

QUANTIFICATION OF BLOOD FLOW VELOCITY USING COLOR SENSING

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Aditya Deepak Sanghani

October 2015

	 ii	

© 2015
Aditya Deepak Sanghani

ALL RIGHTS RESERVED

	 iii	

COMMITTEE MEMBERSHIP

TITLE: Quantification of Blood Flow Velocity Using Color

Sensing

AUTHOR: Aditya Deepak Sanghani

DATE SUBMITTED: October 2015

COMMITTEE CHAIR: Tina Smilkstein, Ph.D.
 Associate Professor of Electrical Engineering

COMMITTEE MEMBER: Dennis Derickson, Ph.D.

Department Chair and Professor of Electrical
Engineering

COMMITTEE MEMBER: James Eason, Ph.D.
 Instructor of Biomedical Engineering

	 iv	

ABSTRACT

Quantification of Blood Flow Velocity Using Color Sensing

Aditya Deepak Sanghani

Blood flow velocity is an important parameter that can give information on

several pathologies including atherosclerosis, glaucoma, Raynaud’s

phenomenon, and ischemic stroke [2,5,6,10]. Present techniques of measuring

blood flow velocity involve expensive procedures such as Doppler

echocardiography, Doppler ultrasound, and magnetic resonance imaging [11,12].

They cost from $8500-$20000. It is desired to find a low-cost yet equally effective

solution for measuring blood flow velocity. This thesis has a goal of creating a

proof of concept device for measuring blood flow velocity.

Finger blood flow velocity is investigated in this project. The close

proximity to the skin of the finger’s arteries makes it a practical selection. A Red

Green Blue (RGB) color sensor is integrated with an Arduino Uno microcontroller

to analyze color on skin. The initial analysis involved utilization of red RGB

values to measure heart rate; this was performed to validate the sensor. This test

achieved similar results to an experimental control as the measurements had

error ranging from 0% to 6.67%.

The main analysis was to measure blood flow velocity using 2 RGB color

sensors. The range of velocity found was 5.20cm/s to 12.22cm/s with an average

of 7.44cm/s. This compared well with the ranges found in published data that

varied from 4cm/s to 19cm/s. However, there is an error associated with the

	 v	

device that affects the accuracy of the results. The apparatus has the limitation of

collecting data between sensors every 102-107ms, so there is a maximum error

of 107ms. The average finger blood flow velocity of 7.44cm/s may actually be

between 6.17cm/s and 9.39cm/s due to the sampling error. In addition, mean

squared error analysis found that the most likely time difference between pulses

among those found is 739ms, which corresponds to 5.21cm/s.

Although there is error in the system, the tests for heart rate along with the

obtained range and average for finger blood velocity data provided a method for

analyzing blood flow velocity. Finger blood velocity was examined in a much

more economical manner than its traditional methods that cost between $8500-

$20000. The cost for this entire thesis was $99.66, which is a maximum of 1.17%

of the cost.

	 vi	

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Smilkstein for all of the help and
support throughout the past year. Her passion for biomedical devices led us to
work together and it was inspiring to be guided by a professor with such a
strongly innovative mentality and diverse background.

I would like to also thank my other committee members Dr. Eason and Dr.

Derickson. I would like to especially thank Dr. Eason for the initial help with the
physiology.

I would like to thank Dr. Carlton for his help with the statistical error

analysis.

I would like to thank my friend Jonathan Fish for his help connecting the

multiplexer to the breakout board. I would also like to thank my friend Michael
Harriman for some assistance with experiments and my friend Bijan Shirazi-Wu
for giving me direction in searching for a multiplexer.

I would like to dedicate this thesis to my family who has been there for me
throughout my life. I would not be where I am today without their incredible
support and teachings.

	 vii	

TABLE OF CONTENTS

 Page

LIST OF TABLES ix

LIST OF FIGURES

x

Chapter 1: Introduction 1

Chapter 2: Theory 7

2.1. Theory and Background 7

2.2. Hardware 7

2.3. Timing 10

2.4. Block Diagram and Other
Illustrations 12

Chapter 3: Data Collection and
Analyses 16

3.1. Starting the TCS34725 RGB Color
Sensor 16

3.2. Heart Rate Analysis

20

3.3. Full Apparatus with Multiplexer 27

3.4. Mean Squared Error 41

Chapter 4: Conclusion and Future
Work 43

4.1. Conclusion

43

	 viii	

4.2. Future Work

44

REFERENCES
46

APPENDICES
50

	 ix	

LIST OF TABLES

Table Page

3.1. Truth table to select device on
TCA9548A

32

3.2. Truth table to select device on
TCA9544A

34

3.3. Blood flow velocity information for
right index finger 40

3.4. Mean squared error for different
values of delta t

42

	 x	

LIST OF FIGURES

Figure Page

1.1. Published data for range of finger
blood flow velocity

2

1.2. Palmar digital artery illustration [8] 3

1.3. Marking of digital artery location to
show straightness

4

1.4. Measurement of blood flow using
Doppler ultrasound

5

2.1. TCS34725 RGB color sensor with
breakout board [21]

9

2.2. Communication timing diagram for
TCS34725 and Arduino Uno

10

2.3. Minimum time for pulse event to
travel 3.85cm on finger; found using
maximum published finger blood flow
velocity

11

2.4. Connection of discrete data points
11

2.5. System block diagram for full
apparatus with multiplexer. This shows
the entire construction needed to
measure blood flow velocity

13

2.6. TCS34725 SDA and SCL timing
diagram to show how data are
collected

13

2.7. Arduino image to show SDA and
SCL pins [23] (5V is actually used in
this thesis)

14

2.8. Schematic for TCA9544A 15

	 xi	

multiplexer to show how the channels
lead to the output and where the
analog pins are located

3.1. Function in driver to enable
TCS34725 16

3.2. Main loop to output data for
TCS34725 17

3.3. Example output for system with
one TCS34725 sensor. Includes red,
green, blue, and clear values and
overall hexadecimal value

18

3.4. Adafruit example for a diffused
RGB LED [25] 19

3.5. (a) Actual blue folder. (b)
TCS34725 reading shown in MATLAB 20

3.6. Apparatus with one TCS34725
color sensor 21

3.7. Red wavelength using right index
finger over 22.5 seconds (at rest). Red
arrows are heartbeats

22

3.8. Azumio Heart Rate phone
application sample screen 23

3.9. Red wavelength using right index
finger for 11.6 seconds (after workout) 24

3.10. Code modification to isolate red
RGB value 25

3.11. Equation for red RGB value
multiplied by 100 25

3.12. Python output of just red RGB
value (multiplied by 100) 26

3.13. Loop in Python to store red RGB
values into array 26

	 xii	

3.14. Right index finger output
analyzed in Python 27

3.15. Texas Instruments TCA9544A
multiplexer [28] 28

3.16. TSSOP (20) breakout board [29]

28

3.17. TCA9544A multiplexer on
breakout board 29

3.18. “Typical application” for
TCA9544A to show full setup 29

3.19. Complete apparatus to measure
blood flow velocity

30

3.20. Device address for TCA9544A to
select individual multiplexer 30

3.21. Code to switch between sensors

31

3.22. Control Register TCA9548A

32

3.23. For loop to use 2 sensors with the
TCA9548A 33

3.24. Control register TCA9544A

34

3.25. Corrected for loop to switch
between sensors using TCA9544A 35

3.26. Loop to collect and store data
from 2 color sensors 36

3.27. Right index finger readings with
full apparatus 37

3.28. Velocity calculation to obtain
blood flow velocity 37

3.29. Equation to characterize possible
time difference between pulse events

38

	 xiii	

3.30. Example time difference between
events 39

3.31. Sample blood flow velocity
calculation 39

3.32. Average time for blood to travel
3.85cm on finger 40

3.33. Lowest possible average velocity
(using maximum error) 40

3.34. Highest possible average velocity
(using maximum error) 40

	

3.35. Graphs subtracted by their
respective means

41

	

3.36. Equation for mean squared error
41

	

	 1	

Chapter 1: Introduction

Blood flow characteristics carry vital information about any person’s

health. Blood flow velocity is one parameter that is not given enough attention but

is important to monitor. Blood flow velocity is influenced by blood vessel size,

shape, and wall texture, blood viscosity, cardiac cycle phase, and blood flow rate

[1]. The velocity is affected during stenosis, regurgitation, and in other cases.

Stenosis is the blockage of blood vessels. One example is stenosis is

atherosclerosis, which is a pathology that involves the buildup in plaque in

arteries [2]. Regurgitation is when blood flows in the opposite direction through

heart values from what is normal [3]. In general, when blood flow is turbulent, this

can be suggestive of disease.

Generally, aortic, femoral, or carotid blood flow velocity is measured and

analyzed in order to find pathologies. However, blood flow velocity in distal

extremities can provide useful information about a person’s cardiovascular health

[4]. Analysis of smaller arteries can show arteriosclerosis and other problems and

this can indicate pathologies at a systemic level. Lower finger blood flow

velocities from what is normal can be indicative of glaucoma [5]. Additionally, low

blood flow velocity can be due to Raynaud’s phenomenon, especially at lower

temperatures such as 19 °C [6]. Raynaud’s phenomenon is a condition during

which blood flow is decreased for a certain period of time due to vasospasm. For

all of the aforementioned reasons, finger blood flow velocity is examined in this

thesis. Specifically, an inexpensive method for its measurement is investigated.

	 2	

One published study found that the range for finger blood flow velocity

(arterial) is about 4cm/s to 10cm/s (see Figure 1.1) [7]:

Figure 1.1: Published data for range of finger blood flow velocity

Another study found that the finger blood flow velocity for arteries ranges from

4.9cm/s to 19cm/s [4]. It is desired to create an apparatus to achieve the same

range of data as these studies found.

A separate study found that ischemic stroke affects values for blood flow

velocity in the carotid artery [10]. The study showed that patients without

ischemic stroke experienced an average blood flow velocity of 20.8cm/s whereas

those with a stable form of ischemic stroke experienced an average of 16.8cm/s.

This is a decrease of 19.2%, and this kind of decrease can be expected in the

finger as well. The new apparatus has to be able to sense a decrease of this

magnitude.

The artery analyzed in this paper is the digital artery, as shown in Figure

1.2:

	 3	

Figure 1.2: Palmar digital artery illustration [8]

The digital artery is straight and runs through the fingers as shown in Figure 1.2,

which makes it possible to measure blood flow velocity from two points. Figure

1.3 shows markings of the location of one of the digital arteries from the outside

[9]: These arteries will be directly monitored in finding blood flow velocity, and

this is explained further in this thesis.

	 4	

	

Figure 1.3: Marking of digital artery location to show straightness

Figure 1.3 shows that the digital artery has a straight shape. It is also known that

it is close to the surface of the skin. Color sensors are used over the skin’s

surface in the experiments in this thesis, and this is explained in Chapter 2.

Current techniques to measure blood flow velocity are very expensive.

Examples include Doppler echocardiography, Doppler ultrasound, and magnetic

resonance imaging (MRI) [11,12]. Doppler ultrasound is a technique that

analyzes how sound waves bounce off of blood cells and how they are reflected

[13]. A transducer is used to transmit and receive sound waves and its analyses

give information on the blood flow. Figure 1.4 shows data from Doppler

ultrasound [14]:

	 5	

	

Figure 1.4: Measurement of blood flow using Doppler ultrasound

Doppler echocardiography is when ultrasound techniques are used to measure

blood flow activity in the heart; it provides detailed images [15]. Though these

seem to be promising techniques, it has been found that Doppler can produce

errors in flow information. A study found that the error in mean velocity can be as

high as 20-32% [16]. Sources show that the cost of these procedures range from

$8500-$17000 [17]. MRI uses a magnetic field and radio waves in order to

generate images [18]. Phase shift with the MRI readings of blood in vessels in

used to find blood flow velocity. This technique produces error as well, and its

cost is well over $20000 [19].

It is desired to investigate a more economical technique to accurately

measure blood flow velocity−color characterization using color sensors is used.

	 6	

Chapter 2 discusses the theory behind the design and it includes the

experimental setup. Chapter 3 illustrates the data collection and the

corresponding analyses. Chapter 4 concludes and gives future considerations.

	 7	

Chapter 2: Theory

2.1. Theory and Background

The hypothesis is that blood flow velocity can be found through color

characterization of the skin. Specifically, two Red Green Blue (RGB) color

sensors are placed a small distance apart on an index finger and the data are

communicated through an Arduino Uno microcontroller. The RGB color sensor

chosen is TCS34725 by Texas Advanced Optoelectronic Solutions (TAOS) that

runs on I2C protocol [20]. The color sensor comes with an infrared (IR) blocking

filter. The breadth of different wavelengths and subtleties of color attainable

through this sensor are not visible with the human eye. With the filtering coupled

with analysis of the color readings, a characterization of periodic color changes

over a small time interval (10-20 seconds) is attained. Specifically, red

wavelengths are analyzed in order to track blood. These wavelengths illustrate

pulse events at their graphical output, which is explained further in this thesis.

The physical distance between the sensors is divided by the time between these

pulse events in order to obtain the velocity of the blood. The assessed values for

blood flow velocity are compared with published data to confirm the validity of the

measurements.

2.2. Hardware

The TCS34725 color sensor is a slave device that needs to have its

communications controlled by a master device. This relationship is very

customary in the I2C protocol. The code utilized on the Arduino for

communicating with the sensors is derived from sample code produced by

	 8	

Adafruit Industries for use in conjunction with an Arduino microcontroller. Thus,

the Arduino is a master in this apparatus that controls the color sensor

communications; it asks the sensor for data and these get subsequently sent to

the Arduino. The TCS34725 color sensor uses a 3x4 photodiode array with red-

filtered, green-filtered, blue filtered, and unfiltered (clear) photodiodes. They each

have an infrared blocking filter and the output is a single value each for R, G, B,

and C (clear) values. Analog to digital converters (ADCs) are included for each of

these four parameters and they run in parallel in the data collection. The R, G,

and B values that correspond to 0 to 255 are found by dividing each individual

color value by the value for clear and then multiplying that new amount by 255.

Red is the important color for blood characterization, and that is why red RGB

values are analyzed in this application.

Adafruit has provided a breakout board along with some circuit elements

such as pull-up resistors in order to facilitate the task of placing the TCS34725

color sensor onto a breadboard. Additionally, a 4150K LED is included to the left

of the physical sensor in order to illuminate what is being analyzed. This is

helpful to reading the colors correctly because it makes it easier for the sensor to

gauge the colors and it reduces effects of noise from external light sources.

Figure 2.1 is an image of what is included in the Adafruit package:

	 9	

Figure 2.1: TCS34725 RGB color sensor with breakout board [21]

Since two sensors with the same fixed address are used, an I2C multiplexer has

to be employed. I2C is a protocol for which a master selects a device address for

a slave in order to communicate with it, but there must be only one slave with a

given address to avoid conflict [22]. This multiplexer will have to quickly switch

between the two sensors in the data collection in order to allow for a sufficient

amount of data to be taken. This is because the multiplexer has to switch

significantly faster than speed of blood in order for approximation of pulse shape.

The difference between the pulse event peaks from the two sensors is what

signifies the time taken for the blood to travel the given distance on the finger;

3.85cm is chosen for this study. This distance gives a maximum of about one

second to for the blood to pass from one point to the other; this corresponds to

the minimum amount of published blood flow velocity in the finger (4cm/s).

Additionally, the analysis in Figure 2.3 shows that choosing this distance ensures

that pulse events will not be missed. The time taken for blood to travel 3.85cm is

found and the blood flow velocity is easily found by dividing the distance by the

time. There is certain error associated with the device, and this is explained later

in the thesis in sections 3.3 and 3.4.

	 10	

2.3. Timing

The multiplexer selected is the Texas Instruments TCA9544A, which

allows up to 4 sensors to be connected at once. In this project, two sensors are

used and transmissions are alternated between them. There is a time delay of

approximately 100ms between data points of the two sensors and a delay of

approximately 200ms between data points of a single sensor. The exact time

figures are explained in section 3.3. These time figures are due to the limitation

of the TCS34725 color sensor that about 50ms are necessary to read data and

that it is recommended to give a 50ms delay for fidelity. This additional time gives

the sensor enough time to collect data. Shown in Figure 2.2 is a communication

timing diagram when one sensor is connected.

	

Figure 2.2: Communication timing diagram for TCS34725 and Arduino Uno

Given from published data that the finger blood flow velocity should not

exceed 19cm/s, a 100ms delay will not cause the second sensor to miss the

	 11	

pulse event from the first sensor since the distance is 3.85cm and the minimum

time to travel that distance is 203ms (see Figure 2.3):

𝑡𝑖𝑚𝑒 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =

3.85𝑐𝑚
19𝑐𝑚/𝑠 = 203𝑚𝑠

Figure 2.3: Minimum time for pulse event to travel 3.85cm on finger; found
using maximum published finger blood flow velocity

It is evident that pulse events cannot be missed entirely at the second sensor

due to the 100ms delay. However, there will be some error in collecting data

because of this 100ms delay and thus the 200ms delay between data points in a

single sensor; the exact location of the peaks of the pulses may not be accurate.

The graphical output is not smooth because straight lines are drawn to connect

the discrete data points. A peak can occur between two data points and its exact

location would not be caught. Figure 2.4 illustrates the connection of discrete

data points with blue circles.

	

Figure 2.4: Connection of discrete data points

These lines may not be a good approximation of the actual blood movement.

This means that the correct interval between pulse events may be off due to the

limitations arisen with discrete data points. There is a maximum error of about

100ms since the blood flow is in a single direction; the possibilities of time

	 12	

separation between pulse events are about 100ms, 300ms, 500ms, and so on.

The error is explained further later in this thesis in sections 3.3 and 3.4.

 The datasheet for the TCS34725 states that the ADC has an integration

time that is based on integration cycles. Increasing the number of cycles

increases precision but consequently increases the integration time and thus the

time between valid sensor readings. The minimum amount of cycles is 1 or

2.4ms integration time, and this corresponds to a maximum count of 1024, which

is precise enough to capture pulse events. This is shown in this thesis. Thus, this

amount of cycles (1) is selected in this application and 1024 different variations

are possible in the data for each color reading. Thus, each iteration requires

2.4ms for the ADC; this is coded in the program with the appropriate

hexadecimal value of FF. The value of 2.4ms is ideal because it is small

compared to the 100ms separating the transmissions from the sensors (2.4%).

This is not an ADC that varies steps based on the color changes; the 2.4ms is

fixed. Increasing the integration time would only increase precision and this is

unnecessary in this application as previously mentioned.

2.4. Block Diagram and Other Illustrations

The following is the block diagram of the system (see Figure 2.5):

	 13	

Figure 2.5: System block diagram for full apparatus with multiplexer. This
shows the entire construction needed to measure blood flow velocity

The voltage level is 5V for this application; the sensor package provided by

Adafruit allows 3.3-5V. Serial data line (SDA) is the line of the I2C protocol that

sends and receives data [22]. Serial clock line (SCL) is the line that controls the

clock. The TCS34725 sensors have SDA and SCL pins, and the Figure 2.6

illustrates the timing diagram for the TCS34725:

Figure 2.6: TCS34725 SDA and SCL timing diagram to show how data are
collected

	 14	

The SCL and SDA lines have to coordinate with each other in order to send and

receive data. The SCL line is high and SDA is sloped down for the start

condition. The SCL line is high but the SDA line is sloped up for the stop

condition. The information is passed in between the start and stop conditions. On

the color sensor package, the LED, INT, and 3v3 pins are unused. The LED pin

can be connected to ground when it is desired to turn off the LED. The INT pin

can be connected to the LED pin in order to control when the LED is on and off.

The 3v3 pin can be used to power the sensor with 3.3V.

For the Arduino Uno, the analog A4 and A5 pins correspond to SDA and

SCL, respectively. Figure 2.7 contains an illustration to display where the SDA

and SCL pins are located on an Arduino Uno:

Figure 2.7: Arduino image to show SDA and SCL pins [23] (5V is actually
used in this thesis)

The TCA9544A multiplexer has separate SDA and SCL inputs for each

color sensor and a single set of SDA and SCL as the output and these are to be

	 15	

connected to the Arduino Uno analog A4 and A5 pins. Figure 2.8 is a schematic

of the multiplexer [24]:

Figure 2.8: Schematic for TCA9544A multiplexer to show how the channels
lead to the output and where the analog pins are located

The Arduino Uno is connected to the computer using universal serial bus

(USB). From there, the data analysis is performed using the aforementioned

Arduino code provided by Adafruit with customized edits and a Python code to

show graphical data. The post-processing is then done in MATLAB to find blood

velocity.

	 16	

Chapter 3: Data Collection and Analyses

3.1. Starting the TCS34725 RGB Color Sensor

The Arduino code provided by Adafruit is written to drive one TCS34725

color sensor and it involves three different files: “colorview.ino,”

“Adafruit_TCS34725.cpp,” and “Adafruit_TCS34725.h.” The latter two files

provide the driver for the TCS34725 and the corresponding header file. The

driver includes several functions. First, a “powf” function is written. This function

takes two float values and returns a float of the power of the first number raised

to the second number. The next functions are written to be able to write a register

and read 8 and 16 bit values over I2C. The next function is written for enabling

the TCS34725, and this is shown in Figure 3.1:

Figure 3.1: Function in driver to enable TCS34725

PON stands for “power on” and it allows the timers to start and the ADCs to work.

AEN enables the RGBC (C is clear). The next function is written in the event the

device needs to be disabled. The 3ms delay only occurs on initialization and not

on every write. Thereafter, constructors are written. Then, a function is written to

initialize I2C and configure the device. The remaining functions set integration

	 17	

time, adjust gain, reads RGBC data, and converts RGBC data to color

temperature in Kelvins. Color temperature corresponds to various hues.

In the “colorview.ino” file, the data processing is performed in order to

output the red, green, blue, and clear values along with hexadecimal RGB value.

Figure 3.2 displays the main loop that writes the values to serial:

Figure 3.2: Main loop to output data for TCS34725

The values get output to the serial port as follows in Figure 3.3:

	 18	

Figure 3.3: Example output for system with one TCS34725 sensor. Includes
red, green, blue, and clear values and overall hexadecimal value

In addition, logic is included in this file to drive a diffused RGB LED to match the

color placed in front of the sensor. The following is an example of how it works;

an orange is placed over the sensor and the color is matched by the diffused

LED, as shown in Figure 3.4:

	 19	

Figure 3.4: Adafruit example for a diffused RGB LED [25]

In the application in this thesis, this setup is used to make some initial tests on

colors of random objects. Also, the tests are compared to the RGB values

returned from the sensor. The following the comparison of a blue folder placed

over the sensor with its output from the TCS34725 (see Figure 3.5):

	 20	

Figure 3.5: (a) Actual blue folder (b) TCS34725 reading shown in MATLAB

The values for R, G, B and clear are used. The calculation mentioned previously

to divide R, G, and B individually by clear is utilized. Multiplication by 255 is not

necessary because MATLAB normalizes the RGB values to between 0 and 1.

After similar tests are performed to validate the overall color sensor, skin

measurements commence.

3.2. Heart Rate Analysis

The initial measurements involved testing the validity of the sensor itself

and whether or not it can detect a pulse. It is required that subtle changes in red

wavelength get recorded; pulses of around 1Hz should be detectable. For these

measurements, analysis on the finger is selected since it is not difficult to isolate

arterial color information over the skin on a finger. Only one sensor is used (the

other sensor and the multiplexer are omitted in this portion), and the setup is

shown in Figure 3.6:

	 21	

Figure 3.6: Apparatus with one TCS34725 color sensor

The initial measurements are conducted at rest and are thus seeking

resting heart rate. The red value is analyzed and graphed over a 22.5 second

period; the post-processing is performed in MATLAB. The red value is

normalized in RGB (divided by 255), and the output graph is shown in Figure 3.7:

	 22	

Figure 3.7: Red wavelength using right index finger over 22.5 seconds (at
rest). Red arrows are heartbeats

Red arrows in Figure 3.7 correspond to heartbeats. There is a function in

MATLAB called minpeakdistance. This function allows the user to find the

amount of peaks given a minimum peak distance (5 indices was the selected

amount). This means that the peaks must be at least 5 indices apart; this is done

to prevent noise from causing errors. The heart rate found is 69 beats per minute

(bpm). This is found by taking the number of peaks after using minpeakdistance

and normalizing that amount to 60 seconds.

There is an application available on mobile phones (an iPhone was used)

known as “Heart Rate” and it uses the flash and camera to find the heart rate. Its

functionality is not explained, but it can be assumed that changes in color due to

blood arrival is analyzed. The procedure is simple: place a finger in front of the

camera and wait. The heart rate comes after a few seconds of waiting. Azumio is

	 23	

the company that develops this application. Figure 3.8 is an example screen from

the application:

Figure 3.8: Azumio Heart Rate phone application sample screen

The application finds 66 bpm immediately following the test on the TCS34725

from Figure 3.7. It is conceivable that the heart rate would change slightly

between the readings. The second analysis for heart rate is performed after a

workout of performing 35 push-ups. The test utilizing the TCS34725 is conducted

immediately after the workout and the results are shown in the following graph

(see Figure 3.9):

	 24	

Figure 3.9: Red wavelength using right index finger for 11.6 seconds (after
workout)

Since the graph is less noisy than the one from Figure 3.7, it is only required to

use the findpeaks function in MATLAB. The heart rate is 124bpm from the graph.

The mobile phone application generated the identical 124bpm immediately

afterward. The two tests performed give validity to the TCS34725 sensor.

The next step is to make the data collection process fully automated in

Python. To complete this step, the pySerial library in Python needs to be utilized

[26]. This library allows a user to communicate with the serial port through

Python. Anaconda, which is a free Python distribution by Continuum Analytics

with many built-in libraries, is used to make graphing easier [27]. The matplotlib

library is used for the graphical analysis. It is desired to output just the red RGB

value in Python in order to simplify the code. Thus, the code from Figure 3.2 is

modified to leave just the red RGB value for the output (see Figure 3.10):

	 25	

Figure 3.10: Code modification to isolate red RGB value

The RGB value for red is found by dividing the red amount by clear. This

value is multiplied by 100 in Arduino to improve precision; the output gives two

decimal places. A sample output (without the multiplication) is 107.62 for the red

RGB value. With the multiplication, it is 10762.32 and is thus more precise when

imported into Python. The values will later get divided by 100 in Python. Figure

3.11 is the equation for the red RGB value multiplied by 100:

𝑟𝑒𝑑 𝑅𝐺𝐵 =
𝑟𝑒𝑑
𝑐𝑙𝑒𝑎𝑟 ∗ 255 ∗ 100

Figure 3.11: Equation for red RGB value multiplied by 100

Shown in Figure 3.12 is a sample of the output from the serial monitor viewed in

Python (red value is multiplied by 100):

	 26	

Figure 3.12: Python output of just red RGB value (multiplied by 100)

In Python, these values are divided by 100. Then, an array of the red RGB value

is created in order to store values to be graphed. A loop is created to store

several values into the array, and it is shown in Figure 3.13:

Figure 3.13: Loop in Python to store red RGB values into array

Figure 3.14 is output from Python in the fully automated test at rest involving 100

iterations (at 9.2 iterations/second):

	 27	

Figure 3.14: Right index finger output analyzed in Python

This analysis shows a heart rate of 57.6bpm. The iPhone application produced

54bpm. Thus, the error for the sensor to heart rate mobile application ranged

from 0% to 6.67%. The error for the iPhone application is not noted in its

specifications.

3.3. Full Apparatus with Multiplexer

The next step is to successfully implement the TCA9544A multiplexer with

two TCS34725 sensors. The multiplexer was ordered from Digikey Corporation in

a TSSOP (20) package (see Figure 3.15):

	 28	

Figure 3.15: Texas Instruments TCA9544A multiplexer [28]

Since it is required to place the multiplexer onto a breadboard, a breakout board

compatible with TSSOP (20) is required. This breakout board, shown in Figure

3.16, was purchased from Adafruit Industries:

Figure 3.16: TSSOP (20) breakout board [29]

The TCA9544A is attached to the breakout board using solder, flux, and a rework

tool. Figure 3.17 is a photo of the two put together:

	 29	

Figure 3.17: TCA9544A multiplexer on breakout board

Header pins are soldered on the sides as shown in Figure 3.17. The next step is

to put together the entire to match the block diagram in Figure 2.5. The typical

configuration for the multiplexer is shown in the datasheet for the TCA9544A

(see Figure 3.18):

Figure 3.18: Typical configuration for TCA9544A to show full setup

	 30	

The resistors shown in Figure 3.18 correspond to pull-up resistors; 18k ohm

resistors are used. The following is a picture of the complete apparatus (see

Figure 3.19):

Figure 3.19: Complete apparatus to measure blood flow velocity

The pins A0, A1, and A2 are used in order to select the specific TCA9544A

multiplexer. Even though only one multiplexer is used in this application, it is

necessary perform this selection. The device address of the TCA9544A is set as

follows in Figure 3.20:

Figure 3.20: Device address for TCA9544A to select individual multiplexer

	 31	

The values selected for A0, A1, and A2 are 0 for this application (connected to

ground), and this corresponds to 1110000, which is a hexadecimal value of 70.

The R/W value is not part of the slave address, as indicated in Figure 3.20. The

INT pins (See Figure 3.18) correspond to interrupts; these are unused. They are

connected to the 5V source through the 18k pull-up resistors because the

datasheet mentions not to leave them floating. Keeping them high leaves them

off. The SCL and SDA pins for the potential 3rd and 4th sensors are unused and

are left floating.

For performing the implementation of the multiplexer, sample code from

netopyaplanet.com is used [30]. In the application on this website, a TCA9548A

multiplexer is used with 6 TCS34725 sensors. This is an 8 to 1 multiplexer that

has virtually the same functionality as the TCA9544A but without interrupt logic

(which is unused in the application of this thesis anyway). The sample code

provided (see Figure 3.21) has 3 lines of code that switches between sensors:

Figure 3.21: Code to switch between sensors

The wire.h library was used; this is the Arduino library that allows communication

with I2C devices [31]. The first line from Figure 3.21 selects the hardware. The

hexadecimal value of 70 is selected because of the previous explanation; the

device address from Figure 3.20 is used and the A0, A1, and A2 pins are 0. No

change is necessary with this line because the addresses are the same for

TCA9548A and TCA9544A. The second line from Figure 3.21 selects the specific

	 32	

sensor. The control register is responsible for the selection of channels that

correspond to a sensor. Figure 3.22 is the control register for the TCA9548A [32]:

Figure 3.22: Control Register TCA9548A

 The TCA9548A has the following truth table (see Table 3.1):

Table 3.1: Truth table to select device on TCA9548A

Given the control register and truth table, it is logical to utilize a bit shift to move

through the sensors. That is why Wire.write(1 << i) is used in a for loop; the

	 33	

value is bit shifted one to the left every iteration of the loop. Figure 3.23 is the for

loop to match utilization of 2 sensors using the TCA9548A:

Figure 3.23: For loop to use 2 sensors with the TCA9548A

The TCA9544A has different logic and that is why this loop needs to change.

Figure 3.24 shows the control register and truth table for the TCA9544A, and

Table 3.2 shows its truth table to select channels:

	 34	

Figure 3.24: Control register TCA9544A

Table 3.2: Truth table to select device on TCA9544A

Table 3.2 shows that the bit shift will not work. The values run from 4 to 7 in

binary, and the for loop can thus run for those values. This application is

adapted to receive data from two color sensors; the loop runs from 4 to 5. The

interrupt bits are left as 1. In the loop, the output also needs to be modified; it

needs to only send red RGB values to the serial port. Figure 3.25 is the overall

corrected for loop for the TCA9544A:

	 35	

Figure 3.25: Corrected for loop to switch between sensors using TCA9544A

The third line from Figure 3.21 does not change. This stops the transmission

from the present sensor in question; this is necessary to avoid conflict due to the

color sensors having the same address.

 The Python code has to be modified in order to accommodate the two

sensors. A second array has to be made. Additionally, the timestamps for the

received data need to be recorded in order to keep track of the time lag between

the two sensors. This time lag remains approximately 100ms between

transmissions of the two sensors (102ms-107ms as shown later in this section).

	 36	

Since it is necessary to find differences in the millisecond level, the epoch time is

taken in milliseconds. Figure 3.26 is the loop modified from Figure 3.13:

Figure 3.26: Loop to collect and store data from 2 color sensors

The round function is used to get the epoch time in milliseconds and the int

function makes it an integer value without decimal places. Epoch time here gives

the number of milliseconds since January 1, 1970. Figure 3.27 is the at rest

recording from an index finger while keeping the two sensors 3.85cm apart:

	 37	

Figure 3.27: Right index finger readings with full apparatus

The array data are then taken into MATLAB for post-processing in order to

determine blood flow velocity. Figure 3.28 is the equation used to find blood flow

velocity:

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
∆𝑥
∆𝑡

Figure 3.28: Velocity calculation to obtain blood flow velocity

In this application, ∆𝑥 is the distance between the sensors (3.85cm) and ∆𝑡 is the

time between events. The value for ∆𝑡 is found by subtracting the epoch time

from the event in question on one sensor from the epoch time from the event in

question from the other sensor. The delay between transmissions from the two

sensors, as mentioned previously, remains approximately 100ms. The actual

range is 102ms-107ms due to the 2.4ms integration time and additional time to

carry out the functions in the codes. This gives 107ms for the maximum error

	 38	

because the maximum time between sensor readings is 107ms, 321ms, 535ms...

and the actual value could be directly in between those points, or 107ms away

from the received value from the code. The reason why these are the possible

values is because the blood flows in a single direction, there is a range of 102ms-

107ms between sensor readings(between different sensors, let this be X), and

there is a range of 204ms-214ms between sensor readings of an individual

sensor (let this be Y). So, the following equation in Figure 3.29 can be used to

characterize possible time differences between sensor readings (for use in

calculation of velocity):

∆𝑡 = 𝑋 + 𝑛𝑌

Figure 3.29: Equation to characterize possible time difference between
pulse events

n=0,1,2,3... in this equation. It changes based on how fast the blood is moving.

Shown in Figure 3.30 is the method by which the value for ∆𝑡 is found:

	 39	

Figure 3.30: Example time difference between events

The peaks are identified and the difference between the peaks is found. As

mentioned previously, taking the difference between the epoch times of the data

points gives ∆𝑡. After that, the value for ∆𝑥 is divided by the ∆𝑡 value to get the

average velocity in that time. These individual values are averaged throughout

the sample to find an overall blood flow velocity for the entire sample. Shown in

Figure 3.31 is a sample calculation for velocity using the points from Figure 3.30:

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
∆𝑥
∆𝑡 =

3.85𝑐𝑚
0.741𝑠 = 5.20𝑐𝑚/𝑠

Figure 3.31: Sample blood flow velocity calculation

Five samples from the above graph are taken and used for analysis. Evidently

similar waveforms are taken and compared such as the example shown in Figure

3.30. They are taken throughout the graph as indicated by the indices. Table 3.3

shows the extracted data:

	 40	

Table 3.3: Blood flow velocity information for right index finger

The blood flow velocity values range from 5.20cm/s to 12.22cm/s. The one high

value of 12.22cm/s is an outlier and it may be due to the finger vibrating or being

pressed harder in the test. The average value is 7.44cm/s. Since the maximum

error associated with the time between sensor readings is 107ms, the actual

average velocity is between 6.17cm/s and 9.39cm/s:

𝑎𝑣𝑔 𝑡𝑖𝑚𝑒 =
3.85𝑐𝑚
7.44𝑐𝑚/𝑠 = 0.517𝑠

Figure 3.32: Average time for blood to travel 3.85cm on finger

	

𝑙𝑜𝑤𝑒𝑠𝑡 𝑎𝑣𝑔 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
3.85𝑐𝑚

0.517𝑠 + .107𝑠 = 6.17𝑐𝑚/𝑠

Figure 3.33: Lowest possible average velocity (using maximum error)

	

ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑎𝑣𝑔 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
3.85𝑐𝑚

0.517𝑠 − .107𝑠 = 9.39𝑐𝑚/𝑠

Figure 3.34: Highest possible average velocity (using maximum error)

 The overall range of values compares well to those from published data (4cm/s-

10cm/s and 4.9cm/s-19cm/s), thus further giving validity to the sensor and to the

calculation for blood flow velocity in the finger.

	 41	

3.4. Mean Squared Error

In order to find the most reliable time difference between events in the

data, the concept of mean squared error is employed. The graphs from Figure

3.27 are brought to be centered at zero by subtracting them by their respective

averages. The reason why they are off vertically is because there is a difference

in red wavelength based on how hard a person presses on each sensor. This

does not affect the data for the pulses, but the centering at zero had to be

performed to compare the data, as shown in Figure 3.35:

	

Figure 3.35: Graphs subtracted by their respective means

After this, one graph had to be translated by different time amounts in order to

make comparisons. A MATLAB function was generated to perform the following

calculation for mean squared error (see Figure 3.36):

𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =
1
𝑁 𝑋! 𝑖 − 𝑋! 𝑖 + ∆𝑡 !

!

!!!

Figure 3.36: Equation for mean squared error

	 42	

In this equation, N is the number of iterations in the data, i is an iteration, and X2

and X1 represent the pulses.

Table 3.4 contains the results for the different values of ∆𝑡:

Table 3.4: Mean squared error for different values of delta t

	

With this analysis, it is clear that 739ms is the most reasonable value for ∆𝑡 and

thus the most likely time separation among all of the values. This is because its

mean squared error is the least; the corresponding blood flow velocity value is

5.21cm/s. The value of 106ms corresponds to a blood flow velocity of 36.32

cm/s, which is too large to be reasonable as indicated by the aforementioned

published studies.

	 43	

Chapter 4: Conclusion and Future Work

4.1. Conclusion

The TCS34725 RGB color sensor functions for color characterization of

the skin. The initial readings to measure heart rate illustrated that the color

sensor was capable of keeping up with pulses and thus the movement of blood in

the finger. This test was successfully verified with the Azumio “Heart Rate”

mobile application. Next, the TCA9544A I2C multiplexer was implemented and

coded. There was a 102ms-107ms delay between alternating sensors, and this

introduced potential error into the system. The two sensors were still able to

collect enough data to see two clear waveforms, and the waveforms were

compared at peaks to obtain blood flow velocity. The velocity values were

analyzed and matched with ranges found from published data. The range found

for finger blood flow velocity in the experiments ranged from 5.20cm/s to

12.22cm/s. The average value was 7.44cm/s. With taking into maximum error of

107ms, the actual average blood flow velocity is between 6.17cm/s and 9.39cm/s

as mentioned previously. Utilization of mean squared error found that the most

likely time separation between pulse events from those available from the setup

is 739ms, which corresponds to a blood flow velocity of 5.21cm/s. The values

obtained for blood flow velocity are realistic because the range found from

published data was 4cm/s to 19cm/s. The apparatus can easily detect velocity

changes of 19.2%; this was the figure from the introduction for the decrease in

blood flow velocity from normal patients to that of those experiencing ischemic

stroke. The total cost for the components was $99.66, which is significantly

	 44	

cheaper than existing methods ($8500-$20000). Overall, the project investigated

a method to measure blood flow velocity in the finger in a far more economical

manner than current methods.

4.2. Future Work

There are certain future considerations for this project. First, it would be

beneficial to utilize a sensor that has less than 50ms of a read time or can have

its address changed. This would reduce the overall error in the system. If using

the same sensor, it would be useful to test the system without the additional

50ms delay used for fidelity. This can be done with a function generator with

LEDs. If successful, this 50ms delay can be removed and all of the data

collection can be redone with the overall time between transmissions reduced

from 102ms-107ms to 52ms-57ms. Next, it would be helpful to create an

algorithm to make the measurement process fully automated. It is already very

automated by collecting two waveforms for a given amount of time. The next step

is to automatically develop a matrix of velocity values and to average that value.

This can be performed if the graphs are smooth enough to have accurate peaks

and the difference in phase can be calculated very easily using the findpeaks

function in MATLAB. Next, it would be advantageous to make a full casing to

make the measurement process more comfortable and to make the readings

more uniform from test to test. Another future consideration would be to add

variables into the system and test differences. For example, heating and cooling

of the finger prior to the test could provide interesting results. After that, various

	 45	

other parts of the body could be tested such as the femoral and carotid arteries.

This project can move further and become a prototype in the future.

	 46	

REFERENCES

[1] Bulwer, Bernard E., and Jose M. Rivero. Echocardiography Pocket Guide:

The Transthoracic Examination. Sudbury, MA: Jones and Bartlett, 2011.

Print.

[2] "Atherosclerosis: Causes, Symptoms, Tests, and Treatment - WebMD."

WebMD. WebMD, 2005-2015. Web. 05 June 2015.

[3] "Problem: Heart Valve Regurgitation." Problem: Heart Valve Regurgitation.

N.p., 2015. Web. 05 June 2015.

[4] KlarhFer, M., B. Csapo, Cs. Balassy, J.c. Szeles, and E. Moser. "High-

resolution Blood Flow Velocity Measurements in the Human Finger."

Magn. Reson. Med. Magnetic Resonance in Medicine 45.4 (2001): 716-

19. Web.

[5] Rojanapongpun, Prin, and Stephen M. Drance. "The Response of Blood Flow

Velocity in the Ophthalmic Artery and Blood Flow of the Finger to Warm

and Cold Stimuli in Glaucomatous Patients." Graefe's Archive for Clinical

and Experimental Ophthalmology Graefe's Arch Clin Exp Ophthalmol

231.7 (1993): 375-77. Web.

[6] Raynaud's Phenomenon: A Guide to Pathogenesis and Treatment. New York:

Springer, 2015. Print.

[7] Bergersen, T. K., L. Eriksen M Fau - Walloe, and L. Walloe. "Effect of Local

Warming on Hand and Finger Artery Blood Velocities."0002-9513 (Print).

Print.

[8] "Palmar Digital Artery." Palmar Digital Artery Anatomy, Function & Diagram.

	 47	

N.p., n.d. Web. 05 June 2015.

[9] Practical Plastic Surgery (n.d.): n. pag. NERVE AND VASCULAR INJURIES

OF THE HAND. Web. 22 June 2015.

 [10] Bai, Chyi-Huey, et al. "Lower Blood Flow Velocity, Higher Resistance Index,

and Larger Diameter of Extracranial Carotid Arteries Are Associated with

Ischemic Stroke Independently of Carotid Atherosclerosis and

Cardiovascular Risk Factors." Journal of Clinical Ultrasound 35.6 (2007):

322-30. Print.

[11] Rådegran, G. "Ultrasound Doppler Estimates of Femoral Artery Blood Flow

during Dynamic Knee Extensor Exercise in Humans." (1997): n. pag. The

American Physiological Society. Web.

<http://www.harvardapparatusregen.com/media/harvard/pdf/PP54UL~1.P

DF>.

[12] Powell, Andrew J. "Evaluation of Blood Flow by Evaluation of Blood Flow by

Magnetic Resonance Imaging." Non-Invasive Cardiac Imaging

Seminars (n.d.): n. pag. Children's Hospital Boston, MA. Web. 22 June

2015.

[13] "Doppler Ultrasound." WebMD. WebMD, n.d. Web. 23 June 2015.

[14] What Is Ultrasound? Diason Ultrasound Center, n.d. Web. 23 June 2015.

[15] "Echocardiogram." HeartSite.com. N.p., n.d. Web. 22 June 2015.

[16] Hoskins, P. R. "Measurement of Arterial Blood Flow by Doppler

Ultrasound."0143-0815 (Print). Print.

[17] "Doppler Echocardiography Machine." Google. N.p., n.d. Web. 21 June

	 48	

2015.

[18] "MRI." Mayo Clinic, n.d. Web. 21 June 2015.

[19] "MRI Machine." Google. N.p., n.d. Web. 22 June 2015.

[20] 20, Taos135 − August. TCS3472 COLOR LIGHT-TO-DIGITAL

CONVERTER with IR FILTER. Plano, TX: Texas Advanced

Optoelectronic Solutions Inc., 2012. PDF.

[21] "RGB Color Sensor with IR Filter and White LED - TCS34725." Adafruit

Industries Blog RSS. N.p., n.d. Web. 05 June 2015.

<http://www.adafruit.com/products/1334?gclid=CNCSuqns6MUCFcEkgQo

dlVQACA>.

[22] "Using the I2C Bus." I2C Tutorial. N.p., n.d. Web. 05 June 2015.

<http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html>.

[23] 9DOF IMU Stick Connecting. Digital image. N.p., n.d. Web. 5 June 2015.

<http://1.bp.blogspot.com/-

xUCQu2NV8Fs/T3YUaMhhuyI/AAAAAAAABWE/YahHuVnHHA0/s1600/9

DOF+IMU+Stick+Connecting.png>.

[24] "Multiplexer Channel." SpringerReference (2011): n. pag. Texas

Instruments, May 2014. Web. 5 June 2015.

<http://www.ti.com/lit/ds/scps209a/scps209a.pdf>.

[25] Light_1334orange_LRG. Digital image. N.p., n.d. Web. 5 June 2015.

<https://learn.adafruit.com/system/assets/assets/000/008/659/original/light

_1334orange_LRG.jpg?1396869943>.

[26] "PySerial." PySerial — PySerial 2.7 Documentation. N.p., n.d. Web. 05 June

	 49	

2015. <http://pyserial.sourceforge.net/pyserial.html>.

[27] "Anaconda." Scientific Python Distribution. N.p., n.d. Web. 05 June 2015.

<https://store.continuum.io/cshop/anaconda/>.

[28] TCA9544A. Digital image. N.p., n.d. Web. 5 June 2015.

<http://www.ti.com/graphics/folders/partimages/TCA9544A.jpg>.

[29] "SMT Breakout PCB for SOIC-20 or TSSOP-20 - 3 Pack!" Adafruit Industries

Blog RSS. N.p., n.d. Web. 05 June 2015.

<https://www.adafruit.com/products/1206>.

[30] "Controlling Multiple I2C Devices with Arduino." Netopya Planet. N.p., n.d.

Web. 05 June 2015. <http://www.netopyaplanet.com/article.php?id=6>.

[31] "Arduino - Wire." Arduino - Wire. N.p., n.d. Web. 05 June 2015.

<http://www.arduino.cc/en/Reference/Wire>.

[32] TCA9548A Low-Voltage 8-Channel I 2C Switch With Reset (n.d.): n. pag.

Texas Instruments. Web. 10 June 2015.

	 50	

APPENDICES

“colorview.ino” – code used to operate one TCS34725 color sensor. Its
output includes red, green, blue, and clear values

 #include <Wire.h>
#include "Adafruit_TCS34725.h"

// Pick analog outputs, for the UNO these three work well
// use ~560 ohm resistor between Red & Blue, ~1K for green (its brighter)
#define redpin 3
#define greenpin 5
#define bluepin 6
// for a common anode LED, connect the common pin to +5V
// for common cathode, connect the common to ground

// set to false if using a common cathode LED
#define commonAnode true

// our RGB -> eye-recognized gamma color
byte gammatable[256];

Adafruit_TCS34725 tcs =
Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_50MS,
TCS34725_GAIN_4X);

void setup() {
 Serial.begin(9600);
 Serial.println("Color View Test!");

 if (tcs.begin()) {
 Serial.println("Found sensor");
 } else {
 Serial.println("No TCS34725 found ... check your connections");
 while (1); // halt!
 }

 // use these three pins to drive an LED
 pinMode(redpin, OUTPUT);
 pinMode(greenpin, OUTPUT);
 pinMode(bluepin, OUTPUT);

 // thanks PhilB for this gamma table!
 // it helps convert RGB colors to what humans see
 for (int i=0; i<256; i++) {

	 51	

 float x = i;
 x /= 255;
 x = pow(x, 2.5);
 x *= 255;

 if (commonAnode) {
 gammatable[i] = 255 - x;
 } else {
 gammatable[i] = x;
 }
 //Serial.println(gammatable[i]);
 }
}

void loop() {
 uint16_t clear, red, green, blue;

 tcs.setInterrupt(false); // turn on LED

 delay(60); // takes 50ms to read

 tcs.getRawData(&red, &green, &blue, &clear);

 tcs.setInterrupt(true); // turn off LED

 Serial.print("C:\t"); Serial.print(clear);
 Serial.print("\tR:\t"); Serial.print(red);
 Serial.print("\tG:\t"); Serial.print(green);
 Serial.print("\tB:\t"); Serial.print(blue);

 // Figure out some basic hex code for visualization
 uint32_t sum = clear;
 float r, g, b;
 r = red; r /= sum;
 g = green; g /= sum;
 b = blue; b /= sum;
 r *= 256; g *= 256; b *= 256;
 Serial.print("\t");
 Serial.print((int)r, HEX); Serial.print((int)g, HEX); Serial.print((int)b, HEX);
 Serial.println();

 //Serial.print((int)r); Serial.print(" "); Serial.print((int)g);Serial.print(" ");
Serial.println((int)b);

 analogWrite(redpin, gammatable[(int)r]);

	 52	

 analogWrite(greenpin, gammatable[(int)g]);
 analogWrite(bluepin, gammatable[(int)b]);
}

	 53	

“Adafruit_TCS34725.cpp” – Driver for TCS34725

/**/
/*!
 @file Adafruit_TCS34725.cpp
 @author KTOWN (Adafruit Industries)
 @license BSD (see license.txt)

 Driver for the TCS34725 digital color sensors.

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 @section HISTORY

 v1.0 - First release
*/
/**/
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdlib.h>
#include <math.h>

#include "Adafruit_TCS34725.h"

/*==
============*/
/* PRIVATE FUNCTIONS */
/*==
============*/

/**/
/*!
 @brief Implements missing powf function
*/
/**/
float powf(const float x, const float y)
{
 return (float)(pow((double)x, (double)y));
}

/**/
/*!
 @brief Writes a register and an 8 bit value over I2C
*/

	 54	

/**/
void Adafruit_TCS34725::write8 (uint8_t reg, uint32_t value)
{
 Wire.beginTransmission(TCS34725_ADDRESS);
 #if ARDUINO >= 100
 Wire.write(TCS34725_COMMAND_BIT | reg);
 Wire.write(value & 0xFF);
 #else
 Wire.send(TCS34725_COMMAND_BIT | reg);
 Wire.send(value & 0xFF);
 #endif
 Wire.endTransmission();
}

/**/
/*!
 @brief Reads an 8 bit value over I2C
*/
/**/
uint8_t Adafruit_TCS34725::read8(uint8_t reg)
{
 Wire.beginTransmission(TCS34725_ADDRESS);
 #if ARDUINO >= 100
 Wire.write(TCS34725_COMMAND_BIT | reg);
 #else
 Wire.send(TCS34725_COMMAND_BIT | reg);
 #endif
 Wire.endTransmission();

 Wire.requestFrom(TCS34725_ADDRESS, 1);
 #if ARDUINO >= 100
 return Wire.read();
 #else
 return Wire.receive();
 #endif
}

/**/
/*!
 @brief Reads a 16 bit values over I2C
*/
/**/
uint16_t Adafruit_TCS34725::read16(uint8_t reg)
{
 uint16_t x; uint16_t t;

	 55	

 Wire.beginTransmission(TCS34725_ADDRESS);
 #if ARDUINO >= 100
 Wire.write(TCS34725_COMMAND_BIT | reg);
 #else
 Wire.send(TCS34725_COMMAND_BIT | reg);
 #endif
 Wire.endTransmission();

 Wire.requestFrom(TCS34725_ADDRESS, 2);
 #if ARDUINO >= 100
 t = Wire.read();
 x = Wire.read();
 #else
 t = Wire.receive();
 x = Wire.receive();
 #endif
 x <<= 8;
 x |= t;
 return x;
}

/**/
/*!
 Enables the device
*/
/**/
void Adafruit_TCS34725::enable(void)
{
 write8(TCS34725_ENABLE, TCS34725_ENABLE_PON);
 delay(3);
 write8(TCS34725_ENABLE, TCS34725_ENABLE_PON |
TCS34725_ENABLE_AEN);
}

/**/
/*!
 Disables the device (putting it in lower power sleep mode)
*/
/**/
void Adafruit_TCS34725::disable(void)
{
 /* Turn the device off to save power */
 uint8_t reg = 0;
 reg = read8(TCS34725_ENABLE);
 write8(TCS34725_ENABLE, reg & ~(TCS34725_ENABLE_PON |
TCS34725_ENABLE_AEN));

	 56	

}

/*==
============*/
/* CONSTRUCTORS */
/*==
============*/

/**/
/*!
 Constructor
*/
/**/
Adafruit_TCS34725::Adafruit_TCS34725(tcs34725IntegrationTime_t it,
tcs34725Gain_t gain)
{
 _tcs34725Initialised = false;
 _tcs34725IntegrationTime = it;
 _tcs34725Gain = gain;
}

/*==
============*/
/* PUBLIC FUNCTIONS */
/*==
============*/

/**/
/*!
 Initializes I2C and configures the sensor (call this function before
 doing anything else)
*/
/**/
boolean Adafruit_TCS34725::begin(void)
{
 Wire.begin();

 /* Make sure we're actually connected */
 uint8_t x = read8(TCS34725_ID);
 Serial.println(x, HEX); //(COMMENT THIS LINE IN FULL MUX
IMPLEMENTATION
 if (x != 0x44)
 {
 return false;
 }
 _tcs34725Initialised = true;

	 57	

 /* Set default integration time and gain */
 setIntegrationTime(_tcs34725IntegrationTime);
 setGain(_tcs34725Gain);

 /* Note: by default, the device is in power down mode on bootup */
 enable();

 return true;
}

/**/
/*!
 Sets the integration time for the TC34725
*/
/**/
void Adafruit_TCS34725::setIntegrationTime(tcs34725IntegrationTime_t it)
{
 if (!_tcs34725Initialised) begin();

 /* Update the timing register */
 write8(TCS34725_ATIME, it);

 /* Update value placeholders */
 _tcs34725IntegrationTime = it;
}

/**/
/*!
 Adjusts the gain on the TCS34725 (adjusts the sensitivity to light)
*/
/**/
void Adafruit_TCS34725::setGain(tcs34725Gain_t gain)
{
 if (!_tcs34725Initialised) begin();

 /* Update the timing register */
 write8(TCS34725_CONTROL, gain);

 /* Update value placeholders */
 _tcs34725Gain = gain;
}

/**/
/*!
 @brief Reads the raw red, green, blue and clear channel values

	 58	

*/
/**/
void Adafruit_TCS34725::getRawData (uint16_t *r, uint16_t *g, uint16_t *b,
uint16_t *c)
{
 if (!_tcs34725Initialised) begin();

 *c = read16(TCS34725_CDATAL);
 *r = read16(TCS34725_RDATAL);
 *g = read16(TCS34725_GDATAL);
 *b = read16(TCS34725_BDATAL);

 /* Set a delay for the integration time */
 switch (_tcs34725IntegrationTime)
 {
 case TCS34725_INTEGRATIONTIME_2_4MS:
 delay(3);
 break;
 case TCS34725_INTEGRATIONTIME_24MS:
 delay(24);
 break;
 case TCS34725_INTEGRATIONTIME_50MS:
 delay(50);
 break;
 case TCS34725_INTEGRATIONTIME_101MS:
 delay(101);
 break;
 case TCS34725_INTEGRATIONTIME_154MS:
 delay(154);
 break;
 case TCS34725_INTEGRATIONTIME_700MS:
 delay(700);
 break;
 }
}

/**/
/*!
 @brief Converts the raw R/G/B values to color temperature in degrees
 Kelvin
*/
/**/
uint16_t Adafruit_TCS34725::calculateColorTemperature(uint16_t r, uint16_t g,
uint16_t b)
{
 float X, Y, Z; /* RGB to XYZ correlation */

	 59	

 float xc, yc; /* Chromaticity co-ordinates */
 float n; /* McCamy's formula */
 float cct;

 /* 1. Map RGB values to their XYZ counterparts. */
 /* Based on 6500K fluorescent, 3000K fluorescent */
 /* and 60W incandescent values for a wide range. */
 /* Note: Y = Illuminance or lux */
 X = (-0.14282F * r) + (1.54924F * g) + (-0.95641F * b);
 Y = (-0.32466F * r) + (1.57837F * g) + (-0.73191F * b);
 Z = (-0.68202F * r) + (0.77073F * g) + (0.56332F * b);

 /* 2. Calculate the chromaticity co-ordinates */
 xc = (X) / (X + Y + Z);
 yc = (Y) / (X + Y + Z);

 /* 3. Use McCamy's formula to determine the CCT */
 n = (xc - 0.3320F) / (0.1858F - yc);

 /* Calculate the final CCT */
 cct = (449.0F * powf(n, 3)) + (3525.0F * powf(n, 2)) + (6823.3F * n) + 5520.33F;

 /* Return the results in degrees Kelvin */
 return (uint16_t)cct;
}

/**/
/*!
 @brief Converts the raw R/G/B values to color temperature in degrees
 Kelvin
*/
/**/
uint16_t Adafruit_TCS34725::calculateLux(uint16_t r, uint16_t g, uint16_t b)
{
 float illuminance;

 /* This only uses RGB ... how can we integrate clear or calculate lux */
 /* based exclusively on clear since this might be more reliable? */
 illuminance = (-0.32466F * r) + (1.57837F * g) + (-0.73191F * b);

 return (uint16_t)illuminance;
}

void Adafruit_TCS34725::setInterrupt(boolean i) {
 uint8_t r = read8(TCS34725_ENABLE);

	 60	

 if (i) {
 r |= TCS34725_ENABLE_AIEN;
 } else {
 r &= ~TCS34725_ENABLE_AIEN;
 }
 write8(TCS34725_ENABLE, r);
}

void Adafruit_TCS34725::clearInterrupt(void) {
 Wire.beginTransmission(TCS34725_ADDRESS);
 #if ARDUINO >= 100
 Wire.write(0x66);
 #else
 Wire.send(0x66);
 #endif
 Wire.endTransmission();
}

void Adafruit_TCS34725::setIntLimits(uint16_t low, uint16_t high) {
 write8(0x04, low & 0xFF);
 write8(0x05, low >> 8);
 write8(0x06, high & 0xFF);
 write8(0x07, high >> 8);
}

	 61	

“Adafruit_TCS34725.h” – Header file for TCS34725

/**/
/*!
 @file Adafruit_TCS34725.h
 @author KTOWN (Adafruit Industries)

 @section LICENSE

 Software License Agreement (BSD License)

 Copyright (c) 2013, Adafruit Industries
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 3. Neither the name of the copyright holders nor the
 names of its contributors may be used to endorse or promote products
 derived from this software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS''
AND ANY
 EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE
FOR ANY
 DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS
 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**/

	 62	

#ifndef _TCS34725_H_
#define _TCS34725_H_

#if ARDUINO >= 100
 #include <Arduino.h>
#else
 #include <WProgram.h>
#endif

#include <Wire.h>

#define TCS34725_ADDRESS (0x29)

#define TCS34725_COMMAND_BIT (0x80)

#define TCS34725_ENABLE (0x00)
#define TCS34725_ENABLE_AIEN (0x10) /* RGBC Interrupt Enable */
#define TCS34725_ENABLE_WEN (0x08) /* Wait enable - Writing 1
activates the wait timer */
#define TCS34725_ENABLE_AEN (0x02) /* RGBC Enable - Writing 1
actives the ADC, 0 disables it */
#define TCS34725_ENABLE_PON (0x01) /* Power on - Writing 1 activates
the internal oscillator, 0 disables it */
#define TCS34725_ATIME (0x01) /* Integration time */
#define TCS34725_WTIME (0x03) /* Wait time (if
TCS34725_ENABLE_WEN is asserted) */
#define TCS34725_WTIME_2_4MS (0xFF) /* WLONG0 = 2.4ms WLONG1
= 0.029s */
#define TCS34725_WTIME_204MS (0xAB) /* WLONG0 = 204ms
WLONG1 = 2.45s */
#define TCS34725_WTIME_614MS (0x00) /* WLONG0 = 614ms
WLONG1 = 7.4s */
#define TCS34725_AILTL (0x04) /* Clear channel lower interrupt
threshold */
#define TCS34725_AILTH (0x05)
#define TCS34725_AIHTL (0x06) /* Clear channel upper interrupt
threshold */
#define TCS34725_AIHTH (0x07)
#define TCS34725_PERS (0x0C) /* Persistence register - basic SW
filtering mechanism for interrupts */
#define TCS34725_PERS_NONE (0b0000) /* Every RGBC cycle generates
an interrupt */
#define TCS34725_PERS_1_CYCLE (0b0001) /* 1 clean channel value
outside threshold range generates an interrupt */
#define TCS34725_PERS_2_CYCLE (0b0010) /* 2 clean channel values
outside threshold range generates an interrupt */

	 63	

#define TCS34725_PERS_3_CYCLE (0b0011) /* 3 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_5_CYCLE (0b0100) /* 5 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_10_CYCLE (0b0101) /* 10 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_15_CYCLE (0b0110) /* 15 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_20_CYCLE (0b0111) /* 20 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_25_CYCLE (0b1000) /* 25 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_30_CYCLE (0b1001) /* 30 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_35_CYCLE (0b1010) /* 35 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_40_CYCLE (0b1011) /* 40 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_45_CYCLE (0b1100) /* 45 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_50_CYCLE (0b1101) /* 50 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_55_CYCLE (0b1110) /* 55 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_PERS_60_CYCLE (0b1111) /* 60 clean channel values
outside threshold range generates an interrupt */
#define TCS34725_CONFIG (0x0D)
#define TCS34725_CONFIG_WLONG (0x02) /* Choose between short and
long (12x) wait times via TCS34725_WTIME */
#define TCS34725_CONTROL (0x0F) /* Set the gain level for the sensor
*/
#define TCS34725_ID (0x12) /* 0x44 = TCS34721/TCS34725, 0x4D =
TCS34723/TCS34727 */
#define TCS34725_STATUS (0x13)
#define TCS34725_STATUS_AINT (0x10) /* RGBC Clean channel interrupt
*/
#define TCS34725_STATUS_AVALID (0x01) /* Indicates that the RGBC
channels have completed an integration cycle */
#define TCS34725_CDATAL (0x14) /* Clear channel data */
#define TCS34725_CDATAH (0x15)
#define TCS34725_RDATAL (0x16) /* Red channel data */
#define TCS34725_RDATAH (0x17)
#define TCS34725_GDATAL (0x18) /* Green channel data */
#define TCS34725_GDATAH (0x19)
#define TCS34725_BDATAL (0x1A) /* Blue channel data */
#define TCS34725_BDATAH (0x1B)

	 64	

typedef enum
{
 TCS34725_INTEGRATIONTIME_2_4MS = 0xFF, /**< 2.4ms - 1 cycle -
Max Count: 1024 */
 TCS34725_INTEGRATIONTIME_24MS = 0xF6, /**< 24ms - 10 cycles -
Max Count: 10240 */
 TCS34725_INTEGRATIONTIME_50MS = 0xEB, /**< 50ms - 20 cycles -
Max Count: 20480 */
 TCS34725_INTEGRATIONTIME_101MS = 0xD5, /**< 101ms - 42 cycles -
Max Count: 43008 */
 TCS34725_INTEGRATIONTIME_154MS = 0xC0, /**< 154ms - 64 cycles -
Max Count: 65535 */
 TCS34725_INTEGRATIONTIME_700MS = 0x00 /**< 700ms - 256 cycles -
Max Count: 65535 */
}
tcs34725IntegrationTime_t;

typedef enum
{
 TCS34725_GAIN_1X = 0x00, /**< No gain */
 TCS34725_GAIN_4X = 0x01, /**< 2x gain */
 TCS34725_GAIN_16X = 0x02, /**< 16x gain */
 TCS34725_GAIN_60X = 0x03 /**< 60x gain */
}
tcs34725Gain_t;

class Adafruit_TCS34725 {
 public:
 Adafruit_TCS34725(tcs34725IntegrationTime_t =
TCS34725_INTEGRATIONTIME_2_4MS, tcs34725Gain_t =
TCS34725_GAIN_1X);

 boolean begin(void);
 void setIntegrationTime(tcs34725IntegrationTime_t it);
 void setGain(tcs34725Gain_t gain);
 void getRawData(uint16_t *r, uint16_t *g, uint16_t *b, uint16_t *c);
 uint16_t calculateColorTemperature(uint16_t r, uint16_t g, uint16_t b);
 uint16_t calculateLux(uint16_t r, uint16_t g, uint16_t b);
 void write8 (uint8_t reg, uint32_t value);
 uint8_t read8 (uint8_t reg);
 uint16_t read16 (uint8_t reg);
 void setInterrupt(boolean flag);
 void clearInterrupt(void);
 void setIntLimits(uint16_t l, uint16_t h);
 void enable(void);

	 65	

 private:
 boolean _tcs34725Initialised;
 tcs34725Gain_t _tcs34725Gain;
 tcs34725IntegrationTime_t _tcs34725IntegrationTime;

 void disable(void);
};

#endif

	 66	

“colorview.ino” – This is the updated version; it outputs just red RGB
value multiplied by 100

#include <Wire.h>
#include "Adafruit_TCS34725.h"

// Pick analog outputs, for the UNO these three work well
// use ~560 ohm resistor between Red & Blue, ~1K for green (its brighter)
#define redpin 3
#define greenpin 5
#define bluepin 6
// for a common anode LED, connect the common pin to +5V
// for common cathode, connect the common to ground

// set to false if using a common cathode LED
#define commonAnode true

// our RGB -> eye-recognized gamma color
byte gammatable[256];

Adafruit_TCS34725 tcs =
Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_50MS,
TCS34725_GAIN_4X);

void setup() {
 Serial.begin(9600);
 //Serial.println("Color View Test!");

 if (tcs.begin()) {
 //Serial.println("Found sensor");
 } else {
 Serial.println("No TCS34725 found ... check your connections");
 while (1); // halt!
 }

 // use these three pins to drive an LED
 pinMode(redpin, OUTPUT);
 pinMode(greenpin, OUTPUT);
 pinMode(bluepin, OUTPUT);

 // thanks PhilB for this gamma table!
 // it helps convert RGB colors to what humans see
 for (int i=0; i<256; i++) {
 float x = i;
 x /= 255;

	 67	

 x = pow(x, 2.5);
 x *= 255;

 if (commonAnode) {
 gammatable[i] = 255 - x;
 } else {
 gammatable[i] = x;
 }
 //Serial.println(gammatable[i]);
 }
}

void loop() {
 uint16_t clear, red, green, blue;

 tcs.setInterrupt(false); // turn on LED

 delay(60); // takes 50ms to read

 tcs.getRawData(&red, &green, &blue, &clear);

 tcs.setInterrupt(true); // turn off LED

 //Serial.print("C:\t"); Serial.print(clear);
 // Serial.print("\tR:\t");

 //ADI GENERATED
 double redflt=red;
 double clearflt=clear;
 double redreal=redflt/clearflt*25500;
 Serial.print(redreal);
 //Serial.print(red);
 //Serial.println();
 //Serial.print(clear);

 // Serial.print("\tG:\t"); Serial.print(green);
 // Serial.print("\tB:\t"); Serial.print(blue);

 // Figure out some basic hex code for visualization
 uint32_t sum = clear;
 float r, g, b;
 r = red; r /= sum;
 g = green; g /= sum;
 b = blue; b /= sum;
 r *= 256; g *= 256; b *= 256;

	 68	

 //Serial.print("\t");
 //Serial.print((int)r, HEX); Serial.print((int)g, HEX); Serial.print((int)b, HEX);

 //PRINTS A NEW LINE AT END
 Serial.println();

 //Serial.print((int)r); Serial.print(" "); Serial.print((int)g);Serial.print(" ");
Serial.println((int)b);

 analogWrite(redpin, gammatable[(int)r]);
 analogWrite(greenpin, gammatable[(int)g]);
 analogWrite(bluepin, gammatable[(int)b]);
}

	 69	

Python code for one TCS34725 color sensor

-*- coding: utf-8 -*-
"""
Created on Mon Apr 13 16:45:26 2015

@author: adityasanghani
"""

import serial
import matplotlib.pyplot as plt
ser = serial.Serial('/dev/tty.usbmodem1411', 9600)
i=1
redarray=range(100)

while i<101:

a=ser.readline()
print a
b=float(a)
print b

redarray[i-1]=b/100

i=i+1

print redarray
plt.plot(redarray)
plt.ylim(110,180)

	 70	

“colorviewgoodtca9544a.ino” – Code for full multiplexer implementation

#include <Wire.h>
#include "Adafruit_TCS34725.h"

//initialize color sensors objects
Adafruit_TCS34725 tcs[2] =
Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_50MS,
TCS34725_GAIN_4X);

void setup() {

 byte ok = 1;

 Serial.begin(9600);
 Wire.begin();
 delay(10);

 //initialize all the sensors
 for(int i = 0; i<2;i++)
 {
 //switch i2c multiplexor
 Wire.beginTransmission(0x70);
 Wire.write(i+4);
 Wire.endTransmission();

 delay(100);

 //attempt to connect the sensor
 if (tcs[i].begin())
 {
 //Sensor is connected!
 } else {
 //something went wrong
 Serial.println("No TCS34725 found at " + (String)i + " ... check your
connections");
 ok = 0;
 }

 }

 if(!ok)
 { //sensor not connected, halt the program
 Serial.println("Halting!");
 while (1); // halt!
 }

	 71	

}

void loop() {
 //loop through the color sensors
 for(int i = 0; i<2;i++)
 {
 //Set the i2c switch to the desired output
 Wire.beginTransmission(0x70);
 Wire.write(i+4);
 Wire.endTransmission();
 //wait for the switch to switch
 delay(1);
 uint16_t clear, red, green, blue;
 tcs[i].setInterrupt(false); // turn on LED
 delay(50); // takes 50ms to read

 tcs[i].getRawData(&red, &green, &blue, &clear);

 tcs[i].setInterrupt(true); // turn off LED

 double redflt=red;
 double clearflt=clear;
 double redreal=(redflt/clearflt)*25500;
 Serial.print(redreal);
 //

 if(i != 1)
 {
 //Serial.print(";");
 Serial.print("\n");
 }
 else
 {
 Serial.print("\n");
 }
 }
}

	 72	

Python code for full multiplexer implementation

-*- coding: utf-8 -*-
"""
Created on Mon Apr 13 16:45:26 2015

@author: adityasanghani
"""

import serial
import matplotlib.pyplot as plt

import time
ser = serial.Serial('/dev/tty.usbmodem1411', 9600)
i=1
redarray=range(50)
redarray2=range(50)

itertime=range(50)
itertime2=range(50)

while i<101:

a=ser.readline()
print a
b=float(a)
print b

if i%2==1:
redarray[(i-1)/2]=b/100
itertime[(i-1)/2]=int(round(time.time() * 1000))
if i%2==0:
redarray2[i/2-1]=b/100
itertime2[i/2-1]=int(round(time.time() * 1000))

i=i+1

print redarray
print redarray2
print itertime
print itertime2

plt.plot(redarray)
plt.plot(redarray2)
plt.ylim(115,185)

