
GPUHELIB AND DISTRIBUTEDHELIB: DISTRIBUTED COMPUTING VARIANTS

OF HELIB, A HOMOMORPHIC ENCRYPTION LIBRARY

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Ethan Frame

June 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32434236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


c© 2015

Ethan Frame

ALL RIGHTS RESERVED

ii



COMMITTEE MEMBERSHIP

TITLE: GPUHElib and DistributedHElib:

Distributed Computing Variants of HElib,

a Homomorphic Encryption Library

AUTHOR: Ethan Frame

DATE SUBMITTED: June 2015

COMMITTEE CHAIR: Zachary N J Peterson, Ph.D.

Assistant Professor of Computer Science

COMMITTEE MEMBER: John Clements, Ph.D.

Associate Professor of Computer Science

COMMITTEE MEMBER: Robert Easton, Ph.D.

Professor of Mathematics

iii



ABSTRACT

GPUHElib and DistributedHElib: Distributed Computing Variants of HElib, a

Homomorphic Encryption Library

Ethan Frame

Homomorphic Encryption, an encryption scheme only developed in the last five years,

allows for arbitrary operations to be performed on encrypted data. Using this scheme, a

user can encrypt data, and send it to an online service. The online service can then per-

form an operation on the data and generate an encrypted result. This encrypted result is

then sent back to the user, who decrypts it. This decryption produces the same data as if

the operation performed by the online service had been performed on the unencrypted

data. This is revolutionary because it allows for users to rely on online services, even un-

trusted online services, to perform operations on their data, without the online service

gaining any knowledge from their data.

A prominent implementation of homomorphic encryption is HElib. While one is able

to perform homomorphic encryption with this library, there are problems with it. It, like

all other homomorphic encryption libraries, is slow relative to other encryption systems.

Thus there is a need to speed it up. Because homomorphic encryption will be deployed on

online services, many of them distributed systems, it is natural to modify HElib to utilize

some of the tools that are available on them in an attempt to speed up run times. Thus two

modified libraries were designed: GPUHElib, which utilizes a GPU, and DistributedHE-

lib, which utilizes a distributed computing design. These designs were then tested against

the original library to see if they provided any speed up.

iv



ACKNOWLEDGMENTS

Thanks to:

• Andrew Guenther, for uploading this template

• Dr. Easton and Dr. Peterson for proofreading drafts of this document and giving

valuable feedback.

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Gentry’s Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Second Generation Designs . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 FHE without Bootstrapping . . . . . . . . . . . . . . . . . . . . . 7

2.2 HElib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 HElib Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Parallel Computing on GPU . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Distributed Computing with OpenMPI . . . . . . . . . . . . . . . . 12

3 GPUHELIB DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Mapping from CPU to GPU . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 GPU Vector Management . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Overflow Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Addition Overflow Considerations . . . . . . . . . . . . . . . . . . 18

3.2.2 Subtraction Overflow Considerations . . . . . . . . . . . . . . . . 19

3.2.3 Multiplication Overflow Considerations . . . . . . . . . . . . . . . 21

3.3 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 CUDA Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



3.3.2 Overlapping Kernel Execution . . . . . . . . . . . . . . . . . . . . 26

3.3.3 2-Way Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.4 3-Way Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.5 Stream Management . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 DISTRIBUTEDHELIB DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Node Cluster Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Work Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Mapping from Dispatcher Node to Compute Nodes . . . . . . . . . 36

4.2.2 Compute Node Vector Management . . . . . . . . . . . . . . . . . 37

4.3 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Non-Blocking Send and Receive with OpenMPI . . . . . . . . . . 38

4.3.2 Syncing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Evaluation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Test Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2 HElib Timing Functions . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 GPU Testing Environment . . . . . . . . . . . . . . . . . . . . . . 46

5.2.2 Distributed Computing Testing Environment . . . . . . . . . . . . 46

5.3 GPUHElib Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 GPUHElib Circuit Level Run Times . . . . . . . . . . . . . . . . . 47

5.3.2 GPUHElib Function Level Run Times . . . . . . . . . . . . . . . . 49

5.3.3 GPUHElib Phase Level Run Times . . . . . . . . . . . . . . . . . 53

5.4 DistrubtedHElib Evaluation Results . . . . . . . . . . . . . . . . . . . . . 61

5.4.1 DistributedHElib Circuit Level Run Times . . . . . . . . . . . . . 61

5.4.2 DistributedHElib Function Level Run Times . . . . . . . . . . . . 66

5.4.3 DistributedHElib Distribute and Wait Run Times . . . . . . . . . . 71

5.5 Evaluation Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 GPUHElib Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Persistent Memory in GPU . . . . . . . . . . . . . . . . . . . . . . 81

vii



6.1.2 Full Operation Implementation . . . . . . . . . . . . . . . . . . . . 82

6.2 DistributedHElib Future Work . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 Distributed Memory on Compute Nodes . . . . . . . . . . . . . . . 82

6.2.2 Full Operation Implementation . . . . . . . . . . . . . . . . . . . . 83

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

APPENDICES

APPENDIX A KERNELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.1.1 Addition of two DoubleCRT objects . . . . . . . . . . . . . . . . . 89

A.1.2 Addition of a DoubleCRT object and a constant . . . . . . . . . . . 90

A.2 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.2.1 Subtraction of two DoubleCRT objects . . . . . . . . . . . . . . . 90

A.2.2 Subtraction of a DoubleCRT object and a constant . . . . . . . . . 91

A.3 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.3.1 Multiplication of two DoubleCRT objects . . . . . . . . . . . . . . 92

A.3.2 Multiplication of a DoubleCRT object and a constant . . . . . . . . 94

APPENDIX B VECTOR MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . 98

B.1 Device Vector Management . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.2 Compute Node Buffer Management . . . . . . . . . . . . . . . . . . . . . 99

APPENDIX C CONCURRENCY MANAGEMENT . . . . . . . . . . . . . . . . . 100

C.1 Device Stream Management . . . . . . . . . . . . . . . . . . . . . . . . . 100

C.2 Synchronization Management . . . . . . . . . . . . . . . . . . . . . . . . 101

viii



LIST OF TABLES

Table Page

5.1 Serial HElib circuit level run times (in seconds) . . . . . . . . . . . . . . 48

5.2 GPUHElib circuit level run times (in seconds) . . . . . . . . . . . . . . . 48

5.3 Serial HElib function level run times (in seconds) . . . . . . . . . . . . . 50

5.4 GPUHElib function level run times (in seconds) . . . . . . . . . . . . . . 50

5.5 GPUHElib Add phase level run times (in seconds) . . . . . . . . . . . . 54

5.6 GPUHElib Sub phase level run times (in seconds) . . . . . . . . . . . . . 55

5.7 GPUHElib Mul phase level run times (in seconds) . . . . . . . . . . . . 56

5.8 Serial HElib circuit level run times (in seconds) . . . . . . . . . . . . . . 62

5.9 DistributedHElib circuit level run times (in seconds) on 4 nodes . . . . . 62

5.10 DistributedHElib circuit level run times (in seconds) on 8 nodes . . . . . 63

5.11 DistributedHElib circuit level run times (in seconds) on 16 nodes . . . . . 63

5.12 Serial HElib function level run times (in seconds) . . . . . . . . . . . . . 67

5.13 DistributedHElib function level run times (in seconds) on 4 nodes . . . . 67

5.14 DistributedHElib function level run times (in seconds) on 8 nodes . . . . 67

5.15 DistributedHElib function level run times (in seconds) on 16 nodes . . . . 67

5.16 DistributedHElib distribute run times (in seconds) on 4 nodes . . . . . . 72

5.17 DistributedHElib sync run times (in seconds) on 4 nodes . . . . . . . . . 72

5.18 DistributedHElib distribute run times (in seconds) on 8 nodes . . . . . . 72

5.19 DistributedHElib sync run times (in seconds) on 8 nodes . . . . . . . . . 72

5.20 DistributedHElib distribute run times (in seconds) on 16 nodes . . . . . . 73

5.21 DistributedHElib sync run times (in seconds) on 16 nodes . . . . . . . . 73

ix



LIST OF FIGURES

Figure Page

2.1 HElib Type Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Data Mapping from CPU to GPU . . . . . . . . . . . . . . . . . . . . . 16

3.2 Moduli Mapping from CPU to GPU . . . . . . . . . . . . . . . . . . . . 16

3.3 Serial GPU Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Concurrent GPU Execution with 3 Streams . . . . . . . . . . . . . . . . 25

3.5 GPU 2-Way Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 GPU 3-Way Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Rolling Round Robin Example with More Nodes than Data Pieces . . . . 34

4.2 Rolling Round Robin Example with Less Nodes than Data Pieces . . . . 35

4.3 Data Mapping from Dispatcher to Compute Nodes . . . . . . . . . . . . 36

4.4 Moduli Mapping from Dispatcher to Compute Nodes . . . . . . . . . . . 37

5.1 Run Time Comparison at Circuit Level . . . . . . . . . . . . . . . . . . 48

5.2 Add Run Times Comparison at Function Level . . . . . . . . . . . . . . 50

5.3 Sub Run Times Comparison at Function Level . . . . . . . . . . . . . . 51

5.4 Mul Run Times Comparison at Function Level . . . . . . . . . . . . . . 52

5.5 Add Phase Level Run Times Comparison - Operation . . . . . . . . . . . 54

5.6 Add Phase Level Run Times Comparison - Memory . . . . . . . . . . . 55

5.7 Sub Phase Level Run Times Comparison - Operation . . . . . . . . . . . 56

5.8 Sub Phase Level Run Times Comparison - Memory . . . . . . . . . . . . 57

5.9 Mul Phase Level Run Times Comparison - Operation . . . . . . . . . . . 58

5.10 Mul Phase Level Run Times Comparison - Memory . . . . . . . . . . . . 59

5.11 Run Time Comparison at Circuit Level on 4 Nodes . . . . . . . . . . . . 62

5.12 Run Time Comparison at Circuit Level on 8 Nodes . . . . . . . . . . . . 63

5.13 Run Time Comparison at Circuit Level on 16 Nodes . . . . . . . . . . . 64

x



5.14 Add Run Times Comparison at Function Level . . . . . . . . . . . . . . 68

5.15 Sub Run Times Comparison at Function Level . . . . . . . . . . . . . . 69

5.16 Mul Run Times Comparison at Function Level . . . . . . . . . . . . . . 70

5.17 Add Third Level Run Times Comparison - Distribute . . . . . . . . . . . 73

5.18 Add Third Level Run Times Comparison - Sync . . . . . . . . . . . . . . 74

5.19 Sub Third Level Run Times Comparison - Distribute . . . . . . . . . . . 75

5.20 Sub Third Level Run Times Comparison - Sync . . . . . . . . . . . . . . 76

5.21 Mul Third Level Run Times Comparison - Distribute . . . . . . . . . . . 77

5.22 Mul Third Level Run Times Comparison - Sync . . . . . . . . . . . . . . 78

xi



CHAPTER 1

INTRODUCTION

In the last five years the design and development of a new encryption scheme that could

enhance the level of security on the internet has exploded. That encryption scheme is

known as Homomorphic Encryption.

First conceived over thirty years ago, and finally designed in 2009 by Craig Gentry,

homomorphic encryption is a revolutionary encryption scheme because it allows for com-

putation to be performed on encrypted data. This means that a user can encrypt their data,

and send it to a service. That service can then perform an operation, and send the en-

crypted result back. Upon decryption by the user, the result received will be exactly the

same as if the data had not been encrypted at all, and the operation had been computed on

the unencrypted data. The added benefit of this system however, is that the user data was

never known by the service, thus the user can be assured that their information remains

secret. By putting this encryption scheme on online services, user data can be passed from

online service to online service without the user being worried of their information being

known.

1



A few implementations of homomorphic encryption have been design in recent years.

One of the most prominent is HElib. This library however, like all homomorphic encryp-

tion libraries, is not currently in use because it suffers from slow run times. Thus, there is

a desire to speed it up.

Because the target audience for these schemes is online services (many of which are

designed as distributed systems), it makes since to try and modify HElib to take advan-

tage of these systems. Thus two modified libraries were designed in the hope they would

perform better than the original library. GPUHElib, which utilizes a GPU; and Distribut-

edHElib, which uses a distributed computing design, were both designed in the hope that

they would provide run time improvements over HElib.

Unfortunately, these modified libraries fail to provide any speedup, as we will show

later. These designs exhibit the same pitfalls that other distributed systems do. Mainly

memory transfer speeds are too slow, which cause huge slowdowns compared to the origi-

nal unmodified library. However there could be hope for them, given further work.

2



CHAPTER 2

BACKGROUND

2.1 Homomorphic Encryption

Homomorphic encryption is a form of encryption that allows computations to be per-

formed on ciphertexts, thus generating an encrypted result, which when decrypted matches

the result of operations performed on the plaintext. For example, the numbers 4 and 5

could be encrypted to A and B. Let C = A + B. When C is decrypted, its value will be 9. So

common operations, like addition and multiplication, can be performed on encrypted data,

and produce the same result as if the data was not encrypted in the first place. This is a

desired feature in encryption schemes, because it allows encrypted data to be passed from

online service to online service, each service performing operations on the data, without

the online service knowing what the data is.

Currently, for an online service to perform an operation for a user, the online service

must know what the data is. Thus any online service will know what data a user is giving

them. However with homomorphic encryption, an online service (even an untrusted on-

3



line service), can perform operations on user data, without the user being worried about

their data being known or exposed.

A fully homomorphic encryption (FHE) scheme has long been sought after [14]. For a

scheme to be fully homomorphic, any arbitrary operation must be able to be executed, and

still produce the correct results. It may seem like many operations need to be supported if

any arbitrary operation can be performed, but in reality a fully homomorphic scheme need

only support both addition and multiplication, as every other operation can be derived

from those two. Partially homomorphic encryption schemes, schemes that only support

one operation, have been known to exist since the 1970s. A few schemes that are known

to be partially homomorphic are Unpadded RSA, ElGamal, Goldwasser-Micali, Benaloh,

and Paillier. All of these schemes only support one operation, either addition or multipli-

cation, but not both. It took more than 30 years before a fully homomorphic scheme was

designed by Craig Gentry.

2.1.1 Gentry’s Design

Craig Gentry proposed the first fully homomorphic encryption scheme in 2009 utilizing

lattice-based cryptography [6]. His scheme supported both addition and multiplication,

from which any arbitrary operation could be derived.

Gentry started by designing what was called a somewhat homomorphic encryption

(SWHE) scheme. A SWHE scheme supports arbitrary operations, but could only com-

4



pute a limited number of operations. This is because the scheme uses a noise factor when

representing a ciphertext. When an operation is performed the noise in the representa-

tion grows. If the noise grows too large, then the ciphertext becomes incorrect when de-

crypted. Gentry then took this SWHE scheme and added bootstrapping, meaning it could

evaluate its own decryption circuit. This bootstrapping procedure allowed for the cipther-

texts to be “refreshed”, where the noise would be decreased, thus allowing for more op-

erations to take place. Finally Gentry proved that a bootstrappable SWHE scheme can be

made into a FHE scheme, by continually performing the bootstrapping procedure when

the noise reaches a certain limit.

Gentry’s scheme was the first construction of a FHE scheme, however impractical

when implemented [7], because the ciphertext size and computation time increased sharply

as the security level increased. It could take upwards of 30 minutes to compute operations

on a single bit, for large security levels. Numerous improvements [17, 15, 16, 8] were of-

fered to try to optimized the solution, however new techniques were required to produce a

much more efficient scheme, which created a second generation of designs.

2.1.2 Second Generation Designs

Many researchers worked to create a second generation of FHE schemes [4, 1, 13, 9].

These new schemes relied on the Learning with Errors (LWE) problem and all featured

much slower growth of the noise factor compared to Gentry’s original design. There were

5



two optimizations found during this time that lead to a breakthrough design: ciphertext

packing and modulus switching.

Ciphertext packing [2] is a technique that allows for multiple plaintexts to be en-

crypted and placed into a single ciphertext. With these new schemes based on the LWE

problem, the ciphertexts must be large in order to satisfy security concerns. These large

ciphertexts cause the operations being performed to be slow. When a single plaintext en-

crypts to a single large ciphertext, then it is evident that there will be a cost to efficiency.

By packing the ciphertexts, allowing a vector of plaintexts to be encrypted into a single

ciphertext, the cost to efficiency is almost negated. These ciphertexts can then be operated

on component-wise in a SIMD (single instruction, multiple data) fashion.

Modulus switching [5] is a technique that allows the noise present in a ciphertext to

be decreased without performing the bootstrapping operation. Each ciphertext in these

schemes is relative to a modulus, p. Given a ciphertext c mod p, one can transform it into

a ciphertext c’ mod p’, which will have a lower noise factor, without knowing the secret

key. By using modulus switching after every multiplication (the operation responsible

for the largest noise increase) and by choosing the moduli carefully, the noise factor after

multiplication will be unchanged. This technique allowed the largest modulus to grow

linearly with multiplicative depth, which was a large improvement over previous systems.

These techniques were discovered separately by different researchers, before they

were combined to create a single scheme, the Brakerski-Gentry-Vaikuntanathan (BGV)

6



scheme, which allowed for a FHE scheme that did not need bootstrapping.

2.1.3 FHE without Bootstrapping

The BGV scheme [3] combined the two techniques described above to create a FHE

scheme that did not need a bootstrapping operation in order to perform arbitrary oper-

ations. This was a breakthrough because the bootstrapping operation was the one that

cost the most run time in other similar schemes. Even though the scheme does not need

bootstrapping, the authors do have a bootstrapping procedure for this scheme, but it is

used as an optimization, not as a necessary component in making this scheme fully ho-

momorphic. This scheme also has a SIMD design, which will allow for the possibility of

speedup, seen in later chapters. This is the scheme that HElib is built off of.

2.2 HElib

HElib [11, 12, 10] is an open source implementation of the BGV scheme. It was devel-

oped by Shai Halevi and Victor Shoup in 2014, and is designed to be a very low-level

library intended for research purposes.

The intention of our work is to enhance the run time when performing operations in

this library. Thus the creation, encryption, and decryption of plaintexts and ciphertexts

was not examined, as those operations will likely occur on the users end, not on the online

service’s end. The design of the addition and multiplication operations are the areas fo-

7



Figure 2.1: HElib Type Hierarchy

cused on for this work. Before addressing the changes present in the modified libraries, it

is necessary to understand the current serial implementation of HElib.

2.2.1 HElib Design

Let ∗ be the operation being performed (here ∗ could stand for any of the operations, all

of them are handled similarly) and A and B be the ciphertexts being operated on. The exe-

cution of the operation A = A ∗ B requires a few steps.

A and B are stored as Ctxt objects in HElib. Figure 2.1 shows the type hierarchy for a

Ctxt object. Ctxt objects have one important variable, parts, a vector containing multi-

ple CtxtParts. These parts constitute the ciphertext. The operations supported by Ctxt

are the addition, subtraction, and multiplication of two Ctxt objects. Each of these oper-

ations use parts during the execution of the operation, thus the operations in CtxtPart

are called.

CtxtPart is an extension of the class DoubleCRT, which is where the operations are

implemented. Listing 2.1 is an excerpt from the function that performs the operations.

8



Listing 2.1: Add, Sub and Mul operations of two DoubleCRT objects

. . .

c o n s t I n d e x S e t& s = map . g e t I n d e x S e t ( ) ;

long phim = c o n t e x t . zMStar . getPhiM ( ) ;

f o r ( long i = s . f i r s t ( ) ; i <= s . l a s t ( ) ; i = s . n e x t ( i ) ) {
long p i = c o n t e x t . i t h P r i m e ( i ) ;

v e c l o n g& row = map [ i ] ;

c o n s t v e c l o n g& o t h e r r o w = (∗ o t h e r m a p ) [ i ] ;

f o r ( long j = 0 ; j < phim ; j ++) {
row [ j ] = fun . a p p l y ( row [ j ] , o t h e r r o w [ j ] , p i ) ;

}
}
. . .

As the index set is iterated over, the ith prime is extracted along with the ith row from

the maps. Even though the map is accessed like an array, it is an unordered map, with the

array access syntax for convenience. These rows are then iterated over, applying the oper-

ation to each element. This is where the SIMD design is occurring, a double for loop to

add, subtract or multiply two vectors together. This is where the modifications and possi-

ble run time speedups can occur by using distributed system techniques.

2.3 Distributed Systems

Distributed systems is a field of computer science that deals with computer systems per-

forming concurrent computation to achieve a goal. These systems can be as tight as a

9



single computer running multiple threads or as loose as a group (cluster) of computers

(nodes) connected via a message passing interface all over the world. What these systems

have in common is that they are all connected and working to achieve a single goal.

The benefit of using a distributed computing system is the possibility for concurrent

computation. Non-distributed computing systems are limited to only serial execution of

programs. This means that if, for example, the system were tasked with adding two vec-

tors together, it would have to loop over all entries one after the other and add each indi-

vidually. For large vectors, this could be time consuming. Each individual operation is

independent, and can therefore be performed at the same time. This is the purpose of a

distributed system. By partitioning the data, and assigning a portion of the work to each

node in the system, concurrent computation can be performed. For large vectors, this may

result in a speedup in the run time, because of the concurrent execution.

The caveat of using a distributed computing system is the possibility for large over-

head times, that can slow down computation. Time can be lost because of the added op-

erations needed to facilitate the concurrent computation. The data must be partitioned

and sent to the node that is performing the operation, which can cost time, if the means

of transfer between nodes is slow, because in the original serial design, this did not occur.

So for large vectors, it may be faster to perform the operation because of the concurrent

execution, however in order to be able to perform the concurrent execution, some setup is

required, that might cause the overall run time to be slower than the original serial execu-

10



tion. This is the trade off when working with distributed systems. Much work is done to

reduce the amount of overhead in distributed systems, but they all suffer from it.

Distributed systems can be classified into two categories: parallel computing or dis-

tributed computing. A parallel computing system allows for shared memory, meaning that

the processors all have access to a common memory which can be used to exchange infor-

mation between processes. A common example of parallel computing is a graphics pro-

cessing unit (GPU), because it is a single piece of hardware that has a common memory

with many processors operating at once. In distributed computing systems, each proces-

sor has private memory and a message passing interface is used to exchange information

between processes. A common example of this is the internet. Each computer attached to

the internet has its own private memory and uses message passing to communicate with

other machines on the internet. A common message passing interface is OpenMPI, which

allows for the creation and running of a distributed computing system.

2.3.1 Parallel Computing on GPU

GPUs were designed to manipulate images for output on a display. Because of this, their

design was such that they would perform operations in parallel over every pixel need-

ing to be manipulated. Each pixel, or piece of data, was given its own compute core, that

could be executed concurrently with every other compute core, which is how parallel ex-

ecution was achieved. Expanding beyond manipulating images, one can see that this ap-

11



proach to computation can be applied to any circuit where the input is discrete and the

same operation is applied to each piece of the input.

Going back to the example given earlier, each element in the vectors can be assigned

to a separate core. Then each core can be executed simultaneously, and the result will be

generated. For large vectors, a loop’s run time would increase as the size of the vector in-

creased. However, by using a GPU, the run time would be the same for any size vector

(because the operation being performed was always the same, and because all the cores

were executed at the same time). It makes no difference if 20 or 20,000 cores were ex-

ecuted, they would both take the same amount of time. This has allowed GPUs to be

used for many more purposes than just manipulating images, and in recent years to help

speedup the run times of SIMD algorithms.

2.3.2 Distributed Computing with OpenMPI

Distributed computing systems are a cluster of machines all linked through a message

passing interface. One would use a distributed computing system when computation can

not be performed on a single system alone because either the input is too large or the

computation will take too long. By partitioning the input and assigning each node a por-

tion of the work, the task can be completed, where before it could not.

A widely used message passing interface is OpenMPI. OpenMPI allows for the cre-

ation of a distributed cluster with a single call, and provides functions to send and receive

12



data from other nodes in the cluster easily. This allows for the partitioning and scheduling

of work on a distributed system to be easily achieved.

Again addressing the example given earlier, depending on the number of nodes in the

cluster, the vector can be partitioned so that each node gets roughly the same amount of

elements. Each node can then compute the addition operation on only the portion of the

vectors it is assigned. This allows for the concurrent execution of the addition operation,

thus decreasing the run time compared to the serial computation. Distributed computing

systems have become the design used by online services in recent years because they can

service multiple customers at a single time, which is a desired feature when working on

the internet.

13



CHAPTER 3

GPUHELIB DESIGN

HElib is one of the only implementations of homomorphic encryption. It suffers (like all

implementations of homomorphic encryption) from slow run times compared to other

standard schemes. Thus there is a desire to improve HElib by speeding it up. Because

HElib is meant to be deployed on online services, it is natural to try an utilized hardware

available on them. Thus the idea for GPUHElib.

GPUHElib is a variant of HElib, which attempts to speed up the run time of HElib by

utilizing a GPU to parallelize operations. GPUs are often used to speed up computation

where a single instruction or operation is performed on multiple pieces of data. GPUs are

ideal for these types of designs because they allow for many compute cores to be run si-

multaneously, each performing the same operation. HElib utilizes a single instruction,

multiple data (SIMD) design, however is single threaded. Meaning that, while being de-

signed so a single operation occurs over multiple data pieces, the library is not efficiently

utilizing the design to best effect. The hope then of adding GPU functionality to the li-

brary is to thus take advantage of this design, by utilizing hardware that will best handle

14



the SIMD nature of the scheme.

There are three phases when executing operations on a GPU. First the memory is

copied from the host(CPU) to the device(GPU). Then a program(kernel) is created, which

performs the operation on the data in the device’s memory. Finally, the data is copied

back from the device to the host, upon which the host continues execution. The first and

third phases are discussed further in Section 3.1, and the kernel designs are addressed

in Section 3.2. Furthermore, these three phases can be parallelized to achieve the fastest

speedup, discussed in Section 3.3.

3.1 Memory Mapping

In order for the GPU to execute a kernel, it must have the data in a 1D vector. This re-

quires that the data be mapped from its current storage model into a 1D vector. There are

two pieces of data that are required to be mapped when performing an operation: the data

that the operation will be performed on, and the moduli.

3.1.1 Mapping from CPU to GPU

Currently the data is stored as shown in Figure 3.1. The map contains vectors or rows,

each of these rows are arrays of 64-bit integers. This structure is a non-contiguous 1D

vector that needs to be mapped to a contiguous 1D vector. Thus the rows must be copied

into a new vector, which the GPU will then operate on. Each successive row is concate-

15



Figure 3.1: Data Mapping from CPU to GPU

Figure 3.2: Moduli Mapping from CPU to GPU

nated to the preceding rows, thus creating a 1D vector.

Similarly the moduli are being stored as individual elements. In order to be used dur-

ing execution on the GPU, they must also be mapped to a 1D vector. Figure 3.2 shows

the current storage model for the moduli. Each successive modulus is concatenated to the

preceding moduli, thus creating a 1D vector.

3.1.2 GPU Vector Management

Naively creating and freeing vectors on the GPU when the operation is run slows down

run times because allocating and freeing memory on the GPU takes time. Creating a few

16



vectors at the beginning of execution, and maintaining them throughout the programs life-

time, allows for the most efficient memory usage, and greatest speedup.

Four vectors are created and maintained throughout the lifetime of the program. The

first is a vector of size num rows× size o f row. This is the 1D vector that the data from

the first DoubleCRT object is being copied into. The second is another vector of size num rows×

size o f row, which holds the data that is being copied from the other DoubleCRT object.

The third is a vector of size num rows. This vector holds the moduli. The last vector is

also of size num rows, and is used when computing over a single DoubleCRT object and

a constant number. The constant number, mod the moduli, is stored in this last vector. The

sizes, num rows and size o f row, rarely change, thus there will be little memory reallo-

cation occurring, and reallocation will only occur when the vector is too small, not when

it is larger than needed. The function that handles initializing and reallocation of these

vectors is found in Appendix B.1.

3.2 Overflow Considerations

Arithmetic overflow occurs when the result of an arithmetic operation is greater than the

magnitude of the storage location that is being used to store the value. For example, using

4-bit unsigned integers, the largest possible value that can be stored is 24− 1 = 15. Thus

when adding 12 + 14 = 26, an overflow error will occur, because 26 requires 5 bits to

store.

17



The type of the data being operated on in HElib is 64-bit signed integers. Meaning

they can take values from −(263) to 263− 1. However, these values will never be nega-

tive, thus the actual range of these values is 0 to 263−1. The largest modulus could be the

largest possible value, 263− 1 and the largest value being operated on could be 263− 2.

The reason the largest value being operated on is one less than the largest value, 263− 1,

is because the value has to be smaller than the modulus, thus (263− 1)− 1 = 263− 2.

In CUDA, the language used on NVIDIA GPUs, (the language this implementation is

written in) the largest variable type has a length of 64 bits. The type that can contain the

largest value is uint64_t, unsigned 64-bit integers. This type can store values from 0 to

264−1.

Six operations were designed, as they are the most commonly used operations. Ad-

dition, subtraction, and multiplication of a DoubleCRT with another DoubleCRT and ad-

dition, subtraction, and multiplication of a DoubleCRT with a constant number. Further

considerations for overflow prevention for each operation is discussed in the following

sections.

3.2.1 Addition Overflow Considerations

When considering the overflow prevention for addition, it is necessary to compute what

the largest value could possibly be. As noted above, the largest a value could be is 263−

2 and the largest modulus is 263− 1. Performing the addition operation on the possible

18



values,

(263−2)+(263−2) = 264−4 (3.1)

shows that the number 264− 4 needs to be computed, before the modulus operation takes

place. This number is outside the range for signed 64-bit integers, but not for unsigned

64-bit integers. Thus the original numbers must be cast to unsigned 64-bit integers (which

could cause problems if any of the numbers were negative, but since the values are al-

ways positive, there is no problem). After the addition operation takes place, the modulus

operation brings the result back down to the range of signed integers, because the modu-

lus is in the range of signed integers. The result is then finally cast back to a signed inte-

ger, and the operation is complete. The kernels for both addition operations, between two

DoubleCRT objects and between a DoubleCRT object and a constant are in Appendix A.1.

3.2.2 Subtraction Overflow Considerations

Similar to addition, it is necessary to compute the worst case scenario when considering

overflow prevention for subtraction. Again, the largest a value could be is 263− 2 and the

largest modulus is 263− 1. There are two scenarios to consider for subtraction: the first

number being 263−2 and the second number being 0 and the first number being 0 and the

second number being 263−2. Performing the subtraction operation for both scenarios,

(263−2)−0 = 263−2 (3.2)

19



0− (263−2) =−(263−2) (3.3)

shows that all the computations can be completed using signed integers, because all num-

bers in the above equations are within the range of signed integers. Thus there does not

need to be any step taken to prevent overflow for this design.

With this design, to ensure the resultant value is greater than 0, a check is made af-

ter the subtraction operation takes place, to determine if the result is less than 0. If so, the

modulus is then added to the value, which will result in the value being larger than 0. This

check will cause a branch to occur in the GPU, which could slow down run time. Alterna-

tively, instead of performing a check to determine if the result is less than 0, the modulus

can be added to the first value, then the second value is subtracted (shown in the below

equation), which is a different approach to the subtraction operation. Equation 3.3 is rede-

fined below, with this procedure applied.

(0+(263−1))− (263−2) = (263−1)− (263−2) = 1 (3.4)

Now when the modulus operation occurs, the correct result is found, however none of the

values throughout the calculation were ever negative. Thus there is no need to perform a

check, avoiding the branch and possible slow down of the run time. This method however

does result in an overflow issue, because the modulus is being added to the first value.

Below is this approach applied to Equation 3.2.

((263−2)+(263−1))−0 = (264−3)−0 = (264−3) (3.5)

20



This equation generates the value 264− 3, which is too large for the signed integer range.

Thus the same procedure used for addition is performed here, to ensure overflow preven-

tion. The original numbers are cast to unsigned 64-bit integers. The operation detailed

above takes place, before the modulus operation brings the result back down to the signed

integer range. The result is then cast back to a signed integer, and completes the opera-

tion. The kernels for both subtraction operations, between two DoubleCRT objects and

between a DoubleCRT object and a constant are in Appendix A.2.

3.2.3 Multiplication Overflow Considerations

Multiplication presents many more problems compared to addition and subtraction. Again

the largest value possible is 263− 2, with the largest modulus being 263− 1. Performing

the multiplication operation on these values,

(263−2)∗ (263−2) = 2126−265 +4 (3.6)

shows that very large numbers must be generated when performing the multiplication op-

eration. Where addition and subtraction results could fit in a possible data type (unsigned

64-bit integer), these values will not fit in any data type available in CUDA. Therefore an

algorithm must be used, which will break the original numbers into smaller pieces. These

pieces will then be used during intermediary steps to generate other values; that, when

combined back together will result in the correct answer, without ever generating a value

that cannot fit in the GPU. The algorithm that is used is Karatsuba’s algorithm.

21



Karatsuba’s Algorithm

x = x1Bm + x0

y = y1Bm + y0

z2 = x1y1

z1 = x1y0 + x0y1

z0 = x0y0

xy = (x1Bm + x0)(y1Bm + y0)

= z2B2m + z1Bm + z0

(3.7)

Equation 3.7 shows Karatsuba’s algorithm in general. The values being multiplied

are x and y. They are broken into pieces x1, x0 and y1, y0 respectively. These pieces are

then used to create z2, z1, and z0, which are finally combined with the base number, Bm, to

generate the original result. For this case, B = 2 and m = 32. These values will ensure that

operations performed throughout the execution of this algorithm never become greater

than the maximum 64-bit unsigned integer value. Each of these will be examined in-depth

below to see this.

When x = 263− 2, the variables x1 and x0 have values x1 = 231− 1 and x0 = 232− 2.

The exact same values are assigned to y1 and y0 since y = x = 263−2.

22



Computing z2,

z2 = x1y1

= (231−1)(231−1)

= 262−232 +1

(3.8)

shows that z2 can fit inside a signed 64-bit integers, since the largest possible value is less

than 263−1 (the largest value possible for signed 64-bit integers).

Computing z1,

z1 = x1y0 + x0y1

= 2[(231−1)(232−2)]

= 2[263−233 +2]

= 264−234 +4

(3.9)

shows the intermediate pieces can be computed using signed 64-bit integers, however, the

addition operation causes the result to be in the range of unsigned 64-bit integers. Thus

this calculation requires casting the pieces to unsigned 64-bit integers, carrying out the

operation to calculate z1, then performing the modulus operation to bring z1 back down to

the signed 64-bit integer space.

Computing z0,

z0 = x0y0

= (232−2)(232−2)

= 264−234−4

(3.10)

23



shows that z0 must be calculated using unsigned 64-bit integers, since the result is too

large for signed 64-bit integers. Thus this calculation also requires casting the pieces to

unsigned 64-bit integers, performing the multiplication, before calculating the modulus to

bring the result back into the signed 64-bit integer range.

Now that each of the intermediate pieces have been addressed, the final piece needs

consideration. Computing xy,

xy = z2B2m + z1Bm + z0

= (262−232 +1)(264) + (263−234 +5)(232) + (263−234−3)

(3.11)

shows there will be problems computing z2B2m and z1Bm. However these can be dealt

with deterministically. By performing a loop, multiplying z2 and z1 by 2, 64 and 32 times

respectively, performing the modulus operation after every multiplication, one can obtain

the correct value, without exceeding the unsigned 64-bit integer limit. Final modulus op-

erations are applied to each addition, finally resulting in the correct value. This value is

cast back to a signed 64-bit integer, and the operation is complete. The kernels for both

multiplication operations, between two DoubleCRT objects and between a DoubleCRT

object and a constant, are in Appendix A.3.

3.3 Pipelining

As mentioned at the beginning of this chapter, there are three phases when performing op-

erations on a GPU. First, the data is copied from the host to the device, then the kernel is

24



Figure 3.3: Serial GPU Execution

Figure 3.4: Concurrent GPU Execution with 3 Streams

executed, and finally the data is copied back from the device to the host. The copy opera-

tions are handled by the copy engine, a processor that specifically deals with copying data

back and forth from the host and device. Kernels are executed by the kernel engine. This

operation is serial, meaning that all the data is copied from the host to device, before the

kernel is executed. And the memory is not copied back, until all of the kernels have fin-

ished executing. This is illustrated in Figure 3.3. CUDA allows for these operations to be

parallelized, using streams.

25



3.3.1 CUDA Streams

CUDA streams are a sequence of operations that execute in order on a GPU. Operations

in different streams can execute concurrently, and be interleaved. Figure 3.4 shows this

process applied to the same operations shown in Figure 3.3. One can see that this allows

for speedup, because the copy to/from host to device can be executed while the kernels

are being executed. Streams are useful for parallelizing the computation, however the or-

der in which the operations are dispatched also plays a role.

3.3.2 Overlapping Kernel Execution

There are two ways of dispatching GPU operations, all at once or by batching similar op-

erations together.

All At Once Method

The first approach launches all the operations at once, shown in Listing 3.1.

Listing 3.1: Operations launched all at once

f o r ( i n t i = 0 ; i < nSt reams ; i ++) {
i n t o f f s e t = i ∗ s t r e a m S i z e ;

cudaMemcpyAsync(& d a [ o f f s e t ] , &a [ o f f s e t ] , s t r e a m B y t e s ,

cudaMemcpyHostToDevice , s t r e a m [ i ] ) ;

k e r n e l <<<s t r e a m S i z e / b l o c k S i z e , b l o c k S i z e ,

0 , s t r e a m [ i ]>>>(d a , o f f s e t ) ;

cudaMemcpyAsync(&a [ o f f s e t ] , &d a [ o f f s e t ] , s t r e a m B y t e s ,

cudaMemcpyDeviceToHost , s t r e a m [ i ] ) ;

26



}

All three phases are launched successively on the same stream, before the next stream’s

operations are launched.

Batching Method

The second approach is to launch similar operations together, instead of all at once. This

is show in Listing 3.2.

Listing 3.2: Operations batched

f o r ( i n t i = 0 ; i < nSt reams ; ++ i ) {
i n t o f f s e t = i ∗ s t r e a m S i z e ;

cudaMemcpyAsync(& d a [ o f f s e t ] , &a [ o f f s e t ] , s t r e a m B y t e s ,

cudaMemcpyHostToDevice , s t r e a m [ i ] ) ;

}
f o r ( i n t i = 0 ; i < nSt reams ; ++ i ) {

i n t o f f s e t = i ∗ s t r e a m S i z e ;

k e r n e l <<<s t r e a m S i z e / b l o c k S i z e , b l o c k S i z e ,

0 , s t r e a m [ i ]>>>(d a , o f f s e t ) ;

}
f o r ( i n t i = 0 ; i < nSt reams ; ++ i ) {

i n t o f f s e t = i ∗ s t r e a m S i z e ;

cudaMemcpyAsync(&a [ o f f s e t ] , &d a [ o f f s e t ] , s t r e a m B y t e s ,

cudaMemcpyDeviceToHost , s t r e a m [ i ] ) ;

}

In this second approach, all the copy from host to device operations are launched on their

respective streams, then the kernels are executed, and finally the device to host copies are

dispatched.

27



Figure 3.5: GPU 2-Way Pipelining

Both of these methods will produce the same result, as they are executing the same

commands. However, depending on the hardware being used, one method might achieve a

better speedup over the other.

3.3.3 2-Way Pipelining

Older GPU hardware only have a single copy engine and a single kernel execution en-

gine. Figure 3.5 shows both methods of kernel execution compared to serial execution.

As one can see, both provide a speed up, however the batching method provides a greater

speedup over the all at once method. This is because the all at once method launched the

second copy from host to device after the first copy from device to host. Because there is

only one copy engine, and the engine executes operations in the order they were launched,

the copy engine must execute the copy from device to host, before the next host to device

28



Figure 3.6: GPU 3-Way Pipelining

copy can occur. Using the second method though, the copies from host to device are all

launched before the copies from device to host, so they call all execute one after the other.

This allows for the most efficient pipelining, and the greatest speedup on hardware that

only has one of each engine.

3.3.4 3-Way Pipelining

Newer GPU hardware have both a copy from host to device engine and a copy from de-

vice to host engine, as well as the kernel engine. The two methods under this new hard-

ware configuration are shown in Figure 3.6. Here one can see that again both methods

provide an overall speedup, however for this case, the all at once method achieves the

29



greatest speedup. Even though the first device to host copy was issued before the sec-

ond host to device copy in the all at once method, the second host to device copy can be

executed earlier than it because of the two copy engines. This is what is allowing the all

at once execution method to be faster than the batching method. The batching method is

suffering from a design choice in the scheduler of the GPU. The GPU tries to execute the

kernels concurrently, and in doing so, delays a signal telling the device to host engine to

starting copying until all the kernels have finished execution.

3.3.5 Stream Management

Naively creating and destroying streams as they are needed causes avoidable run time

slowdown. By managing the available active streams, one can achieve the most efficient

design. For any instance of operation, the number of active streams is num rows in the

map. This number will rarely change, thus initially creating num rows amount of streams,

and only creating more streams when there are not enough, efficiently maintains the fewest

amount of needed streams at all times. Appendix C.1 contains the functions used to man-

age the streams.

30



CHAPTER 4

DISTRIBUTEDHELIB DESIGN

HElib is a prominent implementation of homomorphic encryption. However, it suffers

(like other implementations of homomorphic encryption) from slow run times. Therefore,

it must be speed up, before it will be used anywhere. HElib is meant to be deployed on

online services, most of which are designed as distributed systems. Thus there was the

idea to utilize the distributed system design present on these online services to facilitate

the run time speed up.

DistributedHElib attempts to speed up the run time of HElib by utilizing a distributed

system design. This is done by utilizing a cluster of compute nodes to parallelize opera-

tions. A cluster of nodes is a connected group of machines that communicate with each

other to achieve a common task. By delegating separate work to each machine, work can

be split between many machines, instead of a single machine handling the entire work

load. By doing this, run times can decrease, especially if each node is working on com-

pleting an independent task, which helps complete an overall global task.

HElib utilizes a single instruction, multiple data (SIMD) design, meaning that a sin-

31



gle instruction or operation is performed over many pieces of independent data. Unfor-

tunately, HElib does not take advantage of this design, because it is only single-threaded.

Meaning that while the operation has the potential to be concurrently computed, it is be-

ing serial computed. With a distributed design then, the hope is to split the data up, send it

to compute nodes, have those nodes perform the operations, and send the results back.

Having each node work simultaneously on separate pieces of the data can allow for a

speedup in run time compared to only having a single machine work on all the data.

For our design design, a master-slave architecture was chosen. This means there will

be one node, the dispatcher node, controlling the other nodes, the compute nodes. The

dispatcher node will be running HElib and when needed, will assign work to the compute

nodes.

There are a few phases when executing operations in a distributed computing envi-

ronment. First the cluster must be setup, and nodes must be designated as compute or

dispatcher nodes. Then the dispatcher node must assign work to the compute nodes. As

part of assigning work, the dispatcher node must partition the data, and send the pieces to

the respective compute nodes. The compute nodes must then perform the operations, and

send the data back. Finally the dispatcher node collects all the results and stores them,

before returning to regular execution. The cluster setup and work assignment phases are

discussed in Section 4.1. The partitioning of the data is discussed in Section 4.2. Finally

the methods by which the data are transmitted between nodes is discussed in Section 4.3.

32



4.1 Node Cluster Setup

Upon start up of a cluster of nodes, each must be assigned a job. For this design a master-

slave architecture is used. This means that one node must be designated the master node,

which will be the dispatcher node, and the others are designated slave nodes, or compute

nodes. The dispatcher node is the node responsible for running the serial portion of HE-

lib, and distributing the data to the worker nodes when a distributed part of computation

is reached. The compute nodes just wait for instructions from the dispatcher node, and act

accordingly when given tasks.

When starting a cluster with OpenMPI, the distributed computing communication in-

terface, each node is assigned a number, starting at 0 through num nodes− 1. Node 0

becomes the dispatcher node, and the others are compute nodes. The dispatcher node then

returns to normal program execution, while the compute nodes wait for messages from

the dispatcher node.

When the dispatcher node reaches a point of execution that is meant to be distributed,

it partitions the data (discussed in Section 4.2) and assigns each compute node a piece of

the data to operate on. The manner in which the dispatcher node chooses what data the

compute node will operate on is examined next.

33



Figure 4.1: Rolling Round Robin Example with More Nodes than Data Pieces

4.1.1 Work Assignment

After the data has been partitioned, it must be assigned to a compute node to be operated

on. The scheme used to choose the next compute node for a piece of data is round-robin

scheduling. This scheme allows for an even or almost even distribution of the data across

all the compute nodes. Having an even or almost even distribution means the lowest run

times and best efficiency. There are two cases to consider when determining if a distribu-

tion scheme is efficient: when there are more compute nodes than data pieces, and when

there are fewer compute nodes than data pieces.

For the first case, with the round-robin scheduling, this means that some nodes will

not be working, while others are. For this design a rolling round-robin design is used.

Meaning for any operations the next node to be assigned work will always be the node

assigned work the longest time ago. This node has the highest probability of being free

34



Figure 4.2: Rolling Round Robin Example with Less Nodes than Data Pieces

and ready to receive more work, compared to all the others. Figure 4.1 shows an example

of rolling round-robin scheduling applied to this case.

For the second case, with the round-robin scheduling, some nodes will have multiple

pieces of data to operate on. By using the round-robin scheduling though, the amount of

work done by each compute node should be about equal, and thus evenly spread over the

compute nodes. If work was unequally proportioned to a single compute node, compared

to others, then the dispatcher node might have to wait longer for the results before contin-

uing normal execution. This way the greatest run time and efficiency is achieved. Figure

4.2 shows an example of rolling round-robin scheduling applied to this case.

35



Figure 4.3: Data Mapping from Dispatcher to Compute Nodes

4.2 Memory Mapping

For compute nodes to execute, they must have a portion of the data to work on. This re-

quires the dispatcher node to partition the data from its current storage model into pieces

before they are sent to the compute nodes to be worked on. There are two pieces of data

that need to be mapped: the data that the operation is being performed on, and the moduli.

4.2.1 Mapping from Dispatcher Node to Compute Nodes

Currently data is stored as shown in Figure 4.3. The map contains vectors or rows, each

of these rows are arrays of 64-bit integers. The rows present a great partitioning point.

Splitting the data up by these rows, and sending individual rows to each compute node to

be operated on is the logical splitting point because there will always be about the same

number of rows during execution, whereas the size of the rows might change often. Also,

splitting rows would cause more communication between the nodes, which could slow

36



Figure 4.4: Moduli Mapping from Dispatcher to Compute Nodes

down run times.

Similarly, the moduli are being stored as individual elements. Because each moduli

is assigned to each row, and the rows are being assigned to a single compute node, each

moduli must only be sent to the specific compute node that the row it corresponds to is

on. Figure 4.4 shows the mapping process. Each modulus is only sent to the compute

node that its corresponding row is sent to.

4.2.2 Compute Node Vector Management

Naively creating and freeing buffers on the compute nodes that will receive the data from

the dispatcher node slows down run times. By creating a few buffers, and maintaining

them throughout the programs lifetime, the most efficient memory usage is achieved,

along with the greatest speedup.

37



Two buffers are created and maintained throughout the lifetime of the program. Both

buffers are of size size o f row. These are the buffers that the rows will be copied into on

the compute nodes. The size, size o f row, rarely changes, thus there will be little mem-

ory reallocation occurring. Also, reallocation will only occur when the buffer is too small,

not when it is larger than needed. The buffer will only ever grow, not shrink, thus cutting

down on the occurrences of reallocation needing to be performed. The function that han-

dles initializing and reallocation of these buffers is found in Appendix B.2.

4.3 Concurrency

Concurrency for a distributed system means that each node is executing operations si-

multaneously. To achieve concurrency in this system, the dispatcher node must be able

to assign work, and not have to wait for a response before assigning more work, and the

compute nodes must be able to perform computations at the same time. For all of these

operations to happened concurrently, the communication between the nodes must be non-

blocking.

4.3.1 Non-Blocking Send and Receive with OpenMPI

Blocking send and receive functions requires the data to be completely sent or received

before continuing execution. This means if a node were to call receive, it would wait

until it received data, before continuing execution. This can both be beneficial and detri-

38



mental, depending on the needs of the design. Non-blocking send and receive functions

however schedule requests, and then continue execution. These requests will later be

filled, but execution can continue. A request can be generated and even if the data has

not finished sending or been completely received, execution can continue. This request

can then be tested, and once the data has been sent or received, the request will be filled.

Both methods have their uses, discussed next.

Send and Receive on Compute Nodes

For the compute nodes, blocking send and receive functions are used, because it is nec-

essary for the buffer holding the result of the operation to be sent back to the dispatcher

node, before the next operation occurs. If the next operation occurred before the dis-

patcher node received the data, the buffer could be cleared or overwritten, and data sent

back would be incorrect.

Send and Receive on Dispatcher Node

For the dispatcher node, non-blocking send and receive functions are used. This allows

the dispatcher node to continue assigning work, even if the compute nodes have not fully

received their assignment. Also, the dispatcher node will use non-blocking receive func-

tions in order to receive data back as quickly as possible. If the dispatcher node used

blocking receive functions, then it could be waiting on a node that is taking a long time

to perform an operation, causing other compute nodes to wait that might have already fin-

39



ished computation, and may have pending computation that they could be moving onto.

Only using non-blocking receive functions could cause problems for the dispatcher

node, if, for example, two operations are performed, and the second requires the results

from the first. Without any mechanisms to ensure the result to the first operation is re-

ceived, before the execution of the second operation, unknown results can be computed.

Therefore there is a need for a syncing mechanism.

4.3.2 Syncing

A syncing mechanism will cause the dispatcher node to wait for all pending requests to

be completed before continuing execution. In this way, it can be ensured that a single op-

eration is fully completed before moving onto other operations. To keep track of these

requests, a queue is used. When a new request is created, through either a call to send

or receive, it is added to the end of the queue. When the sync function is called, each

of these is tested to see if they have completed. If a request has been completed, then

it is removed from the queue, if not, the function moves onto the next in the queue, and

checks it. The function only returns when all the pending requests have been filled, when

the queue is empty. The sync function can be found in Appendix C.2. The sync function

is performed after every operation(addition, subtraction, or multiplication), to ensure the

operation has completed, before moving onto the next operation.

40



CHAPTER 5

EVALUATION

The evaluation of this work has two objectives. First, to make sure that the modified de-

signs still produce correct output. Meaning that the result of an operation when decrypted

is the same for both the modified and unmodified versions of the library. Secondly, to pro-

file each design and compare run times of the modified libraries to the unmodified library.

These time comparisons will occur at multiple levels to best understand each design, and

how they compare to the serial version.

Distributed systems achieve the best efficiency when working on large inputs, not

small ones. This is because there is some overhead associated with setting up and dis-

tributing work. For GPU designs, this overhead time happens when transferring the data

to and from the GPU. For distributed computing designs, the overhead time is also in the

memory transfers like the GPU, but instead of transferring to the GPU, the memory trans-

fers are between machines. This overhead costs time, that when working with small in-

puts, usually takes even longer than the operation to complete. Thus the distributed design

causes a run time slow down compared to the serial version for small input sizes. How-

41



ever, when working with large amounts of data, the time saved to complete the operation

is so great, that the overhead costs are worth it. This characterization of distributed sys-

tems is prevalent for these designs, which will be seen later. For these encryption systems,

large input sizes occur when size o f row is large. For any distributed system, large has

a variable meaning that is relative to the system being examined. It could be anywhere

from a few hundred thousand to a few billion. For these libraries, large is defined to be

above a few hundred thousand. As discussed in the design chapters, size o f row is the

length of the vectors in map. To best demonstrate the effect size o f row has on the sys-

tem, size o f row is steadily increased during the testing, so its effect on each design can

be seen and compared to the original design.

To evaluate these designs a few profiling tools were used, discussed in Section 5.1.

The test environments used for each design are detailed in Section 5.2. The results for

GPUHElib are examined in Section 5.3, followed by the results for DistributedHElib in

Section 5.4. Finally some conclusions are drawn regrading both of these designs in Sec-

tion 5.5

5.1 Evaluation Tools

The following tools were used to evaluate the correctness of the modified libraries and

record run times at various levels in the library.

42



5.1.1 Test Program

A test program was created based on testing programs provided with the original unmodi-

fied version of HElib. This new test program first sets up the ciphertexts that are used dur-

ing computation. Two ciphertexts are created, both are the integers, 0 to num slots in plaintext.

Three operations are reported on in this document, of the six implemented. They are

addition, subtraction, and multiplication of one ciphertext with another ciphertext. The

other three operations supported, addition, subtraction, and multiplication of a ciphertext

and a number, were not reported, as preliminary tests showed that they displayed similar

results to their ciphertext-only counterparts. It was decided that for conciseness and to

avoid repetition, that they would be left out of this document.

The program requires that the user pass in the size o f row they would like to use,

which as discussed above, will be incremented during testing. The test program then per-

forms each operation, checking the decrypted result after each operation to make sure that

the results are correct, before moving on. Timing blocks were placed around each oper-

ation to record the overall time it took to perform the operation. The timers were printed

out after each operation. Lower level timers, discussed below, were reset after each oper-

ation, so the lower level times reported with each operation were only times recorded for

that operation.

This test program was compiled twice for both designs, first linking against the un-

43



modified library, and second against the modified library. This produced two executables,

that were then run to generate the results described below.

5.1.2 HElib Timing Functions

The standard version of HElib provides fine grained timing functions that can be placed

anywhere throughout the library. To utilize these functions is simple. First a timer is cre-

ated. Upon the creation of the timer, it is started. A call to stop is made in code when

the timer should stop. A timer can be started and stopped multiple times, and the aver-

age time will be recorded. The timers are stored in a map, and can be reset if needed.

This setup allows for fine grained measurement of functions and detailed profiling of run

times.

Each design, serial HElib, GPUHElib, and DistributedHElib required the timers be

placed at some similar places, for comparison purposes, and some distinct places, in order

to assess the efficiency of each unique design.

Serial HElib Timer Placement

There were two levels at which timers were placed, with each successive level more fine

grained. The first level was in the test program, described above. This is the circuit level.

The other timer was placed at the function level, inside the function that performed the

operations in DoubleCRT. This function was where the double for loop was located that

44



both of the distributed designs are trying to improve upon.

GPUHElib Timer Placement

For GPUHElib, there are three levels at which timers were placed. As described above,

the first timer was placed at the circuit level in the test program. This records the time that

the entire operation took. The second level of timing was the function level. At this level

a timer was placed in the function that is performing the operations in DoubleCRT. These

first two timer levels allow for comparison against the serial version, as the serial version

also has timers placed at these levels. The third and lowest level is the phase level. Four

timers are placed at this level to record the setup (vector and stream creation), phase one

(host to device memory transfer), phase two (GPU computation), and phase three (device

to host memory transfer) times. The timers at this level allow for the times gathered at

level two to be broken down even further, and allow each phase of level two to be exam-

ined closer.

DistributedHElib Timer Placement

For DistributedHElib, there are three levels at which timers were placed. The first at the

circuit level in the test program. The second at the function level, in DoubleCRT, where

the operation is being performed. These first two timer levels are necessary for the com-

parison against the serial version, as the serial version also has timers at these two levels.

The third consists of two timers: the distribute (where the job assignment and data parti-

45



tioning happens) and the wait (where the sync function is called, and the dispatcher node

is waiting for the compute nodes to finish and send back their results). This third level

allows for a breakdown of the function level for further analysis.

5.2 Testing Environment

Both systems required unique testing environments that had the capabilities needed for

each design. Both variants used machines with 64-bit Intel Core 2 Duo CPUs running at

3.0 Ghz with about 4 Gb of DDR2, 800 Mhz RAM.

5.2.1 GPU Testing Environment

GPUHElib was tested on a machine with a NVIDIA Quadro NVS 290 GPU, which has

256 MB of RAM. Also this particular GPU only has one copy engine. Thus the tests re-

ported here are using the 2-Way Pipelining design discussed in Section 3.3. CUDA ver-

sion 6.5 was used.

5.2.2 Distributed Computing Testing Environment

DistributedHElib was tested on a cluster of machines all connected through Ethernet.

OpenMPI version 1.8.5 was used. Three cluster configurations were used, one with 4

nodes, one with 8 nodes, and one with 16 nodes.

46



5.3 GPUHElib Evaluation Results

As discussed earlier in this chapter, GPUHElib has three levels of timing information be-

gin recorded. The first, and highest level, is the circuit level, where the high level opera-

tion is being computed. The second level is the function level, inside DoubleCRT where

the parts are being operated on. And the lowest level is the phase level, where timing re-

sults are recorded for all four phases of the operation. The timing results for each of these

levels is discussed in more detail in the following sections.

5.3.1 GPUHElib Circuit Level Run Times

Table 5.1 and Table 5.2 display the run times for serial HElib and GPUHElib tests respec-

tively. Both tests were run with inputs sizes starting at 1,000 and increasing until 400,000.

Figure 5.1 visualizes these times as the slowdown of GPUHElib over serial HElib.

A value of 1 means that the serial version and the GPU version had the same run time.

Above 1 means that the GPU design has a slower run time, and below 1 means that the

GPU has a faster run time.

One can see in Figure 5.1 that for the smaller input sizes, the run times for the GPU

are much larger than the serial version for addition and subtraction. They started off tak-

ing about 72 times as long to complete, compared to the serial version. The multiplica-

tion operation also starts off taking longer, however only about 2.2 times as long. The run

47



size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 1.400E-05 1.080E-04 2.545E-03 5.396E-03 5.354E-03 1.053E-02

Sub 1.400E-05 1.300E-04 2.532E-03 5.304E-03 5.366E-03 1.075E-02

Mul 4.962E-03 1.036E-01 1.157 2.648 7.217 1.232E+01

Table 5.1: Serial HElib circuit level run times (in seconds)

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 1.050E-03 1.675E-03 8.972E-03 1.646E-02 1.671E-02 3.704E-02

Sub 1.012E-03 1.805E-03 9.023E-03 1.683E-02 1.682E-02 3.700E-02

Mul 1.106E-02 1.187E-01 1.309 2.868 7.393 9.333

Table 5.2: GPUHElib circuit level run times (in seconds)

1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

80

70

60

50

40

30

20

10

0

Sl
ow

do
w

n

Add
Sub
Mul

Figure 5.1: Run Time Comparison at Circuit Level

48



times for serial HElib and GPUHElib get closer and closer, as the inputs sizes approach

400,000. The addition and subtraction circuit run times minimize at about 3 times as long,

for the 300,000 size input. However for the 400,000 size input, the times go in the oppo-

site direction desired, becoming about 3.5 times as long. The multiplication circuit actu-

ally has the best results, with the 400,000 test taking about .75 times the serial version.

The multiplication circuit took about 3/4 the time to complete in GPUHElib compared to

the serial version. While this result might look good, further analysis of the lower level

tests show that this was probably not caused by the usage of the GPU, but by other oper-

ations computed during the multiplication operation being faster. The function level run

times will be examined next.

5.3.2 GPUHElib Function Level Run Times

Table 5.3 and Table 5.4 display the run times for the serial HElib and GPUHElib tests

respectively. As noted before, both tests were run with input sizes ranging from 1,000 to

400,000.

Figure 5.2, Figure 5.3, and Figure 5.4 show the comparisons between the run times for

each of the operations at the function level. Also displayed in the figures is the run time

slow down of the GPU variant compared to the serial version. For example, in Figure 5.2,

the 104.2x above 1,000 means that the GPU variant took 104.2 times longer to complete

compared to the serial version.

49



size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 5.000E-06 4.825E-05 1.007E-03 2.648E-03 2.653E-03 5.466E-03

Sub 5.000E-06 6.150E-05 1.259E-03 2.644E-03 2.674E-03 5.366E-03

Mul 2.900E-05 2.830E-04 2.879E-03 5.863E-03 5.856E-03 1.176E-02

Table 5.3: Serial HElib function level run times (in seconds)

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 5.210E-04 8.298E-04 4.392E-03 8.257E-03 8.346E-03 1.864E-02

Sub 5.020E-04 8.950E-04 4.498E-03 8.398E-03 8.395E-03 1.848E-02

Mul 5.302E-04 1.006E-03 6.599E-03 1.273E-02 1.276E-02 2.687E-02

Table 5.4: GPUHElib function level run times (in seconds)

1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·10−2

104.2x 17.2x

4.4x

3.1x 3.1x

3.4x

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib GPUHELib

Figure 5.2: Add Run Times Comparison at Function Level

50



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·10−2

100.4x 14.6x

3.6x

3.2x 3.1x

3.4x

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib GPUHELib

Figure 5.3: Sub Run Times Comparison at Function Level

51



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

0.5

1

1.5

2

2.5

·10−2

18.3x 3.6x

2.3x

2.2x 2.2x

2.3x

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib GPUHELib

Figure 5.4: Mul Run Times Comparison at Function Level

52



All these times again reiterate that for the smaller input sizes, the run times for the

GPU variant are vastly larger, almost 100x for addition and subtraction, and about 18x for

multiplication. As the input sizes increase, the run times get closer and closer, but mini-

mize at about 3.1x for addition and subtraction and at about 2x for multiplication. Again

one can see that for the 400,000 input size, the slow downs increase for all the operations

compared to the previous input size, 300,000, going from 3.2x to 3.4x and 3.5x respec-

tively and from 2.2x to 2.3x. The results for the multiplication times make it clear that

the speedup seen at the circuit level must be caused by other factors than the GPU imple-

mentation of multiplication. These times show that multiplication behaves exactly like the

other operations in terms of run time patterns. The cause for these slow downs is evident

after examining the recorded times at the phase level.

5.3.3 GPUHElib Phase Level Run Times

Table 5.5, Table 5.6, and Table 5.7 all display the phase level run times for each operation

respectively. The four phases are as follows: setup (vector and stream creation), phase 1

(host to device memory copy), phase 2 (operation on GPU), and phase 3 (device to host

memory copy). These times have been split between two plots for each operation. One

group of plots focuses on the overall run time of serial HElib compared to the setup and

phase 2 times recorded. These are the “Operation” plots, Figure 5.5, Figure 5.7, and Fig-

ure 5.9. The other group of plots focus on the overhead phases, phase 1 and phase 3, of

53



size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Setup 2.420E-04 2.465E-04 2.848E-04 3.013E-04 3.015E-04 3.133E-04

Phase 1 9.500E-05 2.568E-04 2.137E-03 4.289E-03 4.345E-03 1.164E-02

Phase 2 4.425E-05 3.350E-05 1.283E-04 2.423E-04 2.420E-04 3.728E-04

Phase 3 1.373E-04 2.900E-04 1.837E-03 3.420E-03 3.454E-03 6.308E-03

Table 5.5: GPUHElib Add phase level run times (in seconds)

1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

1

2

3

4

5

6

·10−3

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib Setup Phase 2

Figure 5.5: Add Phase Level Run Times Comparison - Operation

54



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

0.2

0.4

0.6

0.8

1

1.2

·10−2

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib Phase 1 Phase 3

Figure 5.6: Add Phase Level Run Times Comparison - Memory

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Setup 2.455E-04 2.830E-04 3.035E-04 3.065E-04 3.045E-04 3.050E-04

Phase 1 9.000E-05 2.535E-04 2.262E-03 4.377E-03 4.377E-03 1.152E-02

Phase 2 3.400E-05 4.200E-05 1.280E-04 2.420E-04 2.425E-04 3.745E-04

Phase 3 1.275E-04 3.120E-04 1.799E-03 3.466E-03 3.465E-03 6.275E-03

Table 5.6: GPUHElib Sub phase level run times (in seconds)

55



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

1

2

3

4

5

6
·10−3

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib Setup Phase 2

Figure 5.7: Sub Phase Level Run Times Comparison - Operation

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Setup 2.405E-04 2.447E-04 3.027E-04 3.200E-04 3.157E-04 3.207E-04

Phase 1 7.933E-05 1.853E-04 1.845E-03 3.955E-03 3.997E-03 1.029E-02

Phase 2 3.000E-05 3.183E-05 1.247E-04 2.398E-04 2.353E-04 3.508E-04

Phase 3 1.772E-04 5.418E-04 4.323E-03 8.213E-03 8.212E-03 1.591E-02

Table 5.7: GPUHElib Mul phase level run times (in seconds)

56



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

0.2

0.4

0.6

0.8

1

1.2

·10−2

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib Phase 1 Phase 3

Figure 5.8: Sub Phase Level Run Times Comparison - Memory

57



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

0.2

0.4

0.6

0.8

1

1.2

·10−2

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib Setup Phase 2

Figure 5.9: Mul Phase Level Run Times Comparison - Operation

58



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
·10−2

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib Phase 1 Phase 3

Figure 5.10: Mul Phase Level Run Times Comparison - Memory

59



GPUHElib compared to the overall run time of serial HElib for each operation and are

denoted “Memory”. These are Figure 5.6, Figure 5.8, and Figure 5.10.

The “Operation” plots show the design is working as intended and as all GPU de-

signs are ideally suppose to work. The reliance on the GPU to perform the computation

drastically reduces the run time for those phases. Furthermore, as the input size increases

largely, the run times for setup and phase 2 only increase slightly.

The setup phase always took about the same amount of time no matter the input size,

only varying by about 8E-05 from the smallest input to the largest. Phase 2 times steadily

increased, however not at the rapid pace of the serial HElib versions. This is what is ex-

pected when using a GPU to perform operations.

These are the desired results when working with a GPU. The offloading of work onto

the GPU allows for the operation portions of the work to drastically decrease in run time.

Of course, these results do not characterize the overall recorded times for GPUHElib

compared to serial HElib. Therefore something else must be going wrong, causing the

run times to be longer than the their serial counterparts.

The “Memory” plots show where this design fails. The amount of time needed to

move the data back and forth from the GPU is immense. The times for phase 1 and phase

3 are always larger than the entire run time of the serial version for every operation across

all input sizes, except for the multiplication operation, where the phase 1 times are actu-

ally less than the overall run time of the serial version, but not by much. These times are

60



very disappointing, as they are the reason this design is performing so poorly. Luckily,

these times could be lower, given better hardware and possible future work, which could

make GPUHElib a viable option. If the problem was in the design or if the run times for

the setup or phase 1 were worse, then the total design would not have any hope of being

used. But because they are in the memory transfer phases, there is still hope that this de-

sign could become viable with further work.

5.4 DistrubtedHElib Evaluation Results

As discussed earlier in this chapter, DistributedHElib has three levels of timing informa-

tion begin recorded. The highest level is the circuit level in the test program. The next is

at the function level, inside DoubleCRT. The third and lowest level is the distribute and

wait level. This level has two timers which measure the distribute time, the time necessary

for the dispatcher node to assign work and partition the data, and the wait time, the time

the dispatcher node is waiting for the compute nodes to finish their work and return the

results. Additionally three cluster sizes, 4, 8, and 16 nodes, were used during testing The

timing results for each of these levels is discussed in more detail below.

5.4.1 DistributedHElib Circuit Level Run Times

Table 5.8, Table 5.9, Table 5.10, and Table 5.11 display the run times for serial HElib and

DistributedHElib tests. Both tests were run with inputs sizes starting at 1,000 and increas-

61



size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 1.400E-05 1.070E-04 2.525E-03 5.347E-03 5.313E-03 1.048E-02

Sub 1.400E-05 1.250E-04 2.491E-03 5.308E-03 5.244E-03 1.080E-02

Mul 4.996E-03 1.030E-01 1.151 2.644 7.286 1.202E+01

Table 5.8: Serial HElib circuit level run times (in seconds)

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 1.457E-03 7.496E-03 8.933E-02 1.783E-01 1.550E-01 3.455E-01

Sub 1.544E-03 7.479E-03 7.773E-02 1.666E-01 1.647E-01 3.203E-01

Mul 1.254E-02 1.371E-01 1.559 3.444 8.350 1.009E+01

Table 5.9: DistributedHElib circuit level run times (in seconds) on 4 nodes

1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

120

100

80

60

40

20

0

Sl
ow

do
w

n

Add
Sub
Mul

Figure 5.11: Run Time Comparison at Circuit Level on 4 Nodes

62



size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 1.712E-03 9.161E-03 1.076E-01 2.228E-01 2.266E-01 4.540E-01

Sub 1.791E-03 9.219E-03 1.117E-01 2.113E-01 2.139E-01 4.560E-01

Mul 1.350E-02 1.454E-01 1.666 3.689 8.589 1.136E+01

Table 5.10: DistributedHElib circuit level run times (in seconds) on 8 nodes

1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

140

120

100

80

60

40

20

0

Sl
ow

do
w

n

Add
Sub
Mul

Figure 5.12: Run Time Comparison at Circuit Level on 8 Nodes

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 1.772E-03 9.960E-03 1.187E-01 2.391E-01 2.390E-01 4.911E-01

Sub 1.850E-03 9.741E-03 1.194E-01 2.398E-01 2.364E-01 4.744E-01

Mul 2.484E-02 1.623E-01 1.717 3.811 8.664 1.135E+01

Table 5.11: DistributedHElib circuit level run times (in seconds) on 16 nodes

63



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

140

120

100

80

60

40

20

0

Sl
ow

do
w

n

Add
Sub
Mul

Figure 5.13: Run Time Comparison at Circuit Level on 16 Nodes

64



ing until 400,000. The clusters sizes were 4, 8, and 16 nodes.

Figure 5.11, Figure 5.12, and Figure 5.13 visualize these times as the slowdown of

DistributedHElib over serial HElib. A value of 1 means that the serial version and the

distributed version had the same run time. Above 1 means that the distributed design has

a slower run time, and below 1 means that the distributed version has a faster run time.

One can see in these figures that for the smaller input sizes, the run times for addition

and subtraction across all cluster sizes are much larger for the distributed design com-

pared to the serial design. These operations take over 100 times as long to complete as

their serial counterparts. The multiplication operation also takes longer, however only

about 2.5 to 5 times as long depending on the number of nodes in the cluster.

As the input sizes increase, the addition and subtraction operation slowdowns de-

crease, until they plateau at around 35, 40, and 45 times as long for the 4, 8, and 16 node

clusters respectively. Once they reach these slowdowns, they bounce around, but never

continue on the downward trajectory they had for the first few input size increases. The

multiplication operation on the other hand always decreases as the input size increases.

As the input sizes increase, the multiplication slowdowns approach 1, and at the 400,000

size input, all three cluster sizes dive below 1. The cluster size of 4 has the best results,

having about a .84 slowdown, with the other two sizes, 8 and 16, having about a .94.

These results mean, for the 400,000 input size, the distributed variant of HElib had faster

run times than the serial version across all cluster sizes. Similar to the GPU results, while

65



these times look good, further examination of the lower level tests show that this speed up

is probably not happening because of the distributed design, but because of other factors.

Next the function level times are examined.

5.4.2 DistributedHElib Function Level Run Times

Table 5.12, Table 5.13, Table 5.14, and Table 5.15 display the run times at the function

level for serial HElib and DistributedHElib on 4, 8, and 16 nodes.

Figure 5.14, Figure 5.15, and Figure 5.16 show the comparisons between the run

times for each of the operations at the function level across all variants and cluster sizes.

Also displayed in the figures is the average run time slow down, across all cluster sizes, of

the distributed variant compared to the serial version. So, for example, in Figure 5.14, the

168.7x above 1,000 means that the distributed variant took 168.7 times longer to complete

compared to the serial version.

Again for the smaller inputs, these figures show that the distributed variant takes much

longer to complete compared to the serial version. For addition and subtraction, the op-

erations take about 170 times as long, and for multiplication, about 25 times as long. As

the input sizes increase, the slow downs do decline, however level out around the 200,000

size input. The addition and subtraction operations level out at about 40x, and the multi-

plication operation levels out at about 16x. Again one can see that the run times plateau

for the addition and subtraction operations, just as they did at the circuit level. The results

66



size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 5.000E-06 4.800E-05 9.873E-04 2.588E-03 2.611E-03 5.457E-03

Sub 5.000E-06 5.850E-05 1.238E-03 2.646E-03 2.614E-03 5.391E-03

Mul 2.967E-05 2.838E-04 2.887E-03 5.845E-03 5.850E-03 1.183E-02

Table 5.12: Serial HElib function level run times (in seconds)

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 7.423E-04 3.604E-03 4.898E-02 8.503E-02 8.048E-02 1.764E-01

Sub 7.695E-04 3.735E-03 3.886E-02 8.329E-02 8.233E-02 1.601E-01

Mul 7.148E-04 3.298E-03 3.517E-02 7.759E-02 7.771E-02 1.482E-01

Table 5.13: DistributedHElib function level run times (in seconds) on 4 nodes

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 8.698E-04 4.427E-03 5.489E-02 1.124E-01 1.125E-01 2.186E-01

Sub 8.930E-04 4.427E-03 5.583E-02 1.056E-01 1.069E-01 2.280E-01

Mul 8.055E-04 4.032E-03 4.830E-02 9.798E-02 9.804E-02 1.951E-01

Table 5.14: DistributedHElib function level run times (in seconds) on 8 nodes

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 9.180E-04 7.439E-03 5.794E-02 1.166E-01 1.152E-01 2.316E-01

Sub 9.220E-04 4.866E-03 5.971E-02 1.199E-01 1.182E-01 2.372E-01

Mul 8.373E-04 4.498E-03 5.036E-02 1.025E-01 1.054E-01 2.126E-01

Table 5.15: DistributedHElib function level run times (in seconds) on 16 nodes

67



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

5 ·10−2

0.1

0.15

0.2

0.25

168.7x 107.4x

54.6x

40.5x 39.4x

38.3x

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib 4 Nodes 8 Nodes 16 Nodes

Figure 5.14: Add Run Times Comparison at Function Level

68



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

5 ·10−2

0.1

0.15

0.2

0.25

172.3x 74.2x

41.6x

38.9x 39.2x

38.7x

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib 4 Nodes 8 Nodes 16 Nodes

Figure 5.15: Sub Run Times Comparison at Function Level

69



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

5 ·10−2

0.1

0.15

0.2

26.5x 13.9x

15.5x

15.9x 16.0x

15.7x

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib 4 Nodes 8 Nodes 16 Nodes

Figure 5.16: Mul Run Times Comparison at Function Level

70



for the multiplication operation at this level show it also has this characteristic, whereas

at the circuit level, this characteristic was not observed. Thus the results observed at the

circuit level must not be the result of the distributed design, but something else. By look-

ing at the distribute and wait times at level 3, one can understand why these results are

occurring.

5.4.3 DistributedHElib Distribute and Wait Run Times

Table 5.16, Table 5.18, and Table 5.20 display the distribute run times for each operation

across the three cluster sizes. Table 5.17, Table 5.19, and Table 5.21 display the sync run

times for each operation across the three cluster sizes. These times have been split into

two plots for each operation. One group of plots focuses on the distribute times (the time

it took to partition the data and assign the work) and compares them to the overall run

time of the serial version. These are the “Distribute” plots, Figure 5.17, Figure 5.19, and

Figure 5.21. The second group of plots display the sync time (the time the compute nodes

took to receive the data, compute the results, and send the data back to the dispatcher

node) compared to the overall run time for the serial design. Figure 5.18, Figure 5.20,

and Figure 5.22 display these results, and are the “Sync” plots.

By looking at the “Distribute” plots, one can see that the partitioning of data and as-

signment of work times across all clusters sizes and operations remains constant even

when the input sizes are increased. This looks good, but remember that this part of the

71



size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 2.240E-04 4.638E-04 2.373E-04 2.500E-04 2.438E-04 2.698E-04

Sub 2.405E-04 5.700E-04 2.470E-04 2.760E-04 2.995E-04 2.340E-04

Mul 2.015E-04 4.190E-04 2.150E-04 2.585E-04 2.668E-04 2.700E-04

Table 5.16: DistributedHElib distribute run times (in seconds) on 4 nodes

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 5.158E-04 3.137E-03 4.874E-02 8.478E-02 8.023E-02 1.761E-01

Sub 5.260E-04 3.162E-03 3.861E-02 8.301E-02 8.203E-02 1.599E-01

Mul 5.110E-04 2.875E-03 3.495E-02 7.733E-02 7.744E-02 1.479E-01

Table 5.17: DistributedHElib sync run times (in seconds) on 4 nodes

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 2.773E-04 6.288E-04 2.740E-04 2.978E-04 2.913E-04 3.055E-04

Sub 2.915E-04 7.465E-04 3.015E-04 2.950E-04 2.955E-04 3.085E-04

Mul 2.427E-04 5.405E-04 2.872E-04 3.077E-04 2.953E-04 3.198E-04

Table 5.18: DistributedHElib distribute run times (in seconds) on 8 nodes

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 5.903E-04 3.796E-03 5.461E-02 1.121E-01 1.122E-01 2.183E-01

Sub 5.940E-04 3.855E-03 5.553E-02 1.053E-01 1.066E-01 2.277E-01

Mul 5.608E-04 3.490E-03 4.801E-02 9.767E-02 9.774E-02 1.948E-01

Table 5.19: DistributedHElib sync run times (in seconds) on 8 nodes

72



size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 2.985E-04 7.418E-04 2.923E-04 3.083E-04 3.515E-04 3.235E-04

Sub 3.130E-04 8.175E-04 3.270E-04 3.190E-04 3.270E-04 3.445E-04

Mul 2.548E-04 6.265E-04 2.853E-04 3.130E-04 3.157E-04 3.338E-04

Table 5.20: DistributedHElib distribute run times (in seconds) on 16 nodes

size o f row

1,000 10,000 100,000 200,000 300,000 400,000

Add 6.178E-04 6.692E-03 5.765E-02 1.163E-01 1.149E-01 2.313E-01

Sub 6.060E-04 4.045E-03 5.938E-02 1.196E-01 1.178E-01 2.368E-01

Mul 5.807E-04 3.869E-03 5.007E-02 1.022E-01 1.051E-01 2.123E-01

Table 5.21: DistributedHElib sync run times (in seconds) on 16 nodes

1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

1

2

3

4

5

6

·10−3

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib 4 Nodes 8 Nodes 16 Nodes

Figure 5.17: Add Third Level Run Times Comparison - Distribute

73



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

5 ·10−2

0.1

0.15

0.2

0.25

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib 4 Nodes 8 Nodes 16 Nodes

Figure 5.18: Add Third Level Run Times Comparison - Sync

74



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

1

2

3

4

5

6
·10−3

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib 4 Nodes 8 Nodes 16 Nodes

Figure 5.19: Sub Third Level Run Times Comparison - Distribute

75



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

5 ·10−2

0.1

0.15

0.2

0.25

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib 4 Nodes 8 Nodes 16 Nodes

Figure 5.20: Sub Third Level Run Times Comparison - Sync

76



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

0.2

0.4

0.6

0.8

1

1.2

·10−2

R
un

Ti
m

es
(i

n
se

co
nd

s)

Serial HElib 4 Nodes 8 Nodes 16 Nodes

Figure 5.21: Mul Third Level Run Times Comparison - Distribute

77



1,0
00

10
,00

0

10
0,0

00

20
0,0

00

30
0,0

00

40
0,0

00

0

5 ·10−2

0.1

0.15

0.2
R

un
Ti

m
es

(i
n

se
co

nd
s)

Serial HElib 4 Nodes 8 Nodes 16 Nodes

Figure 5.22: Mul Third Level Run Times Comparison - Sync

78



work only records the times it takes to partition the data and assign the work, not send the

data to the compute nodes. Only non-blocking sends and receives are scheduled during

this portion of the recording. The actual sending and receiving between the dispatcher and

compute nodes happens mostly during the sync portion of the recording. This is because

the non-blocking send and receive functions only schedule requests, which are later ful-

filled in the background, during the sync part. So it is to be expected that these results are

seen.

The “Sync” plots show where this design is failing. The amount of time needed to

send the data over the network to the compute nodes, have them perform the operation

and then send the data back is much greater than the serial times. This has to do with the

network speed, which causes a bottleneck, and which is responsible for the plateau char-

acteristic seen in the circuit and function level times. The network speeds are much too

slow in this environment to allow for this design to be viable. With better speeds (ones

which would not cause this bottleneck to happen) this design might provide better results.

Additionally, future work to try and minimize the amount of data transfers between the

dispatcher and compute nodes could also lead to better run times.

5.5 Evaluation Conclusions

As mentioned in the introduction of this chapter, when working with distributed systems,

the overhead time, which comes from the memory transfer phases of each design, usu-

79



ally is the downfall of distributed systems. The same is true for these designs. GPUHElib

suffered from slow transfer times between the CPU and GPU, which caused slow downs

compared to the serial version. Similarly, DistributedHElib suffered from slow network

speeds, which caused a bottleneck when transferring data between the dispatcher node

and the compute nodes. With better transfer speeds, both of these designs might be viable,

however under these circumstances, they are not.

80



CHAPTER 6

FUTURE WORK

6.1 GPUHElib Future Work

As seen in Chapter 5, GPUHElib failed to provide any speed up over serial HElib. This

was because the memory transfer times between the CPU and GPU where much too great.

Therefore all of the future work for GPUHElib is designed around trying to reduce these

times.

6.1.1 Persistent Memory in GPU

To cut down on memory transfer times, it would be useful to keep all the memory that

needs to be transferred in the current design, in the GPUs memory permanently. Thus

when the operations need to be performed, the data does not need to be transferred from

the CPU to the GPU, as the GPU already contains all the data that needs to be operated

on. This would reduce the memory transfer times down to almost zero, thus making the

run times only dependent on the operation times, which as seen in Section 5.3, were much

81



lower than the serial HElib run times.

6.1.2 Full Operation Implementation

Only the most used operations were implemented on the GPU. Because of this, the results

from the GPU operations needed to be copied back to the CPU, so that other unsupported

operation could take place. It would be beneficial then to implement all of the operations

supported by serial HElib using the GPU. Thus the results would not need to be copied

back, as all the operations that a user could perform would be supported on the GPU.

6.2 DistributedHElib Future Work

As seen in Chapter 5, DistributedHElib failed to provide any run time improvement over

serial HElib. This was a result of the network speed being a bottleneck. Thus all future

work for DistributedHElib would try to reduce amount of data sent over the network.

6.2.1 Distributed Memory on Compute Nodes

In order to rely less on the network to transfer data, one could design the system so that

the data is partitioned onto compute nodes. Thus each compute node would be respon-

sible for a piece that only they were responsible for. Then when operations occur, these

compute nodes can perform the operation on their piece of the data, without needing to

receive the data from the dispatcher node, as the data will already be present on them.

82



Thus data transfers would only happen during initial setup, and finalization, reducing the

network traffic, and removing the network bottleneck.

6.2.2 Full Operation Implementation

Similar to the future work for GPUHElib, it would be useful to have all the operations

supported on the compute nodes. Because they are not supported in the library as it is

designed now, the results of operations must be sent back to the dispatcher node, so that it

can perform one of these unsupported operations. With all operations supported however,

the data would not need to be sent back to the dispatcher node to perform the operation,

because the operation could be run on the compute nodes.

83



CHAPTER 7

CONCLUSIONS

This work was attempting to improve the run time of the homomorphic encryption library,

HElib. By applying distribute system techniques, which would suit the intended deploy-

ment environment for HElib, we tried to improve the run times of operations being per-

formed by HElib. Two libraries were designed: GPUHElib and DistributedHElib.

GPUHElib attempted to add GPU functionality to HElib, in order to cut down on the

run times for the operations. The design of these operations on the GPU required mem-

ory mapping from the CPU to the GPU, overflow considerations for GPU operations, and

pipeline techniques be applied. Unfortunately, as these tests showed, this design did not

perform better than the serial version. This was due to the memory transfer times from

CPU to GPU being much too large to facilitate a speedup, even though the operation

times were much lower. With further work however, this design might become viable.

DistributedHElib applied distributed computing techniques in an attempt to speed up

the run time of HElib. This design utilized a master-slave cluster architecture and non-

block send and receive function to facilitate concurrent computation. Again as the tests

84



showed, this design failed to perform better than the serial version. This was because the

network speed caused a bottleneck, and made the run times drastically slower than the

serial version. Similarly, with future work, this design might become a viable option.

While both of these variants were unsuccessful, they have promise, and in the future

might be useful in the design of faster homomorphic encryption libraries.

85



BIBLIOGRAPHY

[1] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical

gapsvp. Cryptology ePrint Archive, Report 2012/078, 2012. http://eprint.iacr.

org/.

[2] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-based homomor-

phic encryption. In Public-Key Cryptography–PKC 2013, pages 1–13. Springer, 2013.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption

without bootstrapping. Cryptology ePrint Archive, Report 2011/277, 2011. http://

eprint.iacr.org/.

[4] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from

(standard) lwe. Cryptology ePrint Archive, Report 2011/344, 2011. http://eprint.

iacr.org/.

[5] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and

modulus switching for fully homomorphic encryption over the integers. In Advances in

Cryptology–EUROCRYPT 2012, pages 446–464. Springer, 2012.

[6] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,

2009.

[7] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption

scheme. Cryptology ePrint Archive, Report 2010/520, 2010. http://eprint.iacr.

org/.

[8] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using

depth-3 arithmetic circuits. Cryptology ePrint Archive, Report 2011/279, 2011. http:

//eprint.iacr.org/.

86

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


[9] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with

errors: Conceptually-simpler, asymptotically-faster, attribute-based. Cryptology ePrint

Archive, Report 2013/340, 2013. http://eprint.iacr.org/.

[10] Shai Halevi and Victor Shoup. Design and implementation of a homomorphic-encryption

library. 2013.

[11] Shai Halevi and Victor Shoup. Algorithms in helib. Cryptology ePrint Archive, Report

2014/106, 2014. http://eprint.iacr.org/.

[12] Shai Halevi and Victor Shoup. Bootstrapping for helib. Cryptology ePrint Archive, Report

2014/873, 2014. http://eprint.iacr.org/.

[13] Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty com-

putation on the cloud via multikey fully homomorphic encryption. Cryptology ePrint

Archive, Report 2013/094, 2013. http://eprint.iacr.org/.

[14] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy

homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[15] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively

small key and ciphertext sizes. In Public Key Cryptography–PKC 2010, pages 420–443.

Springer, 2010.

[16] N.P. Smart and F. Vercauteren. Fully homomorphic simd operations. Cryptology ePrint

Archive, Report 2011/133, 2011. http://eprint.iacr.org/.

[17] Damien Stehle and Ron Steinfeld. Faster fully homomorphic encryption. Cryptology

ePrint Archive, Report 2010/299, 2010. http://eprint.iacr.org/.

87

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


APPENDICES

88



APPENDIX A

KERNELS

A.1 Addition

A.1.1 Addition of two DoubleCRT objects

Listing A.1: Addition Kernel for Two DoubleCRT

g l o b a l void vectorAddMod ( long ∗ vec to r A ,

long ∗ v e c t o r B ,

long width ,

long sub wid th ,

long o f f s e t ) {
long t i d ;

t i d = o f f s e t + b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

whi le ( ( t i d−o f f s e t ) < wid th ) {
/ / e x t r a c t modulus from a r r a y

u i n t 6 4 t modulus =

( u i n t 6 4 t ) v e c t o r m o d u l i [ t i d / s u b w i d t h ] ;

/ / compute sum

u i n t 6 4 t sum =

( u i n t 6 4 t ) v e c t o r A [ t i d ] +

( u i n t 6 4 t ) v e c t o r B [ t i d ] ;

/ / pe r fo rm modulus o p e r a t i o n , s t o r e r e s u l t

v e c t o r A [ t i d ] =

( long ) ( sum − modulus ∗ ( sum / modulus ) ) ;

t i d += blockDim . x ∗ gridDim . x ;

89



}
re turn ;

}

A.1.2 Addition of a DoubleCRT object and a constant

Listing A.2: Addition Kernel for a DoubleCRT and a constant

g l o b a l void vectorAddMod ( long ∗ vec to r A ,

long width ,

long sub wid th ,

long o f f s e t ) {
long t i d ;

t i d = o f f s e t + b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

whi le ( ( t i d−o f f s e t ) < wid th ) {
/ / e x t r a c t modulus from a r r a y

u i n t 6 4 t modulus =

( u i n t 6 4 t ) v e c t o r m o d u l i [ t i d / s u b w i d t h ] ;

/ / compute sum

u i n t 6 4 t sum =

( u i n t 6 4 t ) v e c t o r A [ t i d ] +

( u i n t 6 4 t ) v e c t o r n s [ t i d / s u b w i d t h ] ;

/ / pe r fo rm modulus o p e r a t i o n , s t o r e r e s u l t

v e c t o r A [ t i d ] =

( long ) ( sum − modulus ∗ ( sum / modulus ) ) ;

t i d += blockDim . x ∗ gridDim . x ;

}
re turn ;

}

A.2 Subtraction

A.2.1 Subtraction of two DoubleCRT objects

90



Listing A.3: Subtraction Kernel for Two DoubleCRT

g l o b a l void vectorSubMod ( long ∗ vec to r A ,

long ∗ v e c t o r B ,

long width ,

long sub wid th ,

long o f f s e t ) {
long t i d ;

t i d = o f f s e t + b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

whi le ( ( t i d−o f f s e t ) < wid th ) {
/ / e x t r a c t modulus from a r r a y

u i n t 6 4 t modulus =

( u i n t 6 4 t ) v e c t o r m o d u l i [ t i d / s u b w i d t h ] ;

/ / compute d i f f e r e n c e

/ / add modulus t o e n s u r e r e s u l t i s > 0 ,

/ / w i l l be removed when mod by modulus

u i n t 6 4 t d i f f =

( u i n t 6 4 t ) v e c t o r A [ t i d ] +

modulus −
( u i n t 6 4 t ) v e c t o r B [ t i d ] ;

/ / pe r fo rm modulus o p e r a t i o n , s t o r e r e s u l t

v e c t o r A [ t i d ] =

( long ) ( d i f f − modulus ∗ ( d i f f / modulus ) ) ;

t i d += blockDim . x ∗ gridDim . x ;

}
re turn ;

}

A.2.2 Subtraction of a DoubleCRT object and a constant

Listing A.4: Subtraction Kernel for a DoubleCRT and a constant

g l o b a l void vectorSubMod ( long ∗ vec to r A ,

long width ,

91



long sub wid th ,

long o f f s e t ) {
long t i d ;

t i d = o f f s e t + b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

whi le ( ( t i d−o f f s e t ) < wid th ) {
/ / e x t r a c t modulus from a r r a y

u i n t 6 4 t modulus =

( u i n t 6 4 t ) v e c t o r m o d u l i [ t i d / s u b w i d t h ] ;

/ / compuate d i f f e r e n c e

/ / add modulus t o e n s u r e r e s u l t i s > 0 ,

/ / w i l l be removed when mod by modulus

u i n t 6 4 t d i f f =

( u i n t 6 4 t ) v e c t o r A [ t i d ] +

modulus −
( u i n t 6 4 t ) v e c t o r n s [ t i d / s u b w i d t h ] ;

/ / pe r fo rm modulus o p e r a t i o n , s t o r e r e s u l t

v e c t o r A [ t i d ] =

( long ) ( d i f f − modulus ∗ ( d i f f / modulus ) ) ;

t i d += blockDim . x ∗ gridDim . x ;

}
re turn ;

}

A.3 Multiplication

A.3.1 Multiplication of two DoubleCRT objects

Listing A.5: Multiplication Kernel for Two DoubleCRT

g l o b a l void vectorMultMod ( long ∗ vec to r A ,

long ∗ v e c t o r B ,

long width ,

long sub wid th ,

long o f f s e t ) {

92



long t i d ;

t i d = o f f s e t + b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

whi le ( ( t i d−o f f s e t ) < wid th ) {
/ / e x t r a c t modulus from a r r a y

u i n t 6 4 t modulus =

( u i n t 6 4 t ) v e c t o r m o d u l i [ t i d / s u b w i d t h ] ;

/ / compute i n t e r m e d i a t e v a l u e s

u i n t 6 4 t a1 =

( u i n t 6 4 t ) v e c t o r A [ t i d ] / 4294967296;

u i n t 6 4 t a2 =

( u i n t 6 4 t ) v e c t o r A [ t i d ] − 4294967296 ∗ a1 ;

u i n t 6 4 t b1 =

( u i n t 6 4 t ) v e c t o r B [ t i d ] / 4294967296;

u i n t 6 4 t b2 =

( u i n t 6 4 t ) v e c t o r B [ t i d ] − 4294967296 ∗ b1 ;

/ / compute z0 , per fo rm modulus

u i n t 6 4 t z0 = a2 ∗ b2 ;

z0 = z0 − modulus ∗ ( z0 / modulus ) ;

/ / compute p a r t o f z1

u i n t 6 4 t p12 = a1 ∗ b2 ;

/ / compute p a r t o f z1

u i n t 6 4 t p21 = a2 ∗ b1 ;

/ / compute z1 , per fo rm modulus

u i n t 6 4 t z1 = p12 + p21 ;

z1 = z1 − modulus ∗ ( z1 / modulus ) ;

/ / compute z2

u i n t 6 4 t z2 = a1 ∗ b1 ;

/ / l oop t o g e t z2 ∗2ˆ32 and z1 ∗2ˆ32

i n t i ;

f o r ( i =0 ; i <32; i ++) {
z1 = z1 ∗ 2 ;

i f ( z1 >= modulus ) {

93



z1 =

z1 − modulus ∗
( z1 / modulus ) ;

}
z2 = z2 ∗ 2 ;

i f ( z2 >= modulus ) {
z2 =

z2 − modulus ∗
( z2 / modulus ) ;

}
}

/ / l oop t o g e t z2 ∗2ˆ32∗2ˆ32= z2 ∗2ˆ64

f o r ( i = i ; i <64; i ++) {
z2 = z2 ∗ 2 ;

i f ( z2 >= modulus ) {
z2 =

z2 − modulus ∗
( z2 / modulus ) ;

}
}

/ / compute f i n a l v a l u e

u i n t 6 4 t z = z0 + z1 + z2 ;

/ / pe r fo rm modulus o p e r a t i o n , s t o r e r e s u l t

v e c t o r A [ t i d ] =

( long ) ( z − modulus ∗ ( z / modulus ) ) ;

t i d += blockDim . x ∗ gridDim . x ;

}
re turn ;

}

A.3.2 Multiplication of a DoubleCRT object and a constant

94



Listing A.6: Multiplication Kernel for a DoubleCRT and a constant

g l o b a l void vectorMultMod ( long ∗ vec to r A ,

long width ,

long sub wid th ,

long o f f s e t ) {
long t i d ;

t i d = o f f s e t + b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

whi le ( ( t i d−o f f s e t ) < wid th ) {
/ / e x t r a c t modulus from a r r a y

u i n t 6 4 t modulus =

( u i n t 6 4 t ) v e c t o r m o d u l i [ t i d / s u b w i d t h ] ;

/ / compute i n t e r m e d i a t e v a l u e s

u i n t 6 4 t a1 =

( u i n t 6 4 t ) v e c t o r A [ t i d ] / 4294967296;

u i n t 6 4 t a2 =

( u i n t 6 4 t ) v e c t o r A [ t i d ] −
4294967296 ∗ a1 ;

u i n t 6 4 t b1 =

( u i n t 6 4 t ) v e c t o r n s [ t i d / s u b w i d t h ] /

4294967296;

u i n t 6 4 t b2 =

( u i n t 6 4 t ) v e c t o r n s [ t i d / s u b w i d t h ] −
4294967296 ∗ b1 ;

/ / compute z0 , per fo rm modulus

u i n t 6 4 t z0 = a2 ∗ b2 ;

z0 = z0 − modulus ∗ ( z0 / modulus ) ;

/ / compute p a r t o f z1

u i n t 6 4 t p12 = a1 ∗ b2 ;

/ / compute p a r t o f z1

u i n t 6 4 t p21 = a2 ∗ b1 ;

/ / compute z1 , per fo rm modulus

u i n t 6 4 t z1 = p12 + p21 ;

95



z1 = z1 − modulus ∗ ( z1 / modulus ) ;

/ / compute z2

u i n t 6 4 t z2 = a1 ∗ b1 ;

/ / l oop t o g e t z2 ∗2ˆ32 and z1 ∗2ˆ32

i n t i ;

f o r ( i =0 ; i <32; i ++) {
z1 = z1 ∗ 2 ;

i f ( z1 > modulus ) {
z1 = z1 − modulus ∗

( z1 / modulus ) ;

}
z2 = z2 ∗ 2 ;

i f ( z2 > modulus ) {
z2 = z2 − modulus ∗

( z2 / modulus ) ;

}
}

/ / l oop t o g e t z2 ∗2ˆ32∗2ˆ32= z2 ∗2ˆ64

f o r ( i = i ; i <64; i ++) {
z2 = z2 ∗ 2 ;

i f ( z2 > modulus ) {
z2 = z2 − modulus ∗

( z2 / modulus ) ;

}
}

/ / compute f i n a l v a l u e

u i n t 6 4 t z = z0 + z1 + z2 ;

/ / pe r fo rm modulus o p e r a t i o n , s t o r e r e s u l t

v e c t o r A [ t i d ] =

( long ) ( z − modulus ∗ ( z / modulus ) ) ;

t i d += blockDim . x ∗ gridDim . x ;

}

96



re turn ;

}

97



APPENDIX B

VECTOR MANAGEMENT

B.1 Device Vector Management

Listing B.1: Device Vector Management

void i n i t v e c t o r ( long ∗∗ v e c t o r ,

long s i z e ,

long num elements ,

long ∗ l e n g t h ) {
/ / pe r fo rm i n i t i a l a l l o c a t i o n

i f (∗ v e c t o r == NULL) {
i f ( c u d a S u c c e s s !=

cudaMal loc ( ( void ∗∗ ) v e c t o r , s i z e ) )

{
GPU error ( F ILE ,

LINE ,

c u d a G e t L a s t E r r o r ( ) ) ;

}
∗ l e n g t h = num elements ;

/ / r e s i z e i f v e c t o r i s t o o s m a l l

} e l s e i f (∗ l e n g t h < num elements ) {
c u d a F r e e (∗ v e c t o r ) ;

i f ( c u d a S u c c e s s !=

cudaMal loc ( ( void ∗∗ ) v e c t o r , s i z e ) )

{

98



GPU error ( F ILE ,

LINE ,

c u d a G e t L a s t E r r o r ( ) ) ;

}
∗ l e n g t h = num elements ;

}
}

B.2 Compute Node Buffer Management

Listing B.2: Compute Node Buffer Management

void i n i t v e c t o r ( long ∗∗ v e c t o r ,

long ∗ v e c t o r l e n g t h ,

long n e e d l e n g t h ) {
/ / pe r fo rm t h e i n i t i a l a l l o c a t i o n

i f (∗ v e c t o r == NULL) {
∗ v e c t o r =

( long ∗ ) ma l l oc ( s i z e o f ( long ) ∗
n e e d l e n g t h ) ;

∗ v e c t o r l e n g t h = n e e d l e n g t h ;

/ / r e s i z e i f b u f f e r i s t o o s m a l l

} e l s e i f (∗ v e c t o r l e n g t h < n e e d l e n g t h ) {
∗ v e c t o r =

( long ∗ ) r e a l l o c ( v e c t o r ,

s i z e o f ( long ) ∗ n e e d l e n g t h ) ;

∗ v e c t o r l e n g t h = n e e d l e n g t h ;

}
}

99



APPENDIX C

CONCURRENCY MANAGEMENT

C.1 Device Stream Management

Listing C.1: Device Stream Management

void c r e a t e s t r e a m s ( long n e e d n u m s t r e a m s ) {
f o r ( long i = num st reams ;

i<n e e d n u m s t r e a m s ; i ++) {
i f ( c u d a S u c c e s s !=

c u d a S t r e a m C r e a t e (& s t r e a m [ i ] ) )

{
GPU error ( F ILE ,

LINE ,

c u d a G e t L a s t E r r o r ( ) ) ;

}
}

num st reams = n e e d n u m s t r e a m s ;

}

void i n i t s t r e a m s ( long n e e d n u m s t r e a m s ) {
i f ( num st reams == 0) {

s t r e a m = ( c u d a S t r e a m t ∗ )

ma l l oc ( n e e d n u m s t r e a m s

∗ s i z e o f ( c u d a S t r e a m t ) ) ;

100



c r e a t e s t r e a m s ( n e e d n u m s t r e a m s ) ;

} e l s e i f ( num st reams <

n e e d n u m s t r e a m s ) {
s t r e a m =

( c u d a S t r e a m t ∗ ) r e a l l o c ( s t ream ,

n e e d n u m s t r e a m s ∗
s i z e o f ( c u d a S t r e a m t ) ) ;

c r e a t e s t r e a m s ( n e e d n u m s t r e a m s ) ;

}
}

C.2 Synchronization Management

Listing C.2: Synchronization Management

void sync ( ) {
/ / u n t i l t h e queue i s empty

whi le ( ! r e q u e s t q u e u e . empty ( ) ) {
/ / g e t t h e f i r s t r e q u e s t

/ / o u t o f t h e queue

MPI : : Reques t r e q u e s t =

r e q u e s t q u e u e . f r o n t ( ) ;

r e q u e s t q u e u e . pop ( ) ;

/ / i f u n f i n i s h e d , p u t back

i f ( ! r e q u e s t . T e s t ( ) ) {
r e q u e s t q u e u e . push ( r e q u e s t ) ;

}
}

}

101


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	Homomorphic Encryption
	Gentry's Design
	Second Generation Designs
	FHE without Bootstrapping

	HElib
	HElib Design

	Distributed Systems
	Parallel Computing on GPU
	Distributed Computing with OpenMPI


	GPUHELIB DESIGN
	Memory Mapping
	Mapping from CPU to GPU
	GPU Vector Management

	Overflow Considerations
	Addition Overflow Considerations
	Subtraction Overflow Considerations
	Multiplication Overflow Considerations

	Pipelining
	CUDA Streams
	Overlapping Kernel Execution
	2-Way Pipelining
	3-Way Pipelining
	Stream Management


	DISTRIBUTEDHELIB DESIGN
	Node Cluster Setup
	Work Assignment

	Memory Mapping
	Mapping from Dispatcher Node to Compute Nodes
	Compute Node Vector Management

	Concurrency
	Non-Blocking Send and Receive with OpenMPI
	Syncing


	EVALUATION
	Evaluation Tools
	Test Program
	HElib Timing Functions

	Testing Environment
	GPU Testing Environment
	Distributed Computing Testing Environment

	GPUHElib Evaluation Results
	GPUHElib Circuit Level Run Times
	GPUHElib Function Level Run Times
	GPUHElib Phase Level Run Times

	DistrubtedHElib Evaluation Results
	DistributedHElib Circuit Level Run Times
	DistributedHElib Function Level Run Times
	DistributedHElib Distribute and Wait Run Times

	Evaluation Conclusions

	FUTURE WORK
	GPUHElib Future Work
	Persistent Memory in GPU
	Full Operation Implementation

	DistributedHElib Future Work
	Distributed Memory on Compute Nodes
	Full Operation Implementation


	CONCLUSIONS
	BIBLIOGRAPHY
	APPENDIX KERNELS
	Addition
	Addition of two DoubleCRT objects
	Addition of a DoubleCRT object and a constant

	Subtraction
	Subtraction of two DoubleCRT objects
	Subtraction of a DoubleCRT object and a constant

	Multiplication
	Multiplication of two DoubleCRT objects
	Multiplication of a DoubleCRT object and a constant


	APPENDIX VECTOR MANAGEMENT
	Device Vector Management
	Compute Node Buffer Management

	APPENDIX CONCURRENCY MANAGEMENT
	Device Stream Management
	Synchronization Management


