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ABSTRACT 

Designing a Visual Front End in Audio-Visual Automatic Speech Recognition System 

Junda Dong 

 Audio-visual automatic speech recognition (AVASR) is a speech recognition technique 

integrating audio and video signals as input. Traditional audio-only speech recognition system 

only uses acoustic information from an audio source. However the recognition performance 

degrades significantly in acoustically noisy environments. It has been shown that visual 

information also can be used to identify speech. To improve the speech recognition performance, 

audio-visual automatic speech recognition has been studied. In this paper, we focus on the design 

of the visual front end of an AVASR system, which mainly consists of face detection and lip 

localization. The front end is built upon the AVICAR database that was recorded in moving 

vehicles. Therefore, diverse lighting conditions and poor quality of imagery are the problems we 

must overcome.   

 We first propose the use of the Viola-Jones face detection algorithm that can process 

images rapidly with high detection accuracy. When the algorithm is applied to the AVICAR 

database, we reach an accuracy of 89% face detection rate. By separately detecting and 

integrating the detection results from all different color channels, we further improve the 

detection accuracy to 95%. To reliably localize the lips, three algorithms are studied and 

compared: the Gabor filter algorithm, the lip enhancement algorithm, and the modified Viola-

Jones algorithm for lip features. Finally, to increase detection rate, a modified Viola-Jones 

algorithm and lip enhancement algorithms are cascaded based on the results of three lip 

localization methods. Overall, the front end achieves an accuracy of 90% for lip localization. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 Automatic speech recognition (ASR) is a popular research field that can be defined as the 

translation of spoken words into text. Automatic speech recognition has made significant 

progress in recent years and has been widely used in practical applications like computers, 

mobile phones, and tablets with speech recognition function. However, conventional automatic 

speech recognition techniques are sensitive to noise. For example if the electronic devices are 

used in crowded environments, the recognition is unreliable. To improve recognition 

performance in noisy environments, visual speech cues can be used to enhance speech 

recognition. Visual speech cues are provided by tracking  the lip movement of a speaking person 

as they form different speech sounds. It is a very valuable source of speech information that is 

not affected by acoustic noise. Researchers widely accept that a key to robust automatic speech 

recognition in real world situations is the use of a combination of audio and visual information 

[1]. 

 Human speech perception is bimodal in nature. Humans combine auditory and visual 

information in deciding what has been spoken, especially in noisy environments [2]. The visual 

information's benefit to speech intelligibility in noise has been quantified as far back as in Sumby 

and Pollack (1954). They demonstrated that the face of a speaker enhanced the identification of 

audio speech in noise. Furthermore, bimodal fusion of audio and visual stimuli in perceiving 

speech has been demonstrated by McGurk and MacDonald (1976). For example, when the 
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spoken sound /pa/ is superimposed on the video of a person uttering /ba/, most people perceive 

the speaker as uttering the sound /da/. The content spoken by humans can be perceived better by 

both audio and visual information.  

 There are several reasons why visual information benefits automatic speech recognition. 

First, it helps recognition systems localize the audio source. Second, it also provides speech 

segmental information to supplements the audio speech. Third, it contains complementary 

information about the source of articulation. The visibility of articulators, such as the tongue, 

teeth and lips, can disambiguate close pronunciations. For example, unvoiced constants /p/ and 

/k/, voiced consonant pairs /b/ and /d/, and the nasals /m/ and /n/ are confusable in acoustics as 

they are similar in sound. Therefore there has been significant interest in combining audio and 

visual information to improve automatic speech recognition.  

 

Figure 1.1: Main processing blocks of an audio-visual automatic speech recognition 

 Automatic recognition of audio-visual speech introduces new and challenging tasks. The 

block-diagram of Figure 1.1 demonstrates the main process of an audio-visual automatic speech 

recognition system. In addition to the traditional audio front-end where useful audio features are 

extracted, visual features that are informative to speech must be extracted from video of the 

speaker’s face. This requires robust face detection, as well as localization and tracking of the 
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speaker’s lips, followed by visual feature extraction. In contrast to audio-only system, there are 

now two streams of features available for recognition, one from each modality. The combination 

of the audio and visual streams should ensure that the resulting system performance is better than 

the best of the two single modalities. Both issues, namely the visual front end design and audio-

visual fusion, constitute difficult problems, and they have generated significant research work by 

the scientific community. 

 As shown in Figure 1.1, audio-visual ASR systems differ from the traditional ASR 

system in three main aspects: the visual front end design, the audio-visual integration strategy 

and the speech recognition method used. The visual front end of AVASR is composed of two 

highly researched parts: face detection, lip localization and tracking. While face detection is 

more extensively researched, being able to locate and track the face and lips within any image 

frame in any environment poses a challenging task. For this reason, the focus of this thesis is 

robust face detection and lip localization based on still images from the AVICAR database. The 

AVICAR database was recorded in an automotive environment with different driving speeds by 

University of Illinois researchers [22]. There were four cameras on the dash board and seven 

microphones on the sun visor. The videos were recorded at 35 mph with windows up or down, or 

55 mph with the windows up or down. Generally, the in-car environment can be considered as a 

worst-case scenario for ASR. Background noise and mechanical vibrations from traveling 

vehicles severely decrease operational signal-to-noise ratios for audio processing. Therefore 

incorporating visual speech in this case has the potential to significantly increase the 

performance for ASR. 
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1.2 Previous Work in This Area 

 The visual features used for automatic speech recognition can broadly be divided into 

three categories, appearance-based features, shape-based features and joint appearance and shape 

features.  

 In appearance-based feature approach, the image part typically containing the speaker’s 

face/lip region is considered as informative for face/lip detection. These regions are the region of 

interest. Such regions can be a rectangle containing the mouth, the lower face or the entire face, 

according to the detection target. The appearance-based features are typically extracted from the 

region of interest (ROI) using image transforms, such as transformation to different color space 

components, where pixel values of typical faces/lips are used. Some frequently used transforms 

include Principal Component Analysis, Discrete Cosine, Wavelet Transforms and Linear 

Discriminant Analysis. The Viola-Jones algorithm is also considered an appearance-based 

algorithm where the features used are Haar wavelet in gray scale intensities sequences.  

 

Figure 1.2: Statistical shape model for ASM 

 In contrast to appearance based features, shape based feature extraction assumes that 

most visual speech information is contained in the shape (contour) of the speaker’s face/ lip [2]. 

Two types of features are within this category: Geometric features, and shape model-based 

features. Geometric features are a number of high level features that are extracted from the 

faces/lip contour, such as the contour height, width, perimeter, face feature position as well as 
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the area contained within the contour. Shape model-based feature detections build a number of 

parametric models for face/lip contours. In both cases, an algorithm that extracts the inner and 

outer lip contours or the entire face shape, is required. A popular shape model feature method is 

known as active shape model (ASM). ASMs are flexible statistical models that represent an 

object by a set of labeled points (Cootes et al., 1995; Luettin et al., 1996). To build a mode, a 

number of K contour points are labeled on training set image and their co-ordinates are placed on 

2K-dimensional vectors. With a set of vectors, Principle Component Analysis (PCA) were used 

to identify the optimal linear transform in terms of variance described along each dimension, 

resulting in a statistical model of the face shape and its features, shown in Figure 1.2 [17]. These 

four modes, from left to right describe 65% variance of 4072 labeled images from the IBM 

ViaVoice database.  

 Appearance and shape-based visual features are quite different in nature. In a sense they 

represent low and high level information about the speaker’s face/lip. Not surprisingly, 

combinations of features from both categories have been employed in a number of automatic 

speech recognition systems. For example, an active appearance model (AAM) proposed by 

Cootes provides a framework to combine them [18]. To build an AAM, three applications of 

PCA are required. A Shape eigenspace calculation that models shape deformations create a PCA 

matrix. An appearance eigenspace calculation to model appearance changes based on color 

components create another PCA matrix. Based on the above two matrices, a combining shape 

and appearance eigenvalue space is calculated, and becomes the third PCA matrix for the 

resulting a combined statistical model. The resulting model could describe 81% of variance of 

same 4072 labeled images from the IBM ViaVoice database. 
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 The front end system in this paper benefits from previous work by Robert Hursig [15] 

and Benefsh Husain [16]. Robert Hursig proposed a shifted HSV color space as the feature space 

for face detection and lip localization. Then, the face candidate localization and face model joint 

histogram estimation were implemented on sHSV color space to define a face model and 

candidate distribution. According to the face model and the candidate distribution, the 

Bhattacharyya coefficient was utilized to detect faces. Following the face detection, a Gabor 

filter-based lip localization algorithm was developed. For Benefsh Husain's front end, she 

implemented a face detection algorithm by cascading Viola-Jones, template matching and Bayes 

classifier algorithm. Her lip localization method is the lip enhancement method for hybrid 

gradient which was developed as a lip segmentation technique. 

1.3 Thesis Organization 

 This  thesis will develop the front end design which contains robust face detection and lip 

localization. Chapter 2 will detail the Viola-Jones algorithm and apply it to the AVICAR 

database where the RGB color images were captured in the moving vehicles. This chapter will 

also include experimental results of using the Viola-Jones algorithm on different color spaces of 

same training images. Chapter 3 discusses three different lip localization algorithms: Gabor filter, 

color-based algorithm and the modified Viola-Jones algorithm for lip localization, respectively. 

Once again testing based on the AVICAR database will be used to justify the effectiveness of the 

algorithms developed. Based on results of above three algorithms, the final lip localization 

algorithm is built by cascading the modified Viola-Jones and the lip gradient algorithm. Chapter 

4 summarizes the front end overall performance for both the face detection and lip localization. It 

will discuss the limitation of the algorithms as well as possible future work. 
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CHAPTER 2   

FACE DETECTION 

 

 As it was briefly mentioned in the introduction, face detection is the first step in the 

visual front-end design. In general, robust face detection is quite difficult, especially in a car 

environment where face poses, lighting condition and background are changing all the time when 

the vehicle is moving. This problem has attracted significant interest in the field of computer 

vision. Many face detection methods have been developed, such as color segmentation, Bayes 

classifier, template matching, motion information, etc. Some other methods use statistical 

modeling techniques, like principal component analysis, active shape model, active appearance 

model, linear discriminant analysis, etc. In this work, a popular face detection technique, the 

Viola-Jones algorithm, is used to detect faces. The Viola-Jones face detection algorithm is 

capable of processing images extremely rapidly while achieving high detection rates [5]. It has 

three key contributions, compared with other techniques. The first is the introduction of a new 

image representation called the ''Integral Image'' which allows the features to be computed 

quickly. The second is a simple and efficient classifier which is built by selecting a small number 

of important rectangle features from a large set of rectangle features using the Adaboost learning 

algorithm. The third is a method for combining successively more complex classifiers in a 

cascade structure which dramatically increases the speed of the detector. We will describe these 

in details in subsequent sections. 
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2.1 Features 

 The processes we use to classify images are based on the value of simple features. There 

are many reasons for using features values rather than the raw pixel values directly. One reason 

is that features can contain important facial information which is difficult to represent using a 

small quantity of pixels. Another critical reason is that a feature-based system operates much 

faster than a pixel-based system. To be more specific, we use three kinds of simple features, edge 

features, line features and diagonal line features, as shown in Figure 2.1 below. The value of a 

two-rectangle feature in (a) and (c), called the edge feature, is the difference between the sum of 

the pixel values contained within two rectangular regions. The regions of these rectangles have 

the same size and shape and are horizontally or vertically adjacent. In (b) and (d), a three-

rectangle feature called the line feature computes the pixel sum within two outside rectangles and 

subtracts it from the sum of pixels in the middle rectangle. The last feature shown in (e), a four-

rectangular feature defined as the diagonal line feature computes the difference between pixel 

sums in diagonal pairs of rectangles. If the resolution of the face image is 24×24, the exhaustive 

set of rectangle features is very large, more than 160000. There are 43200, 27600, 43200, 27600 

and 20736 features of category (a), (b), (c), (d), (e) respectively; hence 162,336 features in all.  

 
(a)                           (b)                         (c)                            (d)                         (e) 

Figure 2.1: Haar-like features 
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2.2  Integral Image 

 Rectangle features can be computed very rapidly using an intermediate representation for 

the image which we call the integral image [3]. The integral image located at x, y which contains 

the sum of the pixels above and to the left of x, y, is computed as: 

                                                                          (2.1) 

where         is the integral image and        is the original image, shown in Figure 2.2 below. 

 

Figure 2.2: Integral image  

 Using the integral image any rectangular sum can be computed in four array references, 

shown in Figure 2.3 below. Specifically, using the notation in the below figure 2.3, all the 

coordinates below are at the corner of the bottom right rectangles D, then having   

                                         , the sum        within rectangle D 

spanned by A, B, C and D is  

                                  
       

                                          (2.2) 

Where I(A), I(B), I(C) and I(D) is the integral image of A, B, C and D, respectively. 
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Figure 2.3: The rectangle feature computation 

 The difference between two rectangular sums can be computed in eight references 

because each rectangle need four references. Since the two-rectangle features defined above 

involve adjacent rectangular sums they can be computed in six array references, eight in the case 

of the three-rectangle features, and nine for four-rectangle features. One motivation for the 

integral image comes from the 'boxlets' work of Simard [4]. He pointed out that in the case of a 

linear operation, any invertible linear operation can be applied to f or g if its inverse is applied to 

the result. For example in the case of convolution, if the derivative operation is applied to both 

the image and the kernel the result must then be double integrated: 

                                                                          (2.3) 

 Then he showed that convolution can be significantly accelerated if the derivatives of f 

and g are sparse. A similar insight is that an invertible linear operation can be applied to f if its 

inverse is applied to g: 

                                                                          (2.4) 

 When applying this to computation of the rectangle feature of images, the rectangle sum 

can be expressed as a dot product,    , where i is the image and r is the rectangular region (with 

value 1 within the rectangle and 0 outside). This operation can be written: 
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                                                                            (2.5) 

 The integral image is in the double integral of the image (first along rows and then along 

columns). The second derivative of rectangle (first in row and then in column) is four delta value 

at the corner of the rectangle. Evaluation of the second dot product is accomplished with four 

array accesses.  

 After computation of rectangle features, we generate a very large and varied set of 

features. Typically, the number of the features is more than enough to represent the image. This 

result set provides features of arbitrary aspect ratio and finely sampled locations. Basically, it 

appears as though the set of rectangle features provide a rich image representation which 

supports effective learning. The extreme computational efficiency of rectangle features help 

compensation for their limitation. 

2.3 Learning Classification Functions 

 After we have a feature set, positive and negative training data, there are several machine 

learning approaches which can be used to classify the images. Sung and Poggio use a mixture of 

Gaussian model [19], Rowley uses a small set of sample image features and a neural network 

[20]. More recently Roth has tried a new and unusual image representation and have used the 

Winnow learning procedure [21]. 

 Recall that we have 160,000 rectangle features associated with the sub-window of each 

training image, a number much larger than the image pixel number. Even though each feature 

can be calculated efficiently, the whole feature set computation is prohibitively expensive. In 

Viola and Jones algorithm, according to the experiments, they proposed that a very small number 

of features can be combined to form an effective classifier [5]. The main challenge is to find 

these small number of features. Then they used a variant of the AdaBoost algorithm both to 
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select the features and to train the classifier. In its original form, the AdaBoost learning 

algorithm is used to boost the classifications that combine some weak classifiers to form a strong 

one. The combination algorithm is called a weak learner. For example, the perceptron learning 

algorithm searches over the set of possible perceptrons and return the perceptron with the lowest 

classification error. The learner is called weak because the best classification function still can't 

classify the train data well. Usually for a given problem the best perceptron will only classify the 

data correctly 51% of the time. In order to enhance the weak learner, it is called upon to solve a 

sequence of learning problems. After the first round of classification, the data are re-weighted in 

order to emphasize those which were in correctly classified by the previous weak classifier. The 

final strong classifier takes the form of a perceptron, a weighted combination of weaker 

classifiers followed by a threshold. The guarantee provided by the AdaBoost Algorithm is strong. 

Freund and Schapire have proved that the training error of the strong classifier approaches zero 

exponentially in the first several rounds [6]. The key insight is that the boost performance is 

related the margin of examples, and that Adaboost achieves large margins rapidly. 

 The original AdaBoost procedure can be considered as a greedy feature selection process. 

The general problem of boosting is that the combination of a large set of classification function 

need to find a weighted majority vote. For examples, when combining classifiers, a good 

classification function needs a large weight to strongly influence the classification result, while 

poor functions only need small weights. AdaBoost is an aggressive mechanism for selecting a 

small set of good classifiers which nevertheless have significant variety. One practical method 

for solving this problem is to restrict the weak learner to the set of classification function each of 

which depend on a single feature. The weak learning function is designed to select the single 

rectangle feature which best separates the positive and negative examples. For each feature, the 
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weak classifier determines the optimal threshold classification, such that the minimum number of 

examples are misclassified. A weak classifier, h(x, f, p, θ), thus consist of a 24×24 sub-window x 

of an image, a feature f, a threshold θ and a polarity p indicating the direction of the inequality: 

            
               
                  

                                                (2.6) 

 The weak classifier that we use can be viewed as single node decision trees. Such 

structures have been called decision stumps in the machine learning paper [6]. To find weak 

classifiers, we use decision stump by exhaustive search algorithm below: 

Decision Stumps by Exhaustive Search 

 Input: n training example arranged in ascending order of feature                 , probabilistic 

weights          . 

 Output: the weak classifier threshold t, toggle p, error E and margin M.  

 Initialization:                            . 

 Assume that the number of positive example is l, the number of negative example is m. 

 Sum up the weights of the positive examples (resp. negative example), whose f-th feature is bigger than the 

present threshold:   
          

 
    

 

  
           

          
 
    

 

  
   . 

 Sum up the weights of the positive examples (resp. negative example), whose f-th feature is smaller than the 

present threshold:   
            

    . 

 Set weighted error:          
 +  

               
 +  

  ,              . 

 for i=1...n 

             if              ,                     else,                     

             if              and     ,          ,      and     . 

             if     ,   
    

           
    

    . else,   
    

           
    

    .   

             if          , jump to next iteration. 

      if    ,                           . else,    
 

 
                           . 
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 In practice, no single feature can accomplish the classification task with low error. 

Features which are selected early yield error rates between 0.1 and 0.3 [5]. As the iteration 

continues, the task becomes harder. The features selected in the last rounds yield error rates 

between 0.4 and 0.5. Here is the AdaBoost algorithm: 

The boosting algorithm for learning a query online. T hypotheses are constructed each using a single feature. The 

final hypothesis is a weighted linear combination of the T  hypotheses where the weights are inversely proportional 

to the training errors. 

 Given example images                     where    where        for negative and positive example 

respectively. 

 Initialize weight      
 

  
 
 

  
 for   =0,1 respectively, where m and l are number of negative examples, positive 

examples respectively.  

 For t = 1, ..., T: 

          1. Normalize the weights,      
    

     
 
   

 

     2. Select the best weak classifier with respect to the weight error 

                              

 

 

   3. Define                     where      and   are the minimizer of   . 

   4. Update the weights: 

             
     

     Where      if example    is classified correctly,      otherwise, and    
  

    
. 

 The final strong classifier is: 

      
           

 

 
   

 

   

 

   

                                         

  

        Where        
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 For the Adaboost learning, Viola and Jones demonstrated some simple results, shown in 

the Figure 2.4 below, that a classifier constructed from 200 features would yield [5]. Given a 

detection rate of 95%, the classifier yielded a false positive rate of 1 in 14084 on the dataset.  

 

Figure 2.4: ROC (Receiver Operating Characteristic) curve for the 200 feature classifier 

 For the task of detection, the initial rectangle feature selected by AdaBoost are 

meaningful and easily interpreted. The first feature, shown in Figure 2.5 below seems to focus on 

the region of eyes where is often darker than nose and cheeks. This feature is quite large, 

compared with the sub-window and should be insensitive to size and location of the face. The 

second feature is about eye and bridge of nose because eyes should be darker. In summary, the 

200 feature classifier provides evidence that a boosted classifier constructed from rectangle 

features is an effective technique for face detection. 
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Figure 2.5: First and second features selected by Adaboost algorithm 

2.4 The Attentional Cascade 

 This section describes an algorithm for building a cascade of classifiers which increases 

detection performance while reducing computational time. The key reason is that smaller 

classifiers can be used in cascade which reject many negative sub-windows while detecting 

almost all positive instances. The smaller classifiers are combined by Adaboost algorithm using 

less number of weak classifers. Simple classifiers can reject the majority of sub-windows before 

more complex classifiers are used to achieve low false positive rates. 

 The classifiers trained by AdaBoost construct different cascade stages. Starting with a 

two-feature classifier, a face detector can obtain low false negatives by setting classifier 

threshold. A lower threshold yields higher detection rate and higher false positive rates. Based on 

training set, two-feature classifier can detect 100% of face with about 50% false positive rate. 

The detection performance of two-feature classifier is far from expectation as a face detection 

system. Nevertheless executing some operations with the classifier could reduce the number of 

sub-windows:  

 Evaluate the rectangle feature (requires between 6 and 9 array reference per feature). 

 Compute the weak classifier for each feature (requires one threshold operation per feature). 

 Combine the weak classifiers (requires one multiply per feature, an addition and a threshold). 

The overall form of the detection process is like a degenerate decision tree, what we call a 

''cascade''.  As shown in Figure 2.6, a positive result from first classifier triggers the evaluation of 
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a second classifier which has been adjusted to achieve very high detection rates. A positive result 

from the second classifier triggers a third one, and so on. A negative outcome at any point would 

lead to the rejection of the sub-window. In this structure, the cascade would reject a majority of 

sub-windows for any single image. As such, it attempts to reject as many negatives as possible at 

early stage. While a positive classifier will trigger the evaluation of every classifier in the 

cascade, this is an exceedingly rare. Much like a decision tree, subsequent classifiers are trained 

using those examples which pass through all the previous stages. As a result, the second 

classifier faces a more difficult task than the first. The more difficult examples faced by deeper 

classifiers push the entire receiver operating characteristic (ROC) curve downward. At a given 

detection rate, deeper classifiers have correspondingly higher false positive rates. 

 

Figure 2.6: Schematic depiction of the detection cascade 

 The cascade design structure is driven by higher detection performance. The number of 

cascade stages and size of each stage must be sufficient to achieve high detection performance 

and low computation. Given a trained cascade of classifier, the false positive rate of each stage is  

     
 
                                                                           (2.7) 
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where F is the false positive rate of the cascade classifier, K is the number of classifiers and fi is 

the false positive rate of the i-th classifier. . Similarly, The detection rate is 

     
 
                                                                             (2.8) 

 The goal for overall false positive and detection rate, target rates can be achieved for each 

classifier in the cascade. For example, a detection rate of 0.9 can be achieved by a 10 stage 

classifier if each stage has a detection rate 0.99 (          ). While this detection rate is too 

high, it is much easier by the fact that each stage can have a false positive rate of about 30% 

(            ).  

 When scanning real images, the cascade will process all the sub-windows until it is 

decided that the window is negative, or the window succeeds in each classifier which is labeled 

positive. As the simple calculation above, the key measure of each classifier is positive rate, the 

proportion of windows which are positive, containing a face. The expected number of features 

which are evaluated is: 

                 
                                                              (2.9) 

where N is the expected number of features evaluated, K is the number of classifiers, pi is the 

positive rate of the i-th classifier,    are the number of features in the i-th classifier.  

The overall training process involves two types of tradeoffs. In most cases classifiers with more 

features will achieve higher detection rates and lower false positive rates. At the same time 

classifiers with more features need more time to compute. Basically, the number of classifier 

stages, the number of features of each stage and the threshold of each stage have impact on the 

cascade design. Given a target F and D, an optimization framework are traded off in order to 

minimize the expected number of features N. 
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 In practice the framework of this cascade structure is simple to be built. The user chooses 

the maximum false positive rate for    and the minimum detection rate for   . Each layer of the 

cascade is trained by AdaBoost with the number of feature used being increased until the target 

detection and false positive rates are met. The rates are determined by testing the current detector 

on a positive set. If the overall target false positive rate is not met then another layer is added to 

the cascade. The negative set for training subsequent layer is obtained by collecting all false 

positive results from the negative examples in the current stage. The more precise algorithm is 

below: 

The Training Algorithm for building a cascade detector 

1. User selects value for f, the maximum acceptable false positive rate per layer and d, the minimum acceptable 

    detection rate per layer.  

2. User selects target overall false positive rate,        . 

3. P = set of positive examples, N = set of negative examples,    = number of features in the i-th classifier. 

5.                

6. While            

     -       

     -               

     - While           

       *         

       * Use P and N to train a classifier with    features using AdaBoost. 

       * Evaluate current cascaded classifier on validation set to determine    and   . 

       * Decrease threshold for the i-th classifier until the current cascaded classifier has a detection rate of at least  

                 (this also affect   ) 

     - If            then evaluate the current cascaded detector on the set of non-face and put any false detections 

into the negative set N. 
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 In order to explore the cascade approach, two simple detectors were trained by Viola and 

Jones: a 200-feature classifier and a cascade ten 20-feature classifiers [5]. The first stage 

classifier in the cascade was trained using 5000 faces and 10000 non-face images. The second 

stage classifier was trained on same 5000 faces and 5000 false positives of the first classifier. 

During the cascade detector training process, the subsequent stage is always trained using the 

false positive examples from the previous stage. 

 The 200-feature classifier was trained on all the same examples as the cascade classifier. 

Note that without reference to the cascade classifier, it is difficult to choose good non-face 

examples to train the classifier. We can use all possible non-face sub-windows from non-face 

examples, but it will make training time impractically long. The cascade classifier is trained 

effectively by reducing the non-face training examples. It discards easy examples and focuses on 

the hard ones. Figure 2.7 below shows the ROC curves of the two classifiers. The results are 

slightly different. However the 200-feature classifier is 10 times slower than the cascade one. 

Therefore we choose to use the cascade classifier. 
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Figure 2.7: ROC curve comparing a 200-feature classifier with a ten 20-feature classifier 

2.5 Viola-Jones Algorithm Implementation 

 To implement the Viola-Jones algorithm, Matlab computer vision system toolbox is used. 

The built-in function can be used detect face or face features such as mouth, nose, eyes and 

upper body. To build the function, the Matlab toolbox uses the trained classifier which was 

exported as xml file from OpenCV. The trained cascade consists of 22 stages which were trained 

by adaboost algorithm using 5000 positive and 3000 negative examples [7]. The function takes 

the following parameters: ClassificationModel, MinSize, MaxSize, ScaleFactor, MergeTheshold. 

ClassificationModel is to set a cascade classifier model which could be defined as frontal face, 

upper body, eye pair, single eye, mouth or nose model. MinSize and MaxSize are set based on 

the object size. For mutiscale object detection, one can choose a suitable scale factor by 

ScaleFactor. MergeTheshold is to define detection threshold by the detection targets number. 
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The bounding boxes around the same target object will be merged into one bounding box. To use 

the built-in function, one first set up cascade object detector using vision.CascadeObjectDetector 

function and define its parameters. Second, use the step function with input image and the 

cascade object detector one created to return the bounding boxes.  

 

 

Figure 2.8: Unqualified face examples 

 When face detection is applied to AVICAR database, we sampled 707 test images by 

random time interval from different videos in the database. The videos we used have recorded 12 

different people in vehicles. There are several cases we can't detect faces, shown in Figure 2.8 

above. It has been found that when the faces are incomplete/obscured and tilted/rotated too much, 

the faces cannot be detected. In Viola and Jones paper [5], it suggests that the face detector can 

detect faces that are tilted up to about 15 degrees and rotate about 45 degrees. Therefore, we 

choose to discard 86 images that meet the above criteria. Based on the remaining 621 AVICAR 
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test images, the MinSize is set to 100 and MergeThreshold in the function is 4 because there are 

four faces in one test image. 

Table 2.1: Results of Viola-Jones face detection 

Face detection technique True positive rate False positive rate False negative rate 

Viola-Jones 557/621=89.69% 13/621=1.45% 51/621=9.18% 

 

 As seen in Table 2.1, when face detection is applied to the 621 images, 89% face 

detection accuracy is achieved. Examples of true positive results, false positive and false 

negative results are contained within Figure 2.9, Figure 2.10 and Figure 2.11, respectively. When 

a bounding box contains most of the face with all the face features, it is classified as a true 

positive image. If the face features are incomplete or missed in the bounding boxes, it is a false 

positive example.  

 

 

Figure 2.9: True positive face examples 
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Figure 2.10: False positive face example 

 

 

Figure 2.11: False negative faces examples 
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 To improve the face detection based on the Viola Jones algorithm, two methods were 

explored. One method is to train a new cascade classifier using the AVICAR database. 450 

positive images which are sampled from the AVICAR database and 450 negative images from 

the Caltech computer vision database are used as the training set. However, the results of the 

cascade classifier is much worse than the built-in classifier which used 5000 positive and 3000 

negative faces. The result of the self trained cascade yields a 15.42% true positive rate and 0.08% 

false positive rate. We believe that the number of training images we input is not enough for the 

classifier to differentiate the face sub-windows and non-face sub-windows.  

             

Figure 2.12: Positive image and negative image example 

 Another improvement method we explored is to implement the algorithm on different 

color component of the same images such as red, green, blue or HSV images and its component 

layers. While the original Viola-Jones used gray scale images which converted from RGB 

images to perform face detection, addition color spaces are investigated to examine their 

effectiveness in face detection. Table 2.2 below shows the results using different color 

components. It is found that the red layer has the best performance which has 91.47% true 

positive detection rate, outperforming the original Viola Jones results. The table does not include 

results with hue and saturation components, because only 20 faces out of 621 images were 
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detected. Figure 2.13 shows the newly detected face example detected using the red layer while 

original Viola Jones method failed. The pixel values in grayscale and red images are slightly 

different which may cause the cascade structure to classify that the red layer image contains a 

face.    

           

(a)                                                                    (b) 

Figure 2.13: Newly detected face in grayscale (a) and red channel (b) 

 The results of using the green, blue and values components are close to that used in the 

original Viola Jones method. From the result face images of above useful color spaces, each 

layer detected some face images that the other layers couldn't detect. To increase the detection 

accuracy, the newly detected results from different color spaces has been added to the RGB 

images results. 

Table 2.2: Results of Viola-Jones face detection in different color spaces 

Color space True positive rate False positive rate False negative rate 

Red 568/621=91.47% 12/621=1.93% 41/621=6.60% 

Green 543/621=87.43% 15/621=2.42% 63/621=10.14% 

Blue 545/621=87.76% 11/621=1.77% 65/621=10.47% 

Value 556/621=89.53% 13/621=2.09% 52/621=8.37% 

All color space 587/621=94.52% 16/621=2.58% 18/621=2.90% 
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CHAPTER 3  

LIP LOCALIZATION 

 

 The next goal of this thesis is to locate lip regions for subsequent audio-video speech 

recognition. In this chapter, we develop and implement a lip detection algorithm based on face 

images yielded by the face detection in the previous chapter. While accuracy is the main goal of 

the algorithm development, emphasis is also placed on speed and memory used since the 

AVASR needs to run in real time. 

 We will discuss three different lip detection algorithms in the following sections. In 

section 3.1 we develop Gabor filter to perform the lip localization. In section 3.2 we discuss 

different lip enhancement techniques and develop our lip localization algorithm based on color 

gradient. In section 3.3 we implementation modified Viola-Jones algorithm to detect lips and 

perform operations to isolate the lips. Lastly, in section 3.4 we propose a new method that 

combined modified Viola-Jones and lip gradient algorithm for improving performance. 

3.1 Gabor Filter 

 A Gabor filter-based feature space is promoted to detect lips within an image based on 

shape. The filtered image will be shown to differentiate facial features effectively, including eyes, 

nose, lips and contour of face and help to bound the lip region within a face-classified image. 

The following sections will explore the Gabor filter, its properties and its implementation to the 

lip localization algorithm. 
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3.1.1 Gabor Filter and Its properties 

 This section will provide an overview of the Gabor filter and its properties toward facial 

feature extraction. The Gabor filter is a linear filter whose impulse response is defined as a 

sinusoidal function multiplied by a Gaussian function. The Gabor filter is more effective in 

representing natural objects than the impulse or difference of Gaussian (DOG) [9].The Gabor 

filter can be defined over any number of dimensions but the 2D-Gabor filter will be the focus of 

this work. While the exact definition of the Gabor filter varies, this work’s treatment of the 

function is defined via several parameters. These parameters define the size, shape, frequency, 

and orientation of the Gabor filter among other characteristics. These parameters and their 

descriptions are listed below: 

    : Width of the Gabor filter mask (pixels) 

    : Height of the Gabor filter mask (pixels) 

 Ø : Phase of the sinusoid carrier (radians) 

    : Digital frequency of the sinusoid (cycles/pixel) 

   : Sinusoid rotation angle (radians) 

   : Along-Wave Gaussian envelope normalized scale factor 

   : Wave-orthogonal Gaussian envelope normalized scale factor 

Note the spatial frequency of the filter is listed in polar coordinates as opposed to Cartesian x- 

and y-axis frequency components. Given these parameters, one definition of the two-dimensional 

complex Gabor filter in the discrete, spatial domain is given by 

                                                
   

 
        

       
               

                                                                                                                               (3.1) 
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where G is the   -by-    Gabor filter and       is the spatial location within the filter 

synonymous with      , row and column indexing, respectively. Sharing this definition of the 

Gabor filter, the Gabor Filter Toolbox from Kamarainen et al. was used to generate all Gabor 

filters within the Matlab environment [8]. Figure 3.1 contains an example Gabor filter with the 

stated parameters as visualized in three-dimensions and as a surface and in its two-dimensional 

environment. Note that this figure displays only the real component of the filter, which is 

complex in nature. Also note that the peak response of the filter is at the mask’s center, 

       and the counter-clockwise rotation of the two dimensional sinusoid by     radians. 

 

Figure 3.1: Gabor filter impulse response (real component) 

for             
 

 
    

  

  
           

 In addition to its sparse representation of natural images, the Gabor filter has several 

other attractive properties. Kamaraninen et al. notes that a Gabor filter is invariant to 

illumination, rotation, scale, and translation [10]. In an unconstrained environment these Gabor 

filter properties make the filter an ideal candidate for detecting facial features. 
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3.1.2 Gabor Filter Set 

 Besides its definition and invariance properties, the Gabor filter is localized in both the 

spatial and frequency domains, making it an attractive form for wavelet analysis. However, 

creation of bi-orthogonal Gabor wavelets is time consuming and computationally expensive. In 

practice, filter banks consisting of various Gabor filter configurations are constructed, yielding 

what is called a “Gabor-space.” It has been posited that this Gabor-space is similar to the 

processes which takes place in human’s visual cortex, allowing for rapid recognition of complex 

patterns in the visual environment. 

 Hence, the feature extraction process used in this work will also deploy the use of 

multiple Gabor filters to represent facial features of interest. Several studies have successfully 

utilized Gabor filter sets of varying parameters to locate facial features. Kim et al. proposed a 

'eye model bunch' composed of a total of 40 Gabor filters and classified each pixel’s 40-element 

filter response as an eye via complex distance metrics [11]. While being successful, this method 

was restricted to vertically oriented faces, requiring a vast training set, and elevated memory 

demands and processing time. In fact, a majority of Gabor filter set studies restrict the 

application to controlled facial imagery, utilizing rotation and scale dependent comparison 

measures and designs [10]. When implementing Gabor filter in AVICAR database, the 

measurements of upper lip and lower lip thicknesses and orientation need to be recorded. To 

reduce scale dependency, lip measurements were recorded as ratio of the upper lip and lower lip 

thickness,     and     ,  to the height of facial bounding box,   . Lip orientations,      , were 

measured as the absolute rotation of the mouth axis from horizontal.  Refer to Figure 3.2 for a 

diagram of these parameters. Across the face training set, the average measurement results are in 
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Table 3.1. With these data, we can create the Gabor filter set to represent the lip region 

accurately. 

 

Figure 3.2: Lip measurement diagram 

Table 3.1: Average training set lip measurements 

Measurement Average Value 

Upper Lip Thickness Ratio 
   

  
 0.136 

Lower Lip Thickness Ratio 
    

  
 0.065 

 Lip Orientation        ( ) 11.25 

 

 In the development of the Gabor filter set, several key simplifications were made to 

reduce complexity and variability. First, the size of the Gabor filter was kept square such that the 

column x and row y were identical. Moreover, the normalized Gaussian envelop scale factors,   

and  , were kept unity-valued. Lastly, the sinusoid phase offset,  , was fixed at zero. Using the 

data from Table 3.1, the remaining key parameters of the Gabor filter set were selected. 

Referencing the defining Equation below, the final 12-component Gabor filter set, G, is thus 

defined as, 
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Where G is defined in Equation 3.2 and n, t and f are the set indices of the Gabor filter size, 

sinusoid angle and digital frequency sets, respectively. It means that the Gabor filter set G is a set 

of Gabor filters for every combination of n ,t and f. The orientation angle          were selected 

because the sinusoid orientation was vertically oriented (   ) and         (         ) away 

from the vertical. The two frequency value       , were chosen such that the half period of the 

sinusoid was approximately equal to the average upper and lower lip thickness ratio in Table 3.1 

The larger filter size,     , was selected for the lip contours. The second filter size,     , 

was experimentally selected such that the finer detail of the lip, like the lip corners, were 

represented clearer. In addition, the Gabor filter's size, ,   -by-         , was chosen such 

that over 80% of the total energy within the filter mask for any value of    and   . Figure 3.3 

displays a sample Gabor filter set for a face region of height       . Note the positive and 

negative values of the filter which have been mapped to grayscale values. 
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Figure 3.3: 12-component Gabor filter set 

3.1.3 Gabor Filtering Algorithm 

 With the Gabor filter set for lip region, the proper color feature space must be chosen 

after the face images have been processed. From Hursig et al, the mean values for lip and 

surrounding regions differed by 0.04 within the shifted hue space, 0.05 within the saturation 

space and 0.1 within the illumination space [12]. The skin and lip hues are similar in magnitude 

Also he mentioned that the hue and saturation values are a function of the illumination value.  

Therefore, the value components in shifted HSV space, as the feature space for Gabor filter, 

could provide sufficient contrast between lip region and the surrounding face.  
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Figure 3.4: Gabor filtering processing block diagram 

 As a simple, rotationally invariant lip localization space is required, the multidimensional 

Gabor filter set space was reduced to a single dimension. Figure 3.4 contains a block diagram of 

the entire Gabor filtering process including this space reduction procedure. First, 12 Gabor filter 

responses are generated by performing two-dimensional convolution of the face image value 

component V independently with each Gabor filter. Next, all 12 Gabor filter responses are 

summarized element by element such that the pixel value at any location within the face is the 

sum of each Gabor responses, also called Gabor jets. For the purposes of the block diagram, the 

total Gabor response are referred as     , which size is      , the row and column of the face 

image. 

 Due to the positive and negative valued modes of the Gabor filters, the total response 

need to be normalized to the range [0,1] and remapped to stress the maximal and minimal Gabor 

jet values. The normalization and remapping procedure is defined below as 

                                                                     (3.3) 
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Let the final normalized and remapped Gabor filter response be defined as   , which has 

size      . An illumination-invariant design demands detection of absolute changes in 

achromatic intensity, both from high to low and low to high illumination. Referring to Figure 3.5, 

the cross section of lip from chin to the region above lip, the eyebrow and its surrounding region 

and the below nose part involves many illumination changes. The light condition also cause such 

oscillatory change in the Gabor filter responses. 

                

                  

                 

(a)                                              (b)                                                (c) 

Figure 3.5: Total Gabor filter responses 

 (a) Original RGB images  (b) Total Gabor responses  (c) Mean-removed total responses 
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 As shown above, Figure 3.5 contains sample Gabor filter responses ranging from the total 

Gabor responses,   , in (a) to the mean-removed responses in (c). Note the contrast facial 

features have against the face’s background. Smooth skin surfaces, such as the cheeks, provide 

minimal response while the mouth opening, lips, nostrils, eyes, and eyebrows provide much 

elevated responses. This phenomenon can be attributed to the spatial transitions in illumination 

(both positive and negative) around these features. Also note that the near-vertical edges of the 

face provide low responses while the near-horizontal edges, such as the chin region, provide 

more noticeable responses. With these positive feature qualities, the final Gabor filter response 

will now be used as the preferred feature space for lip localization. 

3.2 Lip Features Extraction 

 As the mean-removed total responses are yielded, the face features, such as eyes, noses 

and mouths, usually have strong responses than the other parts. The next step is to isolate the lip 

contour from the rest of face by threshold. After testing on the training data which has been 

normalized and mean-removed, we consider that the top 85% pixel values at lower half images 

contains the lip features we want to extract. The example result image is shown in Figure 3.6 

below. 

                               

Figure 3.6: Original image and thresholded image 
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 Once the thresholded images are obtained, the next step is that we need to find the 

bounding box for the lips, and distinguish them from other face features. After testing and 

tradeoff based on our face images, we define the following restrictions to detect lip blobs: 

a) Orientation: Assuming the lips are horizontal or slightly inclined, we limits the lip orientation 

degrees. This help in eliminating any vertically blobs. 

                     

b) Blob Area: It is tested through the data that lip area is approximately 3% of the entire face. 

Hence, we apply a large area limit and a small area limit to eliminate blob area error. 

      
         

          
      

c) Height to width: This rule is based on general lip shape, the bounding box width is longer then 

the height. 

                                                     

d) Geometry position: Based on the fact that the faces are frontal and upright, the mouth position 

should be within reasonable range. So the blobs can only exist in the lower half of the image and 

in addition, the blobs should be higher than 1/8 of the image from the bottom. The edge of any 

blob at lower half image should not contact the image edge. In order to form a entire lip by 

combining lip blobs together, we close the blobs by disk. As shown in Figure 3.7, after the 

restriction process and morphological operation, the largest blobs is the lip features.     
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(a)                                                                     (b) 

Figure 3.7: (a) Blobs after restrictions and (b) Blobs after closing 

                   

              

(a)                                            (b)                                             (c) 

Figure 3.8: (a) True positive, (b) False positive and (c) False negative examples for Gabor 

filter algorithm 

Table 3.2: Results of Gabor filter algorithm for lip localization 

Lip localization technique True positive rate False positive rate False negative rate 

Gabor Filter 417/587=71.04% 141/587=24.02% 29/587=4.92% 
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The Gabor filter algorithm gave an accuracy of about 71% in the 587-image test set. Sample 

images of true positive, false positive and false negative are contained in Figure 3.8 (a), (b) and 

(c), respectively. Most of the failures are due to bad Gabor filter responses that lead to the failure 

of the blob analysis. For example, the false positive occurs when the lip blob is connected with 

the nose, such as in the top (b) of Figure 3.8; the false positive is yielded when the lip blob is  

incomplete, such as in the bottom (b); the false negative happens when the lip blob area is too 

small, such as in the (c).  

3.3 Lip Gradient Algorithm 

 Next we explore the usefulness of the gradient information in differentiating between lip 

contour and the other facial features. The principle of the gradient algorithm is to detect the 

illumination changes between the lips and the skin. For example, if the light source comes from 

above, the upper part of the lip is bright whereas the region below is relatively dark. If the light 

condition is opposite, the lower lip is bright, the upper region is dark. Therefore if the 

illumination changes between the lips and the skin are enhanced, the lip contours can be easily 

extracted. In the following, several methods are discussed that provide strong gradient between 

the lips and the skin. 

3.3.1 Color-Based Gradient 

 There exist several color gradient spaces for lip contour extraction. Stillittano and Caplier 

have used two color gradients for the upper and lower lip contours [13]. The gradient      

highlights the upper boundary and      highlights lower part. The equations are given by 

            
 

 
                                

 

 
                           (3.4) 

Where I is the luminance, R and G are red component, green component respectively.  
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 In addition, pseudo hue defined in equation (3.6) can also be used to enhance the lips, 

which is also what we are going to use. In the experiment, pseudo hue is higher for lips than for 

skin. Hence pseudo hue could be used to define the upper and lower lip contour [14]. Generally, 

the illumination source is above the speaker. Figure 3.9 demonstrate that top frontier of the upper 

lip is well illuminated while the lower part of the upper lip is in shadow. For the lower lip, the 

bottom contour is in light whereas the central lower boundary is in shadow. The Y, from color 

space YCrCb, can also represent luminance well. Thus using the gradient of the hybrid edges, it 

is possible to define the contours of the lips by pseudo hue and Y, 

                            

                                                                     (3.6) 

              
 

   
 

 

Figure 3.9: Depict of higher and lower lip contour with pseudo hue and luminance 

 After depicting the lip contour by the hybrid equation and implementing the gradient 

operation on the face images, the gradients    has horizontal gradient and vertical gradients. The 

gradient    in the hybrid equation contains lip contours, which is a two-dimensional vector. 
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(a)                                              (b)                                               (c) 

Figure 3.10: (a) Original image, (b) Vertical gradient of           and (c) Vertical gradient 

of           

 As shown in Figure 3.10 above, the vertical gradient of the equation highlighted the lips 

and other face features in comparison to the rest part of the image. Then, we use thresholds to 

convert the gradient image to binary image for classification. After testing the face images in our 

database, the pixel values in      and      are selected to be between -0.25 and 0.37. After using 

imtool function in Matlab for mouth region value and testing on the train data, the threshold is 

set as below: 

                                                                     (3.7) 
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(a)                                                              (b) 

Figure 3.11: (a) Thresholded upper lip image, (b) Thresholded lower lip image  

 Images in Figure 3.11 are obtained by thresholding the image in Figure 3.10. They 

contain the upper and lower lip information. After two binary images are merged, we need to 

separate out the lip blobs from the other parts of the faces. The images are similar wittoh the 

thresholded mean-removed total responses in Gabor filter section. Therefore, the method we 

used to separate lip regions and non-lip regions is the same as the blobs analysis in  lip feature 

extraction in Section 3.1.3.  

 According to Table 3.3, 75.47% true positive accuracy is achieved when lip gradient 

algorithm is applied to 587 test image. It performs better than the Gabor filter algorithm and its 

true positive, false positive and false negative examples have been shown in Figure 3.13(a), (b) 

and (c), respectively. As with Gabor filter algorithm, errors typically occur where there is little 

contrast between the lip pixels and the surrounding pixels when the face is not well lit. Because 

the top half lip gradient value is usually larger, only the top half lip is in the bounding such as the 

top (b) in Figure 3.13. 
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() 

                 

(a)                                              (b)                                             (c) 

Figure 3.12: (a) True positive, (b) false positive and (c) false negative examples for lip 

gradient algorithm  

Table 3.3: Results of lip gradient algorithm for lip localization 

Lip localization technique True positive rate False positive rate False negative rate 

Lip gradient 443/587=75.47% 135/587=23.00% 9/587=1.53% 

 

3.4 Modified Viola-Jones Algorithm for Lip Localization  

 Viola-Jones algorithm can be implemented not only for face detection but also for lip 

detection. The cascade classifier was trained using the same Viola-Jones face detection training 

algorithms which were described in Chapter 2. The difference is that the lip images and the non-

lip images are used as training data. The cascade classifier for mouth has already been trained in 

Matlab computer vision toolbox. The implementation of Viola-Jones for lip localization is 

similar as face detection. The difference is to set Mouth in ClassificationModel, with no size or 

merge threshold limitation.     
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Figure 3.13: Possible lip bounding boxes examples 

 As shown in Figure 3.14, the built-in function returns the possible bounding boxes which 

usually contain eyes, noses, lips and other features that are similar to the mouth region. Therefore 

some restrictions are needed to filter out non-lips. The restrictions used here is easier than the 

restrictions in section 3.2. Based on lip geometrical information in the test images, the correct lip 

bounding boxes should meet the following condition: the bounding box should be located at the 

lower half of the image; left edges of bounding boxes are in the left half of image; the bounding 

box is the lowest one in all possible boxes. The size of the bounding boxes is from 3% to 15% of 

the whole image.  

 Table 3.4 shows that within 587 detected face images, the proposed lip localization 

method succeeded in 92.67% of all detected faces. The results are shown in Figure 3.16(a), (b), 

(c) for true positive, false positive and false negative examples, respectively. In most of the false 

positive examples, nose was frequently included in the lip region. False negative results occur 

when the faces/lips are rotated or when the lighting condition are non ideal. 
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(a)                                              (b)                                              (c) 

Figure 3.14: (a) True positive, (b) false positive and (c) false negative examples for Viola-

Jones lip localization algorithm  

Table 3.4: Results of modified Viola-Jones algorithm for lip localization 

Lip localization technique True positive rate False positive rate False negative rate 

Modified Viola-Jones 544/587=92.67% 8/587=1.36% 35/587=5.96% 

 

3.5 Final Lip Localization Algorithm  

 As demonstrated by the lip localization results in the previous sections, the Viola-Jones 

algorithm outperforms other techniques, but some false negative results still remains. Although 

the lip enhancement algorithm does not perform as well as the Viola-Jones algorithm and its 

processing speed is slow, it is capable of detecting the lips that Viola-Jones misses. Hence, we 

combine the two algorithm by first using Viola-Jones algorithm to detect the lips on the face 

images. If no lip is found, the lip gradient technique will then be applied to find the lips. 
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 Table 3.5 below shows that the final lip localization algorithm is able to improve the 

accuracy from 92.67% to 95.4%. The examples that lip gradient algorithm improved are shown 

in Figure 3.17. Figure 3.18 demonstrates the flow chart of the final lip localization algorithm.  

                   

Figure 3.15: Lip gradient improved examples 

Table 3.5: Results of cascade algorithm for lip localization 

Lip localization technique True positive rate False positive rate False negative rate 

Cascade Algorithm 560/587=95.40% 22/587=3.40% 5/587=1.19% 
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Figure 3.16: Cascade lip detection algorithm block diagram 
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CHAPTER 4  

CONCLUSION AND FUTURE WORK 

 

4.1 Front End Performance 

 The visual front end for AVASR system is built by face detection followed by lip 

localization. In face detection, the original Viola-Jones implementation achieved 89.69% true 

positive detection rate on RGB color images. With experiments on different color spaces and the 

combined algorithm, the detection accuracy has been improved to 95.01%. In lip localization, 

three different algorithms have been implemented and compared. Finally, a cascade lip 

localization algorithm is built by applying a modified Viola-Jones algorithm followed by lip 

gradient algorithm and achieved a total accuracy of 95.4%. Combined with the face detection 

results, the overall system is able to accurately locate lips in 90.18% of the images. 

 As can be seen in Table 4.1, face detection and lip localization algorithm are evaluated 

for both the runtime and detection rates. Comparing to the Viola-Jones lip localization algorithm, 

Gabor filter and lip gradient algorithm have lower detection rates with 70.68% and 75.08%, 

respectively. Also their false positive rates exceeded 20%, whereas a modified Viola-Jones 

implementation remains only a 1.86% error rate.  

Table 4.1: Algorithms performance summary 

Algorithm Runtime* True positive 

rate 

False positive 

rate 

False negative 

rate 

Viola-Jones face detection 0.053 s 94.52% 2.58% 2.90% 

Gabor filter  0.163 s 71.04% 24.02% 4.92% 

Lip gradient 0.412 s 75.47% 23.00% 1.53% 

Viola-Jones lip localization 0.076 s 92.67% 1.36% 5.96% 

*per input image as preformed on a Windows 8, 64-bit, core i7 with 4GB RAM 



49 

 

 The overall front end performance and its comparison to the two previously developed 

systems are summarized in Table 4.2. Note that face detection and lip localization results are 

based on 621 images within the AVICAR database throughout this thesis. As seen in previous 

sections, face detection accuracy is 94.52% which is 587 out of 621 images; cascade lip 

localization algorithm achieves 95.4% detection rate, 560 out of 587. We first use Viola-Jones 

algorithm for lip localization, then implement lip gradient algorithm on the false negative results 

to enhance the detection rate. Relative to previous thesis work, the overall detection rate, 90.18%, 

is better than the front end built by Benafsh which has an overall accuracy of 82.21% [16] and 

also exceeds the lip localization rate of 75.6%, achieved by Husig [15].   

Table 4.2: Front end performance summary 

Front End Total runtime Overall Accuracy 

Robert Hursig front end  1.760 s 75.6% 

Benafsh Husain front end  / * 82.32% 

Final front end  0.231 s 90.18% 

* The total runtime of Benafsh Husain front end was not reported in the paper 

 The total front end processing time in Matlab environment are shown in Table 4.2. The 

processing time has also been improved from Hursig's 1.76s to 0.231s per frame. The runtime of 

the system built by Benafsh was not clarified in the paper. Based on her front end algorithms as 

described in Chapter 1, the runtime should be longer than the front end in this paper. The use of 

the Viola-Jones algorithm reduces the time needed for face detection. After the cascade classifier 

is trained, Matlab only needs to compute larger quantity of Haar-like features and pass through 

the cascade structure. The process to train the cascade classifier is the only time consuming task 

but it is trained only once. After the training process is complete, the cascade classifier can be 

used on any images for object detection. In Hursig's and Benafsh's front ends, the time 

consuming process such as Gabor filtering and gradient evaluation need to be performed for each 

and every frame. 
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4.2 Front End Limitations and Future Work 

 Based on the performance of face detection within the AVICAR database, Viola-Jones 

face detection is suitable for well aligned faces as described in chapter 2. The rotation and tilt of 

the face will cause the detection to be unreliable. We also notice that the occluded or incomplete 

faces will not be detected. For example, if the eyes are obstructed or part of the face is blocked, 

the face detection will usually fail. Moreover, harsh backlighting may cause failures. For 

example, when the faces are dark while the background is relatively light, the algorithm can't 

reliably detect the faces. The improvement in the future for Viola-Jones algorithm is to add more 

rectangle features. Besides the five traditional Haar-like features, we can rotate the original 

features by 45 degrees; the rectangles in the features could also be of different sizes. Another 

improvement method is to train a more complete cascade classifier. When training a cascade 

structure, we could add more positive images with rotated or tilted faces to the training data. 

 From the lip localization results, Gabor filter and lip gradient technique don't perform 

well due to several reasons. The image quality and lighting condition are the main reasons for 

lower detection accuracy. If the lighting is too dark, Gabor filtering doesn't have strong 

responses and the lip gradient algorithm does not have strong illumination changes, leading to 

small responses in lip regions. If the face is only partially lit, the detection will fail. In harsh 

imaging conditions, the resulting bounding boxes would typically contain both nose and lip or 

sometimes only nose. Threshold value is yet another problem. In work by Husain, several 

parameters such as the threshold for upper and bottom lip gradient are employed to be 0.028 and 

0.03. The threshold for Gabor filter algorithm in this work is chosen according to the top 15% 

value. These parameters need to be tuned based on lip localization results and are not suitable for 

all test images. One has to tradeoff some test images to achieve higher detection rate. In the blob 
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analysis, the similar problem comes again. The restrictions in the blob analysis could discard 

most of the non-lip blobs, but not all of them. The nose parts usually remain after the blob 

analysis and then cause the false positive detection because it's located just above the mouth and 

it has a strong filtered response or gradient value. It is difficult to set restrictions which only keep 

lip blobs. Based on evaluation of 587 test images, Gabor filter and lip gradient algorithm 

achieves 70% and 75% accuracy, respectively. Based on above two algorithm performance, 

neither of them have either good filtered responses or strong gradients. Gabor filter algorithm is 

based on filter shape and color space; lip gradient algorithm is based on color space. For 

AVICAR database, the condition for lip localization is very difficult, there are too many 

unconstrained factors. The Gabor filter bank and color space of this work is impossible to adapt 

to variations in all face images. 

 In future work, the visual front end can be built based on the videos in the AVICAR 

database by exploiting temporal information. With accurately detected lips, audio-visual fusion 

and speech recognition can then be developed to achieve AVASR. 
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APPENDICES 

 

A: MATLAB Algorithms Code 

1: Viola-Jones Face Detection 
function face_number = facedetect(directory) 
%----------------------------------------------------------------------------

-------- 
% 
%Purpose: This function is used to detect face using Viola-Jones object 

detection  
%Input:   The directory where the original JEPG image are stored  
%         for example: 'c:\results' 
%Output:  The face number detected  
%         The face images in \faces 
%         The runtime 
%Author:  Junda Dong 
%Date:    Junuary, 2015 
%----------------------------------------------------------------------------

-------- 

  
dir_name = char(directory); 
file = dir ( strcat(dir_name, '\*.jpeg')); 
mkdir('results\faces') 
face_number = 0; 
none = 0; 
file = dir('results\*.jpeg'); 
tic 
for n = 1:length(file) 
    filename = strcat('results\',num2str(n),'.JPEG');    
    I = imread(filename); 
    HSV_I = rgb2hsv(I); 
    facedetector = vision.CascadeObjectDetector('FrontalFaceCART'); 
    facedetector.MinSize = [100, 100]; 
    facedetector.MergeThreshold = 4; 
    fboxes = step(facedetector, I); 
    n_f = size(fboxes,1); 
    boxsize(1,1)= size(fboxes,1); 
    if size(fboxes,1)==0 
        none = none + 1; 
    end 
    if n_f < 4 
        Rfboxes = step(facedetector, I(:,:,1)); 
        boxsize(2,1)= size(Rfboxes,1); 
        Gfboxes = step(facedetector, I(:,:,2)); 
        boxsize(5,1)= size(Gfboxes,1); 
        Bfboxes = step(facedetector, I(:,:,3)); 
        boxsize(4,1)= size(Bfboxes,1); 
        release(facedetector); 
        Vfboxes = step(facedetector, HSV_I(:,:,3)); 
        boxsize(3,1)= size(Vfboxes,1); 
        index = find(boxsize == max(boxsize)); 
        switch index(1) 
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            case 1 
                fboxes = fboxes; 
            case 2 
                fboxes = Rfboxes; 
            case 3 
                fboxes = Vfboxes; 
            case 4 
                fboxes = Bfboxes; 
            case 5 
                fboxes = Gfboxes; 
        end 
    end  
    IFaces = insertObjectAnnotation(I, 'rectangle', fboxes, 'face'); 
    for m = 1:size(fboxes,1) 
           face_name = 

strcat('results\faces\',num2str(n),'_',num2str(m),'.JPEG'); 
           face = 

I(fboxes(m,2):fboxes(m,2)+fboxes(m,3),fboxes(m,1):fboxes(m,1)+fboxes(m,3),:); 
           imwrite(face, face_name);  
           face_number = face_number+1; 
    end         
%     figure,  
%     imshow(IFaces),  
%     title('Detected faces'); 
end 
toc 

 

2: Gabor Filter Lip Detection  

%---------------------------------------------------------------------------- 
% 
%PURPOSE: This function apply the Gabor Filter to the image, then threshold  
%         total Gabor filter response and extract lip feature by Blob    

analysis. 
%INPUT:   RGB face images 
%OUTPUT:  Cropped lip Images 
%AUTHOR:  Junda Dong 
%DATE:    February, 2015 
%--------------------------------------------------------------------------- 

  
clc; 
clear all; 
close all; 

  
tic 
file = dir('results\faces\*.jpeg'); 
for n = 1 :length(file 

    face = imread(['results\faces\' file(n).name]); 
    Image = file(n).name; 

     
    % Color Space  
    R = face(:,:,1); 
    G = face(:,:,2); 
    YCRCB = rgb2ycbcr(face); 
    Y = double(YCRCB(:,:,1)); 
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    pH = double(R)./(double(R)+double(G)); 
    pH(isnan(pH))=0; 
    Ynorm = Y./ max(max(Y)); 
    outimg = pH - double(Ynorm); 
    HSV3 = rgb2hsv(face); 

  
    % Gabor Filter Bunch Parameters 
    M=size(HSV3,1); 
    N=size(HSV3,2); 
    sf = 4; 
    theta=[3*pi/8, pi/2, 5*pi/8]; 
    N_gf=floor(sf*M*[1,2]/32); 
    fund=[1 2]; 
    gamma = 1; 
    eta = 1; 
    resp_tot3 = zeros(M,N); 

  
    %Perform Filtering Over Each Theta,Frequency Combination 
    for t=1:length(theta) 
        for f=1:length(fund) 
            for k=1:length(N_gf) 
                freq = sf*fund(f)/N_gf(k); 
                g = gfcreatefilter2(freq,theta(t),gamma,eta,N_gf(k)); 
                resp = imfilter(HSV3(:,:,3),g,'corr', 'same'); 
                resp_tot = resp_tot+resp; 
            end 
        end 
    end 

  
    %Normalize (Valid) Total Response 
    [Mp, Np] = size(resp_tot); 
    range = [min(min(resp_tot)),max(max(resp_tot))]; 
    resp_tot=(resp_tot-range(1))/(range(2)-range(1)); 
    resp_tot=abs(resp_tot); 
    resp_avg = sum(sum(resp_tot))/(Mp*Np); 
    resp_mr = resp_tot.*(resp_tot>resp_avg); 

  
    % Lip Features Extract 
    I = imhist(resp_mr(M/2:M,1:M)); 
    I1 = sort(I,'descend'); 
    for j = 1:256 
        if sum(I1(1:j,1)) < 0.87 * sum(I) 
           a = j; 
        end 
    end 
    thre = (find(I==I1(a,1))-1)/255; 
    bw = im2bw(resp_mr, thre(1,:)); 
    se = strel('line',1,90); 
    bw1 = imopen(bw,se); 
    bwout = restrMask(bw1); 
    se = strel('disk',2); 
    closeBW = imclose(bwout,se); 
    L = bwlabel(closeBW); 
    s = regionprops(L, 'all'); 
    bdbox = cat(1, s.BoundingBox); 
    imarea = cat(1,s.Area); 
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    maxarea = find(imarea == max(imarea)); 
    filename_lip = strcat('results\gabor1\lip_', num2str(n),'.JPEG'); 
    if (~isempty(bdbox)) 
        crop = imcrop(face,bdbox(maxarea,:)); 
        imwrite(crop,filename_lip); 
    else 
        imwrite(face,strcat('results\gabor1\fail_', num2str(n),'.JPEG')); 
    end 

 

    figure,  
    imshow(face); 
    rectangle('Position',bdbox(maxarea,:),'EdgeColor','b'); 
end 
toc 
 

 

3: Gabor Filter Toolbox  
function g = gfcreatefilter2(f0,theta,gamma,eta,n,varargin) 
% GFCREATEFILTER2 Create normalized 2-D Gabor filter in the spatial domain. 
% 
% G = GFCREATEFILTER2(F0,THETA,GAMMA,ETA,N,...) creates a 
% two-dimensional normalized Gabor filter G with frequency F0, 
% orientation THETA, normalized width GAMMA along the wave, 
% normalized width ETA orthogonal to the wave, and size N. 
% If N is a scalar, G will have equal number of rows and 
% columns. Also a two element vector N=[NX NY] can be used to 
% specify the size. 
% 
% G = GFCREATEFILTER2(...,'PF',PF) determines that at least 
% P percent of the Gaussian envelope of the filter must be 
% included in the filter in frequency domain. For default, 
% PF=0.998. 
% 
% G = GFCREATEFILTER2(...,'PT',PT) determines that at least 
% P percent of the Gaussian envelope of the filter must be 
% included in the filter in spatial domain. For default, 
% PT=0.998. 
% 
% Examples 
% 
% See also GFCREATEFILTERF2, GFCHECKFILTER2, GFCREATEFILTERF. 
% 
% References: 
% [1] Kamarainen, J.-K., Kyrki, V., Kalviainen, H., Gabor 
% Features for Invariant Object Recognition, Research 
% report 79, Department of Information Technology, 
% Lappeenranta University of Technology 
% 
% Author(s): 
% Joni Kamarainen <Joni.Kamarainen@lut.fi> 
% Ville Kyrki <Ville.Kyrki@lut.fi> 
% 
% Copyright: 
% 
% The Gabor Features in Signal and Image Processing Toolbox is 
% Copyright (C) 2000 by Joni Kamarainen and Ville Kyrki. 
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% 
% 
% $Name: V_0_4 $ $Revision: 1.9 $ $Date: 2003/03/03 10:51:17 $ 
% 

  
pt=0.998; % corresponds approximately to (1-1/512) 
pf=0.998; 
if mod(length(varargin),2)>0, 
    error('Each parameter must be given a value.'); 
end; 
currentarg=1; 
while length(varargin)>currentarg, 
    [param,value]=deal(varargin{currentarg:currentarg+1}); 

  
    switch lower(param) 
    case 'pt' 
        pt=value; 
    otherwise 
        error(['Unknown parameter ''' param '''.']); 
    end; 
    currentarg=currentarg+2;     
end; 

  
alpha=f0/gamma; 
beta=f0/eta; 
if length(n)>1, 
    nx=n(1); 
    ny=n(2); 
else 
    nx=n; 
    ny=n; 
end; 

  
% Parittomalla pituudella indeksit -(n-1)/2:(n-1)/2 
% Parillisella -(n/2):(n/2-1) 
% Esim. 9 -> -4:4, 8 -> -4:3 
if mod(nx,2)>0, 
    tx=-((nx-1)/2):(nx-1)/2; 
else 
    tx=-(nx/2):(nx/2-1); 
end; 
if mod(ny,2)>0, 
    ty=-((ny-1)/2):(ny-1)/2; 
else 
    ty=-(ny/2):(ny/2-1); 
end; 
[X,Y]=meshgrid(tx,ty); 
g=abs(alpha*beta)/pi*exp(-alpha^2*(X*cos(theta)+Y*sin(theta)).^2-... 
  beta^2*(-X*sin(theta)+Y*cos(theta)).^2 +... 
  j*2*pi*f0*(X*cos(theta)+Y*sin(theta))); 
 

 

4: Blob Analysis  

function outMask = restrMask(bw) 
%---------------------------------------------------------------------- 
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% 
%PURPOSE: This program apply the constraints to choose lips blob area 
%INPUT:   The thresholded image containing lip blobs 
%OUTPUT:  The binary image with lip area 
%AUTHOR:  Junda Dong 
%DATE:    February, 2015 
%---------------------------------------------------------------------- 

  
L = bwlabel(bw); 
s = regionprops(L, 'all'); 
bdbox = cat(1, s.BoundingBox); 
orent = cat(1, s.Orientation); 
imarea = cat(1, s.Area); 
orthl = -30; 
orthr = 30; 
Siz = size(bw); 
outLipsMaskd = zeros(Siz); 
TotArea = double(Siz(1)*Siz(2)); 
for k=1:1:size(bdbox,1) 
    bwcrop = imcrop(bw,bdbox(k,:)); 
    bwcropMir = fliplr(bwcrop); 
    overlap = bwcrop & bwcropMir; 
    if  (orent(k)>= orthl) && (orent(k)<= orthr) && ... 
        (imarea(k)/TotArea < 0.03) && (bdbox(k,4)< bdbox(k,3)) &&... 
        (imarea(k)/TotArea > 0.002) && (bdbox(k,2)> Siz(1)*1/2) &&...  
        (bdbox(k,2)< (Siz(1)-Siz(1)/8)) && (bdbox(k,1)<Siz(2)*1/2) 
        for a = round(bdbox(k,1)):1:(round(bdbox(k,1))+bdbox(k,3)) 
            for b = round(bdbox(k,2)):1:(round(bdbox(k,2))+bdbox(k,4)) 
                if (b <= Siz(1))&& (a <= Siz(2)) 
                    outLipsMaskd(b,a) = bw(b,a); 
                end 
            end 
        end 
    end 
end 
outMask = (outLipsMaskd > 0); 
end 
 

 

5: Lip Gradient 
%---------------------------------------------------------------------- 
% 
%PURPOSE: This program extract the lip features using lip gradients 
%INPUT: The face JPEG images 
%OUTPUT: The cropped lip images  
%AUTHOR: Junda Dong 
%DATE: February, 2015 
%---------------------------------------------------------------------- 
clc; 
clear all; 
close all; 

  
tic 
file = dir('results\faces\*.jpeg'); 
for n = 1: length(file) 
    face = imread(['results\faces\' file(n).name]); 
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    Totarea = size(face,1)*size(face,2); 
    Image = file(n).name; 
    [result1, gXt, gYt] = gradHnL(face); 
    [result2, gXb, gYb]= gradHnLlow(face); 

 

    %Threshold top and bottom vertical grdient 
    gradtht = im2bw(gYt,0.028); 
    gradthb = im2bw(gYb,0.03); 
    gradth = gradtht|gradthb; 
    se = strel('line',1,90); 
    bw = imopen(gradtht,se); 
    bw1 = imopen(gradthb,se); 
    outLipsMaskdb = restrMask(bw1); 
    outLipsMaskdt = restrMask(bw); 
    outLipsMaskd = outLipsMaskdb | outLipsMaskdt; 
    se = strel('disk',2); 
    closeBW = imclose(outLipsMaskd,se); 
    L = bwlabel(closeBW); 
    s = regionprops(L, 'all'); 
    bdbox = cat(1, s.BoundingBox); 
    imarea = cat(1,s.Area); 
    maxarea = find(imarea == max(imarea)); 
    filename_lip = strcat('results\gradient1\lip_', num2str(n),'.JPEG'); 
    if (~isempty(bdbox)) 
       crop = imcrop(face,bdbox(maxarea,:)); 
       imwrite(crop,filename_lip); 
       delete (strcat('results\gradient1\fail_', num2str(n),'.JPEG')); 
    else 
       imwrite(face, strcat('results\gradient1\fail_',num2str(n),'.JPEG')); 
       continue 
    end 
end 
toc 
 

 

function [outimg, gX, gY] = gradHnL(inimg) 
%---------------------------------------------------------------------- 
%PURPOSE: This program creates the gradient after the algorithm 
% emphasizing upper lips 
%INPUT: RGB Image 
%OUTPUT: The gradient after the algorithm emphasizing upper lips 
%AUTHOR: Benafsh Husain, Cal Poly San Luis Obispo 
%DATE: August 1, 2011 
%---------------------------------------------------------------------- 

  
R = inimg(:,:,1); 
G = inimg(:,:,2); 
YCRCB = rgb2ycbcr(inimg); 
Y = double(YCRCB(:,:,1)); 
pH = double(R)./(double(R)+double(G)); 
pH(isnan(pH))=0; 
Ynorm = Y./ max(max(Y)); 
outimg = pH - double(Ynorm); 
[gX, gY] = gradient(outimg); 
end 
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function [outimg, gX, gY]= gradHnLlow(inimg) 
%---------------------------------------------------------------------- 
%PURPOSE: This program creates the gradient after the algorithm 
% emphasizing lower lips 
%INPUT: RGB Image 
%OUTPUT: The gradient after the algorithm emphasizing lower lips 
%AUTHOR: Benafsh Husain, Cal Poly San Luis Obispo 
%DATE: August 1, 2011 
%---------------------------------------------------------------------- 

  
R = inimg(:,:,1); 
G = inimg(:,:,2); 
YCRCB = rgb2ycbcr(inimg); 
Y = double(YCRCB(:,:,1)); 
pH = double(R)./(double(R)+double(G)); 
pH(isnan(pH))=0; 
Ynorm = Y./ max(max(Y)); 
outimg = pH + double(Ynorm); 
[gX, gY] = gradient(outimg); 
end 
 

 

5: Viola-Jones Lip Localization  
function lip_number = lipdetect(directory) 
%---------------------------------------------------------------------------- 
% 
%Purpose: This function is used to localize lips using Viola-Jones object     

detection  
%Input:   The directory where the face JEPG images are stored  
%         for example: 'c:\results' 
%Output:  The lip number detected  
%         The lip images in \lips 
%         The runtime 
%Author:  Junda Dong 
%Date:    Feburary, 2015 
%---------------------------------------------------------------------------- 

  
dir_name = char(directory); 
file = dir ( strcat(dir_name, '\*.jpeg')); 
mkdir('results\lips') 
none = 0; 
face_number = 0; 

 

tic 
file = dir('results\faces\*.jpeg'); 
for n = 1:length(file) 
    face = imread(['results\faces\' file(n).name]); 
    lipdetector = vision.CascadeObjectDetector('Mouth'); 
    lboxes = step(lipdetector, face); 
    Ilips = insertObjectAnnotation(face, 'rectangle', lboxes, 'facefeature');  
    Totarea = size(face,1)*size(face,2); 
    length = 0; 
    mid = 100; 

%Set constrains for lip bounding box 
    for m = 1:size(lboxes,1) 
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        if (lboxes(m,2) > size(face,1)*(1/2)) && lboxes(m,1) < size(face,2)/2 

  && lboxes(m,2)+lboxes(m,4) > length &&... 
           (lboxes(m,3)*lboxes(m,4))/Totarea < 0.15 &&     

      (lboxes(m,3)*lboxes(m,4))/Totarea > 0.04  
           length = lboxes(m,2)+lboxes(m,4); 
           b = m; 
        end 
    end 
    filename_lip = strcat('results\viola-jones1\lip_', num2str(n),'.JPEG'); 
    if (~isempty(lboxes)&& b~=0) 
        crop = imcrop(face,lboxes(b,:)); 
        imwrite(crop,filename_lip); 
        delete (strcat('results\viola-jones1\fail_', num2str(n),'.JPEG')); 
    else 
        imwrite(face,strcat('results\viola-jones1\fail_',num2str(n),'.JPEG')); 
        continue 
    end 

 

    figure,  
    imshow(Ilips),  
    title('Detected lips'); 
    figure, 
    imshow(face) 
    rectangle('Position',lboxes(b,:),'EdgeColor','b'); 
    b = 0; 
end 
toc 


