
A MULTI-GPU COMPUTE SOLUTION FOR OPTIMIZED GENOMIC

SELECTION ANALYSIS

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Trevor DeVore

June 2014

c© 2014

Trevor DeVore

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: A Multi-GPU Compute Solution for Opti-

mized Genomic Selection Analysis

AUTHOR: Trevor DeVore

DATE SUBMITTED: June 2014

COMMITTEE CHAIR: Assistant Professor Chris Lupo, Ph.D.,

Department of Computer Science

COMMITTEE MEMBER: Professor Bruce Golden, Ph.D.,

Department of Dariy Science

COMMITTEE MEMBER: Associate Professor John Seng, Ph.D.,

Department of Computer Science

iii

ABSTRACT

A Multi-GPU Compute Solution for Optimized Genomic Selection Analysis

Trevor DeVore

Many modern-day Bioinformatics algorithms rely heavily on statistical models

to analyze their biological data. Some of these statistical models lend themselves

nicely to standard high performance computing optimizations such as parallelism,

while others do not. One such algorithm is Markov Chain Monte Carlo (MCMC).

In this thesis, we present a heterogeneous compute solution for optimizing GenSel,

a genetic selection analysis tool. GenSel utilizes a MCMC algorithm to perform

Bayesian inference using Gibbs sampling.

Optimizing an MCMC algorithm is a difficult problem because it is inherently

sequential, containing a loop carried dependence between each Markov Chain

iteration. The optimization presented in this thesis utilizes GPU computing to

exploit the data-level parallelism within each of these iterations. In addition, it

allows for the efficient management of memory, the pipelining of CUDA kernels,

and the use of multiple GPUs. The optimizations presented show performance

improvements of up to 1.84 times that of the original algorithm.

Keywords: Bioinformatics, Multi-GPU, Markov Chain Monte Carlo

iv

CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

1 Introduction 1

2 Background 3

2.1 Statistical Analysis . 3

2.2 CUDA . 5

3 Related Works 7

3.1 Statistical Analysis of Genetics 7

3.2 MCMC on the GPU . 8

3.3 Multi-GPU Computing . 9

3.4 Heterogenous Computing . 9

4 Methodology 11

5 Algorithm Overview 13

5.1 Increasing Data Level Parallelism 14

6 Implementation 17

6.1 Parallelizing Dot Product Computation 17

6.2 Hiding Memory Transfers . 18

6.3 Precomputing Dot Products . 19

6.4 Pipeling Kernel Calls . 19

6.5 Circular Buffering of Data on the GPU 20

6.6 Multi-GPU and Striping . 22

7 Experimental Setup 26

7.1 Test System . 26

7.2 Test Data . 27

v

7.3 Reference Implementation and Validation 27

8 Results 28

8.1 Tuning . 30

8.1.1 Tuning the Chunk Size . 30

8.1.2 Tuning the Number of GPUs 32

8.1.3 Tuning the buffer size on each GPU 34

9 Future Work 37

10 Conclusion 40

Bibliography 41

vi

LIST OF TABLES

8.1 Runtimes for 500 marker data set 30

vii

LIST OF FIGURES

2.1 General overview of algorithm . 4

6.1 GPU memory layout illustrating how data is stored a circular data
buffer . 22

6.2 Striped memory layout for multiple GPUs 23

6.3 Circular buffer observation vector replacement on multiple GPUs 24

8.1 Overall speedup with varied number of markers 29

8.2 Effect of different chunk sizes on speedup 31

8.3 Effect of scaling the number of GPUs utilized on speedup 33

8.4 Effect of scaling the number of GPUs utilized on speedup with
reordered GPUs . 34

8.5 Effect of changing the buffer size multiplier 36

viii

Chapter 1

Introduction

The field of Bioinformatics relies heavily on statistical modeling to analyze biolog-

ical data. To improve the accuracy of these statistical models, larger quantities of

data are being analyzed by increasingly complex algorithms. The Markov Chain

Monte Carlo (MCMC) family of algorithms is a good example of this. Recently,

this family of algorithms has seen increased usage in Bioinformatics applications,

and as such, a great deal of effort has been put into the optimization of MCMC.

When optimizing algorithms, exploiting either task-level or data-level par-

allelism allows for major speedups. Unfortunately, not all algorithms fall into

the embarrassingly parallel category, and others resist parallelization altogether.

MCMC algorithms fall into the latter category due to their inherently itera-

tive nature and numerous data dependencies. Previous research in parallelizing

MCMC algorithms has shown that good speedups are possible if the algorithm

is designed around parallel programming principles [7, 12,13].

This thesis will explore an alternative method for optimizing MCMC that

does not require major algorithm redesign. These optimizations will be achieved

by isolating sections of the algorithm that will benefit most from parallelization.

Once these sections are found, the proper parallelization technique will be applied.

The general idea behind this method is to shrink the computation time required

by each link of the Markov Chain, reducing the runtime for the entire algorithm.

1

The optimizations explored in this thesis leverage multi-GPU computing, ker-

nel (GPU function calls) pipelining, and efficient memory management to exploit

data-level parallelization. The analysis performed by GenSel requires the com-

putation of many matrix operations. The size of these computations scale with

the number of observations given as input to the program, and are executed for

every genetic marker in each iteration of MCMC.

The remainder of this thesis will be organized as follows: Chapters 2 and 3

will discuss background information and related works respectively. Chapters 4,

5, and 6 will detail the methodologies used to analyze optimization opportuni-

ties, an overview of the algorithm being optimized, and the implementation of a

host of GPU optimizations. Next, Chapters 7 and 8 will discuss the results of

the optimizations implemented and the test environment used to generate these

results. Finally, Chapters 9 and 10 discuss potential future optimizations and

provide conclusions for the optimizations provided in this thesis.

2

Chapter 2

Background

This Chapter will provide background information on both the statistical analysis

behind GenSel and the CUDA programming language.

2.1 Statistical Analysis

Bayesian inference is a widely used form of statistical inference that is used in

a number of computer science fields, one of which is Bioinformatics. Bayesian

inference is derived from the Bayes theorem, which essentially allows for the up-

dating of prediction probabilities based on previous experience. The probability

of the original prediction is called the prior, and the probability with knowledge

of the previous experience is called the posterior.

Bayesian inference allows for relatively simple yet accurate predictions of the

effect specific genes have on a given trait [6]. Unfortunately, simply implementing

a Bayesian inference algorithm is not very feasible as there is no guarantee of a

closed form solution for the posterior. In the cases where a solution is possi-

ble, integration over multiple dimensions is required, which can lead to very long

computation times. In order to side step this issue, GenSel uses a Gibbs sampler,

which is a member of the Markov Chain Monte Carlo (MCMC) family of algo-

rithms. MCMC algorithms provide a way to compute the posterior distribution

when it is not possible to sample the distribution of interest directly.

3

Figure 2.1: General overview of algorithm

While the use of Gibbs sampling allows for more efficient computation of the

posterior distribution [6], it is by no means a trivial computation. To find the

correct posterior distribution, sampling must be done until the probability distri-

bution converges. To make matters worse, determining the number of iterations

needed for the distribution to converge is a difficult problem [8]. In addition, due

to the bias introduced by the initial values in the first iteration, the beginning

portion of the chain cannot be used.

In GenSel, each genetic marker is evaluated to determine if it has an effect on

the desired trait. A statistical model is then built containing the mean effect all

of the markers have on the desired trait. In addition to this, the estimated errors

of prediction are also captured. To generate this model, GenSel iterates through

each genetic marker and determines whether or not it is to be included in the

model. This decision is made based on whether or not the traits fully-conditional

posterior exceeds a set threshold [6]. This process is done multiple times, forming

links in a chain where each link builds on the results of the previous one. This

algorithm is shown in Figure 2.1 and is the target of the optimizations presented

in this thesis.

When studying the way a MCMC algorithm works, it is easy to see the inher-

ent issues with parallelization. Each link in the chain relies on values computed

4

in the previous link. Instead, the optimizations discussed focus more on the

work being performed inside each link of the chain. In GenSel, a majority of

the work is performed in the BayesC algorithm, which is presented in [6]. This

adds additional data dependencies between the analysis of each genetic marker.

Fortunately, this dependence is only present when the marker being analyzed is

to be included in the current model or was included in the previous model. This

allows for parallelization optimizations that would otherwise not be possible.

2.2 CUDA

NVIDIA’s Compute Unified Device Architecture (CUDA) is a parallel computing

architecture that allows a graphics processing unit (GPU) to be used by develop-

ers. GPUs can contain thousands of cores, allowing them to process large amounts

of data in parallel, as that is their intended purpose in graphics. To aid devel-

opers and improve portability, CUDA threads have been abstracted away from

the physical hardware. The CUDA thread model consists of a two-dimensional

grid of three-dimensional blocks. The dimensions of the grid are defined by the

developer for each kernel. Each block in the grid contains a three-dimensional

layout of threads. Much like the grid, the dimensions of the blocks are also de-

fined by the developer. While these are highly configurable, some limitations

on maximum dimensions are set, and vary based on the version of CUDA being

used. The thread, the basic unit in the CUDA thread model, is what is executed

on each core in the GPU. Behind the scenes, 32 threads are grouped into what

is called a warp. All threads in a warp are executed at the same time, and each

thread executes the same instruction. Due to this, care must be taken that the

work given to each thread does not diverge.

5

CUDA operations on the GPU can be executed asynchronously from the CPU,

allowing both to work on separate tasks at the same time. This is integral to

squeezing the maximum performance out of a system. In order to allow asyn-

chronous data transfers, memory on the CPU must be pinned, which forces the

system to keep that memory in RAM and not move it to swap space. To further

facilitate asynchronous operations, CUDA allows users to queue GPU operations

in a stream. Streams are associated with a specific CUDA device, and each device

can have multiple streams. CUDA kernels (functions) and memory operations

executed on the same stream are guaranteed to execute in a first-in-first-out man-

ner. Tasks in different streams can be executed concurrently on the device. This

allows for better utilization of the GPU’s compute resources. Efficient use of

streams is critical in applications that wish to utilize both the CPU and GPU

simultaneously.

GPU memory is different than that of a traditional system. The majority

of a GPUs memory is global memory. This would correlate to the RAM in a

traditional system, and is the slowest but largest memory on the GPU. Shared

memory, on the other hand, is only accessible by threads in the same block,

but is much faster and much smaller. This would most closely correlate to a

cache in a traditional system. One major difference is that the shared memory in

CUDA is controllable by the developer. This allows key pieces of data to be put

in shared memory for significantly faster access times. Additionally, if multiple

threads are working on the same data, changes made by one thread in a block

are immediately visible to all other threads in the block.

6

Chapter 3

Related Works

In researching the topic of this thesis, it has become clear that very little research

has been done in this area. This does not come as too much of a surprise given the

specific nature of the problem. Another potential reason for the lack of published

work in this specific area is the competitive advantage that can be gained from

this research.

As with many bioinformatics algorithms, this algorithm is comprised of many

components from many fields of study. This section will discuss the work related

to the major components of this algorithm.

3.1 Statistical Analysis of Genetics

One of the largest components of this algorithm is the genetic analysis performed

using various statistical methods. While this does not directly relate to the work

of this thesis, it is crucial to the algorithm being optimized and is therefore

important to discuss.

While statistics has been used since the 1800s for genetic analysis in the

form of probabilities, the application of statistical modeling to genetics began to

increase in the late 1900s as computers became more available [4, 11]. As the

power of computers has increased, larger datasets are able to be analyzed using

more complex statistical approaches than before, which yields increasingly more

7

exact results. Currently, compute time is the limiting factor to these large scale

statistical analyses, as can be seen by the topic of this thesis.

A few of the more recent related works in this are come, unsurprisingly, from

the same authors of this algorithm. In this work, the breeding values of animals

were estimated by analyzing which genomic regions have an effect on a specific

trait of the animal, and how this information can be used to determine which

animals should be bred [3].

3.2 MCMC on the GPU

Another large component of this algorithm is the use of graphics processing units

(GPUs) to improve the runtime of statistical computations. One way to achieve

these speedups is to move the entire statistical computation to the GPU for pro-

cessing. While this is in fact the fastest way to do these analyses, it is not always

feasible due to data dependencies or algorithm divergence during the analysis.

While the parallelization of MCMC is very difficult, it has become a hot

topic for research in recent years. One approach is to shrink the computation

time for each iteration of the MCMC chain [13]. This method does provide

good performance improvements, but the speedup is still bounded by Amdahl’s

quantity. This means that the performance improvements can only be as great

as the portion of the algorithm that is optimized. In the case of MCMC, which

is a very iterative algorithm, only small portions can be optimized, and therefore

only small speedups can be expected.

Another approach is to restructure the MCMC algorithm entirely to make it

more GPU friendly. DE-MCMC, as proposed by Zhu and Li, uses differential

evolution on a population-based MCMC sampler, which allows for parallelization

8

[16]. While massive speedups can be seen from this approach, it is not always

possible to restructure the algorithm in this manner. The algorithm optimizations

discussed can only be applied to certain members of the MCMC algorithm family,

which can limit the usefulness of this type of approach.

3.3 Multi-GPU Computing

Leveraging multiple GPUs can significantly improve the runtime of large data

computations. One approach to using multiple GPUs is to decompose a single

large problem into multiple pieces, and allow each GPU to compute a piece of

the problem [1]. This is best suited to problems that contain only a few very

large computations, and will often require inter-GPU communication. Another

approach is to allow each GPU to compute a single problem on its own [13].

This is most beneficial when a large number of difficult computations must be

performed at the same time.

Another consideration when using multiple GPUs is load balancing. Without

load balancing, the problem can only be solved as fast as the slowest GPU can

solve it. This means that a single slow GPU can hamper the performance of

multiple faster GPUs. Dynamic load balancing helps tackle these issues [2]. This

approach can improve performance when hardware or workloads are unbalanced.

3.4 Heterogenous Computing

In order to squeeze the most performance possible from a system, both the CPUs

and GPUs must be utilized to their maximum potential. Many high performance

compute solutions, both in statistics and other fields, leverage both the CPU and

GPU in their optimizations [13–15]. Heterogeneous compute solutions provide the

9

maximum performance by not only allowing both the CPU and GPU to perform

useful work at the same time, but also by allowing each to play to its strengths.

The CPU is much better at exploiting coarse-grained parallelism, while the GPU

is much stronger when it comes to fine-grained parallelism [13].

10

Chapter 4

Methodology

Although the algorithm used in GenSel is not completely parallelizable, many

smaller areas of the algorithm contain various levels of parallelism. In order

to exploit these areas, the correct programming paradigms must be matched

with the corresponding levels of parallelism. When searching for these areas of

parallelism, it is important to analyze the amount of computation time spent in

an area, whether or not the code diverges, and what dependencies need to be

maintained.

Performing parallelization optimizations on algorithms generally limits the

flexibility and portability of the algorithm. The optimizations made are based

largely on the hardware available. This leads to an optimized algorithm requiring

a specific set of hardware. The GenSel algorithm exhibits both fine-grained and

coarse-grained areas of parallelism, therefore a heterogeneous compute solution

has been implemented, utilizing both CPU threading and GPU computing. This

thesis will focus primarily on the GPU optimizations used in the solution. The

hardware used in these optimizations is discussed further in Chapter 7.

GPUs are extremely effective when an algorithm exhibits areas of data level

parallelism with no divergence [9]. The thousands of cores available on modern

GPUs allows for very high levels of throughput on large computations. In the

CUDA programming model, each thread on the GPU is organized into a warp.

11

Each of these warps executes the same instruction at the same time. In the case

of branches or other forms of divergence, some threads in the warp will not be

doing any useful work.

In order to help increase the utilization of a GPU, CUDA includes a feature

called streams. Every kernel call to a device is sent over a stream, and each

device can have multiple streams associated with it. Kernels and other memory

functions that are sent down the same stream are guaranteed to be executed in

order, but there is no execution order guarantee for kernels sent down different

streams. A major advantage of using streams is that, hardware permitting, this

allows the GPU to run multiple kernels concurrently. Additionally, this allows

for kernels and memory operations to be executed asynchronously from the CPU,

allowing it to continue performing useful tasks while the GPU is executing its

kernels.

The ability to execute kernels and perform memory transfers asynchronously

allows for maximizing GPU utilization without hindering the CPUs ability to

work. One of the biggest issues with using the GPU is the data transfer latency.

By asynchronously executing these transfers ahead of when they needed on the

GPU, most of this transfer latency can be hidden, vastly improving the latency

of GPU computation.

Additionally, it is important to re-analyze the system’s bottlenecks after an

optimization is made. In some cases, the optimizations will speedup one section

of an algorithm, shifting the bottleneck to a different component. In the case of

this implementation, even after optimizing computations by parallelizing them

on the GPU, the bottleneck still existed in the same area. To remedy this, the

implementation was extended to support multiple GPUs, which helps further

reduce the bottleneck.

12

Chapter 5

Algorithm Overview

This chapter contains a brief description of the algorithms being used in GenSel.

Algorithm 1 shows the original algorithm in pseudo code.

Algorithm 1 Initial Bayes Algorithm

1: for each marker do

2: compute probability marker is included in model

3: if marker is included in model then

4: compute mean genetic effect

5: compute error prediction variance

6: include marker in model

7: else

8: remove marker from model

9: end if

10: end for

It is important to understand the basics of what occurs within each iteration

of the MCMC algorithm. Without this, many of the considerations and design

decisions made in later sections of the thesis may not make sense. In the initial

algorithm, a single for loop iterates through each genetic marker that is being

analyzed. For each marker, the probability that it should be included in the

current model is computed. The statistics behind this are covered further in [6],

but for the purposes of this discussion, the focus will be on the large dot product

13

computation between observations of the genetic marker and the current state

of the statistical model. This probability is then compared to a threshold value

in the if statement. If the probability surpasses the threshold, the marker is

included in the model, which in turn updates the current model, which is then

used in the next marker’s probability computation. If the probability does not

surpass the threshold then the marker is not included in the model. This leads

to what will be referred to as a sporadic loop dependency.

5.1 Increasing Data Level Parallelism

The statistics behind the inclusion of markers in the statistical model cause the

true branch to execute about once every 10 iterations on average. While this still

does not allow for the entire loop to be parallelized, it does allow for chunks of

the loop to be computed together to improve performance. Algorithm 2 shows a

restructured algorithm that allows for chunks of data to be computed in parallel.

In the new algorithm, a chunk of probabilities are computed at the same time.

Once the probabilities are computed, each marker in the chunk is tested to see

if it would have surpassed its threshold. If one of the markers is to be included

in the model, which would in turn require the model to be updated, that marker

is considered the terminal marker of the chunk. All of the computations in the

chunk up to the first terminating marker are valid, while the rest are discarded

as their dot products are invalid. The included marker is added to the model,

and the process repeats itself until every marker has ben evaluated. By carefully

selecting the chunk size, it is possible to use about 85% of the computations on

average. Additional details on the precomputing of dot products can be found in

14

Algorithm 2 New Bayes Algorithm

1: while markers processed < total number of markers do

2: for each marker in chunk do

3: compute probability marker is included in model

4: if marker is to be included in model then

5: set as terminating marker for chunk

6: end if

7: end for

8: begin precomputing next chunk’s dot products

9: initiate observation data transfer to GPUs

10: for each marker before terminal marker do

11: if marker is to be included in model then

12: compute mean effect

13: compute error prediction variance

14: include marker in model

15: else

16: remove marker from model

17: end if

18: end for

19: update markers processed

20: advance chunk to terminal marker

21: end while

15

Section 6.1 and Section 6.3 and additional information on selecting chunk sizes

is available in Section 8.1.1.

16

Chapter 6

Implementation

This chapter contains an in-depth discussion of the various GPU optimizations

used to improve the runtime of GenSel.

6.1 Parallelizing Dot Product Computation

The dot product computation that is used to determine whether or not a marker

is to be included in the model is the primary focus of the optimizations performed

in this chapter. The dot products being computed scale with the number of ob-

servations in the analysis, which can range from 1,000 to 1,000,000 observations.

The GPU is a powerful tool when attempting to do linear algebra operations.

The dot product operation, for instance, consists of many small operations that

are completely independent of each other. This is well suited for the GPU as it is

able to leverage the massive number of cores available to perform these operations

simultaneously.

This implementation leverages the cuBLAS linear algebra library [10], which

provides an optimized CUDA dot product implementation. Unfortunately, this

library is not a simple plug and play replacement for a CPU dot product im-

plementation. Data must still be transferred across the PCIe bus to and from

the GPU. Transferring the data across the bus can cause major slow downs if

not done correctly. Efficient and well placed memory transfers are the key to

17

the speedups seen in this optimization. Without hiding memory transfers, the

latency of each dot product would be significantly increased, most likely resulting

in a slowdown for any dataset. Sections 6.4, 6.5, and 6.6 go into more detail on

the memory management used in this implementation.

6.2 Hiding Memory Transfers

In most applications that utilize the GPU, a large portion of time is spent trans-

ferring memory back and forth between the CPU and GPU. There are several

known techniques for amortizing this cost. One option is using asynchronous

memory transfers. These types of transfers return control to the CPU immedi-

ately, instead of waiting for the transfer to complete. This allows the CPU to do

additional work while the data is transferring to the device. The GPU can also

be performing work while data is being transferred. Additionally, three of the

four GPUs used in this paper have two copy engines, enabling them to transfer

data to and from the CPU simultaneously.

In this implementation, all memory transfers occur asynchronously to overlap

data transfer with execution as much as possible. To minimize or eliminate the

amount of time that the CPU is waiting on the GPU or vice versa, they are

performed as early as possible. This optimization operating in conjunction with

the data buffering technique discussed in Section 6.5 all but eliminate the time

the GPU is waiting for data to perform its calculations. The initial transfer of

data to the GPU is done during the setup phase of the GenSel application. All

subsequent transfers occur while the CPU is updating the current model and the

GPU is precomputing the next chunk’s dot products.

18

6.3 Precomputing Dot Products

The purpose of chunking genetic markers together, as discussed in Section 5.1, is

to allow multiple dot product computations to be performed at the same time,

which can be done quickly by leveraging the GPU. In order to fully benefit from

the high throughput of the GPU, the high latency of the system’s bus must also

be taken care of. Instead of sending the data to the GPU, waiting for the GPU

to compute the dot products, and then shipping the results back to the CPU

when a dot product result is requested, this implementation precomputes the

next chunk’s dot products as soon as possible. As can be seen in Algorithm 2,

this occurs directly after the first for loop, on line 8. At the completion of this

loop, the terminating marker of the chunk is known. Any markers in the chunk

after the terminating marker are discarded, the model attribute vector on the

GPU is immediately updated, and the GPU begins computing the next chunk of

dot products, transferring the results back as soon as they are complete. Since

this is all done asynchronously, the CPU is free to continue on to the bottom

for loop as the GPU is computing the next chunk’s dot products. Then, on the

next iteration of the while loop, when the dot products for the next chunk are

requested, the CPU does not have to wait on the GPU and data transfers, as the

computations should already be complete. More discussion on tuning the chunk

size is given in Section 8.1.1.

6.4 Pipeling Kernel Calls

Making sure the GPU is saturated with work is extremely important for maxi-

mum efficiency. Traditionally, a single GPU kernel is launched at a time. With

the addition of asynchronous calls and streams, it is possible to execute multiple

19

kernels at once. In CUDA, a stream allows a queue of jobs to be created for

a device. GPU operations that are launched in a stream are guaranteed to be

executed in order, and a device can execute tasks from multiple streams concur-

rently. This implementation launches each dot product of a chunk in a separate

stream. This allows for maximum saturation of the GPU as it is given a steady

stream of work as opposed to executing a dot product and returning control to

the CPU, just to have the CPU launch the next dot product kernel. At a high

level, this can be thought of as a pseudo pipeline for the GPU. Ultimately, this

reduces the time wasted between dot product kernels and considerably improves

the latency for each chunk of dot products to be computed. While it is possible

to create a specialized CUDA kernel that can compute a chunk size worth of dot

products, this method is less flexible and would require code re-writes for changes

to the size of each chunk or the underlying hardware in the system. Instead, by

leveraging CUDA streams, more of the dot product concurrency is handled by

the hardware itself.

6.5 Circular Buffering of Data on the GPU

As discussed in Section 6.2, one of the largest drawbacks to GPU computing is

amount of time it takes to transfer data across the bus. Optimally, all of the

data needed for any GPU operations would be transferred to the GPU ahead of

time, allowing kernels to begin executing as soon as possible, without awaiting

memory transfers. The first iteration of this implementation contained a single

bulk data transfer of all the observation data to the GPU at the beginning of

the program. This allowed for excellent performance as the only data transfers

needed were the occasional update of the statistical model on the GPU and the

dot product results. However, as the input data for GenSel becomes large, this

20

implementation will quickly fail. For reference, the size of the observation matrix

can grow to about 40 GB of data at 1,000,000 observations and 10,000 genetic

markers, which is only a fraction of the eventual expected data. While compute

class GPUs tend to have much larger amounts of memory than desktop class

GPUs, neither are anywhere near the 40 GB or more required by GenSel.

To deal with this issue, this implementation instead uses a circular buffer

to store observation data on the GPU. The size of this buffer is defined as the

chunk size multiplied by a multiplier. This multiplier must be large enough to

allow each observation vector to be completely transferred to the GPU before it

is needed in the dot product computation. This allows for the benefits of already

having the necessary data on the GPU with a much smaller memory footprint.

Further analysis on tuning the size of the circular buffer can be found in Section

8.1.3.

Management of the circular buffer is done through a separate stream. All of

the data transfers to the GPU are done in this stream. At the beginning of each

iteration of the MCMC chain, the circular buffer is filled with the first n values,

where n is the total size of the buffer. Due to this, it is important to ensure that

the buffer is correctly sized to avoid extra initial delays as the buffer is initially

filled at the beginning of each MCMC iteration. Once the terminating marker

of the chunk is found, each marker up to and including the terminating marker

is considered consumed, and the next values are sent to take their place in the

buffer. The advantage of using a separate stream for transferring data is that

the GPU can facilitate the data transfer at the same time as it is executing other

kernels.

Figure 6.1 provides a visual for the circular data buffer. In this example, the

chunk size is set to six and the chunk size multiplier is set to five, leading to a 30

21

Figure 6.1: GPU memory layout illustrating how data is stored a circular data

buffer

slot data buffer on the GPU. If the first five entries of the buffer are consumed,

they would be replaced by the observation vectors for markers 30-34. As can be

seen, this allows for much more efficient memory usage on the GPU.

6.6 Multi-GPU and Striping

Executing a batch of dot product computations on the GPU scales extremely

well when additional GPUs are added to the system. This will allow more dot

products to be computed in a shorter amount of time by distributing the compu-

tations across the GPUs. Due to the flexibility and design decisions discussed in

the previous sections, additional GPUs can be easily leveraged for massive per-

formance gains. While additional considerations must be made to accommodate

multiple GPUs, the implementation can largely remain the same.

For starters, stream data structures must be capable of scaling to multiple

devices. This includes an individual data stream for each GPU, and streams for

each dot product that needs to be computed, which is based on the chunk size.

The simplest way to do this is a 2D array of streams, where the x-dimension is

22

Figure 6.2: Striped memory layout for multiple GPUs

the number of compute streams per GPU and the y-dimension is the number

of GPUs. Since there is a known maximum for how many dot products will be

executed on each GPU for a given chunk size, only a set number of compute

streams must be opened to each GPU. If, for example, three GPUs are in use

and the chunk size is six, only two compute streams are required. When each

dot product kernel is launched, a stream associated with the GPU containing the

necessary observation vector must be chosen. This can easily be done by using

modulo arithmetic, as the observation vectors are distributed consistently across

the GPUs. Observation data streams can be organized and used in the same

manner as the computation streams.

Next, the circular buffer design must be slightly altered. Since each GPU

will only be computing the dot product for a portion of the current chunk, each

GPU only needs the observation data for a fraction of the total observations.

This allows us to stripe the data across the GPUs in the system. Additionally,

the fact that observations will be consumed in order allows the implementation

23

Figure 6.3: Circular buffer observation vector replacement on multiple GPUs

to naturally load balance across the GPUs. Figure 6.2 provides an example of

how data is striped across the GPUs. In this example, the system contains three

GPUs, each of which are holding a third of the observation vectors for each

marker. Figure 6.3 illustrates how observation vector replacement works in the

multi-GPU circular buffer design. In this example, the chunk size is set to six and

the multiplier is set to five. If, after computing the first chunk’s dot products,

the first four observation vectors are to be consumed, the observation vectors

for markers zero through three would be replaced, on their respective GPUs,

with the observation vectors for markers thirty through thirty-three. Then, the

dot products for the next chunk (i.e., for markers four through nine) would be

computed. As can be seen, no matter how much of a chunk is consumed, the

next chunk will be distributed evenly across the GPUs, unless there is not a full

chunk’s worth of observations remaining. In this case, the load is still distributed

as best as possible. Managing the data in this manner also helps further reduce

the memory footprint on each GPU, as the space needed is divided by the number

of GPUs.

The additional performance improvements gained from leveraging multiple

GPUs is well worth the slightly more complicated GPU initialization and memory

management. These extensions are also fully scalable to any number of GPUs,

24

including a single GPU. Ultimately, this allows more dot products to be computed

in the same amount of time, and allows for larger chunk sizes to be used without

a negative impact on performance.

25

Chapter 7

Experimental Setup

7.1 Test System

The results gathered by this thesis were all performed on one test system. This

system contains two Intel Xeon E5-2650 CPUs, each of which contains 8 phys-

ical cores. Both processors are clocked at 2.00 GHz and support Intel’s Hyper-

Threading technology. This system also contains 64 GB of RAM. In addition,

the system also contains 4 GPUs. A majority of the tests were done using the 3

compute class cards in the system, which includes a NVIDIA Tesla K40 and two

NVIDIA Tesla K20Xs. The Tesla K40 GPU has 2,880 cores clocked at 745 MHz

and 12 GB of GDDR5 of memory, while the Tesla K20X GPUs have 2,688 cores

clocked at 732 MHz and 6 GB of GDDR5 memory. To demonstrate scalability,

the fourth GPU in the system was also used to perform a four GPU run. This is

a GeForce GTX TITAN Black, which contains 2,880 cores clocked at 889 MHz,

and 6 GB of GDDR5 memory. The four GPUs are connected to rest of the sys-

tem via two PCI buses. The Tesla K40 and GTX TITAN Black share one bus,

and the two K20Xs share the other. This can lead to some additional bandwidth

congestion when using multiple GPUs that are on the same bus.

All source code used in these experiments were compiled using GCC version

4.8.2 and CUDA 6.0. The test system was running Arch Linux with version 3.14.0

of the Linux kernel, and Nvidia driver version 334.21.

26

7.2 Test Data

The purpose of these optimizations is to help GenSel accommodate the larger

quantities of data that are expected to be available in the near future. In or-

der to perform these tests before this data is available, simulated genotypic and

phenotypic data are used instead. A data generator has been created that can

simulate datasets of any number of genetic markers and observations. This allows

for the testing of a number of different dataset sizes. To keep runtimes within

reasonable bounds, the number of genetic markers simulated has been limited to

10,000 markers.

7.3 Reference Implementation and Validation

The initial implementation that only utilizes the CPU was developed with the

Eigen library [5]. This library is highly optimized and is one of the fastest lin-

ear algebra libraries available, taking advantage of vectorized instructions, cache

optimizations, and loop unrolling.

For each dataset tested, both the initial implementation and the optimized

implementation were run, and the results of both were compared for validation.

In addition, timing results for both algorithms were stored. The recorded timing

data only includes the runtime of the algorithm, file I/O is excluded from the

timing.

27

Chapter 8

Results

This chapter of the thesis presents the results of the optimizations made to

GenSel. Any speedup results given in this chapter are the speedup of the opti-

mized algorithm relative to the initial CPU only implementation that uses Eigen.

The timing results used to compute these speedups only contain the time for the

algorithm to run, and therefore do not include file read in time. The times do

however contain all of the bus transfers between the CPU and GPU, as well as

the set up needed for the GPU. Unless otherwise stated, all of the results shown

in this chapter were done with the three Tesla class GPUs, a chunk size of six

and a buffer size of four chunks.

Figure 8.1 shows the overall speedup of the optimized implementation over

the initial implementation. The datasets tested range from 1,000 to 1,000,000

observations, and the number of genetic markers ranges from 500 to 10,000. As

discussed earlier, the reason for these cutoffs is to keep the runtimes reasonable.

There are no actual limitations in the algorithm, which can easily scale to more

observations and genetic markers. As can be seen, the crossover point is at about

150,000 observations, and the best case speedup is about 1.84.

The similar shapes of the curves in Figure 8.1 illustrate that the optimiza-

tions made scale primarily with the number of observations in the model. This

also means that increasing or decreasing the number of genetic markers does

28

Figure 8.1: Overall speedup with varied number of markers

not really affect the performance of the optimizations. This occurs because the

chunking process that takes place in the optimized algorithm essentially decreases

the number of iterations required to compute each link of the MCMC chain, and

by shrinking the time it takes to compute each link, the chain can be computed

in a much shorter amount of time. This is important because the number of

observations is expected to continue to rise, but the number of genetic markers

being analyzed is expected to eventually decrease as the more important genetic

markers for a given trait are isolated.

For perspective, the actual runtimes for the 500 marker dataset is shown in

Table 8.1. The runtimes scale in a roughly linear manner for the number of

genetic markers (e.g., the 1000 marker runtimes will take about two times as

long).

29

Number of Observations CPU Runtime (s) GPU Runtime (s) Speedup

1,000 14 1,284 0.01

50,000 797 1,692 0.47

100,000 1,579 2,493 0.63

200,000 3,184 3,316 0.96

300,000 4,761 3,855 1.24

400,000 6,375 4,678 1.36

500,000 7,920 5,435 1.46

1,000,000 15,653 9,850 1.59

Table 8.1: Runtimes for 500 marker data set

8.1 Tuning

In high performance computing, tuning an application can make or break an

optimization. It is crucial to tailor the implementation to the system it is running

on. To make tuning the application easier, the optimizations have been designed

to allow easy tweaking without changing any code. The primary tuning variables

for these optimizations are: the chunk size, the number of GPUs, and the buffer

size on each GPU.

8.1.1 Tuning the Chunk Size

The chunk size is one of the most critical tuning variables. If the chunk size is set

to be too large, a larger portion of each chunk will need to be discarded. On the

other hand, if the chunk size is set to be too small, little benefit will come from

using the system, and the ability to leverage multiple GPUs will be diminished.

30

Figure 8.2: Effect of different chunk sizes on speedup

When tuning the chunk size, the number of GPUs used is also important to

consider. If the chunk size does not divide evenly amongst the GPUs, some

GPUs will be sitting idle while others are working, leaving room for additional

performance gains.

Figure 8.2 shows the performance effects of changing the chunk size. These

results were collected using three GPUs, which is why the chunk size scales in

multiples of three. As the results show, selecting a chunk size of 6 is the best

for the test system. It is also important to note that the next the best chunk

size is 3 as opposed to 9. This is due to the amount of each chunk that needs

to be discarded, which should be minimized if possible. In general, it is best to

set the chunk size so that the GPUs can compute their workloads and return

31

their results in roughly the same time it takes for the CPU to get through the

bottom loop of the algorithm. Based on these results, the test system is capable

of computing whether or not two observations should be included in the model

per GPU in this amount of time.

8.1.2 Tuning the Number of GPUs

The number of GPUs to be used when running GenSel is mostly limited by the

system itself. GPUs are specialized hardware, and many systems do not contain

more than one. For this reason, the optimizations made are very flexible and

allow the user to easily configure the number of GPUs, as well as, which GPUs

to use.

Figure 8.3 shows the effect of running GenSel with multiple GPUs. All runs

were performed on the same system, the number of markers was set to 500, and

the chunk size was set to 6 for all runs except the four GPU run, where the chunk

size was set to 8. The single GPU run uses the Tesla K40, the two and three

GPU runs add one and two Tesla K20x cards respectively, and the four GPU runs

use all of the system’s GPUs, including the GTX TITAN Black. The speedups

improve with the addition of each GPU, which is expected as the same amount

of work can be compute faster with multiple GPUs. Additionally, the lowered

crossover point is also nice as it allows for speedups at a much lower number of

observations.

As can be seen in Figure 8.3, there is a large gap between the the speedups

of the 2 and 3 GPU runs. To further investigate this issue, the order of the

GPUs was changed. In the first run, the order was Tesla K40, Tesla K20x, Tesla

K20x, and TITAN Black. The ordering of the GPUs was changed to Tesla K20x,

32

Figure 8.3: Effect of scaling the number of GPUs utilized on speedup

Tesla K20x, Tesla K40, and TITAN Black. The results of this run can be seen

in Figure 8.4. The reordering of GPUs has little effect on the speedups achieved

by 2, 3, and 4 GPUs, but has a negative impact on the speedups of the single

GPU runs. This is most likely caused by the K20x being a weaker card than

the newer K40. These results show that the culprit of the speedup gap is the

workload each GPU has in a given chunk computation. In the single GPU runs,

the GPU is computing 6 dot products for each chunk, which is causing the CPU

to wait for the GPU when it needs the dot product results. On the 2 and 3 GPU

runs, each GPU is computing 3 and 2 dot products respectively. This drastically

reduces the amount of time the CPU spends waiting for the dot product results

from the GPU. On the 4 GPU run, the chunk size is set to 8, allowing for even

spreading of the workload, which also has each GPU computing 2 dot products

for each chunk. This means that the CPU is effectively waiting the same amount

33

Figure 8.4: Effect of scaling the number of GPUs utilized on speedup with re-

ordered GPUs

of time for each chunk of dot products to be computed in the 3 and 4 GPU runs,

as each GPU is computing two per chunk. By having a chunk size of 8, the 4

GPU implementation is capable of consuming more markers per chunk than the

3 GPU implementation, which gives it a greater speedup.

8.1.3 Tuning the buffer size on each GPU

The buffer size that is used on each GPU can have a large effect on the algorithm’s

performance. If this buffer is not large enough, the data transfers between the

CPU and GPU will not be hidden, and will cause the GPUs to idle while the

memory transfers complete. The buffer size also cannot be set too high. The

reason that the buffer is needed in the first place is the limited memory available

34

on each GPU. The ideal setting for the buffer size is just large enough to mask

the data transfers from the CPU to the GPU. This will largely be dependent on

the system in use. While setting the buffer size too high will not have a major

negative impact on performance, it will cause a slight performance loss as the

initial data transfer will be larger for each iteration in the MCMC chain.

Figure 8.5 shows the speedups obtained by using different buffer sizes, specif-

ically two, three, four, and five times the chunk size, which in these runs was set

to six. These results show that a buffer size multiplier of four is the best, meaning

it allows data transfers to complete before the data is needed, but is not so large

that an excess amount of data must be transferred at the start of each MCMC

iteration. This graph also shows that a buffer size larger than what is needed is

worse than one that is smaller. This may be true with a small number of markers,

500 in these data runs, but may not be true in data runs with a larger number of

markers. This is because in data runs with smaller marker counts, the excessive

initial start up cost is a larger component of the MCMC iteration than the small

performance losses that occur when the GPU is waiting on memory transfers.

With larger marker counts, the initial transfer time will remain constant, but the

net performance loss that occurs for each chunk transfer will increase linearly

with the marker count. This goes to show that tweaking the buffer size can have

a great effect on performance and needs to be tuned for every system.

35

Figure 8.5: Effect of changing the buffer size multiplier

36

Chapter 9

Future Work

As with all optimized algorithms, there is always more that can be done to

further improve performance. The optimizations presented in this thesis show

good performance improvements for large datasets, but take a performance hit for

smaller datasets. In the future, extending the implementation to automatically

decide which algorithm is more appropriate to run for the given input will yield

good performance for all input cases. This will also prevent the user from having

to manually decide which algorithm to run. In addition, the decision on which

algorithm to run can be made more dynamic by analyzing the runtimes for a set of

inputs. This will further improve the user’s experience and prevent code changes

when a different system is used. Along with determining which algorithm to run,

some form of automatic tuning can also be implemented. This would set the

chunk size and chunk size multiplier to the most optimal settings automatically,

further reducing the amount of work done by the user.

Optimizing GenSel for a cluster may also yield performance gains. Many mod-

ern clusters contain GPUs on each node, and an approach like this would provide

opportunities to leverage fine-grained data level parallelism, coarse-grained data

level parallelism, and task-level parallelism. Each of these forms of parallelism

could optimize a different aspect of GenSel, ultimately leading to massive perfor-

mance improvements.

37

GenSel contains many other opportunities for improvements. The optimiza-

tions made in this thesis do not change the underlying statistical analysis being

performed. In the future, other statistical algorithms that perform a similar

analysis but are easier to parallelize can be used instead of Gibbs sampling. Al-

tering the algorithm used to a block Gibbs sampler may provide an opportunity

to parallelize a larger chunk of the algorithm without sacrificing accuracy in the

statistical model.

Another potential area for improvement is better load balancing on multi-

GPU implementations. Currently, the memory layout and distribution among

the GPUs handles the even spread of work across the GPUs. In the system used

for testing, this is a completely adequate form of load balancing as the GPUs

are very similar in compute power and are able to handle their workloads in

very similar amounts of time. In other systems, this may not be ideal. Some

systems may have a much larger variance in their hardware, which could include

multiple GPUs that are of differing performance. In these cases, the work should

be distributed in a manner such that more work is being directed to the more

powerful GPUs. While an implementation for this type of system may not be

quite as flexible, it will allow the for the highest throughput and lowest latency,

which is important in high performance computing.

Finally, the current implementation can be expanded to utilize different de-

vices. Currently, the system is confined to NVIDIA GPUs. Future iterations can

provide the ability to run on GPUs from other manufacturers, as well as, other

high performance computing solutions, such as Intel’s MIC. Memory layouts and

other performance optimizations made in this thesis could largely be applied to

both of these paradigms. This would further improve the usefulness of these

38

optimizations by allowing them to be used on whatever hardware a system may

have available.

39

Chapter 10

Conclusion

Identifying areas of MCMC algorithms that contain parallelism and applying the

correct programming paradigm can lead to strong performance improvements. In

the case of a loop that contains a sporadic dependency, chunking portions of the

computation together allows for portions of the loop to be parallelized.

However, it is important to note that careful tuning is required to achieve

these performance benefits. More specifically, identifying the correct number of

iterations to chunk together is crucial. Without this, either too much data will be

discarded, or the loop will execute in an almost sequential fashion. Additionally,

creating the correct buffer size on each GPU can make or brake the optimization.

It is necessary that the GPU is never waiting for the data it needs to compute,

and a properly sized data buffer will prevent this from occurring. In addition, it

is also important to note that each system will require a different set of tuning

parameters.

Leveraging the computing power of GPUs allows for the optimization of

MCMC based algorithms using Gibbs sampling, or other statistical algorithms

that contain sporadic loop dependencies. By adding multi-GPU support to

GenSel, speedups of up to 1.84 are possible for large datasets.

40

Bibliography

[1] Benjamin Block, Peter Virnau, and Tobias Preis. Multi-GPU accelerated

multi-spin Monte Carlo simulations of the 2D Ising model. Computer Physics

Communications, 181(9):1549–1556, 2010.

[2] Long Chen, O. Villa, S. Krishnamoorthy, and G.R. Gao. Dynamic load bal-

ancing on single- and multi-GPU systems. In Parallel Distributed Processing

(IPDPS), 2010 IEEE International Symposium on, pages 1–12, April 2010.

[3] Dorian J Garrick, Jeremy F Taylor, Rohan L Fernando, et al. Deregressing

estimated breeding values and weighting information for genomic regression

analyses. Genet Sel Evol, 41(55):44, 2009.

[4] Daniel Gianola and Rohan L Fernando. Bayesian methods in animal breeding

theory. Journal of Animal Science, 63(1):217–244, 1986.

[5] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,

2010.

[6] David Habier, Rohan L Fernando, Kadir Kizilkaya, and Dorian J Garrick.

Extension of the Bayesian alphabet for genomic selection. BMC bioinfor-

matics, 12(1):186, 2011.

[7] Anthony Lee, Christopher Yau, Michael B Giles, Arnaud Doucet, and

Christopher C Holmes. On the utility of graphics cards to perform mas-

sively parallel simulation of advanced Monte Carlo methods. Journal of

Computational and Graphical Statistics, 19(4):769–789, 2010.

41

[8] Adrian E Raftery, Steven Lewis, et al. How many iterations in the Gibbs

sampler. Bayesian statistics, 4(2):763–773, 1992.

[9] NVIDIA Corporation. CUDA C Programming Guide. http://docs.

nvidia.com/cuda/cuda-c-programming-guide/, February 2014.

[10] NVIDIA Corporation. CUDA Toolkit Documentation – cuBLAS. http:

//docs.nvidia.com/cuda/cublas/, February 2014.

[11] Derek A Roff and Paul Bentzen. The statistical analysis of mitochondrial

DNA polymorphisms: chi 2 and the problem of small samples. Molecular

Biology and Evolution, 6(5):539–545, 1989.

[12] Marc A Suchard and Andrew Rambaut. Many-core algorithms for statistical

phylogenetics. Bioinformatics, 25(11):1370–1376, 2009.

[13] Marc A Suchard, Quanli Wang, Cliburn Chan, Jacob Frelinger, Andrew

Cron, and Mike West. Understanding GPU programming for statistical

computation: Studies in massively parallel massive mixtures. Journal of

Computational and Graphical Statistics, 19(2), 2010.

[14] Jeffrey S Vetter, Richard Glassbrook, Jack Dongarra, Karsten Schwan, Bruce

Loftis, Stephen McNally, Jeremy Meredith, James Rogers, Philip Roth, Kyle

Spafford, et al. Keeneland: Bringing heterogeneous GPU computing to the

computational science community. Computing in Science and Engineering,

13(5):90–95, 2011.

[15] Canqun Yang, Feng Wang, Yunfei Du, Juan Chen, Jie Liu, Huizhan Yi,

and Kai Lu. Adaptive optimization for petascale heterogeneous CPU/GPU

computing. In Cluster Computing (CLUSTER), 2010 IEEE International

Conference on, pages 19–28. IEEE, 2010.

42

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cublas/
http://docs.nvidia.com/cuda/cublas/

[16] Weihang Zhu and Yaohang Li. GPU-accelerated Differential Evolutionary

Markov Chain Monte Carlo Method for Multi-objective Optimization over

Continuous Space. In Proceedings of the 2Nd Workshop on Bio-inspired

Algorithms for Distributed Systems, BADS ’10, pages 1–8, New York, NY,

USA, 2010. ACM.

43

	List of Tables
	List of Figures
	Introduction
	Background
	Statistical Analysis
	CUDA

	Related Works
	Statistical Analysis of Genetics
	MCMC on the GPU
	Multi-GPU Computing
	Heterogenous Computing

	Methodology
	Algorithm Overview
	Increasing Data Level Parallelism

	Implementation
	Parallelizing Dot Product Computation
	Hiding Memory Transfers
	Precomputing Dot Products
	Pipeling Kernel Calls
	Circular Buffering of Data on the GPU
	Multi-GPU and Striping

	Experimental Setup
	Test System
	Test Data
	Reference Implementation and Validation

	Results
	Tuning
	Tuning the Chunk Size
	Tuning the Number of GPUs
	Tuning the buffer size on each GPU

	Future Work
	Conclusion
	Bibliography

