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ABSTRACT

REST API to Access and Manage Geospatial Pipeline Integrity Data

Alexandra Francis

Today’s economy and infrastructure is dependent on raw natural resources,

like crude oil and natural gases, that are optimally transported through a net-

work of hundreds of thousands of miles of pipelines throughout America[28].

A damaged pipe can negatively affect thousands of homes and businesses so

it is vital that they are monitored and quickly repaired[1]. Ideally, pipeline

operators are able to detect damages before they occur, but ensuring the in-

tegrity of the vast amount of pipes is unrealistic and would take an impractical

amount of time and manpower[1].

Natural disasters, like earthquakes, as well as construction are just two

of the events that could potentially threaten the integrity of pipelines. Due

to the diverse collection of data sources, the necessary geospatial data is scat-

tered across different physical locations, stored in different formats, and owned

by different organizations. Pipeline companies do not have the resources to

manually gather all input factors to make a meaningful analysis of the land

surrounding a pipe.

Our solution to this problem involves creating a single, centralized system

that can be queried to get all necessary geospatial data and related informa-

tion in a standardized and desirable format. The service simplifies client-side

computation time by allowing our system to find, ingest, parse, and store the

data from potentially hundreds of repositories in varying formats. An online

web service fulfills all of the requirements and allows for easy remote access

to do critical analysis of the data through computer based decision support

systems (DSS).

Our system, REST API for Pipeline Integrity Data (RAPID), is a multi-

tenant REST API that utilizes HTTP protocol to provide a online and intuitive

set of functions for DSS. RAPID’s API allows DSS to access and manage data

stored in a geospatial database with a supported Django web framework. Full

documentation of the design and implementation of RAPID’s API are detailed
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in this thesis document, supplemented with some background and validation

of the completed system.
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Chapter 1

Introduction

Natural resources, like crude oil and natural gases, are the raw material for

energy that the world consumes. Transporting these resources from where they

are found to where they are processed or refined, and then again to where they

are eventually consumed should be done as safely, efficiently, and economically

as possible. There are many methods used to transport resources, but pipelines

remain the optimal way. America depends on a network of more than 185,000

miles of liquid petroleum pipelines, nearly 320,000 miles of gas transmission

pipelines, and more than 2 million miles of gas distribution pipelines to move

energy and raw materials to fuel our nation’s economic engine[31].

All homes and businesses receive their power through liquid petroleum

and natural gas pipelines that run above and below the ground. The pipelines

sometimes get damaged and need to be repaired so that homes and businesses

aren’t left without power for long. In ideal situations, pipeline operators are

able to detect potential damage before it occurs. Damaged pipes that go

unnoticed have caused power losses and natural gas leaks, negatively affecting

thousands of people and homes[2]; but, monitoring hundreds of thousands of

miles of pipelines on a continent is difficult. Natural disasters like earthquakes,

as well as climate change, can have effects on these pipelines. Detecting such

events and then inspecting all potentially affected pipelines would take an

impractical amount of time and manpower[2].
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Aside from natural disasters, another significant challenge with pipeline

integrity is pipeline encroachment. An encroachment is a building or structure

that is not compatible with right-of-ways. A right-of-way is the strip of land

that house a pipeline. Detecting encroachment is another task that is difficult

to do at a large scale without satellite imagery and computing power[9].

When pipeline operation companies, like Pacific Gas and Electric Company

and others, are looking to expand their pipeline network, they need to find the

best pieces of land, or right-of-ways, to install them. The companies need

to take into account various characteristics of the land including soil type,

precipitation, seismic activity, buildings, structures, tree growth, temperature,

and many more natural factors. In order to gather all of this information and

analyze its importance, satellite imagery and ground movement sensors, as

well as other weather and land data, have proven useful.

1.1 Problem Definition

Pipeline integrity depends on a very diverse collection of data sources. Each

of these might be found in different physical locations, stored in different data

formats, and owned by different organizations. In order to make a meaningful

analysis of the quality for a plot of land to be used as a right-of-way, companies

have to search through many databases and figure out what format they have

to ingest. This is too time consuming and therefore restricts the number of

input factors they can analyze.

1.2 Our Contribution

The solution to this problem involves creating a single, centralized inter-

face that the pipeline operators can query to get all the information they need.

Thus, a standardized service is needed to request specific data as well as input

data from various sources. This service would simplify client-side computa-

tion time by allowing our system to find, ingest, parse, and store data from
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potentially hundreds of repositories in varying formats.

The service needs to be efficient, consistent, maintainable, and reliable.

With so many hundreds of thousands of miles of right-of-ways on top of all of

the layers of geospatial data, the data model needs to be scalable. If the system

fails, it could mean a loss of power for thousands of people or a potentially

hazardous spillage of a non-renewable resource. For this reason, this system

needs to be dependable and robust.

To fulfill all of these requirements and meet the needs of pipeline operators,

the system is online. A web service for easy remote access is critical so that

computer-based discision support systems (DSS) can then analyze the data

and allocate resources to remedy any potential hazards.

1.2.1 REST API

REST, or REpresentational State Transfer, is a simple, stateless architec-

ture that usually runs over HTTP. A RESTful API (Application Programming

Interface, a digital library of functions) relies on a client-server, cacheable com-

munications protocol[15]. Providing a well designed and intuitive REST API

is one of the key pieces of addressing the problem of maintaining consistently

functioning pipelines. Because REST is a web service, this API is the connec-

tion between the user-facing interface and the database where all of the data

is stored.

By utilizing the REST API, pipeline operators can query for specific geospa-

tial data layers for any given region. This system is called REST API for

Pipeline Integrity Data, or RAPID. A sample query that an operator might

request would be for “a 20 mile by 40 mile square of San Luis Obispo County,

return all new seismic data since last Monday at midnight as a JSON1 object.”

The original data may have been GeoJSON2, Shapefiles3, or another format

1JSON: JavaScript Object Notation
2GeoJSON is a format for encoding a variety of geographic data structures. A GeoJSON

object may represent a geometry, a feature, or a collection of features[6].
3A Shapefile is a digital vector (non-topological) storage format for storing geometric

location and associated attribute information[32].
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entirely–but RAPID will have previously ingested and parsed the original file

to store into the database. Finally, RAPID retrieves the data and rebuilds the

standardized JSON that the user has requested.

This thesis aims to provide an optimal and complete REST API design

and implementation documentation. A detailed description of the full imple-

mentation of RAPID’s API can be found in Chapter 4.

1.2.2 Data Model

In order to create a system that aggregates varying types and formats of

data, we created our own geospatial data model to store the core vital data

that has been stripped from original files. Although there are a large number

of formats in which geospatial data might be stored, the data content all boils

down to the same core information: a location and some metadata.

The location is stored as a list of latitude and longitude pairs that represent

the polygon for the region, or it could just be a single point. For example,

bounding box is used for precipitation in a region, whereas a single point is

used to represent the location of an earthquake’s epicenter.

The metadata can be stored as a dictionary or key-value store of unique

properties that contain relevant information to the feature. Using seismic data

from an earthquake again as our example, the properties contain information

about the magnitude of the earthquake and potentially aftershock times with

their corresponding magnitudes.

To define the relevant information about a geospatial feature, we use the

term “geometry” to define a region’s location (the list of longitude and lati-

tude coordinates from above) and “properties”. Currently, the geometry and

properties pertaining to a feature can be formatted in many different ways de-

pending on the database or location that they are stored. RAPID is designed

to accept and remain functional with two different existing popular geospatial

data formats: GeoJSON and Shapefiles4.

4Shapefiles will be defined in greater detail later. They are .shp files that are commonly
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To do this data ingestion most efficiently, RAPID is built upon a Post-

greSQL database with the PostGIS extension that provides built-in flexibility

for any sized or shaped geometry (polygon representation of a region) with a

list of any client system defined properties (the metadata). At a high level,

PostGIS adds support for geographic objects and offers location SQL queries.

It stores the locations as vectors and rasters connected to some metadata. Be-

cause the RAPID project is a joint work with Austin Wylie, a more in-depth

description of the data model design and implementation choices can be found

in Wylie’s M.S. Thesis[42]. We have included some details regarding the nec-

essary information regarding the database details in this thesis document in

order to maintain a cohesive narrative.

This thesis concentrates on the online intermediate layer between the cus-

tomer’s software system and how the data is stored, as the REST API. This

multi-tenant service layer is built in the form of a lightweight server that gives

access to all of the secure request services. The document is organized as fol-

lows. Chapter 2 provides a background of APIs and a progression of how API

design, creation, and implementation has developed over their short lifetime.

Chapter 3 describes the design of RAPID’s RESTful API, providing motiva-

tion and support for the choices that were implemented which is detailed in

Chapter 4. Chapter 5 gives validation and verification of the quality of the

completed API through a third party system that uses RAPID successfully.

used in ArcGIS for geospatial data[32].
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Chapter 2

Background and Related Work

Most software applications and projects need to reuse components that

have been previously implemented and they are able to do this through APIs

that expose these components. Large and complex APIs are becoming an

integral part of most current software development technologies[34]. Under-

standing where technologies come from and how they developed is critical in

order to better understand where they are now and where the could potentially

go in the future.

After discussing previous successful and unsuccessful API’s in recent past,

this chapter will cover proper API design and briefly cover a standard that

RAPID is required to comply with before commercial use.

2.1 Early API Development

In order to understand how to best design an API for a large software

system, it will be useful to discuss the history and origins of APIs. Martin

Bartlett accurately states:

“The principle of a well documented set of publicly addressable
‘entry points’ that allow an application to interact with another
system has been an essential part of software development since the
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earliest days of utility data processing. However, the advent of dis-
tributed systems, and then the web itself, has seen the importance
and utility of these same basic concepts increase dramatically”[23].

The first “dot-com” boom introduced a need for innovative ways to syn-

dicate products across e-commerce web sites from various platforms. A new

layer on top of existing HTTP infrastructure, such as a web API, proved to be

the right tool. A few innovative tech engineers began defining and creating the

first APIs for sales and commerce management. This early API development

was just the beginning of a decade long evolution that we can now call the

early history of web APIs[23].

There have been a large number of companies and other organizations that

have created APIs and libraries for developers over the past 15 years. One of

the first most popular APIs introduced was Salesforce, but numerous other

companies like Twitter, Amazon, Google, FourSquare, Flickr, and Instagram

have announced APIs for their organizations since then. The first few big ones

are detailed in the following sections.

2.1.1 Salesforce

On February 7th, 2000, SalesForce officially launched its enterprise-class,

web-based, sales force automation as an “Internet as a service” which used

an XML API at its core. As a Software-as-a-Service (SaaS) company, they

identified that customers needed to share data across their different business

applications, and APIs were the way to do this. Salesforce was the first cloud

provider to take an enterprise class web application and API. Today, they are

still a leading power in creating, testing, and deploying real-time APIs[23].

2.1.2 eBay

On November 20, 2000, eBay launched the eBay Application Program

Interface, along with the eBay Developers Program. Their API aimed to

standardize the way in which various applications built and improved upon the
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existing eBay application. Prior to the release of the eBay API, there were a

number of applications that relied on eBay either legitimately or illegitimately;

so, the goal of this API was to make it easier for partners and developers to

build a business around the eBay ecosystem in a secure and efficient way[23].

2.1.3 Facebook

On August 15th, 2006, Facebook launched its long-awaited development

platform and API. The API used REST with XML responses. Almost imme-

diately, developers began to build social applications, games, and other tools

with the new development library[23].

2.1.4 GoogleMaps API

On June 29th, 2006, Google launched Google Maps API allowing devel-

opers to put Google Maps on their own sites using JavaScript. When Google

Maps was released six months earlier, it was immediately so popular that

developers hacked the JavaScript interface and developed applications that

hacked Google Maps and there were even some ‘How-To’ books written specif-

ically for this application. For this reason, Google Maps was forced to release

an API so that developers could utilize their local map services without the

need to hack[23].

2.2 Modern APIs

Although the “history” discussed in the previous section only covers the

span of about fifteen years, things are changing so quickly in the world of

software that it makes sense to call this the “early history” of APIs. The

motivation for modern APIs is largely the same and API implementation has

also stayed pretty consistent. Developers were able to learn from a few poor

APIs so as not to mimic their mistakes[23]. One example that is now infamous
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is Flickr’s first API that was released in 2004[23].

Today, external pressure to produce an API has been a major force behind

many of today’s API developments. Another large driving force for continuous

API development is public demanding information from its government[7].

APIs provide an interface for previously implemented functionality that other

developers have access to in order to perform various tasks. Robillard defines

them to be a tool for “support code reuse, provide high-level abstractions that

facilitate programming tasks, and help unify the programming experience”[34].

As mentioned earlier, one of the purposes of APIs is to allow for easier

development by outside parties. However, some of the APIs for large organi-

zations and code bases have gotten very complex and difficult to understand.

They would be useless if the difficulty of using APIs nullified the productivity

gains they offer[34]. Proper API design is key to allow for efficient use and

implementation of integrated code.

2.3 API Design

An API that is difficult to understand and use leads to decreased pro-

grammer productivity which contradicts the purpose of APIs to begin with

– to increase efficiency. In February and March of 2009, Martin P. Robil-

lard did a survey of software developers to find out what obstacles were faced

when learning to use APIs in order to better understand the best design prac-

tices when creating the API. Out of the thousands that the survey was dis-

tributed to, he received 83 responses that provided a representative sample of

the population[34]. The study revealed three key points:

1. Information about the high-level design of the API is necessary to help

developers:

• choose among alternative ways to use the API,

• structure their code accordingly, and

• use the API as efficiently as possible.
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2. Code examples can become more of a hindrance than a benefit when

there’s a mismatch between the tacit purpose of the example and the

goal of the example user.

3. Some design decisions can influence the behavior of the API in subtle

ways that confuse developers.

Robert DeLine performed a very similar study of 440 software engineering

professionals involving a combination of surveys and in-person interviews. This

study revealed that “the most severe obstacles faced by developers learning

new APIs pertained to the documentation and other learning resources”[12].

Due to the fact that the majority of the results from the survey showed an issue

with documentation, the analysis of this study provides five crucial factors to

consider when documenting the API:

1. Documentation of intent

2. Code examples

3. Matching APIs with scenarios

4. Penetrability of the API

5. Format and presentation

In order to reach optimal API design, these factors can be interpreted to

prioritize API documentation development efforts. In general, both studies

came to the same basic conclusion: documentation can make or break an API.

The actual design and implementation of the API is important but what is

lacking in most modern APIs is explanations of how it should be used and

when it should be used in specific ways. The perfect API design is nothing

without complete documentation.
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2.4 OGC Compliance Standard

The Open Geospatial Consortium (OGC) is an organization that aims to

provide international standards for geospatial and mainstream location-based

web services in a accessible and useful manner. It is an industry consortium

currently made up of 511 companies, government agencies and universities

that are working to develop publicly available interface standards[40]. The

OGC Compliance Standard is a set of technical documents that provides an

interface and set of encoding standards for geospatial data management and

web services[40]. This interface specifies a set of possible operations and queries

to access geospatial data independent of how the data is stored underneath.

The operations that RAPID uses, discovery operations and query operations,

are only a subset of the whole standard. The OGC standard states:

“Discovery operations allow the service to be interrogated to de-
termine its capabilities and to retrieve the application schema that
defines the feature types that the service offers. Query operations
allow features or values of feature properties to be retrieved from
the underlying data store based upon constraints, defined by the
client, on feature properties[40].”

There are other operations that are not in the scope of RAPID: locking op-

erations, transaction operations and operations to manage stored parametrized

query expressions. However, for a system to fit the official standard, it has to

comply with only one of the “conformance classes.” A Web Feature Service

(WFS) is a modification in the way geographic information is created, modi-

fied and exchanged on the Internet. WFS offers direct fine-grained access to

geographic information at the feature level and feature property level as op-

posed to File Transfer Protocol (FTP), which shares geographic information

at the file level. A WFS allows clients to “only retrieve or modify the data

they are seeking, rather than retrieving a file that contains the data they are

seeking and possibly much more”[40].
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2.4.1 Conformance Classes

The International Standard provides a list of the possible classes along

with the behavior or operations that need to be satisfied in order to meet

the requirements of that class. The possible classes are Simple WFS, Basic

WFS, Transactional WFS, Locking WFS, HTTP GET, HTTP POST, SOAP1,

Inheritance, Remote resolve, Response paging, Standard joins, Spatial joins,

Temporal joins, Feature versions, and Manage stored queries[40].

At a minimum, all implementations must provide Simple WFS class. All

other classes are optional (and build off of Simple WFS). The operations re-

quired for Simple WFS are GetCapabilities, DescribeFeatureType, ListStoredQueries,

DescribeStoredQueries, and GetFeature operation with only the StoredQuery

action. The international standard also states:

One stored query that fetches a feature using its ID shall be avail-
able but the server, may also offer additional stored queries. Ad-
ditionally, the server shall conform to at least one of the HTTP
GET, HTTP POST or SOAP conformance classes[40].

For RAPID, we have chosen HTTP2 GET conformance class as the com-

plementary conformance class. This class states, “the server shall implement

the Key-value pair3 encoding for the operations that the server offers”[40].

After much discussion with customers, we reevaluated the scope of RAPID

as a M.S. Thesis. We decided to design RAPID with the standard in mind

but without full standard compliance. By continuing with the existing RAPID

model and API design, we were able to eliminate many of the tedious compliant

modification tasks and continue with our optimal design for the requirements

that we originally understood from the customers. The model and interac-

tions were designed for fastest and most robust data ingestion and retrieval.

Although the current implementation does not comply with the OGC Stan-

dard, our work has designed and set up RAPID so that it will be seamless for

future work to tweak the existing system into an OGC Compliant WFS.

1SOAP: Simple Object Access Protocol
2HTTP: Hypertext Transfer Protocol
3KVP: Keyword-value pairs
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Chapter 3

Design

Before beginning design of the REST API for RAPID, we had to under-

stand all of the requirements that it needed to fulfill. Once back-end model

and customer-facing API requirements were established, we could begin con-

current design of both pieces as well as the intermediate service layer that

would connect them. The design went through dozens of iterations through-

out the whole process as we continued to better understand the customer’s

desires, the capabilities of the tools, and the time constraint we were facing.

3.1 Requirements

There are three main components in RAPID: the front-facing client vi-

sualization1, the back-end database, and the REST API that allows the two

to communicate. While the database itself is not be directly accessible by

customers outside this system, its data is exposed to developers through a

well-defined REST API. The requirements for the whole system fall into two

main categories:

• REQ-1: RAPID shall be able to ingest and integrate meaningful geospa-

1The RAPID UI is implemented by a third-party for validation, detailed in Chapter 5
and is not a main component of RAPID.
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tial data from various data sources in a useful and user-friendly way.

• REQ-2: RAPID shall be able to retrieve desired data for a given region

provided that the specified data has been previously ingested.

The pieces of the system that Cal Poly is responsible for designing and

implementing are twofold: the data model and the REST API. Each piece has

specific requirements that need to be measured to confirm validity and com-

pleteness through a third-party application that uses the completed system.

3.1.1 Model Requirements

We discuss some of the pieces of the data model that directly relate to the

REST API and drove its design. All geospatial data has a location which we

need to store in the database. This can be labeled as a region of geographical

land like California. Full documentation of the model requirements, design,

and implementation can be found in Wylie’s thesis[42].

Scalability

The solution shall be scalable so that, in theory, it can one day be applied to

the entire natural gas and petroleum liquids energy pipeline network in North

America. The database developed shall be sufficiently robust. The data model

and system architecture shall allow for scaling the system without significant

changes to the core data model and the core system architecture. The system

should remain efficient even with large data sets and large regions. Scalibility

refers to maintaining storage space and time efficiency. The validation of these

requirements are documented and discussed in Wylie’s thesis[42].

• REQ-3: RAPID shall scale well with large amounts of data.

• REQ-4: RAPID shall remain robust no matter the region size.

• REQ-5: RAPID shall remain robust no matter how many regions need

to be stored.
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• REQ-6: RAPID shall be multi-tenant2.

Single Database

The goal of the integrated database is to gather and sanitize the wide

range of data about the conditions in the immediate vicinity of operating

pipelines that could affect the integrity of the pipeline and store it in one place.

Currently, the desired pipeline integrity data resides in various databases or

physical file storage in different locations. Ideally, customers would not need

to search through multiple databases to retrieve the data they desire. RAPID

shall contain all ingested data in a single database. The data originates in

different database models but is copied and converted into this data model to

be stored indefinitely3.

If more storage is required by the database, all of the data is moved to

the new database, and remain together and in the single modeled format.

The data should be well modeled—it should be able to gracefully handle all

the content that it needs: client owners, regions, layers, categories, and data

entries.

• REQ-7: RAPID shall have a single database storage model for all data.

• REQ-8: RAPID shall gracefully handle data that originates in different

forms and store it properly in the modeled database.

• REQ-9: The data model shall be complete in containing and maintaining

all necessary content for pipeline integrity geospatial data.

2Multi-tenancy is an architecture in which a single software application serves multiple
customers or other software applications with their own secure virtual environment[10].

3Indefinitely, for all intents and purposes, means until RAPID is no longer used.
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3.1.2 API Requirements

Speed and Cost

It is intended that accessing this data is reasonably fast and has a low cost.

Provided syntactically correct data, RAPID shall ingest, parse, and store the

data in a timely manner. Data retrieval should also happen quickly. To ingest

or retrieve a single region or other data entry, we define the system to be

“fast” if it takes no longer than .001 seconds for the transaction. This ratio

shall remain the same as number of data entries increases.

• REQ-10: Data insertion through the API shall be fast.

• REQ-11: Data insertion through the API shall be low cost.

• REQ-12: Data retrieval through the API shall be fast.

• REQ-13: Data retrieval through the API shall be low cost.

Correctness

The data that is returned must be reliable in its correctness/integrity.

Given a specific request, the data returned shall be complete, meaning all of

the data matching the request specifications is retrieved. If the data exists in

the database that matches the details of the request, it should be retrieved

and no more. The data stored and returned should be an accurate reflection

of the data that is inserted.

• REQ-14: The data that RAPID returns in response to requests shall be

reliable, accurate, and correct.

• REQ-15: The data that RAPID returns in response to requests shall be

complete.
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Ease of Use

The documentation of the system shall be complete and user-friendly.

Given an understanding of the documentation, hooking up a client system

to the database should be intuitive. The API should provide ease of imple-

mentation in connecting an existing system to begin inserting and retrieving

data. The calls shall be clear in their responsibilities, what information or

parameters they need, and the content and format that is returned.

• REQ-16: The RAPID API documentation shall be complete and under-

standable by a pipeline operator.

• REQ-17: The RAPID API shall be intuitive and user-friendly, given an

understanding of the documentation.

Standard Format

Ingesting the data shall be compatible in form for integration into existing

tools used by the pipeline industry for managing data. No matter what the

format or file type of data prior to ingestion, the data shall be in the sin-

gle desired file type or data format desired by the client. The data can be

pulled from various data sources and this should not affect the performance

or reliability of the system.

• REQ-18: The RAPID API shall ingest data that originates in the formats

agreed upon (GeoJSON and Shapefile).

• REQ-19: The RAPID API shall return data in a standard format that

the client requests.

3.2 Data Model

The Data Model is designed to meet the requirements described in Chapter

3.1.1 and provide a way for the API requirements in Chapter 3.2.2 to be met.
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Figure 3.1: Entity Relationship Diagram modeling the database de-
sign at a high level. More detail can be found in Wylie’s Thesis[42].
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This thesis documents the minimum amount of the Data Model design to

understand the API design. Figure 3.1 provides a high level understanding

of the model as an entity-relationship diagram. Further reading can be found

in Wylie’s thesis[42]. The database is modeled to store all of the necessary

geospatial and administration objects. It is modeled with tables to support

each different object. All of the tables have different attributes. Each attribute

represents a column in the table, with an additional column for id, auto-

generated by the table. The columns each have a type, documented in the

format ‘name: Type’, for the tables listed in Chapter 3.2.1 - 3.2.6. RAPID

data model supports the following column types.

• TextField: A large text field. The default form widget for this field is a

Textarea.

• ForeignKey: A many-to-one relationship. Requires a positional argu-

ment: the class to which the model is related.

• TimeKey: A time, represented in Python by a datetime.time instance.

Accepts the same auto-population options as DateField.

• GeometryField: The default spatial reference system for geometry fields

where the field coordinates are defined in longitude, latitude pairs in units

of degrees.

• PolygonField: The spacial reference system for polygon fields where the

coordinates of the field are defined in longitude, latitude pairs. For a

rectangle, there are 5 pairs of coordinates, the first and last are the same.

E.G. ‘POLYGON((0 0, 0 5, 3 5, 3 0, 0 0))’

[18]

3.2.1 ApiUser

An ApiUser represents a client owner that inserts and retrieves data. It

is used to keep track of who owns what data and maintain permissions when

retrieving data. The table to store API Users has the following attributes.
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• uid: TextField - unique user id

• email: TextField

• password: TextField

3.2.2 GeoView

GeoViews, which represent a geospatial area of land that can be described

by a polygon, are stored in the GeoView table with the following attributes.

• uid: TextField - unique GeoView id

• descriptor: TextField - user defined name to identify this region

• geom: GeometryField - null means there are no boundaries

• bbox: PolygonField - a rectangle that encompasses and completely con-

tains the geometry, used for preliminary computations

• properties: TextField - optional details

• layers: ManyToManyField(DataLayer) - list of layers that belong to this

region

3.2.3 DataLayer

The Data Layer table, which represents the collection of similar data entries

for a region, has the following attributes.

• uid: TextField - unique layer id

• descriptor: TextField - user defined name to identify this region

• bbox: PolygonField - a rectangle that encompasses and completely con-

tains the geometry, used for preliminary computations

• is public: BooleanField

• properties: TextField - optional details
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3.2.4 DataSource

The Web Data Source table, which represents the URL endpoint for a type

of geospatial data, has the following attributes.

• url: TextField - the URL endpoint where this data can be found

• layer: ForeignKey(DataLayer) - the layer that this data will belong to

• update interval: TimeField

• properties: TextField - optional details

3.2.5 Archive

The Data Source File table, which represents the data source files for a

type of geospatial data, has the following attributes.

• uid: TextField - unique layer id

• content: TextField - the full file content

• layer: ForeignKey(DataLayer) - the layer that this data will belong to

• internet media type: TextField - tye type of the file, eg. ‘application/json’,

‘application/vnd.geo+json’, ‘application/zip’

• create timestamp: TimeField

• properties: TextField - optional details

3.2.6 Feature

Feature is a single data point that pertains to a layer, and therefore cate-

gory and owner. The data has the following columns.

• uid: TextField - unique feature id
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• archive: ForeignKey(Archive) - the full contents of the file that was

originally ingested

• geom: GeometryField - null means there are no boundaries

• bbox: PolygonField - a rectangle that encompasses and completely con-

tains the geometry, used for preliminary computations

• properties: TextField - optional details

• layer: ForeignKey(DataLayer) - the layer that this data will belong to

• create timestamp: TimeField

• modified timestamp: TimeField

3.2.7 Other

The data model has other tables for model management. They are de-

scribed in more detail in Wylie’s thesis document. They are listed below.

• ApiToken

– token: TextField

– token owner: ForeignKey(ApiUser)

– token user: ForeignKey(ApiUser)

– issued: TimeField

– expires: TimeField

• Role

– name: TextField

• GeoViewRole

– token: ForeignKey(ApiToken)

– role: ForeignKey(Role)
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– geo view: ForeignKey(GeoView)

• DataLayerRole

– token: ForeignKey(ApiToken)

– role: ForeignKey(Role)

– layer: ForeignKey(DataLayer)

• ApiCall

– call: TextField

– timestamp: TimeField

– ip: TextField

– token: ForeignKey(ApiToken)

3.3 REST API

The RAPID REST API was designed around the Data Model to allow

pipeline operators to easily insert, update, remove, and retrieve data. A more

detailed description of what it means to be RESTful and what a REST API is

can be found in Chapter 1.2.1. Our API calls are RESTful HTTP calls made

to a specific endpoint. The general pattern is that collections are accessed

via a URL ending in a noun such as /geoview, and to target an individual

item, append its uid (/geoview/432dd1k2). To tell the API whether you are

retrieving, inserting, or deleting the item, users should make use of the HTTP

verbs, GET, POST, and DELETE (respectively). To update an item, we have

simulated a PUT request by retrieving the existing data item, creating a new

one with the updated data content, posting the new item, and removing the

old one. The API responds with JSON reflecting the changes.

The design of the API was driven by the RAPID database model. In order

to fill the database, there needs to be a way to insert records into each of the

customer-modifiable tables (described in Chapter 4.2): GeoView, DataLayer,
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Feature. Each of these has an HTTP POST method at a specified URL end-

point that creates an entry in the database in the respective table. In order to

update or remove an entry, there is also be a HTTP DELETE method to either

permanently remove or replace with an updated entry. For data retrieval, each

of the customer-modifiable tables have an HTTP GET method at a specified

URL endpoint that returns the data. After many iterations of the data model

and API design, the finalized API is documented in Sections 3.3.1 to 3.3.10.

3.3.1 GeoView

A fully documented list of operations and endpoints can be found in Chap-

ter 4, Implementation.

Create GeoView

Initially, GeoView of interest needs to be defined for the system so that

layers of data entries can be inserted and queried for. A GeoView is simply a

two-dimensional area of land. For our system, because of RAPID’s data model

and the way the data needs to be stored, a GeoView can be described by a

series of latitude and longitude (lat-long) pairs. When defining a GeoView, a

minimum of three different lat-long pairs of points (forming a triangle) need

to be specified. The more points, the more specifically outlined the GeoView.

The points need to form a valid polygon4.

For example, the geometry for Palo Alto County is a simple quadrilateral

with four unique coordinates: (-94.913890, 42.909700), (-94.913723, 43.255054),

(-94.443137, 43.255014), (-94.442954, 42.908073). A sample San Luis Obispo

County geometry has 132 coordinates to define the GeoView, a polygon with

132 sides[8]. A GeoView can have any number of coordinates greater than

three to define its geometry up to potentially hundreds. The other piece of

information needed when creating a GeoView is the descriptor. The customer

picks this identifier for each GeoView that they create. These two fields, ge-

4A polygon is a plane closed figure with at least three straight sides and angles[6].
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ometry and descriptor, are passed in the URL parameter when the POST call

is made. The rest of the attributes in the GeoView model are automatically

generated by RAPID.

Retrieve GeoView

The customer can get a list of all GeoView or a specific GeoView that they

own or have access to with a HTTP GET method. If a “uid” is not specified,

all GeoViews that the customer has access to is returned. Otherwise, if a single

“uid” is entered in the URL, that specific GeoView is returned.

3.3.2 DataLayer

Create DataLayer

Similarly to GeoView creation, in order to insert a new Layer entry in the

database, an HTTP POST call with proper information and formatting of a

URL parameter can be made. The fields to create a DataLayer follow the

model attributes: descriptor, is public, and properties. The descriptor, again,

is a customer-defined identifier for this layer. The rest of the attributes in the

DataLayer model are automatically generated by RAPID.

Retrieve DataLayer

To retrieve a list of all layers that a customer owns, an HTTP GET call

can be made to the endpoint. This call returns a list of the layers.
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3.3.3 Feature

Create Feature

Features are the bulk of REST requests that will be made. Entering data

points in the Features table of the model can be made with an HTTP GET re-

quest to the correct endpoint and the proper URL parameters. The data that

is sent must in the parameter must contain the layer for which this geospatial

feature belongs, the full file contents that this feature came from, and the in-

ternet media type of that file. The full file of the original data that this feature

came from must contain the a geometry embedded somewhere to extract and

store in the model. On success, this will return the features that were inserted.

Retrieve Features

To retrieve a list of features, the GeoView and layer need to be specified.

These two pieces of information can be passed in the URL. The GeoView can

be specified by the “uid” of the GeoView and the layer can be specified by

the descriptor of the desired layer. This request will return a collection of all

features that fall under the request specifications.

3.4 Discussion

The initial API design was very different. It was originally structured with

Region retrieval being a separate call from Region metadata retrieval. The

geometry was not a polygon but only had two coordinates, the corners of a

rectangle. We chose to support a more detailed region perimeter instead of

simply a rectangle. The uid did not exist in early iterations. It was only the

automatically generated unique database id.

We introduced another id, the uid, so that if the data is ever moved due

to scaling or other reasons, the uid can remain the same, even if the id might

change in the new database. Ownership was handled through an access mode
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field in the region that was one of ownerOnly, registeredUsers or all and is

now done through a owner foreign key to an API user. Each region had a field

for time stamp of when this region was inserted into the database, but that

became obviously unnecessary for a region as time went on.

In the original design, the complexity and detail of the data was moved

from the data entry level to the layers. A layer had many more fields. A

layer belonged to a region and had a region identifier field to describe this

relationship. There was also a type field that was used to describe the structure

of the shape of the layer which was one of continuous, polygon, line or point.

Layers had a access mode field (similar to region access mode), a static mode

field (either static or dynamic), an origin field, and a time stamp for when the

layer was created.

Data entries were called features originally and existed in FeatureCollec-

tions. They were very simple with only the layer identifier that they belong to,

the geometry, and a time stamp for when the data was inserted, potentially

a list of start and stop times for when this features was active. Data entries

seemed more useful at a higher level for customer use.

Many fields have been moved, removed, or added. The specific URL end-

points have changed many times, as well. During some design iterations, the

input parameters were part of the actual URL and in other iterations, they

were simply URL parameters, and in the final design, they are a combination

of both. These changes developed as we became more familiar with uses for

one versus the other and realizing what fits best for our purposes and design.

After completion of our thesis implementation, work will continue improv-

ing RAPID and purposing it for customer use. This thesis provides docu-

mentation of RAPID as it is at this stage. Future work may invalidate the

correctness of implementation and design details discussed in Chapter 3 and

4.
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3.4.1 Race Conditions

In software, a race condition is an undesirable circumstance when two

or more operations occur at the same time that must only be performed

sequentially[36]. These operations might be one of the “CRUD”5 operations.

Reading and writing large amounts of data to storage at almost the same in-

stant may cause some or all of the old data to be overwritten while it is still

being read. Depending on the system, these errors are handled differently,

whether it is full system failure and a crash or an illegal operation notification

and shutdown of the program.

In RAPID race conditions might occur if one client is updating features in a

layer while another client is requesting the data. This situation is unlikely due

to the minimal number of customers and rare use case of retrieving a feature at

the same time as updating it. General use of RAPID is designed for sequential

write, read, and update operations. RAPID does not handle race conditions

gracefully and depends on the user to prevent them from occurring. Customers

are responsible for ensuring no read operations are made to the data while it

is being updated.

5C.R.U.D. operations are create, read, update, and delete operations of data in a system,
RAPID in this case.
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Chapter 4

Implementation

We chose to implement the API using a powerful Python-based REST

framework called Django with a PostGIS database under the hood. Django

makes it easy to build a Web API and has extensive support for geospatial data

with a toolkit called GeoDjango that manipulates GeoJSON with Django[17].

All of these tools provided a basis to build RAPID upon with some existing

GIS functionality without starting from scratch.

With our framework and design decided upon, implementation next re-

quired a set of endpoints that the REST calls could hit in order to get or

send the data desired. Table 4.1 defines the list of endpoints that RAPID

supports, all using the Pipelions server at http://pipelions.com/. The ta-

ble has the extension of the URL that would follow the Pipelion server ad-

dress. For example, the full REST URL endpoint for /rapid/geoview is

http://pipelions.com/rapid/geoview.

4.1 Create GeoView

The endpoint to create a GeoView (https://pipelions.com/rapid/geoview/)

as well as retrieve a full list of all accessible GeoViews is the same. A RESTful

POST call to the endpoint creates a new GeoView on success. As described
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in the design in Chapter 4.3.1, the REST call requires the user to specify

the geometry of the region described by the GeoView, the descriptor, and an

optional properties field. The descriptor is simply the customer/user defined

GeoView identifier. This can be a text name like ‘SLO’, a numerical id like

‘21073’, or a combination of the two ‘CA4019’.

4.1.1 GeoJSON Geometry

The geometry can either be in valid GeoJSON or can be in GEOSGeom-

etry database text format. A valid GeoJSON object requires a “type” field

and a “coordinates” field. The type field for our geometries needs to be “Poly-

gon”. The coordinates field of a Polygon are an array of LinearRing coordinate

arrays. The first element in the array represents the exterior ring. Any sub-

sequent elements represent interior rings (or holes). The coordinate array is

an array of two element arrays where the first element has to be the same as

the last element to complete the ring. For RAPID, the geometry is generally

just be a rectangle, but RAPID does support any form of a valid geometry,

which means a valid polygon. An example geometry in valid GeoJSON of a

GeoView with no holes is below.

{ ‘ ‘ type ’ ’ : ‘ ‘ Polygon ’ ’ ,

‘ ‘ coord inate s ’ ’ : [

[ [ 1 0 0 . 0 , 0 . 0 ] , [ 1 0 1 . 0 , 0 . 0 ] , [ 1 0 1 . 0 , 1 . 0 ] , [ 1 0 0 . 0 , 1 . 0 ] , [ 1 0 0 . 0 , 0 . 0 ] ]

]

}

An example geometry in valid geojson of a GeoView with holes is the following.

{ ‘ ‘ type ’ ’ : ‘ ‘ Polygon ’ ’ ,

‘ ‘ coord inate s ’ ’ : [

[ [ 1 0 0 . 0 0 . 0 ] , [ 1 0 1 . 0 , 0 . 0 ] , [ 1 0 1 . 0 , 1 . 0 ] , [ 1 0 0 . 0 , 1 . 0 ] , [ 1 0 0 . 0 , 0 . 0 ] ]

[ [ 1 0 0 . 2 , 0 . 2 ] , [ 1 0 0 . 8 , 0 . 2 ] , [ 1 0 0 . 8 , 0 . 8 ] , [ 1 0 0 . 2 , 0 . 8 ] , [ 1 0 0 . 2 , 0 . 2 ] ]

]

}
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Another option for specifying a GeoView’s geometry is as a valid GEOSGe-

omery Polygon text format to be directly inserted into the database. Depend-

ing on where the data comes from, it might already be in this format, which

would make it redundant and wasteful for the system to convert into GeoJSON

and then back into GEOSGeomerty text format. This format is simply a text

field with the lat-long pairs in parentheses, separated by spaces. An example

geometry in valid GEOSGeometry Polygon format is below.

’POLYGON( ( 1 0 . 0 0 . 0 , 11 .0 0 . 0 , 11 .0 1 . 0 , 10 .0 1 . 0 , 10 .0 0 . 0 ) ) ’

4.1.2 POST to GeoView

A RAPID API call to create a GeoView creates a new GeoView under

the current owner id with the provided metadata. It is an HTTP POST

method and the end point URL is https://pipelions.com/rapid/geoview/

with one URL parameter, the data object. The data needs to contain the

geometry, descriptor, and property information in JSON form with three at-

tributes, “geom”, “des”, and “props”. Packaged in a JSON object, “geom”

is a string containing either the valid GeoJSON or GEOSGeometry, “des” is

a string containing the descriptor, and “props” is an object, either empty or

with more metadata that the customer desires. An example of a valid data

URL parameter is below.

{ ‘ ‘ geom ’ ’ : ‘ ‘{
‘ ‘ type ’ ’ : ‘ ‘ Polygon ’ ’ ,

‘ ‘ coord inate s ’ ’ : [

[ [ 0 . 0 , 0 . 0 ] , [ 1 . 0 , 0 . 0 ] , [ 1 . 0 , 1 . 0 ] , [ 0 . 0 , 1 . 0 ] , [ 0 . 0 , 0 . 0 ] ]

]

} ’ ’ ,

‘ ‘ des ’ ’ : ‘ ‘ exReg001 ’ ’ ,

‘ ‘ props ’ ’ : {} ,

}
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On success of inserting into the RAPID database, the uid of the newly

created GeoView is returned.

4.2 Retrieve GeoViews

A RESTful GET call to the endpoint https://pipelions.com/rapid/geoview/

returns a list of all GeoViews that the customer has permission to access. The

list is returned as an array of GeoJSON objects with all visible fields that are

stored in the database as attributes. The fields that each GeoView will dis-

play are “uid”, “descriptor”, “geom”, “bbox”, and “properties”. An example

of what is returned from a GET call to the GeoView endpoint with a single

GeoView object in it is below.

[

{ ‘ ‘ uid ’ ’ : ‘ ‘ 8 JrbghjzSaDCiitvYbWTyT ’ ’ ,

‘ ‘ d e s c r i p to r ’ ’ : ‘ ‘ exReg001 ’ ’ ,

‘ ‘ geom ’ ’ : ‘ ‘{
‘ ‘ type ’ ’ : ‘ ‘ Polygon ’ ’ ,

‘ ‘ coord inate s ’ ’ : [

[ [ 0 . 0 , 0 . 0 ] , [ 1 . 0 , 0 . 0 ] , [ 1 . 0 , 1 . 0 ] , [ 0 . 0 , 1 . 0 ] , [ 0 . 0 , 0 . 0 ] ]

]

} ’ ’ ,

‘ ‘ l aye r s ’ ’ : [

{
‘ ‘ f e a tu r e s ’ ’ : [

‘ ‘ zwt4H8oFqxAQZFf9enm2Hb ’ ’ ,

‘ ‘koRhUHuwdZKoGAh8GZgdtA’ ’ ,

‘ ‘ cbWQroiKjuajKW8wZh8JRH ’ ’ ,

‘ ‘APWf2dEbLoFKudaeE3tR6T ’ ’

] ,

” uid ” : ‘ ‘ QJ6oTbnK6iaxp4TbJewYNi ’ ’

} ,
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{
‘ ‘ f e a tu r e s ’ ’ : [

‘ ‘ nPsDvLNrZoYDXjRiCwhN6n ’ ’ ,

‘ ‘ gxyjZtGiMdX7NtdvcQfa9Y ’ ’ ,

‘ ‘ pAaGhrSRaftajxrnRJVWWL ’ ’ ,

‘ ‘ HfEtjCVCxMdkjoiifKoc7b ’ ’

] ,

‘ ‘ uid ’ ’ : ‘ ‘agRDPtbkZNoGGw3ZSkYmnA’ ’

} ] ,

‘ ‘ bbox ’ ’ : [ [ 0 . 0 , 0 . 0 ] , [ 1 . 0 , 1 . 0 ] ] ,

‘ ‘ p r ope r t i e s ’ ’ : {} ,

}
]

On failure, an error message is returned.

4.3 Retrieve Specific GeoView

If the customer knows the uid of the GeoView that they are interested in,

they can retrieve the data for that specific GeoView instead of an array of all

GeoViews. This can be done by sending a GET request to the endpoint in

section 5.2 with the uid appended to the end. For example, if the uid for the

GeoView desired is 8JrbghjzSaDCiitvYbWTyT, then the full endpoint is with

a GET call to the URL endpoint https://pipelions.com/rapid/geoview/

8JrbghjzSaDCiitvYbWTyT. This request returns a single GeoView object on

success. This object looks exactly like a single element of the array in section

5.2 above. On failure, an error message is returned.
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4.4 Delete GeoView

To completely delete a GeoView, a HTTP DELETE request can be sent

to the endpoint in section 5.2 with the uid appended to the end. For exam-

ple, if the uid for the GeoView that should be deleted from the database is

8JrbghjzSaDCiitvYbWTyT, then the full endpoint is with a GET call to the

URL endpoint https://pipelions.com/rapid/geoview/ 8JrbghjzSaDCiitvYbWTyT.

This DELETE request returns a the GeoView object that has just been deleted

on success. This object looks exactly like a single element of the array in section

5.2 above. On failure, an error message is returned and nothing is removed.

4.5 Create DataLayer

Data layer creation is very similar to GeoView creation. Insertion and

retrieval are done through different REST requests to the same endpoint. A

POST with proper data as URL parameters to https://pipelions.com/rapid/layer/

will create a new layer and insert it into the database. The data that needs

to be passed with the POST request is a JSON object with the following at-

tributes: descriptor, is public, and properties. The descriptor, again, is the

customer defined layer identifier. This can be a text name like ‘Earthquakes’,

a numerical id like ‘4019’. The public field is a boolean value for whether or

not this field will be available to access from any customer. This attribute

provides ease in not having to add individual users to layers that have public

data and will be accessed by everyone. The props field is similar GeoView

properties: optional object to add further information or metadata about the

layer.

All of these fields will be passed as attributes in a JSON object as ‘des’,

‘public’, and ‘props’. An example of a JSON object that could be passed as a

URL parameter in a POST request to https://pipelions.com/rapid/layer/

is below.

{ ‘ ‘ des ’ ’ : ‘ ‘ Earthquakes ’ ’ ,
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‘ ‘ publ ic ’ ’ : true ,

‘ ‘ props ’ ’ : {} ,

}

On failure, the layer is not created and an error message is be returned.

4.6 Retrieve DataLayers

Retrieval of a list of all data layers that a customer has access to can be done

through a GET request to the same endpoint as the endpoint in section 5.4,

https://pipelions.com/rapid/layer/. The list is in the form of an array

of GeoJSON objects with all visible fields that are stored in the database. The

attributes that each layer will contain are uid, descriptor, bbox, is public,

and properties. Below is an example of the response of a GET call to the

layer endpoint that is an array with only a single data layer in it.

[

{ ‘ ‘ uid ’ ’ : ‘ ‘mUy6ckBpUQzWDmiVqQg73Y’ ’ ,

‘ ‘ d e s c r i p to r ’ ’ : ‘ ‘US Counties ’ ’ ,

‘ ‘ bbox ’ ’ : [ [ 0 . 0 , 0 . 0 ] , [ 1 . 0 , 1 . 0 ] ] ,

‘ ‘ i s p u b l i c ’ ’ : f a l s e ,

‘ ‘ p r ope r t i e s ’ ’ : {} ,

}
]

On failure, an error message will be returned.

4.7 Retrieve Features of a Specific Layer

To receive all of the features along with other pieces of data that belong to

a single, specific layer, the user must know the uid of that layer. The response

contains all of this information if a valid uid is appended to the end of the layer
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endpoint. For example, if the uid of the layer for desired features is mUy6ck,

then the full URL endpoint to query is https://pipelions.com/rapid/layer/mUy6ck.

The response will come in GeoJSON form with attributes features, descriptor,

bbox, is public, properties, and uid. An example response of a successful

GET request to the layer/uid endpoint is below.

[

{ ‘ ‘ f e a tu r e s ’ ’ : [ ‘ ‘ 7 vRqkL ’ ’ , ‘ ‘UoWYZEW’ ’ , ‘ ‘ 3dv9CDC’ ’ ] ,

‘ ‘ d e s c r i p to r ’ ’ : ‘ ‘US Counties ’ ’ ,

‘ ‘ bbox ’ ’ : [ [ 0 . 0 , 0 . 0 ] , [ 1 . 0 , 1 . 0 ] ] ,

‘ ‘ i s p u b l i c ’ ’ : f a l s e ,

‘ ‘ p r ope r t i e s ’ ’ : {} ,

‘ ‘ uid ’ ’ : ‘ ‘mUy6ck ’ ’

}
]

The features attribute’s value is an array of strings which are existing

feature uids of that layer. The descriptor is the user-defined identifier. The

bbox is a bounding box of the layer. The boolean value of is public is true

if this layer can be viewed by any user and false otherwise. The properties

contain the optional metadata, and the uid is the system-generated unique

identifier of the layer that was requested (which matches the URL uid). A

failed request returns an error message.

4.8 Delete DataLayer

To completely delete a DataLayer, a HTTP DELETE request can be sent

to the endpoint in section 5.2 with the uid appended to the end. For exam-

ple, if the uid for the DataLayer that should be deleted from the database

is mUy6ck, then the full endpoint is with a GET call to the URL endpoint

https://pipelions.com/rapid/layer/mUy6ck. This DELETE request re-

turns a the DataLayer object that has just been deleted on success. On failure,

an error message is returned and nothing is removed.
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4.9 Add Layer to GeoView

All GeoViews contain a collection of data layers and multiple GeoViews

can have the same layer in it’s list, making it a many-to-many relationship.

To add an existing layer to an existing GeoView, both the GeoView’s uid and

the layer’s uid. The endpoint is https://pipelions.com/rapid/geoview/

addlayer/ with a single GeoView uid and layer uid appended to the end, re-

spectively. For example, to add the layer whose uid is mUy6ck to a GeoView

whose uid is 8JrbghjzS, the URL endpoint would be https://pipelions.com/

rapid/geoview/addlayer/8JrbghjzS/mUy6ck. On success, a success mes-

sage with the two uid’s is returned. On failure, a failed message is returned as

response.

4.10 Remove Layer from GeoView

To remove a layer from the GeoView, a very similar request as adding a

layer to a GeoView is made. To remove the layer whose uid is mUy6ck from a

GeoView whose uid is 8JrbghjzS, the URL endpoint would be https://pipelions.com/

rapid/geoview/removelayer/8JrbghjzS/mUy6ck. On success, a success mes-

sage with the two uid’s is returned. On failure, a failed message is returned as

response.

4.11 Insert Feature

Inserting a feature or set of features into a layer is done with a RESTful

POST request with a URL parameter with valid information and formatting.

The full features URL endpoint is https://pipelions.com/rapid/feature/.

The parameter is a JSON object with three mandatory fields: layer, content,

and props. The layer is the uid of the layer that this feature pertains to.

Content needs to have a geom attribute that will contain the geometry of the

feature(s) to be inserted. The geometry is wrapped in a content field so that
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multiple features can be added at once. The properties field is any other

metadata to describe the feature. Below is a valid JSON object that can be

passed as a parameter of a POST request to the feature endpoint.

{ ‘ ‘ l ayer ’ ’ : ‘ ‘mUy6ck ’ ’ ,

‘ ‘ content ’ ’ : {
‘ ‘ geom ’ ’ : {

‘ ‘ type ’ ’ : ‘ ‘ Polygon ’ ’ ,

‘ ‘ coord inate s ’ ’ : [

[ [ 0 . 0 , 0 . 0 ] , [ 1 . 0 , 0 . 0 ] , [ 1 . 0 , 1 . 0 ] , [ 0 . 0 , 1 . 0 ] , [ 0 . 0 , 0 . 0 ] ]

]

}
} ,

‘ ‘ props ’ ’ : {} ,

}

On success, an array of the uid(s) of the inserted feature(s) is returned in

a response. On failure, a failure message is returned.

4.12 Retrieve Specific Feature

Retrieving a specific feature’s metadata is very similar to all other individ-

ual REST retrievals in the above sections. The uid of the desired feature is re-

quired and appended to the end of the feature endpoint. For a feature with uid

7vR9quzqcM, the URL endpoint is https://pipelions.com/rapid/feature/7vR9quzqcM/.

On success, all of the metadata is returned as a GeoJSON object. The relevant

attributes of the response object are uid, geometry, modified timestamp,

create timestamp, layer id, type, and properties. An example of the

response of this GET request is below.

{ ‘ ‘ uid ’ ’ : ‘ ‘ 7 vR9quzqcM ’ ’ ,

‘ ‘ modif ied timestamp ’ ’ : ‘ ‘ 1 5 : 0 5 : 3 4 . 5 0 0 5 2 2 ’ ’

‘ ‘ create t imestamp ’ ’ : ‘ ‘ 1 5 : 0 5 : 3 4 . 5 0 0 4 9 4 ’ ’

‘ ‘ geometry ’ ’ : {
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‘ ‘ type ’ ’ : ‘ ‘ Polygon ’ ’ ,

‘ ‘ coord inate s ’ ’ : [

[

[

−77.855148 ,

37.418363

] ,

[

−77.875486 ,

37.416015

] ,

[

−77.867779 ,

37.394498

] ,

[

−77.855148 ,

37.418363

]

]

]

} ,

‘ ‘ type ’ ’ : ‘ ‘ Feature ’ ’ ,

‘ ‘ l ayer ’ ’ : ‘ ‘mUy6ck ’ ’ ,

‘ ‘ p r ope r t i e s ’ ’ : ‘ ‘{
‘NAME’ : ‘ Amelia ’ ,

‘LSAD’ : ‘ County ’ ,

‘GEO ID ’ : ‘0500000 US51007 ’ ,

‘COUNTY’ : ‘ 007 ’ ,

‘STATE’ : ‘51 ’

} ’ ’ ,

}
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On failure, an error message is returned.

4.13 Update Feature

To update an existing feature, a POST request to the same endpoint as

section 5.10, Feature Retrieval, is made and the uid of the specific feature to

be modified is needed at the end of the url. The difference the REST request

to Update Feature and Retrieve Specific Feature is that the former is a POST

request with a URL parameter, and the latter is a GET request. The URL

parameter required for updating is the same as the request parameter as initial

feature insertion which can be found in section 5.8, Insert Feature, except there

can only be a single feature’s geometry in the content attribute. It is a JSON

object with three attributes. This request will look up the feature with the

feature uid provided in at the end of the URL endpoint and replace all data

with the newly provided data in the URL endpoint as well as updating the

modified timestamp field of the Feature object.

On success, the uid of the updated feature is returned in the response. On

failure, an error message is returned.

4.14 Delete Feature

Deleting feature is very similar to all other RESTful object deletions in the

above sections. The uid of the feature to delete is required and appended to

the end of the feature endpoint. For a feature with uid 7vR9quzqcM, a HTTP

DELETE request is made to the URL endpoint https://pipelions.com/

rapid/feature/7vR9quzqcM/. On success, the same Feature object is re-

turned as a GeoJSON object similar to retrieving a specific Feature. On fail-

ure, an error message is returned.
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URL Endpoint HTTP

Request

Description

rapid/geoview/ POST Create GeoView

GET Retrieve GeoViews

rapid/geoview/<geo uid>/ GET Retrieve Specific GeoView

DELETE Delete GeoViews

rapid/layer/ POST Create DataLayer

GET Retrieve DataLayers

rapid/layer/<layer uid>/ GET Retrieve All Features of

Specific Layer

DELETE Delete Layer

rapid/layer/<layer uid>/?start=

<start time>&stop=<stop time>/

GET Retrieve Features of Specific

Layer within a range of time

rapid/geoview/addlayer/

<geo uid>/<layer uid>/

POST or

GET

Add Layer to GeoView

rapid/geoview/removelayer/

<geo uid>/<layer uid>/

POST or

GET

Remove Layer from

GeoView

rapid/feature/ POST Insert Feature

rapid/import/<layer uid>/ POST or

GET

Import All Features from a

Valid URL

rapid/feature/<feature uid>/ POST Update Feature

GET Retrieve Specific Feature

DELETE Delete Specific Feature

Table 4.1: RAPID REST API Endpoint Overview
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Chapter 5

Validation

In order to test RAPID and ensure all of the requirements were met, we

had a third party design and implement a system that uses RAPID’s REST

API to ingest, manipulate, retrieve, and display real data. This system, which

we will call RAPID UI, serves as a proof of concept for the customers’ software

systems that will one day use RAPID. RAPID UI focuses on the quality and

completeness of the API design which can be validated through fulfilling the

requirements documented in Chapter 3.1. RAPID can be considered validated

if it is able to perform all tasks required by the customers, returns thorough

and valid results, and meets all standards in the specification.

5.1 Third Party System Specification

The validation of RAPID is being designed and implemented by another

entity that was not present throughout the development of RAPID to ensure

there was no prior knowledge to skew or bias the validation results. The de-

veloper of the validating web system is Kishan Patel, a Computer Engineering

student at California Polytechnic State University. With no knowledge of

REST APIs, only some knowledge of web development, and a focus of expe-

rience in graphics, he was a good candidate to test the ease of use of RAPID,
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the quality of design, and correctness of implementation.

He began with a simple design using JavaScript with cross-origin resource

sharing (CORS)1 to make the foreign HTTP requests from client-side JavaScript

to the RAPID pipeline server.

5.1.1 Independent Variables

The independent variables in this system test are the elements of the sys-

tem that we can control. In general, they are the queries that we propose

and submit to the system. The queries that the customer may be interested

in is selecting Layers in regions and receiving the proper data. The specific

parameters passed with the request in each query are the control, or indepen-

dent, variables. The test is successful if the correct data is received given any

legitimate and correct query.

5.1.2 Dependent Variables

The dependent variables are the elements that are affected by the indepen-

dent variables listed above. Effectively, the data that is returned represents

the dependent aspects of the validation test. We care about and are measuring

the quality of the data and the speed at which it is returned.

We will define “quality” in our terms as the correctness of the content

of the data, the correctness of its format, and if it is in accordance with

the requirements. This measurement of quality is designed to validate the

responses of the RESTful API as it connects with and communicates with the

data model. Further validation of the database design and data modeling can

be found in my colleague’s thesis document’s validation section[42].

1CORS is a mechanism that allows restricted resources (e.g. fonts, JavaScript, etc.) on a
web page to be requested from another domain outside the domain from which the resource
originated[41].
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5.2 Design

The third-party RAPID UI is designed to hit all end points that RAPID

supports and ensure validity of each one. The list of queries that hit the REST

API can be found below. Section 5.2.2 describes the business use cases that

these endpoints fulfill and the order in which the REST UI completes them.

The data that is sent back as the JSON2 response is what is evaluated in order

to validate RAPID’s API.

5.2.1 List of Queries

• Create GeoView

– End Point URL: http://pipelions.com/rapid/geoview

– HTTP Method: POST

– Request Parameters: JSON data object including geometry, de-

scriptor, and properties

• Retrieve List of GeoViews

– End Point URL: http://pipelions.com/rapid/geoview

– HTTP Method: GET

– Request Parameters: none

• Individual GeoView Metadata Retrieval

– End Point URL: http://pipelions.com/rapid/geoview/8JrbghjzSaDCiitvYbWTyT

– HTTP Method: GET

– Request Parameters: none

• Create DataLayer

– End Point URL: http://pipelions.com/rapid/layer

2JSON: JavaScript Object Notation
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– HTTP Method: POST

– Request Parameters: JSON data object including descriptor, pub-

lic, and properties

• Add Layer to GeoView

– End Point URL: https://pipelions.com/rapid/geoview/addlayer/ 8Jr-

bghjzSaDCiitvYbWTyT/mUy6ckBpUQzWDmiVqQg73Y

– HTTP Method: POST

– Request Parameters: none

• List of DataLayers Retrieval

– End Point URL: http://pipelions.com/rapid/layer

– HTTP Method: GET

– Request Parameters: none

• List of Features within DataLayer Retrieval

– End Point URL: http://pipelions.com/rapid/layer/mUy6ckBpUQzWDmiVqQg73Y

– HTTP Method: GET

– Request Parameters: none

• Retrieve Features within DataLayer in Time Range

– End Point URL: http://pipelions.com/rapid/layer/mUy6ckBpUQzWDmiVqQg73Y/?start=1389177318

&stop=1389177420

– HTTP Method: GET

– Request Parameters: none

• Insert Feature to DataLayer

– End Point URL: http://pipelions.com/rapid/feature

– HTTP Method: POST

– Request Parameters: JSON data object including Layer, content

(geometries), and properties
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• Feature Retrieval

– End Point URL: http://pipelions.com/rapid/feature/7vR9quzqcM

– HTTP Method: GET

– Request Parameters: none

• Update Feature

– End Point URL: http://pipelions.com/rapid/feature/7vR9quzqcM

– HTTP Method: POST

– Request Parameters: JSON data object including Layer, content

(geometries), and properties

• Delete Feature

– End Point URL: http://pipelions.com/rapid/feature/7vR9quzqcM

– HTTP Method: DELETE

– Request Parameters: none

• Delete Layer

– End Point URL: http://pipelions.com/rapid/layer/mUy6ckBpUQzWDmiVqQg73Y

– HTTP Method: DELETE

– Request Parameters: none

• Delete GeoView

– End Point URL: http://pipelions.com/rapid/geoview/8JrbghjzSaDCiitvYbWTyT

– HTTP Method: DELETE

– Request Parameters: none

5.2.2 Use Cases

There are three main business use cases that RAPID UI executes success-

fully. These use cases each have to hit multiple endpoints in order to gather
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Figure 5.1: The browser window of RAPID UI webpage upon load-
ing http://users.csc.calpoly.edu/ kpatel28/.

and display the necessary information. RAPID UI’s third-party validation

can be found at http://users.csc.calpoly.edu/ kpatel28/. When the

webpage initially loads, it looks like Figure 5.1.

GeoView Selector

DSS may need to select a specific GeoView out of all of their accessible

GeoViews in order to understand where the optimal right-of-way is in a larger

region of land. When placing new pipelines, DSS are interested in a specific

GeoView that has a set of layers; however, the customer with the DSS might

have access to dozens of GeoViews. In order to select the GeoView that they
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Figure 5.2: RAPID UI GeoView Selector.

are interested in, they need to first query RAPID for the list of all accessible

layers. This can be done with the GET request to the /geoview endpoint. If

the desired GeoView does not yet exist, they will then have to create a new

GeoView. This is done through a POST request to the /geoview endpoint

with the information desired and required.

The GeoView that is displayed in the RAPID UI gets all of the options with

the general GET request first. It then uses the uid of the selected GeoView to

send another GET request to the /geoview with the uid appended to retrieve

all DataLayers that belong to the chosen GeoView. All GeoViews that are

accessible are displayed in the bottom box of Figure 5.1 with some metatata.

At the top right corner of the map, there is an icon for each GeoView that is

present. For the RAPID UI validation, there are two goeviews so there are

two icons that can be hovered over for more detail. These are highlighted in

Figure 5.2.
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Layer Selector

After either creating a new GeoView or retrieving a already created GeoView,

the next step is adding DataLayers to the new GeoView. If the layers are al-

ready created, this can be done directly. Otherwise, first the layers need to

be created. Creating a DataLayer can be done though a POST request to

/layer with the desired and required information. After both the GeoView

and DataLayer uid’s are obtained, the layers can be added to the GeoView

with a GET request to /geoview/addlayer with the GeoView uid and then

the DataLayer uid appended with a slash between. To add multiple layers,

that step can be repeated with different DataLayer uids.

The RAPID UI DataLayer selector is displayed by first gathering the in-

formation through a GET request to the /layer which retrieves a list of all

DataLayers available. Selecting one or multiple of these layers reveals them

on the map in that is displayed dynamically in the website. Figure 5.3 shows

RAPID UI’s interface of selecting a layer. When the user hovers over one of

the GeoView icons in the top right corner of the map, it expands to show all

layers that belong to that GeoView. The initial expanded GeoView for Shasta

County, CA GeoView is shown in Figure 5.3.

Selecting one or multiple of these layers reveals them on the map in that

is displayed dynamically in the website. Figure 5.4 shows what the map dy-

namically changes to if the user selects the earthquake layer (by selecting the

checkbox next to the earthquake layer’s uid).

The user can then dynamically unselect the earthquake layer and select

the cities layer which will automatically modify the Features that appear on

the map to display only the cities that fall within Shasta County, CA, shown

in Figure 5.5

To display more than one layer within the Shasta County, CA GeoView,

the user can select both check boxes, displaying on the web page what is shown

in Figure 5.6
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Figure 5.3: RAPID UI DataLayer Selector.
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Figure 5.4: Earthquake Layer only of Shasta County, CA GeoView.
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Figure 5.5: California Cities Layer only of Shasta County, CA
GeoView.
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Figure 5.6: Earthquake and California Cities Layer of Shasta
County, CA GeoView.
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Figure 5.7: Time range slider for Features of Shasta County, CA
Geoview.

State of Features at Specific Time

The date time slider in the RAPID UI simulates a freezing of RAPID’s

state at the given time. To select feature information that occurred between

Wednesday of last week and Thursday of last week, the time selector can be

moved to that date. Behind the scenes, RAPID UI sends a GET request to

/layer with the desired layer uid, start, and stop times appended with a slash

between each. This will modify the response from containing all features within

that layer to only the features that occurred within the date times selected

and display those on the RAPID UI map. The slider corresponding to Shasta

County, CA GeoView can be changed to move the date-time range of Features

that appear on the map. Figure 5.7 shows the slider for one GeoView.

5.3 Third Party Validation Purpose

The purpose of this third party website, RAPID UI, is to determine the

API’s quality and efficiency of use. A successful validity check of RAPID

will return correct information for the given queries. For a specific GeoView,

Layer, and Feature, provided by the GeoView uid, Layer uid, and Feature uid

respectively, the response needs to behave as designed.

• Creating a GeoView inserts a new GeoView into the database with the

provided geometry, descriptor, and properties and return a response con-

taining the uid of the newly created GeoView;

• Geoview retrieval returns a JSON response containing a list of the ac-
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Figure 5.8: Response of Adding a GeoView to a Layer

cessible GeoViews from the provided valid API token;

• Individual GeoView metadata retrieval returns a JSON response contain-

ing the metadata of the GeoView with a uid 8JrbghjzSaDCiitvYbWTyT;

• Creating a Layer inserts a new Layer into the database with the pro-

vided descriptor, public boolean, and properties and return a response

containing the uid of the newly created Layer;

• The request to add the existing Layer to the existing GeoView that was

just created returns a response with both uids and a success message;

• Listing the existing Layers request returns a JSON response containing

a list of the available Layers from the provided valid API token;

• The request to view a list of Features for a specific Layer metadata

retrieval should get a JSON response containing the metadata provided

valid Layer uid of mUy6ckBpUQzWDmiVqQg73Y;

• The retrieval of Features within a time range request for a specific Layer

metadata retrieval should get a JSON response containing the metadata

provided valid Layer uid of mUy6ckBpUQzWDmiVqQg73Y of only the

Features that have timestamps within that time range;

• Creating a Feature inserts a new Feature into the database with the pro-

vided Layer, content (geometry), and properties, and return a response

containing the uid of the newly created Feature;

• Feature retrieval returns a JSON response containing a single Feature

for valid Feature uid of 7vR9quzqcM;
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Figure 5.9: All Features in the US Cities Layer
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• Updating a Feature updates the specific Feature with Feature uid 7vR9quzqcM

with new Layer, geometry, properties, and returns a JSON response con-

taining the uid of the updated Feature;

• Deleting the Feature with uid 7vR9quzqcM removes the Feature from

the database and returns a response with a successfull delete message

and the uid of the deleted Feature.

• Deleting the Layer with uid mUy6ckBpUQzWDmiVqQg73Y removes the

Layer from the database and returns a response with a successfull delete

message and the uid of the deleted Layer.

• Deleting the GeoView with uid 8JrbghjzSaDCiitvYbWTyT removes the

GeoView from the database and returns a response with a successfull

delete message and the uid of the deleted GeoView.
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Chapter 6

Conclusions and Future Work

After understanding and exploring all of the factors that might affect pipes

that carry vital resources, we were able to begin construction of a system that

assists in detecting problematic events. The system that we designed, RAPID,

has proven successful in addressing the requirements of pipeline operators of

decision support systems. The root of the problem comes from the fact that

the data that pipeline operators are interested in is stored in many different

formats in many different locations physical and electronic. Decision support

systems desire a single entity in which they can query for their geospatial data

in a standardized format.

RAPID stores geospatial data that is relevant to pipeline integrity and

new pipeline construction. This data ranges from precipitation and rainfall

data, climate and weather changes, encroachments on right of ways and other

construction, seismic activity, and much more. After RAPID ingests the data

from multiple data formats it then stores the data in a PostGIS database

modeled by Austin Wylie[42]. The data ingestion happens through a REST

API. RAPID supports a number of queries documented in Chapter 4 to send,

store, update, retrieve, and delete information. All of these queries can be

done through RESTful POST, GET, and DELETE requests sent through the

RAPID API endpoints.
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6.1 Future Work

Many of the features and requirements that the customers desire have been

met through rapid; however, there is much potential future work that can be

done on rapid to improve it further.

6.1.1 OGC Compliance

The first item that would lead to improvement of RAPID has been ad-

dressed in Chapter 2.4 OGC Compliance Standard. Making the system OGC

Compliant would allow for commercial use for customers in industry. This

task is tedious but not trivial and in the upcoming months will be completed

by someone that has extensive knowledge of the OGC Standard.

6.1.2 Data Formats

Currently, RAPID ingests geospatial data that originates in GeoJSON.

Ideally, it would be able to ingest and parse data in multiple formats includ-

ing Shapefiles and other common geospatial formats. This could be achieved

through further parsing development. The same goes for formats of retrieve

data. RAPID returns data in GeoJSON but DSS may hypothetically want to

receive their data in other formats in the future.

6.1.3 Notifications

In early conversations with customers, there was discussion of an automatic

notification system to alert DSS when there might be a threat to a pipeline

caused by some data that was just ingested into RAPID. This was pushed out

of our scope due to time and prioritizing requirements however would be a

great future implementation task.
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6.1.4 Automatic Ingestion

In order to get information automatically ingested so that instantaneous

notifications can be sent out, the system would need a way to hook up to other

data sources that are constantly updated, like earthquakes or weather. This

task needs a way to set up a trigger when the data source is updated to hit

an API endpoint in our system to import the new geospatial features.

6.1.5 Security

Encryption and security are huge concerns in today’s increasingly electronic

and online society. People are consistently trying to find new ways to hack

into systems with valuable information. RAPID’s stored data may eventually

become important enough to its owner to provide a need for increased security.

Currently, the security is done through API tokens given to each user that are

passed through as requests are sent and RAPID API endpoints are hit. This

future work involves both encrypting the data on the back end and introducing

a more secure API token distribution scheme.

6.1.6 Scaling

Importing, ingesting, and parsing huge (e.g. 5GB or more) geospatial data

files may be a requirement of customers in the future. Massive amounts of data

must be imported in smaller pieces in RAPID’s current state. Introducing a

batch importing system that automatically partitions or distributes the load

to complete the import in a timely manner would help to fulfill this large-scale

requirement.
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Chapter 7

Glossary

• RAPID - REST API for Pipeline Integrity Data

• System Entity - one of the objects or collections that can be represented

in RAPIDa GeoView, DataLayer, or Feature

• Create - instantiate a new system entity with properties

• Update/Modify - change the properties, geometry, or other associated

objects of a region, layer, or feature

• Ingest - parse data and insert into database in proper format by creating

new system entities

• Geometry - a list of latitude and longitude pairs as a bounding polygon

for a region

• Descriptor - a name or identifier that is external to the operation of

RAPID, used to describe a system entity to outside users

• Properties - user-specified data in any format that describes a system

entity

• Timestamp - a date and time (down to the second) identifying when a

certain event occurs
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• Start Time - feature was first noticed in this layer at this timestamp

• Stop Time - feature was first noticed gone from location at this times-

tamp

• Insertion Time - the timestamp for which the feature was inserted into

the database

• Metadata - no specific or intended meaning in RAPID; describes infor-

mation about data. Properties instead of metadata, should be used when

describing the specific properties set that is associated with a feature or

geometry.

• Feature - a object that contains geometry associated with properties

• Layer - a collection of related features with properties in a GeoView

• GeoView - a grouping of layers associated with a known and specified

geometry and properties

• Encroachment - an incompatible or restricted use within the right-of-

way; can include buildings and structures such as uninhabitable storage

sheds, habitable room additions, pools, converted garages and other sim-

ilar structures

• Pipelines rights-of-ways - strips of land of various widths in which pipelines

are installed, either above or beneath the ground
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