The ethernet cable connects the Raspberry

Pi to a router if network access is desired. Additionally, a USB 2.0 keyboard and an

HDMI monitor can be connected to allow the use of the desktop interface provided

by the chosen operating system.

9

CHAPTER 3

Related Work

The following chapter our background research into distributed file systems, and

distributed systems designed for educational use in an attempt to bring distributed

computing into the classroom at Cal Poly.

3.1 Distributed File Systems

Distributed file systems (DFS) are used throughout industry to support large-scale

distributed computing applications that process large volumes of data. Unlike other

distributed file systems, DecaFS is designed modularly to support educational re-

quirements unique to our project.

3.1.1 Lustre

Lustre is a cluster file system that aims to be massively scalable and has been tested

with 50,000+ clients, a billion files, and 55 petabytes (PB) of total storage [11].

It is an open source POSIX compliant file system that focuses on high availability,

heterogeneous network support, scalability, and data security [11]. Lustre is the “most

widely used file system by the world's Top 500 HPC [High Performance Computing]

sites [18].”

10

Figure 3.1: Lustre Architecture [11]

A typical Lustre cluster is composed of: a Management Server (MGS), a Metadata

Server (MDS), Object Storage Servers (OSSs), and many clients. The MDS stores

the metadata of the files including filenames, directories, and file permissions and

makes this information available to clients. The OSSs are the file access providers,

and typically store filedata on two to eight disks that offer up to 16 terabytes (TB)

of total storage space. Each of the servers has corresponding targets with physical

disks for data storage..

Lustre is not suited to this project for many reasons. While it can run on com-

modity hardware, it benefits from specialized enterprise hardware like storage arrays

and storage area networks that far exceed the budget of this project. Additionally,

Lustre does not replicate data at the file system software layer and relies on failover

techniques that would not be supportable at Cal Poly.

11

3.1.2 GFS

Unlike Lustre, Google File System (GFS) is designed to run on commodity hardware.

It is a “scalable distributed file system” that meets Google's data processing needs

with goals of performance, scalability, reliability, and availability [7]. While having the

same goals as many distributed file systems, GFS deviates from previous assumptions

made by these types of file systems based on their needs. GFS is designed to run on

commodity hardware, support large file sizes, support concurrent appending to files,

and prioritizes high bandwidth over low latency [7].

Figure 3.2: GFS Architecture [7]

A GFS cluster is composed of a single master node and many chunkservers. The

master node is responsible for tracking the metadata of the system which includes: file

and chunk namespaces, mapping from files to chunks, and locations of chunk replicas.

In a GFS instance, there is a single master, which allows it to make intelligent chunk

storage decisions based on its global knowledge of the system. This metadata is stored

in-memory to keep master operations fast. To maintain fault tolerance of the system,

operation logs track metadata changes and the operation logs are stored to disk on

12

the master and replicated on some of the chunkservers of the system. Chunkservers

are used to store the file chunks as determined by the master. These data transfer

operations are not routed through the master as clients transfer this data directly

to the chunkservers. The GFS design and implementation also allow for atomic file

creation and file appending that they believed was beneficial to their data intensive

applications.

The design and implementation of GFS fit Google's requirements, but like Lustre,

GFS is not appropriate for the needs of this project. GFS is designed for large data

files, large sequential reads, and concurrent appending to data files. This project's

goal is to support classroom projects that do not have the same data needs or hardware

infrastructure.

3.1.3 HDFS

Hadoop Distributed File System (HDFS) is a “distributed file system designed to run

on commodity hardware” [5]. The goals and assumptions of HDFS are almost identi-

cal to those of GFS: provide high-throughput streaming data access, treat hardware

failure as the norm, design for large data sets, and prioritize high throughput over

low latency. Additionally, HDFS assumes that “moving computation is cheaper than

moving data” [5], and tries to move computations to the data whenever possible.

13

Figure 3.3: HDFS Architecture [5]

The HDFS architecture uses two types of nodes: a single namenode, and multiple

datanodes. Like the GFS master node and the Lustre Metadata server, the HDFS

namenode keeps track of file metadata (filenames and namespaces) in the system, and

handles data access for clients. The namenode stores the datanode locations of blocks

and directs clients to the correct datanodes for their data operations. Datanodes store

blocks of files and service client data operations like read and write. To provide fault

tolerance, blocks are replicated across multiple datanodes based on a replication factor

(how many times a block should be replicated). The namenode uses a transaction log

that records updates to the system and is used to recreate the persistent metadata

stored on the namenode in the case of its failure.

HDFS is open source and was considered for use in this project, but we were unable

14

to compile and run HDFS on Raspberry Pi computers. A member of the Raspberry Pi

community successfully installed HDFS and Hadoop on a small Raspberry Pi cluster

[12]. Their cluster was extremely slow (1.2 MB/s write speed). They attributed the

bottleneck to either the Java Virtual Machine (JVM) or Network Interface Card. One

proposed solution was to implement a hadoop-like file system in C/C++ to eliminate

the suspected bottleneck of the JVM. This is the solution we decided upon when we

decided to create DecaFS.

3.2 Distributed Computing Education: Curriculum and Platforms

In [8], Hoganson addresses the needs of a well rounded computer science education

that prepares students for a globally competitive job market. Integral to this curricu-

lum are the core technologies behind today's applications: networking, distributed

computing, human-computer interface, and security [8]. While including distributed

computing at both the undergraduate and graduate computer science levels, a model

for teaching the distributed concepts is not addressed.

3.2.1 Seattle

A platform for educational distributed systems is provided in [6]. This platform,

Seattle, runs on a set computers and supports “cloud computing, distributed systems,

grid-computing, peer-to-peer networking, distributed systems, and networking” [6].

Compute time is donated by contributors from unused resources of machines. The

platform runs on a set of heterogeneous machines and Seattle provides a programming

API for non-portable network communication and file operations that allow students

to write portable programs. A manager portion of Seattle performs monitoring of the

programs to protect donated resources from malicious and poorly-written code.

15

3.2.2 Beowulf Cluster

Kiepert describes how he built another educational platform, a Beowulf Cluster, out

of a group of 33 Raspberry Pi computers [9]. The author built the system by connect-

ing the Raspberry Pi computers over a switch and setting up a network file system

available to all of the units. The Raspberry Pis are housed in a custom built en-

closure that uses fans for cooling and contains a power supply to support the power

requirements of the Raspberry Pis. Overall, the case mimics a desktop computer

tower.

Figure 3.4: Network Architecture for Raspberry Pi Cluster [9]

The author concludes that the cluster mimics real distributed systems and is great

for testing distributed software as it scales well with additional nodes. Downsides of

the cluster are that each node has a limited amount of RAM (just 512 MB) so it cannot

support multiple clients simultaneously, and that the use of the ARM architecture

requires custom compilation of some programs. We found these traits desireable, and

ideal for our target classroom environment leading to our decision to use Raspberry

Pi computers in our own clusters.

16

Figure 3.5: Beowulf Raspberry Pi Cluster [9]

17

CHAPTER 4

Raspberry Pi Cluster

When we began requirements and design for this project, our overall objective was to

align with Cal Poly's hands-on learning approach by providing an environment where

students could learn by doing.

4.1 Goals & Requirements

Our primary goal for the distributed computing platform was to construct a sys-

tem where students could “play” to learn more about distributed computing. This

included building physical clusters of computers that could support a class size of

approximately 30 students. Breaking classes into groups of three to four students

each equated to a minimum of 8 clusters. Each cluster would need to include enough

nodes to create a viable network or networks to support the goals of the distributed

computing labs as described in CHAPTER 6. The hardware setup to support these

labs required a minimum of one master with two pairs of slave nodes, totaling a

minimum of five nodes per cluster. As students would be working directly with the

clusters, we also needed something that was physically small in size and portable from

classroom to classroom. The clusters would need to be modular in order for students

to assemble or disassemble as needed per requirements for their labs. An educational

grant was obtained from CP-Connect for the clusters, so we needed the clusters to

be affordable within the budget of the grant. This applies to both hardware and

software, so free open source software is required. Finally, it was also desirable for

18

the clusters to be scalable with options to add nodes to a cluster or create additional

clusters following the same architecture.

In summary, requirements for the platform were:

1. 8 clusters with minimum of 5 nodes per cluster

2. Physically small enough to be portable classroom to classroom

3. Modular in order to assemble / disassemble as desired

4. Affordable within the budget of CP-Connect grant (approximately $4000)

5. Scalable in quantity of nodes and additional clusters

6. Use of free open source software (operating system and tools)

4.2 Design

To fulfill the size, portability, and budget requirements, we needed to build the clusters

with computers that were also very small, portable, and affordable. This restricted

us to a Single Board Computer (SBC) as this was the only option we believed could

meet our requirements for the clusters. We selected the Raspberry Pi because it offers

a solution for size and cost with a level of performance that we felt was acceptable.

Another benefit of using Raspberry Pis as the computing platforms for the cluster is

that they only have a 750 MHz ARM processor. This means that they can be easily

pushed to their limits and can simulate industry data problems with a fraction of the

data.

For the setup of each individual Raspberry Pi, we wanted to provide students

with an environment with all of the tools and libraries they might need along the

way. With ease of development and use in mind, we selected the Raspbian operating

19

system because it comes default with a desktop environment and many other packages.

By using this Linux distribution, students have the option to plug a monitor and

keyboard into a Raspberry Pi node to test and develop on the nodes. One downside

of using the Raspbian images is that there are unnecessary libraries and programs

installed on the operating system taking up some of the limited amount of processing

power and disk space. We considered an alternative, ArchLinux, that is a minimalist

operating system which does not come with a desktop environment or other useful

libraries. Instead, you have to install all of the tools you need separately. To avoid

students having to perform system administration roles, we felt Raspbian was a better

solution as it provides a larger set of base functionality.

In addition to the operating system selection, we also wanted to provide all nec-

essary tools and libraries for the students. Packages we deemed important included:

the vim text editor, the GNU C compiler, the GNU C++ compiler, and the Open-

MPI library. Vim and the GNU compilers provide students with tools to develop and

compile code on the computers. OpenMPI is a Message Passing Interface library that

is useful for creating distributed computing programs and is used in the MapReduce

lab discussed in CHAPTER 6.

4.3 Building the Clusters

Building the physical clusters was straightforward as there were not many parts to

setup and configure. The required hardware components were the Raspberry Pis, the

wireless routers, and the USB hubs. Additional hardware included housings, data

storage, and networking components.

20

No. Item Quantity Price Per Item Total

1 Raspberry Pi Model B board 40 $35 $1400

2 Plastic Enclosure for #1 40 $10 $400

3 Micro USB cord 40 $10 $400

4 SD Card (8 GB) 80 $10 $800

5 5 (7)-port USB 2.0 hub 8 $30 $240

6 USP port splitter 40 $5 $200

7 USB Wi-Fi dongle 40 $12 $480

8 Wi-Fi N600 Router 2 $80 $160

Total $3920

Table 4.1: Bill of Materials for 8 Clusters at the time of purchase (FALL 2013)

Figure 4.1: Raspberry Pi Cluster Setup.

21

Each cluster was built by connecting five Raspberry Pi computers to a single USB

hub, which provides power. Each Raspberry Pi was connected to a wireless router via

wireless dongles, which provides wireless network connectivity to the cluster. Each

Raspberry Pi was assigned two SD cards that provide bootable replaceable stor-

age.This allows shared use by multiple groups without interference because multiple

operating systems and data can be maintained. The bill of materials totaled $3920,

an average of $490 per cluster. If desired, clusters can be enhanced to use switches

and ethernet cables for a faster, more reliable network connection. The clusters could

then share a switch and have the switch plugged into the wireless routers for student

access, but would be slightly less portable as they would require additional hardware.

To make installation of the operating system and required libraries simple for stu-

dents and future users of the clusters, we created an image of the Raspbian operating

system with vim, GNU gcc, GNU g++, and OpenMPI installed. This image can be

hosted on a professor's webpage. To prepare a cluster for a class, the image can be

downloaded and installed on each of the SD cards of the cluster. This is the starting

point where the cluster is ready to be used for distributed application processing.

4.4 Conclusion

In summary, we were able to build eight low cost distributed computing clusters using

Raspberry Pi computers with each cluster fitting in the size of a shoebox. The size is

advantageous, because students can take the cluster or individual Raspberry Pi home

and connect them to their home router for development and testing outside of the

classroom. These clusters support the proposed classroom labs from this project and

are scalable for larger projects in the future.

22

CHAPTER 5

DecaFS

DecaFS is the distributed file system that we designed, developed, and deployed on the

Raspberry Pi clusters described in CHAPTER 4. An overview of DecaFS is provided

in this Chapter. For an in-depth description of the design and implementation of the

distributed file system see my colleague's [10].

5.1 Terms and Definitions

1. Node: A machine running a component of DecaFS

2. Barista Node: A machine running the master node of DecaFS, one per instance

of DecaFS, also referred to as the Barista

3. Espresso Node: A machine running a slave node of DecaFS, at least one per

DecaFS instance

4. Module: An isolated portion of code that lives in its own library, can be compiled

independently, and usually contains only a few functions

5. Stripe: A logical piece of a file that will be distributed across Espresso Nodes

6. Chunk : A portion of a stripe, a chunk is the data written to an Espresso Node

7. Primary Chunk : A chunk marked as the primary (unmodified) data

8. Replica Chunk : A non-Primary marked chunk used to achieve fault tolerance,

23

can be stored unmodified or as a parity of other chunks in the stripe, generally

not stored on the same Espresso Node as the primary chunk

9. DecaFS Client : Any user running a process on a node in DecaFS

5.2 Requirements

The overall goal of DecaFS is to support the teaching of distributed computing con-

cepts to students at Cal Poly. To fit as many foundational distributed computing

concepts into a quarter as possible, a design that allows students to quickly modify

portions of the system is a must. In addition, we want students to be able to de-

velop techniques to perform common distributed tasks that are deemed core concepts

including distribution, replication, and recovery.

5.2.1 Labs

At Cal Poly, computer science classes include labs where programming projects are

assigned to reinforce and provide hands on practice for concepts and topics covered

in class lectures. In order to make each lab focused on specific learning goals, we

wanted to create a system which students could modify one module at a time. The

following labs were considered in the design of the file system and are described in

CHAPTER 6:

1. Distribution Strategies

2. Replication Strategies

3. Storage and Recovery Performance

4. Caching

24

5. Adaptive Data Migration

6. MapReduce

5.3 DecaFS Design

DecaFS is designed modularly so that students can modify small sections of the

system at a time to align with lab assignments. We separated lab related code into

modules isolated from the modules that control the core functionality of the file

system. Network communication, reads / writes, and persistent metadata storage

related to the file system aspect of DecaFS are also separated from the lab related

modules so that students can focus on implementing distributed computing concepts

instead of worrying about lower-level details of the file system. DecaFS is split into

three layers: Barista Layer, Network Layer, and Espresso Layer. The Barista Layer

runs on the master node of the system and contains the code that distributes the file

system. The Network Layer deals with the communication between nodes, and the

Espresso Layer is responsible for the storage and retrieval of file data in the system.

25

Figure 5.1: Architecture for DecaFS.

5.3.1 Barista Layer

The Barista Layer handles the metadata of the file system and is the client's point

of contact into the file system. The modules of the Barista Layer are coordinated by

the Barista Core Module and the details of how the file system behaves are defined

in the other Barista modules.

26

5.3.1.1 Barista Core Module

The Barista Core Module coordinates all client requests that come into the file system.

It controls the data flow through all other modules within the Barista Layer and

controls the startup and shutdown functionality of the file system. It coordinates the

Espresso Nodes and monitors their states.

5.3.1.2 Volatile Metadata Module

The Volatile Metadata Module tracks details of the file system including a list of open

file descriptors that are mapped to corresponding file id, client id, and lock status.

5.3.1.3 Persistent Metadata Module

The Persistent Metadata Module tracks and stores non-recoverable details of the file

system. This information includes file metadata such as filename, file id, filesize, and

chunk storage locations.

5.3.1.4 Locking Strategy Module

The Locking Strategy Module controls access to the files in the file system to prevent

the corruption of files during concurrent access by multiple clients. DecaFS uses a

simple locking mechanism that does not allow shared access to files. A client can

have one of two types of locks: exclusive or shared. Exclusive locks are used to write

to a file and can only be held by one client process. In order to read from a file, a

client obtains shared locks which can be held by more than one client process.

27

5.3.1.5 I/O Manager Module

The IO Manager Module is responsible for converting data operations from the stripe

level to the chunk level. When it receives requests from the Barista Core Module, it

separates the requests into the relevant chunks and requests the chunks from their

corresponding Espresso Nodes. The Espresso Node location of the chunks are deter-

mined by the Distribution and Replication Strategy Modules.

5.3.1.6 Distribution Strategy Module

The Distribution Strategy Module determines how chunks are distributed across

Espresso Nodes. The distribution strategy can use file id, filename, stripe id, and

chunk num to determine where to send a chunk.

5.3.1.7 Replication Strategy Module

The Replication Strategy Module determines which Espresso Node replica chunks are

stored. The replication strategy can use file id, filename, stripe id, chunk num, and

node id to determine where to send a chunk.

5.3.1.8 Access Module

The Access Module is the layer that abstracts the Network Layer from the rest of

the Barista Layer. At this level, read, write, and delete operations are performed per

chunk.

28

5.3.1.9 Monitored Strategy Module

The Monitored Strategy Module allows for the handling of node failures and restarts.

When either of these events occur, this module is notified and can handle data rebal-

ancing or data synchronization as needed.

5.3.2 Network Layer

The Network Layer facilitates the communication between nodes.

5.3.2.1 Network Core Module

The Network Core Module is split into two portions: Barista server, and Espresso

client. The Barista server listens for connections from Espresso clients and notifies

the Barista Core Module when Espresso Nodes start, fail, or restart. The client and

server are the communication line between the Barista Core Module and the Espresso

Core Module and all data transfer and job status messages are passed through this

module.

5.3.3 Espresso Layer

The Espresso Layer is responsible for storing file chunks to disk. An instance of the

Espresso Layer runs on all Espresso Nodes, and each has its own metadata to keep

track of the chunks stored on its node.

5.3.3.1 Espresso Core Module

The Espresso Core Module tracks the persistent metadata of the chunks stored on

the Espresso Node. This information relates file id, stripe id, and chunk id to the

29

location on disk where the chunk is physically written.

5.3.3.2 Storage Module

The Storage Module takes care of reading, writing, and deleting chunks from and to

the disks of Espresso Nodes. It is also responsible for disk space management.

5.4 Implementation

In our implementation of DecaFS, we provide base functionality of a distributed file

system implemented with striping and mirroring (RAID 10). Given four Espresso

Nodes per design, Primary Chunks are stored on nodes 1 and 3, while the corre-

sponding Replica Chunks are stored on nodes 2 and 4. Our Monitored Strategy

Module is left empty and does not perform rebalancing of data when a node comes

online or goes offline. Implementation of this module is left up to the students and

is required in some labs. In addition, more sophisticated methods for distribution,

replication, and rebalancing are left to students to implement and are described in

CHAPTER 6.

30

Figure 5.2: RAID 10 Chunk Distribution [17]

5.4.1 Validation Tools

While testing the system and layers of DecaFS, we found it useful to create a file

stat function specific to DecaFS to allow users to see where data is stored in the

system. This custom informational function, decafs file stat(), looks up a file name

in the system and returns a JSON formatted string with information on how the file

is stored in the system.

31

{

"file_id": 1

"stripe_size": 256

"chunk_size": 128

"stripes": [

{ "stripe_id": 1

"chunks": [

{ "chunk_num": 1

"node": 1

"replica_node": 3

}

{ "chunk_num": 2

"node": 2

"replica_node": 4

}

]

}

{ "stripe_id": 2

"chunks": [

{ "chunk_num": 1

"node": 1

"replica_node": 3

}

]

}

]

}

Figure 5.3: decafs file stat() sample output
32

This function can be used by testers of the system as an intermediate testing stage

to see if the system is storing data as expected. One such intermediate test would be

a simple validation to ensure that file chunks are not being stored and replicated on

the same node. While this does not guarantee that the file system is fault tolerant,

it is a requirement for a system that wants to be fault tolerant. Another verification

that could be performed with this function is the differencing of the current result

to past results of the storage statistic function. This could be used to test student

implementations against the instructor's oracle system. This function has many uses

outside the scope of this section that are addressed as possible future work that could

be done with DecaFS in CHAPTER 9. This function is the primary tool used to

validate student's lab solutions.

33

CHAPTER 6

Labs

When creating DecaFS and the Raspberry Pi platform, we wanted to make sure we

could support a set of labs representative of common distributed computing problems

such as: availability, replication, and scalability. Additionally, we wanted students

to be able to begin writing distributed algorithms without having to set up any

infrastructure (hardware or software). With this platform and the DecaFS distributed

file system, students should be able to start writing distributed code right away. Each

lab takes advantage of the Raspberry Pi cluster, but does not always use the DecaFS

code base. Lab topics we specifically support are:

1. Distribution and Replication

2. Caching

3. Storage and Recovery Performance

4. Adaptive Data Migration

5. RAID 4

6. MapReduce

6.1 Distribution and Replication

For this lab, students will implement a paired distribution and replication strategy

that provides one-node fault tolerance within the DecaFS system. The algorithm

34

functionality for this lab sits in the Distribution and Replication Modules and is

designed to introduce students to the Raspberry Pi Cluster and DecaFS.

Learning Objective: To familiarize students with DecaFS and have them start

programming core distributed computing concepts

6.1.1 Student Implementation

This lab will be implemented in the Distribution and Replication Modules and re-

quires students to setup an algorithm that stripes and mirrors the data chunks stored

on the Espresso Nodes in the DecaFS instance. This lab has students implement

RAID 10 to provide one-node fault-tolerance. To do this, students need to imple-

ment two functions: put chunk, and put replica.

int put_chunk(uint32_t file_id , char *pathname , uint32_t

stripe_id , uint32_t chunk_num);

int put_replica(uint32_t file_id , char *pathname , uint32_t

stripe_id , uint32_t chunk_num);

Figure 6.1: Distribution and Replication Lab Functions

In both functions, students have file id, pathname filename, stripe id, and chunk num

to determine where to send the chunk. If desired, additional data structures can be

used to track where previous chunks have been stored. The put chunk function re-

turns the Espresso Node id to store the primary chunk and the put replica function

returns the Espresso Node id to store the mirrored chunk. Once these functions de-

termine and return the node to store the chunk, the system automatically contacts

the Persistent Metadata Module to store the metadata information and the Barista

Core Module writes the data to the corresponding nodes using the Access Module.

35

6.1.2 Instructor Evaluation

There are multiple ways to evaluate the accuracy of the implementation of this lab.

The simplest method is to use the decafs file stat function described in Section 5.4.1

that returns a JSON string description of how primary and replica chunks are stored

on the Espresso Nodes. To use this method, the student's modified DecaFS imple-

mentation should be compiled and started on a Raspberry Pi Cluster. Next step is

to write a few files to the DecaFS instance, then call decafs file stat and verify that

the results it returns show that no primary and replica chunks of the same chunk are

stored on the same Espresso Node. More in-depth verification of the stat results can

be performed if the instructor decides to enforce a strict implementation of RAID 10

or another fault-tolerant model.

6.2 Caching

The goal of this lab is for students to explore how network latencies can affect the

responsiveness of distributed systems. Can we cache frequently read data to increase

read speeds and reduce the number of expensive network requests that are called?

How do different caching policies affect hit rates of cached data and what policies

work best in distributed file systems?

Learning Objective: To have students explore how network latency affects

responsiveness of DecaFS and to implement a simple caching mechanism to increase

the read speed of frequently read chunks

6.2.1 Student Implementation

In this lab, students will be isolated to the Access Module where they need to imple-

ment three functions: process read chunk, process write chunk, and process delete chunk.

36

ssize_t process_read_chunk (uint32_t request_id , int fd,

int file_id , int node_id , int stripe_id , int chunk_num ,

int offset , void* buf , int count) {

return network_read_chunk (request_id , fd, file_id ,

node_id , stripe_id , chunk_num , offset , count);

}

ssize_t process_write_chunk (uint32_t request_id , int fd,

int file_id , int node_id , int stripe_id , int chunk_num ,

int offset , void *buf , int count) {

return network_write_chunk (request_id , fd, file_id ,

node_id , stripe_id ,

chunk_num , offset , buf ,

count);

}

ssize_t process_delete_chunk (uint32_t request_id , int

file_id , int node_id , int stripe_id , int chunk_num) {

return network_delete_chunk (request_id , file_id ,

node_id , stripe_id , chunk_num);

}

Figure 6.2: Caching Lab Base Code

37

The caching lab requires students to write a caching data structure to store chunks

deemed important into an in-memory data structure which includes the chunks and

metadata information. Students can use other data structures to record statistics

about which chunks are or are not frequently read. In the process read chunk function,

if the chunk being read exists in the cache, the network read chunk() function call

should be bypassed and the chunk data from the cache should be returned instead. In

order for the Barista Core Module to recognize this, the chunk data should be written

to the buf parameter and the size of the data in the buffer should be returned. In the

process write chunk function, students need to update the cache data to make sure

that invalid chunk data is not still stored in the cache. If the process delete chunk

function is called, students should make sure to remove the chunk from the cache if it

is stored in the cache. However, If a cache entry of a deleted chunk is not deleted, the

Barista Code Module will prevent chunks that do not exist to be read. Many caching

techniques exist, such as Least Recently Used and Most Recently Used, and it is left

up to the students and/or instructor of the class to choose a specific technique.

6.2.2 Instructor Evaluation

Validation of this lab is difficult as it involves measuring timings of reads and writes

that could be affected by more than the students' implementation of the lab. One

option to verify that caching does exist is to write and read some chunks to DecaFS,

then take all Espresso Nodes offline. Now, when a client attempts to read data from

the system, there should be some chunks that are still readable. Another way to

check that students are correctly invalidating and updating cache entries is to write a

chunk to the system and read the chunk many times. After it is clear that the chunk

has been added to the cache, write new data to the chunk. Subsequent reads of the

chunk should return the updated data. If the old chunk data is returned, the cache

is not updating cache entries properly.

38

6.3 Storage and Recovery Performance

The Storage and Recovery Lab has students explore how the system handles situations

where Espresso Nodes go offline and are brought back online. If an Espresso Node

goes offline for a period of time, then comes back online, the chunks that were updated

while the node was offline need to be updated and synchronized to reflect the changes

that occurred while the node was offline.

Learning Objective: To have students program a solution to update data on

nodes that are out of date due to node outages

6.3.1 Student Implementation

When a node fails (goes offline) or returns (comes online), the Barista Core Module

notifies the Monitored Strategy Module by calling the node failure handler func() or

node up handler func() functions. These functions give students the opportunity to

add functionality to DecaFS to handle system changes more elegantly than the default

solution.

39

void node_failure_handler_func (uint32_t node_number) {

printf ("Handling node failure ...\n");

// Add custom processing to be done when node

node_number goes down.

}

void node_up_handler_func (uint32_t node_number) {

printf ("Handling node coming online ...\n");

// Add custom processing to be done when node

node_number goes up.

}

Figure 6.3: Recovery Lab Base Code

When the node failure handler func is called, students should mark that the node

is down and begin tracking modified chunks as invalid. When the node comes online

and the node up handler func is called, the invalidated chunks need to be updated

to reflect the changes that occurred while the node was offline. In a mirrored and

striped system, the data updates are simple as the data in the invalidated chunk

can be overwritten with the data from its counterpart chunk (the replica chunk and

primary chunk are each others counterpart). In a RAID 4 system, this is more difficult

as students need to reconstruct the invalid chunk by computing the parity of all other

chunks in the stripe. The solution to this lab also requires students to modify the I/O

Manager Module to record which chunks are invalid. This requires small amounts of

code to be added to the process read stripe, process write stripe, and process delete file

functions.

40

6.3.2 Instructor Evaluation

In order to test this lab, the tester needs to force the updating of data that is stored

on offline nodes. To do this, data should be written to the DecaFS instance, then

decafs file stat() should be called to retrieve the Espresso Node id where the primary

chunk is stored. This node will then need to be taken offline. Once offline, the chunk

should be overwritten with new data. Bring the node online and read the chunk to

ensure that the data returned from the last read is the same as the newly written

data. The primary chunk is taken offline so that DecaFS is forced to write the new

data to the replica chunk.

6.4 Adaptive Data Migration

The goal of this lab is to explore how to adjust the distribution strategy when an

Espresso Node is overloaded with requests and cannot keep up with client demands.

An uneven request distribution can drown a single Espresso Node and reduce the

throughput of the system. To adapt to client demands, chunks can be read from idle

Espresso Nodes to distribute the load across the system.

Learning Objective: To have students monitor system load and adapt the

distribution of requests to improve system response times and better serve clients

6.4.1 Student Implementation

The first step of this lab is for students to develop a monitor that recognizes when

an Espresso Node is being flooded with too many requests. This can be done by

monitoring the read and write requests in the I/O Manager Module using the pro-

cess read stripe, process write stripe, and process delete file functions. Once an im-

balance has been recognized, students need to use the gathered metrics to decide

41

which replica chunks on idle nodes should be used. Once chunks have been identified,

the primary and replica nodes of the chunk should be swapped. This can be achieved

by calling the set node id and set replica node id functions from the I/O Manager

Module with the identification information of the chunk.

int set_node_id (uint32_t file_id , uint32_t stripe_id ,

uint32_t chunk_num , uint32_t node_id);

int set_replica_node_id (uint32_t file_id , uint32_t

stripe_id , uint32_t chunk_num , uint32_t node_id);

Figure 6.4: Data Migration Lab Function Declarations

6.4.2 Instructor Evaluation

Validation of this lab requires the creation of a situation where data migration is

necessary. To do this, there needs to be a DecaFS Client that constantly reads data

from the system. In the RAID 10 base implementation, this will cause the Barista

Core Module to read from the Espresso Nodes storing the primary chunks. After

a short period of time, the students implementation should see a need to adapt the

distribution of the primary and replica chunks. Once these primary and replica chunk

labels have been distributed, a call to decafs file stat of all files in the DecaFS instance

will return data showing that all Espresso Nodes are storing both primary and replica

chunks.

6.5 RAID 4

A more advanced challenge for students to implement would be to change from the

RAID 10 striping and mirroring solution implemented in the Distribution and Repli-

cation lab to RAID 4, a scheme that increases the capacity of the file system without

42

sacrificing fault-tolerance. RAID 4 is a scheme with chunk striping and a dedicated

parity disk.

Figure 6.5: RAID 4 Chunk Distribution [13]

Instead of having a dedicated replica chunk per primary chunk, a special type of

replica chunk called a parity chunk is used to provide fault tolerance.The parity chunk

is computed by taking the XOR of all chunks in a stripe. By computing the parity

chunk in this way, any chunk of the stripe can be re-created by taking the XOR sum

of all other chunks in the stripe.

1. Ap = A1XORA2XORA3

2. A1 = A2XORA3XORAp

43

Learning Objective: To have students implement a more complex fault-tolerant

data storage scheme that prioritizes capacity over performance

6.5.1 Student Implementation

This lab requires students to modify three modules in DecaFS: Distribution, Repli-

cation, and I/O Manager. In the Distribution Module, students need to split a stripe

into three chunks and distribute them to the corresponding disks or nodes in the

system. In the Replication Module, a parity chunk needs to be computed and stored

on the parity disk. Read requests are simple when no nodes have gone down in the

system, but if one of the non-parity nodes goes down, students have to read all re-

maining chunks and compute their XOR sum as described above. This operation

would be slow as you would have to read data from all three nodes and compute the

result of the returned data before you can return the requested data to the client.

This is one of the most compelling labs because it uses Raid 4 which NetApp used in

their WAFL file system.

6.5.2 Instructor Evaluation

Evaluation of this lab can be performed relatively easily. Write a file to the DecaFS

instance and call decafs file stat to see how the file is distributed across the Espresso

Nodes. A stripe of the file should have each of its three chunks written to three

different Espresso Nodes and the replica chunk of the stripe should reside on the other

Espresso Node. Additionally, the Espresso Node where the parity chunk is stored

should have one replica chunk per stripe stored on the file system. The validation

also needs to ensure that students have correctly computed the parity chunks of the

stripes. To verify this, each of the Espresso Nodes in the system should be shut down,

one at a time, and the entire stripe should be read. If the stripe is correctly recreated

44

with any single Espresso Node offline, the parity chunk has been computed correctly.

6.6 MapReduce

This lab is the only lab described that does not rely on DecaFS, instead it uses the

Raspberry Pi cluster and the OpenMPI library that is installed on the Raspberry Pi

computers. MapReduce is a programming model designed for use with large sets of

data. Simple implementations using MapReduce can digest large amounts of data to

transform or simplify the data set. The MapReduce exercise suggested for this lab is

to have students create a histogram of the sum of two vectors.

Learning Objective: To have students implement a simple distributed program

to familiarize them with two common distributed computing tools, MapReduce and

MPI

6.6.1 Student Implementation

Using the simple MPI functions of Init, Comm size, Comm rank, Barrier, Finalize,

Send, and Recv, students can build a MapReduce solution to compute a histogram

of the sum of two vectors. A student solution may look similar to the following:

1. Setup the MPI calls required to synchronize nodes

2. Read the two vectors into memory on the master node

3. Distribute the vectors across nodes using the index of the value as its key

4. For each set of pairs with identical keys, compute the sum of the values

5. Add the sum to a local histogram

6. Send all partial histograms to the main node

45

7. Sum the partial histograms together to create the final histogram

6.6.2 Instructor Evaluation

Evaluation of this lab is simple, the MapReduce version of the program should produce

the same histogram as a serial implementation of the algorithm. If additional work

is desired, students can also write a serial version and compare the timing results of

the two algorithms together.

6.7 Proposed Lab Layout

The labs in this Chapter represent a variety of distributed learning objectives that

can be included in a distributed computing class. We recommend that the DecaFS

labs be administered in the order they are presented:

Lab
Estimated Effort

(1 easy - 5 hard)
Hours Duration (weeks)

1. Distribution and Replication 1 6 1

2. Caching 2 4 1

3. Storage and Recovery Performance 4 10 2

4. Adaptive Data Migration 3 8 1.5

5. RAID 4 5 15-20 2.5

6. MapReduce 3 8 1.5

Table 6.1: Estimated Timeline

Overall, the six labs should take an estimated ten week duration to complete

using the estimations displayed in Table 6.1. This ten week class calendar would help

students become familiar with core distributed computing concepts (the labs). All

labs are extensions of the base functionality we provide, so any lab can be omitted

46

from a class schedule. The information students learn along the way is useful for future

labs, but implementation of the previous lab is not necessary. The MapReduce lab

stands independent of DecaFS and can be incorporated into the class if the instructor

feels the learning objective of the lab is important for students to grasp. If all six

labs are assigned within a quarter, it is unlikely that additional labs would fit into

the schedule; however, the labs could be supplemented with a quarter long project

on a student selected topic in the area of distributed computing.

47

CHAPTER 7

Testing and Validation

This chapter describes the testing and validation performed for this project. We ap-

proached testing with a bottom up method by beginning with unit tests, progressing

to integrated tests, and finishing with system tests. We did not conduct user accep-

tance tests as that is considered part of the activity that will occur when the platform

is used to support a distributed programming curriculum in Cal Poly classes. For the

Raspberry Pi Clusters, we conducted integrated testing for the individual Raspberry

Pi computers and systems testing for each of the Raspberry Pi Clusters. For DecaFS,

we unit tested individual modules, then conducted integrated testing for each layer,

and finished with a set of system tests to ensure the system worked as specified. To

test modules and layers of the system, we used Google Test and Google Mock to re-

move dependencies for more effective testing. No validation of the labs are provided

as this step is pending their deployment in classes at Cal Poly.

7.1 Terms and Definitions

The following terms are used throughout this Chapter, for ease of reading, the terms

are defined here.

• Fake - “objects actually have working implementations, but usually take some

shortcut which makes them not suitable for production” [19]

• Stubs - “provide canned answers to calls made during the test, usually not

48

responding at all to anything outside what is programmed for the test. Stubs

may also record information about calls” [19]

• Mock - “objects are pre-programmed with expectations which form a specifi-

cation of the calls they are expected to receive” [19].

7.2 Google Test and Google Mock Tools

Google Test is a C++ testing framework that provides users the capability to quickly

write tests using built-in assertions and test fixtures [15]. Google Mock is a mocking

framework that can be used with Google Test or any C++ testing framework. Google

Mock allows users to easily create mock objects where values can be specified to easily

produce desired states and circumstances in the system [14].

7.3 Test Plan

7.3.1 Raspberry Pi and Raspberry Pi Cluster

The individual Raspberry Pi computers are not unit tested as the boards come tested

from the manufacturer. Integrated tests are performed on each Raspberry Pi com-

puter configured with their SD card, operating system image, wireless dongle, and

power supply are tested to verify that they work properly with all software and hard-

ware components. The Raspberry Pi Clusters are also tested as a system to ensure

that all nodes can connect and communicate with each other over the network.

7.3.2 DecaFS

Modules that include base functionality of DecaFS are unit tested to ensure that

the implementation follows the design specification of the module. Modules with

49

dependencies on other modules use mocks to allow them to be unit tested indepen-

dently. The unit tests of these modules validate the implementation of the module

by mocking its dependencies and setting expectations for which functions should be

called, how they should be called, and what they will return. The Espresso Layer is

the easiest to unit test because the modules in this layer have few or no dependen-

cies that need to be mocked. The Network Layer is also unit tested, but it uses a

Fake implementation of the Espresso Layer that stores and reads chunk data from an

in-memory data structure.

After modules have been unit tested, we proceed to test groups of modules work-

ing together. We grouped the units together and tested them as a whole. These

integration tests are performed at the layer level as we found that to be the most

logical functional grouping of the modules. The goal of these tests is to validate that

the modules operate correctly as a whole. These tests know nothing about the inner

workings of the layer; they just test the functionality of the exposed API using inputs

and outputs.

The last type of tests we conducted were system tests. These tests validate the

system as a whole and do not Mock, Fake, or Stub any part of the testing. For

DecaFS, system tests ensure that the file system correctly implements the API that

we provide to DecaFS Clients. To execute system tests, DecaFS is setup on a five

node cluster of Raspberry Pi computers and a DecaFS Client is run on one of the five

nodes. The DecaFS Client is used to test file system functionality such as reading,

writing, opening, and deleting of files. These tests also verify that DecaFS provides

functionality like single-node fault tolerance as designed.

50

7.3.3 Labs

At this time, testing has not been conducted on the labs as testing is pending the

deployment of the entire platform in a class at Cal Poly. At that time, user acceptance

testing will be performed to evaluate their effectiveness in the classroom and the

usability of the DecaFS API.

7.3.4 Summary

Unit Tests Integration Tests System Tests Acceptance Tests

Cluster x x

DecaFS x x x

Labs Future

Table 7.1: Testing Matrix

7.4 Unit Tests

7.4.1 DecaFS

7.4.1.1 Volatile Metadata Module

This is a standalone module and can be tested independently. Scenarios:

• chunk size can be set

• chunk size cannot be set to an invalid size

• chunk size cannot be reset

• stripe size can be set

• stripe size cannot be set to an invalid size

51

• stripe size cannot be reset

• number of active nodes can be queried

• node ids can be queried for their status (online / offline)

• offline nodes are not present in the active node list

• offline nodes cannot be set to offline

• file cursors can be created

• file cursors can be set

• file cursors can be deleted

• file cursors that do not exist return an error when queried

• volatile file metadata can be queried

7.4.1.2 Persistent Metadata Module

This is a standalone module and can be tested independently. Scenarios:

• files can be added

• number of files can be queried

• file names can be queried

• persistent file metadata can be queried

• file access time can be set

• file size can be set

• files can be deleted

52

7.4.1.3 Locking Strategy Module

This is a standalone module and can be tested independently. Scenarios:

• exclusive lock can be acquired

• exclusive lock can be released

• exclusive lock can be queried

• multiple clients cannot acquire an exclusive lock on the same file at the same

time

• multiple processes of a client cannot acquire an exclusive lock of the same file

at the same time

• shared lock can be acquired

• shared lock can be released

• shared lock can be queried

• multiple clients cannot acquire a shared lock on the same file at the same time

• multiple processes of a client can acquire a shared lock of the same file at the

same time

7.4.1.4 Distribution Strategy Module

This is a standalone module and can be tested independently. Scenarios:

• chunks are striped across the two primary nodes

• primary chunks are not stored on the replica nodes

53

7.4.1.5 Replication Strategy Module

This is a standalone module and can be tested independently. Scenarios:

• replica chunks are striped across the two replica nodes

• replica chunks are not stored on the primary nodes

7.4.1.6 Storage Module

This is a standalone module and can be tested independently. Scenarios:

• chunks can be allocated

• chunks can be written

• chunks can be overwritten

• chunks can be appended to

• chunks can be read

• chunks can be deleted

• non-existent chunks cannot be read

• non-existent chunks cannot be deleted

• a negative size cannot be read

• a negative size cannot be written

• disk space of deleted chunks are freed

• chunk data is persistent

54

7.5 Integration Tests

7.5.1 Raspberry Pi Computer

After a Raspberry Pi computer has been setup by installing the Raspbian operating

system on the SD card and plugging in the wi-fi dongle, the following tests are run

to verify that that the computer is functioning properly. Scenarios:

• the network can be accessed

• files can be created

• files can be modified

• files can be read

• files can be deleted

7.5.2 DecaFS

7.5.2.1 Barista Layer

The Barista Layer is the highest layer in DecaFS and independent of both the Network

and Espresso Layers. To remove the Barista's dependencies on the other layers for

testing purposes, we implemented a fake that mimics the functionality of the lower

layers in the system. The API the Barista interacts with is concerned with making

sure that chunks can be written and retrieved from a specific Espresso Node in the

file system. To do this, we used a map data structure to match chunk identifiers to

the chunk's data. This can be done very easily as the Network API already contains

all of the information to identify a chunk. See Figure 6.2 for the information that the

Network Layer receives with a request from the Barista. To store this in a map, we

55

needed to convert a series of identifiers (file id, node id, stripe id, and chunk number)

into a string that could be used as a key into our map. We concatenated all identifier

fields separated by a period to distinguish the different fields. With this fake we

tested the Barista Node without setting up the entire system.

Tests at the Barista Layer are concerned with the interactions of the modules

within the Barista Layer. If we have implemented a round robin method, can we

write multiple chunks and verify that they were written to the correct nodes using

our custom decafs file stat? These tests are less concerned that the implementation

works as a file system and more concerned with validating that the system does in

fact mirror and replicate or follow a specific RAID strategy.

Scenarios:

• files can be created

• files can be opened

• files can be written to

• files can be read from

• files can be deleted

• file metadata can be retrieved

• multiple processes of a client can read from the same file

• multiple clients cannot open the same file (for reading or writing)

• filedata is persistent

56

7.5.2.2 Network Layer

The Network Layer is responsible for reliably sending data between the Barista Node

and Espresso Nodes in the system. To remove the dependencies of the Network Layer,

we needed to create a fake of the Espresso Layer. Scenarios:

• all packet types can be serialized and deserialized

• all packet types can be transferred across the network without corruption

• data can be written across the network

• data can be read across the network

• client requests are translated and call the correct Barista Core Module functions

7.5.2.3 Espresso Layer

The unit tests in Section 7.4.1.6 are sufficient for the integration tests of this layer

because the layer is composed of only two modules.

7.6 System Tests

7.6.1 Raspberry Pi Cluster

Each Raspberry Cluster was tested to ensure that each Raspberry Pi in the cluster

could communicate with all other Raspberry Pi computers in the cluster over the

network.

• each Raspberry Pi can ping all other Raspberry Pi computers in the cluster

57

7.6.2 DecaFS

The system tests performed on DecaFS are a superset of the tests performed for the

integration testing of the Barista Layer. These tests also include tests that verify that

files can still be read from when one of the nodes storing the data to be read is offline.

These tests are done on a cluster with a production instance of DecaFS deployed.

Scenarios:

• files can be created

• files can be opened

• files can be written to

• files can be read from

• files can be deleted

• file metadata can be retrieved

• multiple processes of a client can read from the same file

• multiple clients cannot open the same file (for reading or writing)

• filedata is persistent

58

CHAPTER 8

Conclusions

As stated in the contributions section of this thesis Section 1.2, the overarching goal

of the work covered in this project was to create a complete educational framework for

the teaching of distributed computing at Cal Poly. With the design, implementation,

and testing of the Raspberry Pi Cluster, DecaFS, and Labs laid out in the main

chapters of this work, the framework for such a class has been completed. A class in

distributing computing could compile a set of the labs laid out in CHAPTER 6 to

introduce students to distributed concepts and familiarize them with the Raspberry Pi

Cluster and DecaFS. As the class progresses, more advanced labs could be assigned as

larger projects or students could be directed to create their own distributed computing

programs on the Raspberry Pi Cluster.

8.1 Raspberry Pi Cluster

In CHAPTER 4, the five node Raspberry Pi clusters designed for this project are

described. These clusters were designed to support distributed computing classes at

Cal Poly. The requirements were as follows:

1. 8 clusters with minimum of 5 nodes per cluster

2. Physically small enough to be portable classroom to classroom

3. Modular in order to assemble / disassemble as desired

59

4. Affordable within the budget of CP-Connect grant (approximately $4000)

5. Scalable in quantity of nodes and additional clusters

6. Use of free open source software (operating system and tools)

By creating the clusters using Raspberry Pi computers, we were able to create

small portable clusters within the limited budget allocated. Each of the eight clusters

is composed of five Raspberry Pi computers that connect to a wireless router. As

the computers are about the size of a credit card, an entire cluster can fit into a

shoebox. These small clusters are easily modifiable and scalable as nodes can be

added by plugging in another Raspberry Pi. The clusters use the free Raspbian

operating system and have a small group of extra tools installed to support student

development and testing.

8.2 DecaFS

CHAPTER 5 covers the design and implementation of a modular distributed file sys-

tem that is described in detail in my colleague's work [10]. The DecaFS distributed

file system was designed to support the labs described in CHAPTER 6 by imple-

menting the core of the file system in a modular manner, separating the file system

and network code from the distributed portion of the system. The modular design

isolates code through the use of APIs and layers. This allows students to implement

the labs without dealing with the file system and network code layer. Each lab de-

scribed in CHAPTER 6 can be completed by modifying at most three modules of the

system. These modules only contain code used to distribute and recover data thereby

providing hands-on experience with distributed programming to the students.

60

8.3 Labs

The Labs defined in this thesis were created to represent a set of topics that cover

a wide variety of problems encountered in distributed systems. These labs cover the

topics of distribution, replication, fault tolerance, recovery, rebalancing, and efficiency.

While these labs represent a wide range of problems in distributed computing, this

project does not validate the use of these labs in a classroom setting as no classes

have yet been offered that use the Raspberry Pi cluster, DecaFS, and the labs laid

out in this thesis.

8.4 Summary

With this project, a framework for distributed computing curriculum at Cal Poly has

been created and delivered. As classes are offered that use this framework of the

Raspberry Pi Clusters, DecaFS, and Labs, the framework and curriculum will need

to continue to evolve to keep pace with the ever advancing information technology

world so that it may continue serving the needs of the faculty and students of Cal

Poly.

61

CHAPTER 9

Future Work

Overall, we accomplished the goals we set out to meet at the beginning of this project;

however, there is still room for improvement of the system. Due to time constraints,

the work described in this Chapter was not incorporated into the work of this thesis.

9.1 Classroom Usability

The next step for the Raspberry Pi Clusters, DecaFS, and the Labs is to use them

in the distributed computing classes they were designed for. Once some of the labs

described in CHAPTER 6 have been completed by students, it would be useful to start

a dialogue with the students to gather feedback on what could be done to improve

the usability of the system for the class.

9.2 Validation Tools

One area for future work on the DecaFS filesystem is in the validation area. Students

would benefit from the creation of visual tools that connect to the system and display

current metrics. Distribution statistics such as amount of data stored on each node

with expandable lists containing the details of the chunks stored on a specific node:

file id, stripe id, and chunk id is one example. Other data points like network usage

and node status could also be added to a debugging tool such as this. Having a tool

like this available to students would help them visualize how their code is actually

62

distributing data and may even be useful in the instructor's evaluation of student

work.

9.3 Testing

CHAPTER 7 describes the testing methodology and code sections tested in the cur-

rent code base. While we tested the modules of DecaFS and made sure that the base

functionality we provide works correctly, we do not provide a way for students or fac-

ulty to test the labs the system was designed to support. One area for future work is

to supply a set of system tests that can be used to verify the correct implementation

of each lab. This would require a modified testing suite for each lab as well as one for

the base functionality we provide. A second item to enhance the testing area would

be to measure the performance of the system. This would be useful for students and

faculty as they could run performance benchmarks to assess the speed at which stan-

dard filesystem operations complete in their modified systems. This test suite would

include tests of random and sequential read and write operations of different sizes.

63

BIBLIOGRAPHY

[1] ARM1176 Processor. http://www.arm.com/products/processors/classic/

arm11/arm1176.php. Accessed: 2015-02-24.

[2] Raspberry Pi Model B. http://www.raspberrypi.org/products/model-b/.

Accessed: 2015-02-26.

[3] Raspberry Pi Models and Revisions. http://www.raspberrypi.org/

documentation/hardware/raspberrypi/models/README.md. Accessed:

2015-02-24.

[4] What is a Raspberry Pi? http://www.raspberrypi.org/help/

what-is-a-raspberry-pi/. Accessed: 2015-02-24.

[5] Apache Hadoop. HDFS Architecture Guide. http://hadoop.apache.org/

docs/r1.2.1/hdfs_design.html.

[6] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson. Seattle: A

platform for educational cloud computing. SIGCSE Bull., 41(1):111–115,

Mar. 2009.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. SIGOPS

Oper. Syst. Rev., 37(5):29–43, Oct. 2003.

[8] K. Hoganson. Computer Science Curricula in a Global Competitive Environment.

J. Comput. Sci. Coll., 20(1):168–177, Oct. 2004.

[9] J. Kiepert. Creating a Raspberry Pi-Based Beowulf Cluster. Technical report,

Boise State University, 05 2013.

64

http://www.arm.com/products/processors/classic/arm11/arm1176.php
http://www.arm.com/products/processors/classic/arm11/arm1176.php
http://www.raspberrypi.org/products/model-b/
http://www.raspberrypi.org/documentation/hardware/raspberrypi/models/README.md
http://www.raspberrypi.org/documentation/hardware/raspberrypi/models/README.md
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[10] H. Meth. DecaFS: A Modular Distributed File System to Facilitate Distributed

Systems Education. Master’s thesis, California Polytechnic State University,

San Luis Obispo, CA United States, 2014.

[11] Oracle, Intel Corporation. Lustre File System Manual. https:

//build.hpdd.intel.com/job/lustre-manual/lastSuccessfulBuild/

artifact/lustre_manual.xhtml.

[12] Raspberry Pi forum member bwann. Hadoop + HDFS + MR on Pi cluster -

works! http://www.raspberrypi.org/forums/viewtopic.php?t=37190.

[13] Recovery Italia. Procedura di recupero dati da RAID 4.

http://www.raidrecovery.it/raid-knowledge/livelli-raid/

recupero-dati-raid4/.

[14] Google, Inc. Google Mock. https://code.google.com/p/googlemock/.

[15] Google, Inc. Google Test. https://code.google.com/p/googletest/.

[16] Google, Inc. Google and IBM Announce University Initiative to Address

Internet-Scale Computing Challenges. http://googlepress.blogspot.

com/2007/10/google-and-ibm-announce-university_08.html, Oct.

2007.

[17] Guay, Patrice. An Overview of RAID technology. http://blog.iweb.com/en/

2010/05/an-overview-of-raid-technology/4283.html.

[18] Intel Corporation. Why Use Lustre. https://wiki.hpdd.intel.com/display/

PUB/Why+Use+Lustre.

[19] Martin Fowler. Mocks Aren't Stubs. http://martinfowler.com/articles/

mocksArentStubs.html.

65

https://build.hpdd.intel.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml
https://build.hpdd.intel.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml
https://build.hpdd.intel.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.xhtml
http://www.raspberrypi.org/forums/viewtopic.php?t=37190
http://www.raidrecovery.it/raid-knowledge/livelli-raid/recupero-dati-raid4/
http://www.raidrecovery.it/raid-knowledge/livelli-raid/recupero-dati-raid4/
https://code.google.com/p/googlemock/
https://code.google.com/p/googletest/
http://googlepress.blogspot.com/2007/10/google-and-ibm-announce-university_08.html
http://googlepress.blogspot.com/2007/10/google-and-ibm-announce-university_08.html
http://blog.iweb.com/en/2010/05/an-overview-of-raid-technology/4283.html
http://blog.iweb.com/en/2010/05/an-overview-of-raid-technology/4283.html
https://wiki.hpdd.intel.com/display/PUB/Why+Use+Lustre
https://wiki.hpdd.intel.com/display/PUB/Why+Use+Lustre
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html

[20] A. Rotem-Gal-Oz. Fallacies of Distributed Computing Explained. Technical

report, 2006.

[21] A. S. Tanenbaum and M. v. Steen. Distributed Systems: Principles and

Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

2006.

[22] P. Weygant. Clusters for High Availability: A Primer of HP Solutions. Pearson

Education, 2001.

66

APPENDIX A

APIs

A.1 Network Core API

/* sends a read chunk request to an espresso node

* returns -1 on error

*/

int network_read_chunk(int32_t id, int fd , int file_id ,

int node_id , int stripe_id ,

int chunk_num , int offset , int count);

/* sends a write chunk request to client

* returns -1 on error

*/

int network_write_chunk(int32_t id, int fd , int file_id ,

int node_id , int stripe_id ,

int chunk_num , int offset , void* buf , int count);

/* sends a delete chunk request to client

* returns -1 on error

*/

67

int network_delete_chunk(int32_t id, int file_id , int

node_id , int stripe_id , int chunk_num);

A.2 Barista Core API

1 struct request_info {

2 uint32_t chunks_expected;

3 uint32_t chunks_received;

4 uint32_t file_id;

5 struct client client;

6

7 request_info () : chunks_expected (0), chunks_received

(0), file_id (0) {}

8 request_info (struct client client , uint32_t file_id) {

9 this ->chunks_expected = 0;

10 this ->chunks_received = 0;

11 this ->file_id = file_id;

12 this ->client = client;

13 }

14 };

15

16 struct read_buffer {

17 int size;

18 uint8_t *buf;

19

20 read_buffer () : size (0), buf (NULL) {}

21 read_buffer (int size , uint8_t *buf) {

22 if (size > 0) {

68

23 this ->buf = (uint8_t *) malloc(size);

24 memcpy (this ->buf , buf , size);

25 this ->size = size;

26 }

27 else {

28 this ->size = 0;

29 this ->buf = NULL;

30 }

31 }

32 ~read_buffer () {

33 if (size > 0) {

34 free(this ->buf);

35 }

36 }

37 };

38

39 struct read_request_info {

40 struct request_info info;

41 int fd;

42 uint8_t *buf;

43 std::map <struct file_chunk , struct read_buffer*>

response_packets;

44

45 read_request_info () : info (request_info ()), fd (0) {}

46 read_request_info (struct client client , uint32_t

file_id , int fd,uint8_t *buf) {

47 this ->info = request_info (client , file_id);

69

48 this ->fd = fd;

49 this ->buf = buf;

50 }

51 };

52

53 struct write_request {

54 uint32_t request_id;

55 uint32_t replica_request_id;

56

57 bool operator <(const write_request &other) const {

58 if (this ->request_id != other.request_id) {

59 return this ->request_id < other.request_id;

60 }

61 return (this ->replica_request_id < other.

replica_request_id);

62 }

63 };

64

65 struct write_request_info {

66 struct request_info info;

67 struct request_info replica_info;

68 int fd;

69 int count;

70

71 write_request_info () : info (request_info ()),

replica_info (request_info ()), fd (0), count (0) {}

70

72 write_request_info (struct client client , uint32_t

file_id , int fd) {

73 this ->info = request_info (client , file_id);

74 this ->replica_info = request_info (client , file_id);

75 this ->fd = fd;

76 this ->count = 0;

77 }

78 };

79

80 extern "C" const char *get_size_error_message (const char

*type , const char *value);

81

82 extern "C" void exit_failure (const char *message);

83

84 /*

85 * Initialize barista core

86 */

87 extern "C" void barista_core_init (int argc , char *argv [])

;

88

89 /*

90 * Open a file for read or write access.

91 *

92 * Flags:

93 * O_RDONLY open a file for reading

94 * O_RDWR open a file for both reading and writing

95 * O_APPEND start the file cursor at the end of the file

71

96 *

97 * @post

98 * open_file sends the file id for the newly opened

file (non-zero)

99 * to the client or FILE_IN_USE if the proper lock

cannot be obtained

100 */

101 extern "C" void open_file (const char *pathname , int flags

, struct client client);

102

103 /*

104 * opens a directory stream corresponding to the

directory name.

105 */

106 extern "C" void open_dir (const char* name , struct client

client);

107

108 /*

109 * If the process has a lock on the file , complete the

read.

110 * Translates read request into chunks of requests to

Espresso

111 * nodes.

112 */

113 extern "C" void read_file (int fd, size_t count , struct

client client);

114

72

115 /*

116 * Aggregates the read_file futures and determines when

the read is complete.

117 * Upon completion of a read , this function returns read

information to the

118 * Network Layer.

119 */

120 extern "C" void read_response_handler (ReadChunkResponse *

read_response);

121

122 /*

123 * If the process has an exclusive lock on the file ,

complete the

124 * write.

125 * Translate write requests into chunks of requests to

Espresso

126 * nodes.

127 */

128 extern "C" void write_file (int fd, const void *buf ,

size_t count , struct client client);

129

130 /*

131 * Aggregates the write_file futures and determines when

the write is complete.

132 * Upon completion of a write , this function returns write

information to the

133 * Network Layer.

73

134 */

135 extern "C" void write_response_handler (WriteChunkResponse

*write_response);

136

137 /*

138 * Release locks associate with a fd.

139 */

140 extern "C" void close_file (int fd, struct client client);

141

142 /*

143 * Removes a file from DecaFS.

144 * @ return >= 0 success , < 0 failure

145 */

146 extern "C" void delete_file (char *pathname , struct client

client);

147

148 /*

149 * Aggregates the delete_file futures and determines when

the delete is complete.

150 * Upon completion of a delete , this function returns

delete information to the

151 * Network Layer.

152 */

153 extern "C" void delete_response_handler (

DeleteChunkResponse *delete_response);

154

155 /*

74

156 * Moves the file cursor to the location specificed by

whence , plus offset

157 * bytes.

158 *

159 * If the whence and offset cause the cursor to be set

past the end of the file

160 * it will be set to the end of the file.

161 *

162 * whence:

163 * SEEK_SET move to offset from the beginning of the

file

164 * SEEK_CUR move to offset from the current location of

the fd

165 * SEEK_END move to end of file

166 *

167 * client will receive the cursor’s new location on

success and < 0 on failure

168 *

169 */

170 extern "C" void file_seek (int fd, uint32_t offset , int

whence , struct client client);

171

172 /*

173 * Fills struct stat with file info.

174 */

175 extern "C" void file_stat (const char *path , struct stat *

buf);

75

176 extern "C" void file_fstat (int fd, struct stat *buf);

177

178 /*

179 * Get the storage and replica storage information for a

file.

180 */

181 extern "C" void file_storage_stat (const char *path ,

struct client client);

182

183 /*

184 * Collects information about a mounted filesystem.

185 * path is the pathname of any file within the mounted

186 * filesystem.

187 */

188 extern "C" void statfs (char *pathname , struct statvfs *

stat);

189

190 /*

191 * Move an existing chunk to a different Espresso node in

the system.

192 */

193 extern "C" void move_chunk (const char* pathname , uint32_t

stripe_id , uint32_t chunk_num , uint32_t dest_node ,

struct client client);

194 extern "C" void fmove_chunk (uint32_t file_id , uint32_t

stripe_id , uint32_t chunk_num , uint32_t dest_node ,

struct client client);

76

195

196 /*

197 * Move a c h u n k s replica to a different Espresso node

in the system.

198 */

199 extern "C" void move_chunk_replica (const char* pathname ,

uint32_t stripe_id , uint32_t chunk_num , uint32_t

dest_node , struct client client);

200 extern "C" void fmove_chunk_replica (uint32_t file_id ,

uint32_t stripe_id , uint32_t chunk_num , uint32_t

dest_node , struct client client);

A.3 Espresso Storage API

1 /*

2 * Reads *count* bytes from the chunk at offset *offset*

into *buf.

3 * Fails if the chunk doesn’t exist , or if the range [

offset ,

4 * offset+count) falls outside the bounds of the chunk.

5 *

6 * Returns the size read , as reported by read(2), or -1 on

error.

7 */

8 ssize_t read_chunk(int fd, int file_id , int stripe_id , int

chunk_num , int offset , void *buf , int count);

9

77

10 /*

11 * Writes *count* bytes from *buf* to the chunk at offset

offset.

12 * Creates a new chunk if it doesn’t exist , and resizes

the chunk if the

13 * range [offset , offset+count) falls outside the exsiting

bounds of

14 * the chunk.

15 *

16 * Returns the size written , as reported by write(2), or

-1 on error.

17 */

18 ssize_t write_chunk(int fd, int file_id , int stripe_id ,

int chunk_num , int offset , void *buf , int count);

19

20 /*

21 * Deletes a chunk , freeing the space it occupied for

future use. Fails

22 * if the chunk doesn’t exist.

23 *

24 * Returns 0 on success , or -1 on error.

25 */

26 int delete_chunk(int fd, int file_id , int stripe_id , int

chunk_num);

78

	List of Tables
	List of Figures
	Introduction
	Undergraduate Distributed Computing Education
	Our Contributions
	Outline of Chapters

	Background
	Distributed Systems
	Fundamental Properties
	Replication
	Fault Tolerance
	Availability
	Scalability
	Transparency

	Distributed File Systems
	Raspberry Pi

	Related Work
	Distributed File Systems
	Lustre
	GFS
	HDFS

	Distributed Computing Education: Curriculum and Platforms
	Seattle
	Beowulf Cluster

	Raspberry Pi Cluster
	Goals & Requirements
	Design
	Building the Clusters
	Conclusion

	DecaFS
	Terms and Definitions
	Requirements
	Labs

	DecaFS Design
	Barista Layer
	Barista Core Module
	Volatile Metadata Module
	Persistent Metadata Module
	Locking Strategy Module
	I/O Manager Module
	Distribution Strategy Module
	Replication Strategy Module
	Access Module
	Monitored Strategy Module

	Network Layer
	Network Core Module

	Espresso Layer
	Espresso Core Module
	Storage Module

	Implementation
	Validation Tools

	Labs
	Distribution and Replication
	Student Implementation
	Instructor Evaluation

	Caching
	Student Implementation
	Instructor Evaluation

	Storage and Recovery Performance
	Student Implementation
	Instructor Evaluation

	Adaptive Data Migration
	Student Implementation
	Instructor Evaluation

	RAID 4
	Student Implementation
	Instructor Evaluation

	MapReduce
	Student Implementation
	Instructor Evaluation

	Proposed Lab Layout

	Testing and Validation
	Terms and Definitions
	Google Test and Google Mock Tools
	Test Plan
	Raspberry Pi and Raspberry Pi Cluster
	DecaFS
	Labs
	Summary

	Unit Tests
	DecaFS
	Volatile Metadata Module
	Persistent Metadata Module
	Locking Strategy Module
	Distribution Strategy Module
	Replication Strategy Module
	Storage Module

	Integration Tests
	Raspberry Pi Computer
	DecaFS
	Barista Layer
	Network Layer
	Espresso Layer

	System Tests
	Raspberry Pi Cluster
	DecaFS

	Conclusions
	Raspberry Pi Cluster
	DecaFS
	Labs
	Summary

	Future Work
	Classroom Usability
	Validation Tools
	Testing

	Bibliography
	Appendices
	APIs
	Network Core API
	Barista Core API
	Espresso Storage API

