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ABSTRACT 

Virtual Reality Engine Development 

Varun Varahamurthy 

 

With the advent of modern graphics and computing hardware and cheaper sensor and display 

technologies, virtual reality is becoming increasingly popular in the fields of gaming, therapy, 

training and visualization. Earlier attempts at popularizing VR technology were plagued by issues 

of cost, portability and marketability to the general public. Modern screen technologies make it 

possible to produce cheap, light head-mounted displays (HMDs) like the Oculus Rift, and modern 

GPUs make it possible to create and deliver a seamless real-time 3D experience to the user. 3D 

sensing has found an application in virtual and augmented reality as well, allowing for a higher 

level of interaction between the real and the simulated. There are still issues that persist, however. 

Many modern graphics/game engines still do not provide developers with an intuitive or adaptable 

interface to incorporate these new technologies. Those that do, tend to think of VR as a novelty 

afterthought, and even then only provide tailor-made extensions for specific hardware. The goal of 

this paper is to design and implement a functional, general-purpose VR engine using abstract 

interfaces for much of the hardware components involved to allow for easy extensibility for the 

developer.  
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1. Introduction 

Virtual Reality (VR) is a broad term typically used to refer to and describe a variety of technologies 

associated with immersion into a simulated 3D environment. As a field of study, it can be thought 

of primarily as the point where Human Computer Interaction (HCI), Computer Graphics (CG), 

Computer Vision/Digital Image Processing (CV/DIP) and 3D Sensing meet. This chapter will 

outline the basics of VR along with the objectives of this project.  
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1.1. Definition 

The term “Virtual Reality” can be traced back to times predating the first computer. In his book 

The Theater and Its Double (1938), French playwright Antonin Artaud used the words “la réalité 

virtuelle” to describe theatre itself, referring to its ability as an art form to immerse audiences within 

the story being told. In modern times, the term has evolved to allude specifically to the use of 

computers to create simulated virtual experiences for users. Other terms have been coined over the 

years to describe related concepts such as “Augmented Reality”, “Immersive Multimedia” and 

“Artificial Reality” which arguably fall under the umbrella of Virtual Reality. In this paper, the 

term Virtual Reality will be used in a more general context. It will refer to the use of computers to 

provide an abstraction so that users can interact with virtual resources in a more natural, intuitive 

and realistic way. 

1.2. Motivation 

Traditional user interfaces that we have grown accustomed to are due for an upgrade. Traditional 

interface devices like keyboards, mice and computer monitors are clearly unintuitive and represent 

relics from a much older time. In fact, the modern keyboard layout comes from that of 

typewriters…a layout designed to impede typing speed to prevent the jamming of the mechanism.  

It may not seem that way to most people who have been using devices like these for much of their 

adult lives, but many people who remember first learning how to use a keyboard or a mouse might 

tell you that it was a frustrating experience. Consider the fact that the mouse limits user input to a 

two dimensional space. That may seem like an odd issue to take with an interface device, but think 

about how frustrating life would be if you were only allowed two degrees of freedom to interact 

with objects in the real world. In light of these issues, it would be fair to say that the goal of VR is 

to provide a means by which to facilitate natural interaction between humans and machines. 

The future of VR depends heavily on the demonstrable benefits of current technology. VR has 

existed for a long time but was considered simply a novelty for the gaming community. Much of 



3 

 

the early innovation in VR came from the military for use in training and simulations. These 

systems were large, complex and very expensive. For this reason, making VR systems available to 

the general public was generally considered a pipe dream. Today, recent innovations in head 

mounted displays (HMD) technology, 3D depth cameras, graphics hardware and motion controllers 

have become widely available and relatively cheap. Yet, even with these massive leaps in 

technology, modern systems involving VR are still only developed specifically for a given purpose 

with the VR components added in later as an afterthought. To illustrate this point further, modern 

game systems are built specifically for traditional PC or Console gaming, forcing the user to interact 

with the application using a mouse, keyboard or gamepad; an interfacing paradigm that has 

remained largely unchallenged for years. Part of the reason for this is that developers are largely 

unaccustomed to the new emerging paradigm of “natural” user interfaces like head-mounted 

displays and 3D skeleton tracking sensors. Some game engines developers such as UDK and Unity 

have lead the charge in facing this issue by providing extensions for independent developers to 

allow for the use of these new technologies in their own creations. This is a step in the right 

direction, but a small step nonetheless. The game industry is being discussed in detail here because 

it has been and will most likely continue to be the greatest proponent to VR technology, yet even 

here there seems to be a stagnant response.  

Another issue is that there is no compatibility standard between specialized VR devices. This 

hinders the motivation of developers who see time invested in development for a specific device as 

a waste if it only benefits the small number of consumers who own that device. Specialized VR 

hardware must be held to a basic compatibility standard much like most modern input/output 

devices, thereby incentivizing the development of software applications that can take advantage of 

said new hardware with a relatively small effort. This is not unlike the argument made for the 

development of the USB (Universal Serial Bus) device standards in the mid-1990s. 
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For non-gamers who still use computers for other purposes, this may seem like a waste of time, but 

the fact remains that there are several other industries that would be greatly benefitted by the 

introduction of VR functionality. VR has applications that extend far beyond video gaming; into 

robotics, biomedical imaging, therapy, entertainment and education just to name a few.  

1.3. Objectives 

Put simply, the objective of this paper is to explore, develop and implement a working VR engine 

primarily for use in an educational setting. A series of abstractions will be developed and 

demonstrated that will aid developers and students in creating robust and intuitive VR applications.  

The majority of the practical work done on this project will be in the form of C++ code. The rest 

will be the compilation and further development of a theoretical foundation for users and students 

looking to utilize this work in their own projects. The engine should at the very least provide a 

simplified abstract framework for basic graphics programming, stereo rendering, HMD feedback, 

gesture recognition and 3D sensing. The framework should abstract the student or user away from 

the nitty-gritty details of the hardware integration and low level APIs so that they may deal 

specifically with the creation of VR applications. The software interface must remain at least a 

layer above the hardware so as to accommodate other similar hardware systems. In other words, 

integration of new hardware should only require a specific extension of an abstract interface in 

software to maintain compatibility with the rest of the system. This goes for the graphics rendering 

system as well.  

The rendering interface will be composed of a series of abstract objects, with a specific 

implementation for OpenGL 3.x. Support for other low level graphics libraries will be easy enough 

to implement through the abstractions provided. The code for the engine will be written in standard 

C++. All external libraries will be cross-platform, with the exception of the Kinect SDK which is 

currently only officially supported on Windows.   
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The Oculus Rift will be the stereo HMD system that will be used, but the framework will be written 

so as to be agnostic to the specific HMD in use. The stereo HMD interface will include basic head 

tracking functionality and a raw sensor feedback pipeline. Any HMD capable of providing this 

information should be compatible with the framework. 

A basic gesture recognition framework will be implemented as well. This will be done in the 

context of the 3D sensing system, which is in this case the Microsoft Kinect. The gesture 

recognition framework will be used to implement a simple grab detection algorithm as a proof of 

concept. Because the results of this project are meant for human consumption and developer 

friendliness, the success of the project as a whole can only truly be judged in terms of end user ease 

of use and design pattern. 
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2. Related Works & History 

To understand where VR is headed, it is important to understand where it came from. As stated 

earlier, the origins of VR are deeply intertwined with those of Computer Graphics and Human-

Computer Interaction. The purpose of this chapter is to provide a brief timeline for the major 

developments in either of these areas and provide insight into their effects on the growth of VR as 

we know it today. 
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2.1. The Sensorama 

Many consider the birth of VR to be the development of a single user console known as the 

Sensorama. Invented in the mid-1950s by Morton Eilig, a cinematographer, the Sensorama 

included a stereoscopic display, stereo speakers and even a tilting chair. It was designed to provide 

a multi-sensory, immersive experience for users by engaging as many senses as possible, even 

including a mechanism to trigger aromas during a film. Heilig’s described his ideas for the 

Sensorama as early as 1955 before building the actual prototype in 1962, but the project was halted 

due to lack of funding. To this day, the Sensorama is considered to be the first VR system, despite 

it being an entirely mechanical machine with no digital computing capabilities.  

Figure 2-1: The Sensorama 

 

2.2. The HMD 

Heilig’s Sensorama was not his only VR contribution. In 1962, he filed a patent for what is widely 

considered the first Head-Mounted Display (HMD) ever designed. The system called for the use of 

optics to simulate a wide angle view of 3D photographic slides, along with a stereo sound system 

and an “odor generator”. It was essentially meant to be a portable version of the Sensorama.  
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Figure 2-2: Heilig's HMD 

 

Heilig’s HMD was never built, but his ideas had sparked the interests of others who desired to make 

the HMD a reality. In 1961, two employees of the Philco Corporation managed to construct the 

first HMD, called the Headsight, out of a single CRT screen strapped to a helmet and a magnetic 

tracking system to provide orientation feedback. The system was designed to be used in conjunction 

with a remote CCTV system to provide viewing into relatively dangerous environments. Around 

the same time, computer scientists and engineers like Sutherland, Roberts and Warnock were 

working on algorithms and systems that would allow computers to display graphical data on CRT 

displays. Naturally, the two areas of research collided resulting in the first computer interfaced 

HMD called the Ultimate Display, invented in 1965 by Ivan Sutherland [1]. The Ultimate Display 

had a mechanical tracking system rigged to a skyline system on the ceiling. The technology quickly 

found funding and applications in military helicopters to be worn by the pilots.  
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Figure 2-3: The Ultimate Display 

 

Over the next 20 years or so, many other HMD designs would emerge, each generation 

[2]improving upon the last. 

2.3. Natural Interfacing 

Another front of the HCI movement was starting to investigate new ways to allow users to be more 

hands-on with their data. The Sayre Glove, described by Tom Defanti and Daniel Sandin in 1977, 

was one of the first instrumented gloves to be. The glove used light sensors and photocells on 

opposite ends of optical fibers on a glove to determine how bent each finger was. 

 In 1983, Dr. Gary Grimes at Bell Labs developed the Grimes’ Digital Data Entry Glove which had 

tactile sensors at the fingertips, flex sensors along each finger and position/orientation sensors at 

the wrist. It was designed to allow for “fingerspelling” or entering alphanumeric characters via 

hand position.  
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Figure 2-4: The Sayre Glove 

 

Many other variants of these controllers would emerge over the course of the decade, with the most 

recent relying on computer vision techniques. Pnevmatikakis and Anagnostopoulos described a fast 

process by which to track the center of the palm by finding the point with the largest distance to its 

nearest contour point [2]. Amayeh, Bebis, Erol and Nicolescu proposed a way to segment the hand 

based on fitting the largest circle to the palm and inferring the position of the fingers from the non-

palm regions [3]. With faster processing hardware, vision based hand tracking is gaining popularity 

not just because of its speed but also because it requires no wearable hardware. 

2.4. Current State of VR 

The issues facing earlier designs in VR hardware such as cost, portability and power have been 

greatly mitigated, allowing for the emergence of a new generation of VR technology. New HMD 

systems such as the Oculus Rift are made possible by smaller and higher resolution displays. 

Research in IR imaging and computer vision has made real-time 3D depth sensing a reality, which 

is in turn used in RGB-D cameras like the Microsoft Kinect, making it possible to track a human 
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body in 3D without the use of wearable devices. Audio systems have also become more 

commonplace and have since been standardized; so much so that modern audio hardware provides 

hardware acceleration for 3D audio for use in a wide variety of multimedia applications. Dedicated 

graphics hardware designed with a high degree of parallelization in mind is capable of processing 

and rendering millions of vertices and polygons at high resolutions in real-time. These innovations 

and advances in hardware must be matched in software to make VR a more viable medium, as it 

should be already. 
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3. System Overview 

It is important to get a top-down perspective of the engine as a whole which is what this chapter is 

meant to provide. The architecture of the engine and how it relates to the hardware will be explained 

in detail here along with some of the basic motivation and methodology behind the abstractions 

used throughout the engine. No code will be presented here, but standard object oriented 

programming terminology will be used as well as some C++ specific terminology. 
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3.1. Abstractions 

The first thing that must be understood before going any further is the concept of abstraction and 

how it applies to this project. Webster’s dictionary defines abstraction as follows: “a general idea 

or quality rather than an actual person, object, or event: an abstract idea or quality.” In general, we 

can think of abstraction as the process by which we form symbolic representations of objects and 

concepts. The simplest example of this is found in language. We use words, which are basic human 

constructs, to represent an immense variety of things. The word “automobile” for example 

represents any powered, four-wheeled vehicle that can carry people. There are many different 

variants of automobile, yet most of the time, it does us no good to be any more specific in 

conversation. This brings us to the other useful quality of abstraction, which is that it provides us a 

means by which to simplify a set of seemingly varied objects to single abstract representative 

object.  

3.2. Object Oriented Programming 

This is the fundamental idea behind object oriented programming, where concepts, ideas and 

structures can be represented as objects defined through code structures called classes. For 

example, one could define a class called “automobile” which has certain properties, also called 

fields, such as horsepower, mpg rating, and capacity. The class could also define behaviors that the 

object would be capable of performing through constructs called functions. In the case of the 

automobile, these functions might include “drive”, “stop”, “speed-up/down”, etc. Every object 

created through that class would be considered an instance of that class and may have properties 

that vary. Automobile instances might differ in terms of their properties but they would all be able 

to perform the functions defined. The fact that such a class is so general allows us to describe a 

multitude of automobiles but gives us no way to distinctly describe cars, busses or motorcycles. 

Under the current structure of our class, there is no difference between these things. They are all 
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simply automobiles. To do that, we would have to define new classes, with each one extending the 

automobile class.  

Classes that extend another class are called subclasses or derived classes. The class they extended 

is referred to as the superclass or base class. A derived class inherits all of its functionality and 

properties from the base class but is free to define fields and functions unique to itself. For example, 

the bus class inherits from the automobile class but it is the only type of automobile that can stop 

at a bus stop. 

Now consider the situation in which two automobiles perform the same function, but differ in the 

way that they perform it. For example, all automobiles must be able to brake but they don’t all have 

to do it in the same way. A large bus might use a pneumatic system to release a failsafe brake pad 

while a car may accomplish the same task using a hydraulic system. In a case such as this where 

the specific implementation of a function varies between subclasses, a concept known as an 

overloading is used. The base class might define a default overloadable function that the derived 

classes are free to implement differently in their own definitions. In C++, this type of function is 

called a virtual function. If there is no context to define the function in the base class and it is 

consequently left undefined, the function it is known as a pure virtual function, and the base class 

is known as an abstract or virtual base class and no instances of the base class may exist. In the 

case of the automobile, if the “brake” function is pure virtual within the automobile class, the bus 

and car derived classes must each define a specific implementation of this function if they are to be 

instanced within the application. A base class that is composed purely of virtual functions is called 

an interface. 

3.3. Interfaces 

The idea behind interfaces in a modular design is essentially to insulate components from others 

and to aide interoperability between them. From a systems engineering standpoint, interfaces are 

essential for maintaining compatibility during upgrades and setting up a standard for extensibility 
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which is ultimately what this project aims to do. The main targets for abstract interfacing within 

this project are the graphics, HMD and 3D Sensor layers. This is important because it allows the 

developer to write applications without having to worry about hardware specific issues. This will 

be explained in further detail in later sections. For now, it is useful to further extend the automobile 

analogy. For the sake of explanation, we can limit this discussion to cars. All cars have a set of user 

controls that allow a driver to operate them. There is a steering wheel, an accelerator pedal, a brake 

pedal, a gearstick and signaling controls. Some cars may have more, but all cars have at least these 

controls which we can call the basic user interface for a car. This is what allows a single experienced 

driver to successfully operate a large variety of cars with relative ease without having to learn or 

master any new controls. The manufacturers of these cars comply with this interface with the 

understanding that if any of these controls deviated from the standard, drivers may find it difficult 

and awkward which would ultimately affect sales. Beneath this standard interface, however, the 

manufacturers are free to do whatever they like. The steering wheel could connect to a simple 

transmission or an electronic column and the honk control might actuate to an air horn or a speaker 

but this would make no difference to the driver.  

In the same way, when developing a software system for a project such as this, it is important to 

define a solid, robust and intuitive interface for hardware components or even low level software 

libraries. The VR engine is like the car and the VR developer is like the driver in the analogy. If an 

interface proves to be popular amongst developers, there is an incentive for the hardware 

manufacturers to provide specific implementations of their systems compatible with this interface 

which in turn allows for developers to produce applications without having to worry about 

compatibility issues with specific hardware. This process of interface development and 

manufacturer compliance leads in many cases to standardization, which further pushes the 

development of VR technology. 
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3.4. System Architecture 

As with any large project, it is useful to describe the system as a whole before delving further into 

the details. The basic strategy for development will involve breaking the system up into layers 

starting with the hardware and associated low-level software libraries at the bottom. Every layer 

above that will abstract away from these low level components to create a clean, developer friendly 

API at the top. The figure below illustrates a basic representation of this. 

Figure 3-1: Engine Hierarchy 

 

The layer that must be implemented in the engine is on the top (green). Each green module must 

remain relatively independent of the others to maximize developer discretion.  
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4. Mathematics 

The heart of VR, like many other fields of science and engineering, lies in mathematics.  It is highly 

recommended that the reader already be somewhat familiar and comfortable with 3D geometry and 

linear algebra. In no way is this chapter meant to provide an in-depth understanding of the 

mathematical structures, operations and formalisms used throughout this thesis. Instead, it serves 

as a brief overview of the concepts and notation at the core of the engine in addition to some details 

relating to how these structures will be represented computationally. Concepts specific to this 

project will be developed further in later chapters.  
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4.1. Matrices 

A matrix, put simply, is a 2-D rectangular array of elements. They are usually denoted by capital 

letters in many mathematical texts, which is a convention we will be sticking to here as well. Below 

is a typical representation of a matrix. 

 𝐴 =  [

𝐴1,1 ⋯ 𝐴1,𝑁

⋮ ⋱ ⋮
𝐴𝑀,1 ⋯ 𝐴𝑀,𝑁

] 4.1-1 

The matrix shown is a 𝑀 × 𝑁 matrix. This means that it has 𝑀 rows and 𝑁 columns. The notation  

𝐴𝑖,𝑗 refers to the element of 𝐴 in the 𝑖-th row and 𝑗-th column. 

There are a few options relating to how a matrix can be stored in memory. The first, and probably 

most intuitive, is to store the elements of the matrix in a simple 2D array. This is an abstraction 

provided by many modern programming languages. This is an abstraction because in reality, the 

elements are stored contiguously just as a regular 1D array would be stored but accessing each 

element requires two indices. For example, consider the following 2D array of data.  

Figure 4-1: 2D Array: 

A B C 

D E F 

G H I 

 

To the programmer, each element can only be uniquely indexed by its specific row and column. In 

memory, however, the data is arrange more like this. 

Figure 4-2: 1D Row Major 

A B C D E F G H I 
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This is a perfectly valid way to store a 3x3 matrix, or by extension a 𝑀 × 𝑁 matrix. In fact, when 

talking about matrices in particular, this arrangement is called the row-major representation of a 

matrix. The term row-major refers to the fact that the elements of the matrix in the same row are 

next to each other in memory. In row-major representation, the array in Figure 4-2 represents the 

following matrix. 

 [
𝐴 𝐵 𝐶
𝐷 𝐸 𝐹

𝐺 𝐻 𝐼
] 4.1-2 

The alternate representation is referred to as the column-major representation. In column-major 

representation, the array in Figure 4-2 represents the following matrix. 

 [
𝐴 𝐷 𝐺
𝐵 𝐸 𝐻

𝐶 𝐹 𝐼
] 4.1-3 

The engine will be utilizing the column major representation for reasons of compatibility with the 

OpenGL graphics library.  

With a solid grasp on computational representation, we can now define a few useful operations on 

matrices. First we have addition, which is defined as follows. 

 (𝐴 + 𝐵)𝑖,𝑗 = 𝐴𝑖,𝑗 + 𝐵𝑖,𝑗 4.1-4 

Put simply, the sum of two matrices is a matrix containing the sum of corresponding components. 

Similarly, subtraction is defined as follows. 

 (𝐴 − 𝐵)𝑖,𝑗 = 𝐴𝑖,𝑗 − 𝐵𝑖,𝑗 4.1-5 

In each case, the code for each operator simply involves iterating through each array and performing 

the operation element-wise. 

You will notice that for these two definitions to make sense, A and B must be the same dimension. 

In other words, the number of rows and columns should be the same for both. 
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The next logical step is to define multiplication procedures. There are two kinds of matrix 

multiplication. The first is called scalar multiplication, and it is pretty straightforward. 

 (𝑐𝐴)𝑖,𝑗 = 𝑐𝐴𝑖,𝑗  4.1-6 

Here 𝑐 is a scalar and 𝐴 is a matrix of arbitrary size. The resulting matrix is formed by multiplying 

every element of 𝐴 by 𝑐, a scalar. Again, the code involves iterating through the array and 

performing the multiplication element-wise. 

The second kind of multiplication is defined between two matrices of compatible sizes. It is defined 

like so. 

 (𝐴𝐵)𝑖𝑗 = ∑ 𝐴𝑖,𝑘𝐵𝑘,𝑗

𝑅

𝑘=1

 4.1-7 

Compatible sizes refers to the requirement that the first matrix must have the same number of 

columns as the second matrix has rows. The resulting matrix will have the same number of rows 

as the first matrix and the same number of columns as the second.  

The Transpose of a matrix results simply in the rows and columns switching places. The transpose 

will be denoted by a superscript T, and is formally defined as follows. 

 𝐴𝑖,𝑗
𝑇 = 𝐴𝑗,𝑖 4.1-8 

In terms of size, a matrix with dimensions 𝑀 × 𝑁 will transpose to a 𝑁 × 𝑀 matrix. 

4.2. Vectors 

In the practical sense, a vector is a quantity that can represent a magnitude and a direction. At this 

point, we simply define it as a list of elements. Vectors will be represented as column matrices, like 

so. 
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 𝑣 =  [

𝑣1

𝑣2

⋮
𝑣𝑛

] = [𝑣1 𝑣2 …𝑣𝑛]𝑇 4.2-1 

Unlike with matrices, vectors only require one index when referring to a specific element. The 

transposed expression shown above is a more convenient representation of a column vector, to save 

space within this document. The vector shown above may also be referred to as an “n-vector” where 

“n” is the number of elements, or dimension of the vector. 

Just as with any matrix, we can add and subtract vectors of the same size, which simply results in 

a new vector whose elements are the sums and differences respectively of the corresponding 

elements of the input vectors. 

4.3. Square Matrices 

When a matrix has the same number of rows as columns, it is referred to as a square matrix. Most 

of the matrices that will be used within this thesis are square matrices. Everything defined up to 

this point in terms of operations and functions on matrices apply to square matrices as well. 

The first thing to note is that the result of multiplying two square matrices results in a third square 

matrix of the same size. Similarly, the transpose of a square matrix is also a square matrix with the 

same. 

These properties make it possible to define a more extensive set of operations, starting with the 

determinant. It is defined as follows for a 𝑁 × 𝑁 matrix. 

 |𝐴| = det 𝐴 =  ∑(−1)𝑖+𝑗𝐴𝑖,𝑗𝑀𝑖,𝑗

𝑁

𝑖=1

= ∑(−1)𝑖+𝑗𝐴𝑖,𝑗𝑀𝑖,𝑗

𝑁

𝑗=1

 4.3-1 

Here, 𝑀𝑖,𝑗 refers to the 𝑖, 𝑗-th minor of the matrix 𝐴. The 𝑖, 𝑗-th minor of 𝐴 is the determinant of the 

(𝑁 − 1) × (𝑁 − 1) formed by eliminating the 𝑖-th row and 𝑗-th column of 𝐴.  
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The determinant is useful in defining another square matrix operation called inversion. Inversion 

plays a large part later in this thesis and in the engine as a whole.  

 𝐴−1 = inv𝐴 =
1

det 𝐴
𝑎𝑑𝑗 𝐴 4.3-2 

Here, 𝑎𝑑𝑗 𝐴 represents the adjoint of the matrix 𝐴 defined in terms of the cofactor matrix 𝐶, as 

follows 

 (𝑎𝑑𝑗 𝐴)𝑖,𝑗 = 𝐶𝑖,𝑗
𝑇 = (−1)𝑖+𝑗𝐴𝑖,𝑗   4.3-3 

Also notice that the inverse is undefined if the determinant is zero. In this case, the matrix is said 

to be non-invertible or singular. 

Before the significance of the inverse is discussed, one more definition is required. The identity 

matrix extends the idea of “one” to matrix algebra. It has the following defining property. 

 𝐼𝐴 = 𝐴𝐼 = 𝐴 4.3-4 

As stated, any matrix multiplied by a properly sized identity matrix results in the same matrix. The 

form of an identity matrix is as follows. 

 𝐼𝑁 = [

1 0 ⋯ 0
0 1 0 ⋮
⋮ 0 ⋱ 0
0 ⋯ 0 1

] ; 𝐼𝑖,𝑗 = 𝛿𝑖,𝑗 4.3-5 

The identity matrix is simply a diagonal matrix with ones along the diagonal. The subscript 𝑁 

represents the size of the identity matrix. Its significance to the inverse operation is shown below. 

 𝐼 = 𝐴𝐴−1 = 𝐴−1𝐴  4.3-6 

These concepts can be used to solve basic linear systems of equations of the form, where 𝑥 and 𝑏 

are column vectors. 

 𝐴𝑥 = 𝑏 4.3-7 
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The solution for 𝑥 in this case could be found like so, assuming 𝐴 is a non-singular, invertible 

matrix. 

 𝑥 = 𝐼𝑥 = 𝐴−1𝐴𝑥 = 𝐴−1𝑏  4.3-8 

Similarly, if the equation was as follows, where 𝑥 and 𝑏 are row vectors: 

 𝑥𝐴 = 𝑏 4.3-9 

The solution would be 

 𝑥 = 𝑥𝐼 = 𝑥𝐴𝐴−1 = 𝑏𝐴−1 4.3-10 

Unlike in regular arithmetic, because matrix multiplication is non-commutative, the multiplication 

of the inverse matrix must be done in the right order on the correct side. The same concept can be 

applied to pure matrix equations like 

 𝐴𝑋 = 𝐵 or 𝑋𝐴 = 𝐵 4.3-11 

In which case, the solutions would take the form 

 𝑋 = 𝐴−1𝐵 or 𝑋 = 𝐵𝐴−1 4.3-12 

These concepts are central to the development of a 3D spatial representation system, which will be 

covered in the following sections. 

4.4. Points and Spaces 

In general “points” and “spaces” can be extremely abstract notions. The term “space” is used very 

broadly in mathematics and is defined as a set with some added structure. A point on a space is a 

single, unique element of that set. The dimensionality of a “space” is defined as the smallest number 

of elements required to uniquely identify a “point” on that space.  

For our purposes, “space” simply refers to 3D Euclidian/Geometric space. Under this definition, a 

point on this space is a unique location which can be represented most simply by a 3-element vector. 
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4.5. Coordinate Systems 

A coordinate system’s main purpose is to give context to a chosen representation of a point in a 

space. A point in space can only be represented meaningfully if there is an implied and agreed upon 

system through which information can be extracted from an otherwise meaningless list of numbers.   

There are several coordinate systems, the most familiar of which is called the Cartesian or 

Rectangular coordinate system. In 3D, the Cartesian coordinate system uses three numbers to 

represent an x, y and z coordinate in space, which in turn represent a fixed distance in each of the 

three dimensions from a special point known as the origin.  

Other common 3D coordinate systems include the Cylindrical and Spherical Systems. The 

cylindrical coordinate system represents a point in 3D space with a vector containing 𝜌, 𝜙, 𝑧 

components which represent the polar distance from the origin, azimuthal angle and elevation 

respectively. Similarly, the spherical coordinate system represents a point in 3D space with a vector 

containing 𝑟, 𝜙, 𝜃 components which represent the distance from the origin, azimuthal angle, and 

inclination, respectively. The three are shown below. In all three cases, the origin is represented by 

the zero vector. 
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Figure 4-3: Coordinate Systems 

 

For the most part, our VR engine will use the right-handed Cartesian coordinate system as the 

native system, as it is better suited in general for most applications of interest to us. That is not to 

say however that other systems cannot be used, but it would take some extra work on the part of 

the programmer or engineer to convert coordinates if there is a need to do so. 
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4.6. Homogeneous Coordinates 

With a firm grasp of traditional coordinate systems, the next logical topic of discussion should be 

homogeneous coordinates for spatial representation. It may seem like an over complication at first 

but the benefits will become apparent soon. The concepts in this section are further discussed in 

detail in [4]. 

Like before, we will start by defining a point in homogeneous Cartesian coordinates. We will still 

use a vector, but this time it will have one more element, shown below. 

 𝑣 =  [

𝑥
𝑦
𝑧
𝑤

] 4.6-1 

The first three elements, 𝑥, 𝑦, 𝑧 relate to the spatial components of the quantity, just like the non-

homogeneous case, but the last element denoted by 𝑤 above is new. This is the element that allows 

us to “project” points in Euclidian space to an associated homogeneous space, called projective 

space. It works like so. 

The vector in 4.6-1 maps to 3D space in the following way. 

 𝑣 =  [

𝑥
𝑦
𝑧
𝑤

] → 𝑣′ = [

𝑥/𝑤
𝑦/𝑤
𝑧/𝑤

] 4.6-2 

Here, 𝑣′ is a 3-element vector representing a point in 3D space. If 𝑤 = 1, we’re right back where 

we started, with 𝑣′ = [𝑥, 𝑦, 𝑧]𝑇 being an ordinary point. Now, let’s consider the case where 𝑤 → 0. 

The “point” 𝑣′ extends out to infinity which for our purposes is somewhat meaningless. Notice 

however, that even as the components of 𝑣′ tend towards ∞, the ratios of the components to each 

other remain the same. No matter how small 𝑤 becomes, the ratio 𝑥: 𝑦: 𝑧 does not change. This 

allows us to interpret the resulting quantity not as a point, but a direction in 3D space.  
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The notation is pretty straightforward, but it is somewhat limiting due to the fact that as of now, we 

can only express these coordinates in terms of one frame of reference. A vector representing a point 

or direction will have different component values depending on what the frame of reference is. In 

other words, the vector representing a point or direction is entirely based on our selection of the 

origin and axes. Being able to transform coordinates between frames of reference is an extremely 

useful and powerful tool. 

Fortunately, the ability to describe points and directions so concisely with vectors gives us the 

ability to describe a frame of reference with respect to another without having to store location and 

orientation information in separate structures. A Cartesian frame can be thought of as three axes 

and an origin. These quantities can be represented by a row of three unit direction vectors plus one 

position vector to form a 4x4 matrix like the one shown below. 

 𝐹 =  𝑋𝐹
𝑊 = [

�̂�𝑥 �̂�𝑥 �̂�𝑥 𝑝𝑥

�̂�𝑦 �̂�𝑦 �̂�𝑦 𝑝𝑦

�̂�𝑧 �̂�𝑧 �̂�𝑧 𝑝𝑧

0 0 0 1

] 4.6-3 

In this paper, the axis vectors will be denoted by �̂�, �̂�, �̂� and the origin, or location of the frame, 

will be denoted by 𝑝. The hats indicate that vectors are unit vectors. The �̂�, �̂�, �̂� axes correspond to, 

and can be thought of respectively as the �̂�, �̂�, �̂� axes of the frame.  Common sense dictates that a 

free frame in 3D space has six degrees of freedom…three for position and three for orientation. 

The matrix above has 12 elements, which is inconsistent with common sense. We must introduce 

a few constraints.  

 |�̂�| = |�̂�| = |�̂�| = 1 4.6-4 

 �̂� ∙ �̂� = �̂� ∙ �̂� = �̂� ∙ 𝑢 ̂ =  0 4.6-5 

The constraints in 4.6-5 can be written more compactly as 

 �̂� × �̂� = �̂�   4.6-6 
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In reality, all this means is that the vectors that represent the axes of the frame must be unit vectors 

and they must be orthogonal in a right-handed sense. Notice that there are no constraints placed on 

𝑝  indicating that a frame can be placed anywhere in 3D space. 

The superscript in the 4.6-3 indicates that the values contained within the matrix are in reference to 

a 𝑊 frame. Unless explicitly specified, the components of a frame are always expressed in the 

coordinates of the “world” or “universe” frame, denoted by 𝑊. This notation can be applied to 

points and vectors as well. 

 𝑝 = 𝑝𝑊  =  [

𝑝𝑥

𝑝𝑦

𝑝𝑧

1

] , 𝑣 =  𝑣 =  [

𝑣𝑥

𝑣𝑦

𝑣𝑧

0

] 𝑊  4.6-7 

4.6-7 is an example of quantities expressed in world coordinates with both implicit and explicit 

notation.  

The next step is to explore a case where the explicit frame of reference is not the world frame. That 

is where transformations come in. 

4.7. Transformations 

In the mathematical sense, a transformation is a function that maps points from once space to 

another. In the geometric sense, we can think of a transformation as a way to move a point or set 

of points through space. There are many types of transformations out there, but only a few of them 

will be useful to us in this context. At the moment, there are only two types of transformations we 

care about: translations, and rotations. 

A translation can be thought of as a simple move. Every point is moved through space by the same 

amount in the same direction. In a non-homogeneous Cartesian system, this type of transformation 

is easily realized with vector addition.  
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 𝑝′ = [

𝑝𝑥

𝑝𝑦

𝑝𝑧

] + [
Δ𝑥
Δ𝑦
Δ𝑧

] =  [

𝑝𝑥 + Δ𝑥
𝑝𝑦 + Δ𝑦

𝑝𝑧 + Δ𝑧
] 4.7-1 

Here, 𝑝 is an arbitrary point being translated by an arbitrary vector. The result,  𝑝′ is simply the 

sum of the two vectors. In homogeneous coordinates however, we can represent a translation as a 

4x4 matrix, shown below. 

 𝑇(∆𝑥, ∆𝑦, ∆𝑧)  =  [

1 0 0 ∆𝑥
0 1 0 ∆𝑦
0 0 1 ∆𝑧
0 0 0 1

] 4.7-2 

Before we decide if this is a good idea, we must verify that it works. 

 

𝑝′ = 𝑇(∆𝑥, ∆𝑦, ∆𝑧)𝑝 

𝑝′ = [

1 0 0 ∆𝑥
0 1 0 ∆𝑦
0 0 1 ∆𝑧
0 0 0 1

] [

𝑝𝑥

𝑝𝑦

𝑝𝑧

1

] =  [

𝑝𝑥 + Δ𝑥
𝑝𝑦 + Δ𝑦

𝑝𝑧 + Δ𝑧
1

] 
4.7-3 

It works! Multiplying a point by the translation matrix resulted in a new point whose coordinates 

are shifted by the specified amounts. Now let’s see what happens when the transformation is 

applied to a direction. 

 

𝑣′ = 𝑇(∆𝑥, ∆𝑦, ∆𝑧)𝑣 

𝑣′ = [

1 0 0 ∆𝑥
0 1 0 ∆𝑦
0 0 1 ∆𝑧
0 0 0 1

] [

𝑣𝑥

𝑣𝑦

𝑣𝑧

0

] =  [

𝑣𝑥

𝑣𝑦

𝑣𝑧

0

] 
4.7-4 

As is expected (and required), a translated direction vector is still a direction vector pointing the 

same direction. This homogeneous representation of translation not only produces the correct 

results, but also seems to take into account the type of vector it is being applied to!  

The inverse of a translation matrix is another translation matrix with the parameters negated.  
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 𝑇−1(∆𝑥, ∆𝑦, ∆𝑧) = 𝑇(−∆𝑥, −∆𝑦, −∆𝑧) = [

1 0 0 −∆𝑥
0 1 0 −∆𝑦
0 0 1 −∆𝑧
0 0 0 1

] 4.7-5 

This is necessary because a translation followed by the inverse of the same translation should result 

in no translation at all. The obvious consequence of this is the following 

 𝐼 =  𝑇(∆𝑥, ∆𝑦, ∆𝑧)𝑇−1(∆𝑥, ∆𝑦, ∆𝑧) = 𝑇(0,0,0)  4.7-6 

 

Next, we must define a rotation. One way to characterize a rotation is with an axis known as the 

axis of rotation and an angle known as the angle of rotation. None of the points lying directly on 

the axis of rotation must move while every other point revolves around the axis of rotation by the 

specified angle. In 3D space, a rotation can be represented by a 3x3 matrix. Given an arbitrary axis, 

𝑣 ̂and an angle 𝜃, a rotation matrix is defined like so. 

 

𝑅(�̂�, 𝜃) = 𝑅�̂�(𝜃)

=  

[
 
 
 
 

C 𝜃 + �̂�𝑥
2(1 − C𝜃) �̂�𝑥�̂�𝑦(1 − C𝜃) − �̂�𝑧 S 𝜃 �̂�𝑥�̂�𝑧(1 − C𝜃) + �̂�𝑦 S 𝜃 0

�̂�𝑦�̂�𝑥(1 − C𝜃) + �̂�𝑧 S 𝜃 C𝜃 + �̂�𝑦
2(1 − C𝜃) �̂�𝑦�̂�𝑧(1 − C𝜃) − �̂�𝑥 S 𝜃 0

�̂�𝑧�̂�𝑥(1 − C𝜃) − �̂�𝑦 S 𝜃 �̂�𝑧�̂�𝑦(1 − C𝜃) + �̂�𝑥 S 𝜃 C𝜃 + �̂�𝑧
2(1 − C𝜃) 0

0 0 0 1]
 
 
 
 

 

𝐶 = cos 𝜃, 𝑆 = sin 𝜃 

4.7-7 

Again, it is important to stress that the axis must be in the form of a unit vector for this to work. An 

extra row and column is added to make the transformation homogeneous. Notice that this time, the 

column vectors of the matrix represent directions. The last column is zero because there is no 

uniform translation occurring.  

If we know our axis of rotation in advance, it is wise to define specific rotation matrices to avoid 

the obvious cost of computing the matrix above. We can define rotation matrices that represent 

rotations explicitly about our Cartesian axes. 
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 𝑅𝑥(𝜃)  =  [

1 0 0 0
0 cos 𝜃 − sin 𝜃 0
0 sin 𝜃 cos 𝜃 0
0 0 0 1

] 4.7-8 

 

 𝑅𝑦(𝜃)  =  [

cos 𝜃 0 sin 𝜃 0
0 1 0 0

− sin 𝜃 0 cos 𝜃 0
0 0 0 1

] 4.7-9 

 

 𝑅𝑧(𝜃)  =  [

cos 𝜃 − sin 𝜃 0 0
sin 𝜃 cos 𝜃 0 0

0 0 1 0
0 0 0 1

] 4.7-10 

 

Rotation matrices in particular have an interesting property. All rotation matrices are unitary which 

means that they can be inverted by simply transposing them, which is equivalent to negating either 

the axis of rotation or the angle (but not both). 

 𝑅−1(�̂�, 𝜃) = 𝑅(−�̂�, 𝜃) = 𝑅(�̂�, −𝜃) = 𝑅𝑇(�̂�, 𝜃) 4.7-11 

Also, as expected, a rotation of zero is equivalent to the identity matrix. 

 𝐼 = 𝑅−1(�̂�, 𝜃)𝑅(�̂�, 𝜃) = 𝑅(�̂�, 0) 4.7-12 

 

Another important thing to note is that because matrix multiplication is non-commutative, changing 

the order of multiplication can dramatically change the nature of the transformation.  

The final transform needed is known as a scaling transform. Its only purpose is to stretch or squeeze 

coordinates along the specified axes. It will be denoted here as 𝑆, and is defined like so. 

 𝑆(𝑠𝑥 , 𝑠𝑦, 𝑠𝑧) =  [

𝑠𝑥 0 0 0
0 sy 0 0

0 0 𝑠𝑧 0
0 0 0 1

] 4.7-13 
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The values 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧 are simple scaling factors which result in a squeeze if their absolute value is 

less than 1, or a stretch if greater. If the factors are negative, the axis inverts and the frame 

essentially flips in that dimension. 

4.8. Transforming Between Frames 

It is interesting to note that all of the transformation matrices so far except for the scaling transform 

would fit our definition of a frame. The first three vectors in the translation and rotation matrices 

follow the rules outlined in 4.6-4 and 4.6-5. In fact, the product matrix of a translation and a rotation 

looks a lot like the frame in 4.6-3. This is not surprising considering the fact that any frame can 

transformed to another with a single translation to line up the origins and a rotation to line up the 

axes. This is an important fact; one that requires an update in notation, shown below. 

 𝐹 = 𝐹𝑊 = 𝑋𝐹
𝑊 = [

�̂�𝑥 �̂�𝑥 �̂�𝑥 𝑝𝑥

�̂�𝑦 �̂�𝑦 �̂�𝑦 𝑝𝑦

�̂�𝑧 �̂�𝑧 �̂�𝑧 𝑝𝑧

0 0 0 1

] =  𝑇(𝑝𝑥 , 𝑝𝑦, 𝑝𝑧)𝑅 4.8-1 

The 𝑋𝐹
𝑊  in the equation above represents the transformation matrix that transforms between 𝐹 

and 𝑊, where 𝑊 represents a predefined “world” frame. The  𝑋 simply indicates that the quantity 

is a transformation matrix. In this case, because 𝑊 is the world frame, the matrix representation of 

𝐹 with respect to the world is the same as the matrix representation of the corresponding transform. 

The transform is simply composed of a rotation followed by a translation along the axes of the 

reference frame, which in this case is the world frame. 

This new notation gives us a way to intuitively change basis between multiple frames of reference. 

For example, let’s assume that we have two frames: 𝑀 and 𝐶. 𝑀 is the local frame of reference for 

an arbitrary object and 𝐶 is the local frame of reference of an observer. If 𝑀 is located at a point 

[1, 2, 3]𝑇 with respect to the world and then rotated 90∘ about its own 𝑛 axis, its transformation 

would look like this.  
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 𝑀 = 𝑋𝑀
𝑊 =  𝑇(1, 2, 3)𝑅𝑧(90∘) = [

0 −1 0 1
1 0 0 2
0 0 1 3
0 0 0 1

] 4.8-2 

Note the order of transformations here. The translation is performed first and is in reference to the 

world frame. The second transform is a rotation with respect to the 𝑛 axis of the translated frame, 

which is why it is multiplied on the right. If the rotation was in reference to the 𝑧 axis of the world 

frame, it would have been multiplied on the left. Additionally, let’s assume that there is a point 𝑝 

at the origin of the 𝑀 frame. We can express this statement as follows. 

 𝑝𝑀 = [

0
0
0
1

] 4.8-3 

Finally, the frame 𝐶 is located 3 units above the world frame with no rotations. 

 𝐶 = 𝑋𝐶
𝑊 =  𝑇(0, 0, 3) = [

1 0 0 0
0 1 0 0
0 0 1 3
0 0 0 1

] 4.8-4 

If we wanted to find what 𝑝 looks like from the 𝑊 frame, all we would have to do is align the 

transformations to get an expression for 𝑝 = 𝑝𝑊 .  

 𝑝 = 𝑝𝑊 = 𝑋𝑀
𝑊 𝑝𝑀 = [

0 −1 0 1
1 0 0 2
0 0 1 3
0 0 0 1

] [

0
0
0
1

] = [

1
2
3
1

] 4.8-5 

We can cross cancel the subscript and superscript 𝑀 leaving us with an expression for 𝑝 in the 

world frame. The answer makes sense because 𝑝 is located at the origin of 𝑀 which in turn is 

located at [1, 2, 3]𝑇. Now let’s consider what an observed in frame 𝐶 would see in frame 𝑀. This 

time, we want an expression for 𝑀𝐶 = 𝑋𝑀
𝐶 . 

 𝑀𝐶 = 𝑋𝑀
𝐶 = 𝑋𝑊

𝐶 𝑋𝑀
𝑊  4.8-6 
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At first glance, there seems to be an error. There doesn’t seem to be a matrix for 𝑋𝑊
𝐶 . All we have 

is 𝑋𝐶
𝑊 . Well, that is where the inverse operation comes in again.  

You might recall that the inversion process for a generic 4x4 matrix is a pretty complex affair. The 

good news is that homogeneous 4x4 matrices that represent frames are easier to invert and require 

a smaller number of computations to achieve.  

 𝐹 =  [

�̂�𝑥 �̂�𝑥 �̂�𝑥 𝑝𝑥

�̂�𝑦 �̂�𝑦 �̂�𝑦 𝑝𝑦

�̂�𝑧 �̂�𝑧 �̂�𝑧 𝑝𝑧

0 0 0 1

] →  𝐹−1 = 

[
 
 
 
�̂�𝑥 �̂�𝑦 �̂�𝑧 −�̂� ∙ 𝑝

�̂�𝑥 �̂�𝑦 �̂�𝑧 −�̂� ∙ 𝑝

�̂�𝑥 �̂�𝑦 �̂�𝑧 −�̂� ∙ 𝑝

0 0 0 1 ]
 
 
 

 4.8-7 

 

Inverting a transform will flip the superscript and subscript. 

 

𝑀𝐶 → 𝑋𝐶
−1𝑊 𝑋𝑀

𝑊 = [

1 0 0 0
0 1 0 0
0 0 1 3
0 0 0 1

]

−1

[

0 −1 0 1
1 0 0 2
0 0 1 3
0 0 0 1

]

= [

0 −1 0 1
1 0 0 2
0 0 1 0
0 0 0 1

] 

4.8-8 

Again, no surprises here. From 𝐶, 𝑀 looks just like it did before, but since 𝐶 is at the same height 

as 𝑀, 𝑀 appears not to have a relative 𝑧 offset. 

These types of manipulations form the basis of the 3D rendering system. 

  



35 

 

5. Graphics 

Modern VR systems should be capable of realistic 3D rendering to keep the user immersed in the 

experience. The goal of a VR engines, or any CG engine for that matter, is to convince a user that 

what they are seeing on the screen is not merely a 2D array of pixels, but a window into a 3D world. 

The purpose of this chapter is to expose some of the tricks used by graphics programmers to fool 

the brain into thinking exactly that. This chapter will also discuss the state of modern graphics 

hardware, and how it is utilized in the engine. The following sections require a strong grasp of the 

mathematical concepts covered in the previous chapters. Much of the information for this part of 

the project came from [5]. 
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5.1. The Graphics Processing Unit (GPU) 

Modern high performance is impossible without the dedicated GPU. While the calculations that 

make 3D graphics possible run fine on a traditional CPU, the sheer volume of geometrical data that 

must be processed in a modern graphics application makes real time rendering impossible. The 

dedicated graphics chip approaches the task from a different point of view. Instead of piping all of 

the data through the few cores of a powerful modern CPU for processing, the GPU makes it possible 

for large scale multiprocessing, which means that a large number of relatively simple 

transformation calculations can be done in parallel resulting in faster rendering. 

5.2. Low-Level Graphics Libraries 

The modern graphics card is for all intents and purposes a computer within a computer. It has its 

own memory resources and processing unit. Special programs called shaders can be written, 

compiled, linked and executed directly on the card. These programs are written in a simple, C-like 

language specially outfitted to perform transformation and interpolation tasks. These programs take 

large lists of vertices that must be stored on the card to minimize latency between the data and the 

GPU. For this purpose, high speed memory and caches are built in to these cards. Low level 

graphics libraries allow applications running on the CPU to interact with these resources. The 

programs are written with shaders, and memory is accessed and addressed with structures called 

buffers and textures. These bindings allow for huge customizability in graphics applications but 

because these libraries provide such low level access, it can often be tedious to perform even the 

simplest of tasks. It is for this reason that the graphics module is designed in essence as a two tier 

system. The first tier simply abstracts the resources as graphics independent classes while the 

second tier aims to build useful interfaces and classes with them. 

5.3. OpenGL vs Direct3D 

One cannot discuss Low-Level Graphics Libraries without discussing the two major libraries 

currently in use. The first is called OpenGL and it was originally started by Silicon Graphics in the 
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early 1990s. The intent was to create an open standard for all forms of cross platform graphics 

applications. Today, it is used in CAD, games, media players, visualization and much more. Soon 

after, Microsoft decided to release their own library. They called it DirectX and it was meant 

primarily for gaming. The 3D Graphics module was called Direct3D. DirectX is a proprietary API 

that only runs on Windows PC and Xbox systems. Today, Direct3D is used mostly in gaming.  

As graphics hardware improves, the libraries must be updated to make newer features accessible to 

the developer. 

5.4. The Rendering Pipeline 

The Rendering Pipeline is a term that refers to the sequence of steps employed to produce a 

rasterized 2D image representation of a 3D scene. The traditional pipeline can be presented in the 

form of the following flowchart on the right. Each stage in the process hands off its results to the 

next stage until the scene is presented on screen. 

In the younger days of computer graphics, the pipeline referred simply to the process of taking 3D 

polygon data out of memory, calculating the corresponding point in screen space directly on the 

CPU, and setting the value of the corresponding pixel on the monitor. Today, with the advent of 

newer technologies and dedicated video cards (aka GPUs), a rendering pipeline has evolved into a 

substantially more complicated process.  The following sections will explain each stage. 
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Figure 5-1: Simplified Rendering Pipeline 

 

  

Model

•Geometry (Vertices, Primitives)

Material

•Color

•Texture

•Lighting

•Effects

Scene

•Object Placement

•Light placement

•Global Illumination

View

•Camera Placement

Projection

•Transform to Screen Space

•Perspective/Orthographic

Clipping and 
Culling

•Viewport/Frustrum Based

Rasterization

•Scan Conversion

Display

•Post-processing

•Framebuffer Effects
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5.5. Model 

The first step in the pipeline is the Model Representation. A model can be thought of most simply 

as a collection of points in space coupled with some information/context about how those vertices 

relate to each other. Typically, the points are referred to as vertices and the context is conveyed in 

the form of vertex order and primitive data. Let’s consider the example of a triangle. Shown below 

is a simple isosceles triangle with its vertices and corresponding coordinates labeled. The drawing 

is not to scale. 

Figure 5-2: A Simple Triangle 

 

The model is characterized by a list of vertices. Each vertex is defined in what is known as model 

space. In the case of the triangle above, each vertex is defined in terms of a local origin, which is 

designated at the center of the triangle. Using the notation developed earlier, we can express this 

as follows. 

 𝑎𝑀 = [

0
1
0
1

] , 𝑏𝑀 = [

−1
0
0
1

] , 𝑐𝑀 = [

1
0
0
1

] 5.5-1 

𝑎 (0, 1, 0) 

𝑐 (1, 0, 0) 𝑏 (−1, 0, 0) 

+y 

+x 
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Each vertex is defined in terms of the homogeneous vector that expresses its position within the 

frame of the model. The frame 𝑀 represents the frame of the model in world space. The matrix that 

represents this transformation is known as the model matrix. 

 𝑀 = 𝑋𝑀
𝑊  5.5-2 

5.6. Material 

Depending on where you look, this word may mean multiple things. As far as this paper is 

concerned, the word material refers to the presentation characteristics of the models. The reason 

this step is separate to the modeling step is because one model can be used to represent multiple 

entities within the engine by simply using a different material. For example, a cube model can 

represent a crate or an ice cube and all it would take is a different texture or effect. This approach 

saves memory since the geometric data isn’t being stored redundantly.  

5.7. Scene 

Once we have a set of models and materials, we have all we need to specify entities within our 

virtual world. The only thing left to do is place them in whatever arrangement we see fit. This 

arrangement is called the scene. Within the engine, the scene is represented as a tree-like structure. 

Each node of the tree contains the homogeneous 4x4 matrix that transforms from the space of the 

parent to the space of the node. In other words, the nodes basically represent homogeneous frames. 

The root node represents the world frame, with an Identity transform matrix.  
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Figure 5-3: Scene Tree 

    

The Figure above shows the basic structure of a scene tree. Each node contains a local transform 

matrix and a world transform matrix. The local matrix is the transform that relates a node to its 

parent, and the world matrix stores the absolute transform.  

It is useful at this point to introduce a simple analogy. Suppose that a photographer wants to set up 

a scene and take a picture. He has a room containing a table and a few random objects to arrange 

on the table to set up his scene. First he puts the table in place and arranges the objects randomly 

on top of the table. He checks his shot and finds that some of the objects are blocked by others, so 

he goes in and modifies the arrangement to remedy the occlusion. He checks the shot again and 

finds that the table is not centered in the view, so once again he goes over and moves the table 

without moving any of the objects on top of it. In terms of the tree structure just introduced, the 

table is the only child node of the scene root, which in this case is the room. The other objects on 

the table are children of the table node. The first adjustment he makes simply results in the 

modification of the local transforms of the objects on the table with respect to the table. The second 

adjustment modifies the local transform of the table with respect to the room, which despite 

affecting the world transforms of the objects, does not affect their local transforms with respect to 

the table. 

Root (𝑊)

Local: 𝐼

World: 𝐼

Node (𝐴1)

Local: ⬚
𝑊𝑋𝐴1

World: ⬚
𝑊𝑋𝐴1

Node (𝐵1)

Local: ⬚
𝐴1𝑋𝐵1

World: ⬚
𝑊𝑋𝐵1

Node (𝐵2)

Local: ⬚
𝐴1𝑋𝐵2

World: ⬚
𝑊𝑋𝐵2

Node (𝐴2)

Local: ⬚
𝑊𝑋𝐴2

World: ⬚
𝑊𝑋𝐴2
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The convenience of this structure becomes even more apparent when compound objects are 

defined. For example, a car might be made up of multiple different parts, each one represented by 

a separate model in the engine. If each part was placed independently, moving the car would require 

moving each part independently by the same amount. It would be a pain to manually iterate through 

every part. With the tree structure on the other hand, moving the car would simply mean changing 

the local transform of the top-most car node. Since the transforms of all child nodes are in relation 

to the top node, they would be automatically moved the same amount. 

5.8. View 

At this point, we have a scene that is ready to be “viewed”. The whole point of this section is to 

figure out what the scene looks like from the point of view of an observer. If we go back to the 

analogy from the previous section, the view is what the camera sees. In order to determine 

mathematically what the camera is seeing, we need to know where it is positioned and how it is 

oriented in the world as well. The coordinate system for the camera must be well defined before 

we can specify its orientation. In this paper, the �̂� axis points to the right of the camera, �̂� points to 

the top of the camera and �̂� points behind the camera.  

Figure 5-4: Conventional Camera Coordinates 
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The definition of the scene tree in the previous section gives us a convenient way to represent the 

frame of a camera along with the rest of the objects in the scene. Refer back to the example in 

Section 4.8. For each object in the scene whose absolute world transform is given by the expression 

𝑋𝑀
𝑊  where 𝑀 is the frame of the object, the coordinates in terms of camera space are given 

by 𝑋𝑀
𝐶 = 𝑀𝐶 = 𝑋𝐶

−1𝑊 𝑋𝑀
𝑊 . The matrix that transforms an arbitrary point from model space to 

camera space is 𝑋𝐶
−1𝑊 . This specific matrix will be called the view matrix, denoted by 𝑉.  

 𝑉 = 𝑋𝑊 =𝐶 𝑋𝐶
−1𝑊   

( 5.8-1 

) 

Note that by adding the camera to the scene as a node, all that needs to be done to extract the view 

matrix is to take the inverse of the absolute world transform of the camera itself. 

5.9. Projection 

Once the view matrix of the camera is determined, the next step is to transform the vertices from 

view space to screen space. This projection stage is not as straightforward as the others because it 

involves transforming from a 3D frustum onto a 2D plane. Once again, referring to the photography 

analogy, just as the placement of the camera determines the view matrix, the lens system of the 

camera determines the projection. 

The two types of projections most commonly dealt with are the orthographic projection and the 

perspective projection. The orthographic projection is used in applications in which judging 

alignment is more important than providing a sense of realism. 3D CAD Software, for example, 

renders models and working parts in the orthographic (aka parallel) projection.  The engine does 

not make use of the orthographic projection for its 3D applications, but it is still useful for putting 

things flush against the user’s screen such as HUD indicators or text.  
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It is important to keep in mind that the vertex coordinates coming into this stage are with respect 

to the frame of the camera. The purpose of the orthographic projection is essentially to collapse the 

incoming vertex data directly into a 2D plane.  

Figure 5-5: The Orthographic Frustum 

 

The function that will calculate the orthographic projection in the engine will take six arguments 

that correspond to the six faces of a prism within which the transformed scene will be centered and 

stretched.  That is, given the positions of a left, right, top, bottom, near and far clipping planes, the 

function will calculate a matrix that will perform this projection. Anything outside of this volume 

will not be rendered to the screen. To mathematically derive the orthographic projection transform, 

it is best to break it down into two simpler ones: a translation followed by a scaling transform.  

The translation is required to bring the view into the center of the clipping prism, and the scaling 

transform will then stretch or compress it to “fill” the cube. 
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 𝑇 =

[
 
 
 
 
 
 1 0 0 −

𝑥𝑙𝑒𝑓𝑡 + 𝑥𝑟𝑖𝑔ℎ𝑡

2

0 1 0 −
𝑦𝑡𝑜𝑝 + 𝑦𝑏𝑜𝑡𝑡𝑜𝑚

2

0 0 −1
𝑧𝑓𝑎𝑟 + 𝑧𝑛𝑒𝑎𝑟

2
0 0 0 1 ]

 
 
 
 
 
 

 5.9-1 

 

 𝑆 =

[
 
 
 
 
 
 
 

2

𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑥𝑙𝑒𝑓𝑡
0 0 0

0
2

𝑦𝑡𝑜𝑝 − 𝑦𝑏𝑜𝑡𝑡𝑜𝑚
0 0

0 0
2

𝑧𝑓𝑎𝑟 − 𝑧𝑛𝑒𝑎𝑟
0

0 0 0 1]
 
 
 
 
 
 
 

 5.9-2 

The product of these two matrices results in what is known as the orthographic projection 

transform. 

 

𝑃𝑂𝑟𝑡ℎ𝑜 = 

=

[
 
 
 
 
 
 
 

2

𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑥𝑙𝑒𝑓𝑡
0 0 −

𝑥𝑟𝑖𝑔ℎ𝑡 + 𝑥𝑙𝑒𝑓𝑡

𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑥𝑙𝑒𝑓𝑡

0
2

𝑦𝑡𝑜𝑝 − 𝑦𝑏𝑜𝑡𝑡𝑜𝑚
0 −

𝑦𝑡𝑜𝑝 + 𝑦𝑏𝑜𝑡𝑡𝑜𝑚

𝑦𝑡𝑜𝑝 − 𝑦𝑏𝑜𝑡𝑡𝑜𝑚

0 0
−2

𝑧𝑓𝑎𝑟 − 𝑧𝑛𝑒𝑎𝑟
−

𝑧𝑓𝑎𝑟 + 𝑧𝑛𝑒𝑎𝑟

𝑧𝑓𝑎𝑟 − 𝑧𝑛𝑒𝑎𝑟

0 0 0 1 ]
 
 
 
 
 
 
 

 
5.9-3 

 

While the orthographic projection is a good choice for putting text on a flat screen or judging 

alignment in a scene, it is not the best option when modelling a real camera. For that, the perspective 

projection is required. 

The perspective projection is something we are all used to. It is the projection that our eyes see 

more or less. The effects of “perspective” are well known to artists and photographers, because it 

is a necessary component of visual realism. The first major effect of the perspective projection is 
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what is commonly referred to as a vanishing point. The vanishing point is the point in a view where 

parallel lines in the scene seem to converge to. This is also related to the phenomenon that makes 

distant objects appear smaller than those that are closer. The second effect of the perspective 

projection is the apparent difference in the “speed” of objects moving through the field of view 

based on their respective distances from the observer. More specifically, motion in objects close to 

the observer is far more noticeable that motion of objects that are far away. These effects, and 

others are described further in [6]. 

It is difficult to explain the concepts behind the perspective projection without first explaining the 

concept of a view frustum. In geometry, a frustum is defined simply as the solid formed by clipping 

another solid between two parallel planes. Although it seems arbitrary, the frustum is quite useful 

in describing the field of view of the camera. Figure 5-6 shows a helpful visualization of the view 

frustum of a typical camera, which looks like a pyramid with the top cut off. The red volume 

contains everything that is within the field of view of the camera, which is located at the origin 

where the pointy part of the pyramid would have been, had it not been clipped. 

Figure 5-6: Perspective Frustum 
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Mathematically, the perspective projection can be expressed as follows. 

 𝑃𝑃𝑒𝑟𝑠 =

[
 
 
 
 
 
 
 
 
 
 

1

𝑎 tan
𝜙𝑓𝑜𝑣

2

0 0 0

0
1

tan
𝜙𝑓𝑜𝑣

2

0 0

0 0
𝑧𝑛𝑒𝑎𝑟 + 𝑧𝑓𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟
−1

0 0
2𝑧𝑛𝑒𝑎𝑟𝑧𝑓𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟
0

]
 
 
 
 
 
 
 
 
 
 

 5.9-4 

The aspect ratio 𝑎 and field of view (in radians) 𝜙𝑓𝑜𝑣  must be known ahead of time in order to 

compute this matrix. The aspect ratio is calculated by dividing the width of a viewport by its height. 

A more complete derivation of this matrix can be found in Chapter 5. 

Typical values for the field of view in a standard, non-stereoscopic application typically range 

between 45∘ and 90∘. A smaller field of view results in a more “zoomed in” view whereas a large 

field of view results in a more “fisheye” view.  

5.10. Clipping & Culling 

Once the view and projection has been determined, clipping and culling procedures are used to 

reduce the number of required rendering computations and draw operations performed by the GPU. 

This is done by first testing to see if vertices will end up on screen after the prescribed 

transformations. Only the vertices that the user will end up looking at will need to be rendered. The 

term culling is in actuality a wider term referring to a number of different tests for vertex visibility. 

Frustum culling, for example refers to the test of whether or not a vertex exists within the frustum 

of the camera. Clipping, on the other hand, refers to the process of handling polygons that may not 

be completely visible on screen. For example, a triangle rendered at the edge of the screen with its 

top vertex occluded should look more like a trapezoid, which has four vertices instead of the three 

defined in the triangle model. Clipping procedures are used to add these vertices in. Many of these 

procedures do not have to be defined explicitly within the engine, because the lower graphics layers 
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typically handle most of it automatically. Additional functionality on this front can be defined by 

the developer, however. 

5.11. Rasterization 

The last step in the pipeline process is known as rasterization, which refers to the process of 

converting images in a vector graphics format and converting it into pixels so that the image may 

be stored, displayed or printed. The term raster graphics is sometimes used interchangeably with 

the term bitmaps, as they are essentially the same thing. The figure below is a good visualization 

of what this process entails. 

Figure 5-7: Rasterization 

 

The black outlined figures represent vector graphics elements, which are defined mathematically. 

The grid shown represents the pixels on the screen. The decision on whether to turn a given pixel 

on or off and at what intensity given the underlying structure is made by the graphics card for every 

frame rendered. This bitmap data is then stored in GPU buffer memory. 
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5.12. Display 

The final stage of the rendering pipeline simply involves taking the data from the rasterization stage 

and posting it to the screen. In modern graphics systems, however, we have the ability to render the 

rasterization data to other render targets. A render target in most cases is just another patch of 

memory in the GPU which can be thrown back into the pipeline for further processing. This is more 

commonly referred to as post processing, and involves performing digital image processing 

operations on the incoming bitmap images.  
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6. Stereoscopic Vision 

The most common association with VR is the use of stereoscopic head mounted displays (HMDs), 

which allow for distinct images to be displayed to each eye. In the past, HMDs were large and 

typically mounted to a much larger chassis preventing users the range of motion that is enjoyed by 

users of modern variants. This chapter will outline the development of the stereoscopic vision 

system for the engine and explain some of the key concepts that make it possible. 
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6.1. Pinhole Model 

The pinhole model represents the simplest imaging system possible. For most graphics 

applications, the eye or camera is modeled based on this model. In fact, the perspective projection 

described in Chapter 4 is derived assuming an idealized pinhole camera. The most important part 

of a pinhole camera is, not surprisingly, the pinhole.  

The Figure below is a basic representation of how pinhole imaging works. Light rays coming off 

of an object can only enter through the hole. In the limit where the hole is infinitesimally small, 

each point on the object is represented by the one ray that could make it through the hole, which 

results in a perfectly focused, inverted image on the back plane of the box.  

This model also clarifies why objects that are further away tend to look smaller. Figure 6-1 shows 

three objects being projected onto a back screen through the pinhole at 𝑂. The objects do not remain 

proportionally sized with respect to each other.  

Figure 6-1: Pinhole Projection [7] 
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The relationships between the sizes and positions of the objects in the projected image in terms of 

where the objects are placed in relation to the pinhole can be expressed geometrically. See Section 

5.9 for a more in-depth look at the math behind projection. 

6.2. The Eye 

An accurate model of the eye is crucial to understanding the relatively complicated process of 3D 

vision in humans. This section will briefly explain how the eye works and define a few terms that 

will be used throughout the chapter. 

 Eyes are one of the most intricate and complex organs that human beings possess. For most of us, 

vision is the predominant sense making the eye the most valuable of the sense organs. Figure 6-2 

shows a basic diagram of the human eye.  

Figure 6-2: Anatomy of the Eye [6] 

 

If we are only concerned about the parts of the eye which deal directly with the formation of images, 

we should first look at the pupil. The pupil is the name given to the opening in the iris. The iris is 

just a ring of muscle that controls the size of this opening, to regulate the amount of light entering 
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the eye. Just behind the iris is the lens, which serves the same purpose as most other lenses which 

is to focus the incoming light onto the retina.  

Unlike the pinhole system from the previous section, the human eye relies on a flexible lensing 

system to focus images. The lens is surrounded by fibrous muscles known as ciliary muscles that 

contract and expand to change the effective focal length of the lens. This gives us the ability to 

adjust our focus based on the distance to an object. This also gives rise to the “depth-of-focus” 

effect which results in a sharp focus on objects within a given depth range and dull focus for 

anything outside that range. 

6.3. Depth Perception 

The ability to perceive the world in three dimensions is an amazing thing by all accounts. The 

systems in our body that make it possible for us to extract that type of information from our 

surroundings is an astonishing thing. If the goal in VR is to simulate an environment and 

communicate that information to a user in 3D, a strong understanding of depth perception and how 

it works in humans is an extremely useful tool for developing VR systems.  

It is important to understand that even though eyes are amazing structures, they are still only 

sensors. There is no processing going on in the eye itself. The eye is simply an imaging system that 

provides raw data to the brain for processing. Depth perception along with any other kind of 

perception occurs in the brain. Contrary to popular belief, depth perception does not require two 

eyes. Depth is much harder to judge with only one eye, but it is still very possible. Humans judge 

depth with the help of what are known as “cues”. Cues can be thought of most simply as low level 

hints that when considered together help construct a 3D picture in our minds. There are several 

monocular cues that take care of a large part of the depth perception task with only one eye. The 

most important (and familiar) monocular cues are listed below 
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 Perspective is a cue that has already been described in this paper. In this point, it refers 

strictly to the property of converging parallel lines at a distance. By making the assumption 

that lines are parallel in 3D space, the brain can judge how far a point on that line is by 

measuring how close those lines appear. 

 Relative Size is a cue that helps the brain judge depth between two objects. If the size of 

the two objects is known to be the same beforehand, the object that appears smaller is 

considered further away than the other. 

 Motion Parallax refers to the fact that objects moving across a field of view appear to be 

moving faster at closer distances and appear stationary when they are sufficiently far away. 

 Depth from Motion is a cue that helps judge whether or not an object is moving towards 

or away from an observer. An object moving towards the observer will expand within the 

field of view while objects moving away will contract. 

 Occlusion refers to the property that opaque objects will “occlude” or block the view of an 

observer to an object behind it.  

There are many other cues, but these are the most common and the most apparent. A successful 

graphics engine should be able to simulate these effects successfully, whether stereoscopic vision 

is being employed or not. 

The only binocular cue required to simulate a convincing 3D VR experience is the so called 

Binocular Parallax. For that, the placement of the eyes comes in to play. Most humans have two 

eyes positioned at the front of the head.  
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Figure 6-3: Eye Position Assumption [8] 

 

They are close enough to each other so that the assumption can be made that both projection axes 

are perpendicular to each other. This is an important assumption because it allows for huge 

simplifications during the stereo rendering process. 3D display systems which are not head 

mounted have to assume asymmetric or non-parallel projection axes because the display is probably 

going to far enough away from the eyes. The luxury of a head mounted system is that the screen 

proximity allows for this approximation.  

Even with our eyes separated by such a relatively small amount, there is enough of a difference 

between the two images for the brain to triangulate depth. Try this. Hold a finger up in front of your 

face so that both eyes can see it. Focus on a point on the background behind the finger and close 

one eye. Note where the finger is in the other eye’s field of view. Now switch eyes. If done fast 

enough, the finger seems to jump around. This is basically due to the motion parallax cue mentioned 

before, except that instead of moving the object, effectively the eye is moving. With some 

experimenting, it will become apparent that the distance that the finger appears to jump depends 

on how far it is from the eyes. With each eye seeing a slightly different image, the brain is able to 

piece together the depths of objects in the near field with a high degree of accuracy. Objects far 

away tend not to jump around as much, so perceiving an absolute depth for them is more difficult.  



56 

 

6.4. A Brief History of HMDs 

Head Mounted Displays (HMDs) have been around for a long time. The first computer tethered 

HMD was invented in 1966 at MIT, and it worked by reflecting the screens of two bulky CRT 

monitors into the eyes of the user. This early model was capable of tracking and responding to head 

movements. The technology was not portable by any means but it set a precedent for a new 

paradigm in HCI. 

The technology seemed to stagnate for a while. It was difficult to make the early systems light 

enough or portable enough to be practical. Applications were found in the military and helmet 

mounted displays became common place in aircraft to convey HUD information to pilots.  

It wasn’t until the early 90s before HMDs found somewhat of a footing in the gaming world. Early 

HMDs were interesting but they failed to provide a consistently immersive experiences due to 

limitations in screen technology, field of view and graphics technology. What’s worse is that the 

early models were extremely expensive. The future of HMDs and consequently VR seemed bleak. 

Then, in 2012, a prototype for a new HMD was exhibited at the Electronic Entertainment Expo. It 

was called the Oculus Rift, and it had an interesting approach to what was now a pretty old problem. 

The shortcomings of previous HMDs was not shared by the Rift, which claimed a massive 110∘ 

field of view, which was unheard of up until this point. Following an extremely successful 

KickStarter Campaign and the support of major game developers, Oculus Rift broke through as the 

first viable option for an HMD in decades. 

This paper will discuss the Rift in further detail in a later section, but the rest of this chapter will be 

dedicated to the fundamental concepts of HMD operation, and how the engine incorporates this 

functionality. 
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6.5. HMD Integration 

The first thing to realize about the HMD in general is that practically speaking, it is nothing more 

than a monitor screen. Modern HMDs have sensors built in along with hi-fi stereo audio systems, 

but the true meaning of HMD is in the name…Head Mounted Display. A monitor strapped to a 

bicycle helmet would technically be considered and HMD. In this paper, an HMD will refer to any 

portable display system that can be worn on the head capable of providing real time sensor feedback 

relating to the orientation and/or position of the head. The engine was built and tested for the Oculus 

Rift, but it was designed to integrate any similar system with minimal additional code. The rest of 

this section will describe the process of integrating an HMD with the engine. The process outlined 

here is specific to the Oculus Rift and described thoroughly in [8].  

The first step is to establish an appropriate coordinate model for the HMD. There is no reason not 

to use the same system that was employed to describe the free camera. It is also worthy to note the 

Rift uses this coordinate system as well so this is an easy enough call to make. Figure 6-4 provides 

a good pictorial representation of this frame.  
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Figure 6-4: Rift Coordinate System [8] 

 

A good starting point for modeling this arrangement in virtual space is to just model the entire head. 

That is, the eyes will be represented by distinct Camera objects within the engine which are attached 

to a “head” node whose frame will be represented by what is shown in the model above. 

Mathematically, it can be written out as follows. 

 𝐻𝑊 = 𝑋𝐻
𝑊   

( 6.5-1 

) 

All this does is define the frame of the head which will be further defined shortly. 

 

𝐶𝑙𝑒𝑓𝑡
𝐻 = 𝑋𝐶− = 𝑇(−

𝑑𝑖𝑝

2
, 0, −𝑑𝑧)

𝐻   

𝐶𝑟𝑖𝑔ℎ𝑡
𝐻 = 𝑋𝐶+

= 𝑇(+
𝑑𝑖𝑝

2
, 0, −𝑑𝑧)

𝐻  

6.5-2 

These two equations establish the positions of the left and right eyes with respect to the head frame. 

Here, 𝑑𝑖𝑝 refers to the inter-pupillary distance which is known to be around 64mm on average. 
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Each eye is placed at half this distance on the 𝑥 axis on opposite ends. The quantity, 𝑑𝑧 represents 

the position of the eyes in 𝑧 with respect to the center of the head. 

The last step is to define 𝐻 in terms of the yaw, pitch and roll angles, with the assumption that all 

of the rotations are centered at the origin of the frame. The only thing to watch out for is that the 

rotations are done in the right order to prevent gimbal lock. The transform is given by 

 𝐻𝑊 = 𝑋𝐻
𝑊 = 𝑇(𝑥, 𝑦, 𝑧)𝑅𝑧(𝜃𝑟𝑜𝑙𝑙)𝑅𝑦(𝜃𝑦𝑎𝑤)𝑅𝑥(𝜃𝑝𝑖𝑡𝑐ℎ)  6.5-3 

The translation represents and arbitrary positioning of the head in space. 

Since the eyes are expressed in relation to the head, nothing more needs to be done to the eye frames 

before calculating the corresponding view matrices, given by: 

 

𝑉𝑙𝑒𝑓𝑡 = 𝑋𝐶−
−1𝑊   

𝑉𝑟𝑖𝑔ℎ𝑡 = 𝑋𝐶+
−1𝑊   

6.5-4 

It would be nice it that was all there was to do. Unfortunately, setting the proper view matrices is 

only half the battle.  

For HMDs which house a single display monitor, stereoscopic rendering is achieved by splitting 

the screen into two halves; one for each eye. There are then effectively two viewports to which the 

engine has to render a scene to, each with a different perspective projection. For that, a few things 

need to be computed beforehand.  

Assuming that the whole screen is characterized by a resolution of 𝑤xℎ pixels, the aspect ratio for 

a stereoscopic arrangement is given by 

 𝑎 =
𝑤

2ℎ
  6.5-5 

The extra factor of 2 in the denominator comes from the fact that each viewport only uses half of 

the horizontal resolution or 
𝑤

2
. 
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To calculate the field of view for both eyes, the following formula is employed. 

 𝜙𝑓𝑜𝑣 = 2atan
𝑆𝑉

2𝑑𝐸2𝑆
  6.5-6 

Where 𝑆𝑉 denotes the physical vertical screen size of the display and 𝑑𝐸2𝑆 denotes the distance 

between the eyes and screen. The perspective transform can be calculated with respect to the center 

of the screen like so. 

 𝑃 =

[
 
 
 
 
 
 
 
 
 
 

1

𝑎 tan
𝜙𝑓𝑜𝑣

2

0 0 0

0
1

tan
𝜙𝑓𝑜𝑣

2

0 0

0 0
𝑧𝑛𝑒𝑎𝑟 + 𝑧𝑓𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟
−1

0 0
2𝑧𝑛𝑒𝑎𝑟𝑧𝑓𝑎𝑟

𝑧𝑛𝑒𝑎𝑟 − 𝑧𝑓𝑎𝑟
0

]
 
 
 
 
 
 
 
 
 
 

 6.5-7 

The next step is to shift the perspective transform left and right based on a new parameter, 𝛿𝑥 given 

by 

 𝛿𝑥 = 1 −
𝑑𝑙𝑒𝑛𝑠

2𝑆𝐻
 6.5-8 

Here, 𝑑𝑙𝑒𝑛𝑠 is the separation between the lenses, 𝑆𝐻 is the physical horizontal screen size and 𝛿𝑥 is 

a horizontal perspective shift factor that will be used to modify the final perspective projections for 

each eye like so. 

 

𝑃𝑙𝑒𝑓𝑡 = 𝑇(+𝛿𝑥, 0,0)𝑃 

𝑃𝑟𝑖𝑔ℎ𝑡 = 𝑇(−𝛿𝑥, 0,0)𝑃 
6.5-9 
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6.6. Rift Integration and Lens Correction 

The Oculus Rift is innovative for its use of convex lenses to increase the perceived field of view 

for the user. The problem with using lenses is that they introduce a distortion between the screen 

and user. The specific type of distortion is called a pincushion distortion, shown below. 

Figure 6-5: Pincushion Distortion [8] 

 

This can be approximated mathematically by a simple transformation in polar coordinates. 

 

(𝑟, 𝜙) → (𝑟 𝑓(𝑟), 𝜙) 

𝑓(𝑟) = 𝑘0 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6 

6.6-1 

Notice that the distortion only affects the radial component of each point while the polar angle 

remains unaffected. In order to cancel out the pincushion distortion effect, the original image must 

be rendered to the screen through a barrel distortion, shown below. 
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Figure 6-6: Barrel Distortion [8] 

 

This is accomplished by applying the reciprocal of the polar transform shown in 6.6-1 to the 

image as a post processing affect. The typical result of such an operation is shown below.  

Figure 6-7: Shrinking Effect [8] 

 

This, however, introduces a new inconvenience. The barrel distortion essentially “pulls in” the 

outer pixels leaving a large amount of unused viewport, thus limiting the true field of view 
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experienced by the user. To avoid this, the viewport being rendered to must be enlarged so that the 

distorted images are stretched to the outermost bounds of the screen. 

Figure 6-8: Better Scaling [8] 

 

 

6.7. HMD Abstraction 

With the necessary prerequisite knowledge of how HMDs work, the logical next step is to define 

the abstract interface. This is the interface that the developer will interact with. The idea is to create 

a list of functions that any HMD must be capable of performing and any manufacturer interested 

in making their HMD compatible with this interface must write a specific implementation of a 

derived class. From the information in this chapter, we can say that a compatible HMD must be 

able to report its physical dimensions, roll-pitch-yaw information and lens positions. Error! 

Reference source not found. is a representation of this class structure that a compliant HMD must 

derive from.  
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Figure 6-9: Generic HMD Abstract Base 
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7. 3D Sensing 

The term 3D Sensor refers to a class of technologies that allow for accurate spatial measurement 

of objects. Interest in 3D sensing for VR applications gained traction with the release of 

technologies like the Microsoft Kinect and PrimeSense Carmine, which made it possible to 

interpret real time depth information. While 3D Sensing refers to a much wider range of 

technologies, the purpose of this chapter is to discuss specifically the use of depth sensor data within 

the VR engine. The 3D sensor being used for this project is the Microsoft Kinect. 
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7.1. Microsoft Kinect 

The Microsoft Kinect is a line of 3D motion sensing devices. The Kinect was first announced in 

2009 at E3 under the codename “Project Natal”, in reference to Microsoft’s view that the 

technology represented the birth of a new paradigm in user interfacing. This paradigm has been 

dubbed the “Natural User Interface” (NUI), referring to that fact that “natural” interfacing without 

the use of other hardware peripherals is possible through the new technology. 

The hardware is based on range camera technology designed by an Israeli company called 

PrimeSense, and the software was developed internally.  

Figure 7-1: Microsoft Kinect [9] 

 

Figure 7-1 is a picture of the original Kinect for Xbox 360. Other variants of the sensor have since 

been developed for use with the newer Xbox One and Windows PCs. This project makes use of the 

Kinect for Windows sensor. 

7.2. RGB-D 

At the heart of the Kinect, and other similar technologies, lies an RGB-D sensor. The RGB refers 

to the standard Red, Blue and Green color components and the D refers to depth. Most RGB-D 

sensors actually consist of two cameras. The first is a standard, run-of-the-mill optical camera 

whereas the second is a slightly more exotic Infrared (IR) camera. Figure 7-2 shows where each 

component is located on the physical device. 
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The depth information is extracted from the IR image through a process that PrimeSense refers to 

as “Light Coding”. It works by analyzing distortions in reflected IR light, also produced by the 

sensor.  

Figure 7-2: Kinect Components [9] 

 

The Kinect is capable of streaming image data in a variety of resolutions. According to the 

specifications of the Kinect for Windows device used in this project, the color camera is capable of 

streaming a 32-bit RGB image at resolutions between 640x480 pixels @30fps and 1280x960 pixels 

@10fps. The depth camera is capable of resolutions between 80x60 and 640x480 @30fps. 

7.3. Depth Stream 

Depth data is returned in the form of a 2D image. Each 

pixel in this image represents a 16-bit gray value. The 

higher 13 bits of this value represents the depth of that 

pixel with respect to the frame of the camera in 

millimeters. The lower 3 bits contain a skeleton ID 

which will be discussed further in a later section.  

Figure 7-3: Depth Representation [9] 
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There are two ranges for depth sensing available with the Kinect for PC, each suited for a different 

application. The codes for each of the extreme cases is shown in Error! Reference source not 

found.. 

Figure 7-4: Depth Sensing Modes [9] 

 

A typical depth image is shown in Figure 7-5. Notice that there appears to be a shadow behind the 

subject. This is due to the fact that the IR light is blocked and the shadow is represented by 

“unknown” pixels. The depth image on top is in default mode whereas the image on the bottom is 

in near mode. The blue in the top image represents pixels that are too close. In near mode, these 

regions are perfectly readable by the sensor. 
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Figure 7-5: Default (Top), Near (Bottom) 
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7.4. Color Stream 

The Kinect is capable of streaming color information in one of three formats. The first is an RGB 

format. Each image is represented by a 32-bit linear X8R8G8B8 bitmap in the RGB color space. 

The second option is YUV, in which each pixel is represented by a 16-bit gamma-corrected linear 

UYVY-formatted bitmap. The last option is the Bayer format which is designed to complement the 

physiology of the human eye by favoring green pixels over red and blue. For this project, the default 

RGB format will be used. 

The color image corresponding to the depth image above is shown in Figure 7-6. 

Figure 7-6: RGB Color Stream 
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7.5. IR Stream 

The Kinect is also capable of streaming the raw IR data. The intensity is stored with a 10-bit 

resolution with each pixel represented by a 16-bit value with the 6 least significant bits always set 

to zero.  

Figure 7-7: IR Stream 

 

Figure 7-7 shows a typical IR image obtained from the Kinect. Notice that the shadow in the 

background corresponds to the unknown pixels in the depth images. 

7.6. Skeletal Tracking 

The Kinect’s skeletal tracking system is by far one of its most useful features. According to the 

research paper put out by the Microsoft Research team responsible for this feature, “A single input 

depth image is segmented into a dense probabilistic body part labeling, with the parts defined to be 

spatially localized near skeletal joints of interest”. The process is illustrated in Figure 7-8, obtained 

from the original paper [10]. 
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Figure 7-8: Body Part Recognition [10] 

 

The process uses a depth image as an input in order to avoid the massive variability of skin color, 

lighting, clothing, hair and other superficial properties associated with a standard color image. 

Another advantage of using a depth image over color images is the ability to easily subtracting out 

the background of a scene with a simple depth thresholding operation. The researchers also stated 

that the ability to easily generate synthetic depth silhouettes of human poses made the training and 

testing phase far easier. 

Figure 7-9: Training Data [10] 
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Figure 7-9 shows a small sample of the numerous real and synthetic poses from the training database 

used in the paper. Note the wide variety of body types and clothing in the sample data. 

The colored regions in the above images are labels for different body regions. These regions in turn 

are either used to localize specific joints or to contextualize others points of interest to improve 

joint localization. There are in all 31 distinct body regions segmented by the algorithm. Joint 

recognition is a per pixel process, that uses the segmentation information to generate a reliable set 

of possible joint positions in 3D.  

The Kinect provides two tracking modes: Seated and Standing. When seated, the tracker only keeps 

track of the upper body joints and ignores the rest (Figure 7-10). 

Figure 7-10: Skeletal Tracking (Seated) 

 

When in standing mode, the entire skeleton is tracked. Joints which are not on frame are inferred 

and their positions are guessed (Figure 7-11). 



74 

 

Figure 7-11: Skeletal Tracking (Full) 

 

The beads indicate the positions of the 20 joints in 3D space. The labeled joints are shown below. 

Figure 7-12: Joint Names [9] 
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The coordinates of the joints are expressed in “skeleton” space. The depth of the point with respect 

to the Kinect is the 𝑧 coordinate. The 𝑥 axis increases to the left and the 𝑦 axis increases upwards. 

Figure 7-13: Sensor Coordinates [9] 

 

7.7. Transforming Coordinates 

The convenience of the homogeneous coordinate system developed earlier in the paper makes 

representing the joints within the 3D graphical environment of the engine an almost trivial matter. 

All that needs to be done is to define the matrices that relate the joints to the sensor and the sensor 

to the world. Each joint can be represented as a homogeneous point in the frame of the Kinect 

sensor.  

 𝑝𝑗 = [

𝑥𝑗

𝑦𝑗

𝑧𝑗
1

]𝐾   7.7-1 

Here, 𝐾 is the frame of the Kinect sensor. The actual matrix defining this frame is up to the 

programmer. The only thing to keep in mind is that in world coordinates, the 𝑧 axis points up 

whereas in skeleton space, the 𝑧 axis points towards the skeleton. 

There is also occasionally a need to transform between depth, color and skeleton space. The 

transformation between depth and skeleton space is straightforward as it follows directly from the 
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discussion of the perspective transform in previous sections. The transformation that maps the 

horizontal and vertical coordinates of the skeleton to the image is essentially a perspective 

transformation. The FOV and aspect ratio are simply characteristics of the IR camera. The depth 

information is encoded in the actual pixel values. A more difficult task is to transform pixels 

between the color image and depth image. This requires knowledge of the relative positions of the 

two camera systems with respect to each other. A color pixel must first be unprotected using the 

inverse perspective transform of the color camera to get a rough estimate of its “position” in 3D 

space, and then re-projected into depth coordinates using the perspective transform of the depth 

camera. The last step is to then match the estimated 2D positions to the associated depth pixels.  

These processes are mathematically straightforward but finding the actual values to build the 

transformation matrices can be tricky and dependent on the hardware device itself, which is why 

these procedures should be provided by the manufacturers. Thankfully, Microsoft provides 

functions within the API to perform these transformations. 

7.8. Multiple Sensors 

It is worth taking the time to explore the idea of using multiple 3D sensors in one application. One 

of the main limitations of a fixed sensor is that it can only access information within its own field 

of view. It is possible to have more than one sensor providing information about the world from 

several points of view, in which case it would be useful to know where each sensor is with respect 

to the scene. The spatial representation system developed in this project makes it easy to express 

relative positions, which in turn largely simplifies the process of integrating date from multiple 3D 

sensors into a single 3D picture. This is a topic worth exploring further but it is out of the scope of 

this paper. 

7.9. 3D Sensor Abstraction 

Just like we developed for the HMD in the previous chapter, we can do the same thing for 3D 

sensors. The assumption here is that all 3D sensors use a depth camera and are capable of providing 
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skeletal information. Mapping functions are also required as they are essential for extending beyond 

this functionality. The figure below is a UML representation of the abstract base class. 

Figure 7-14: Sensor3D Abstract Base Class 

 

Each of these functions must be overloaded for specific hardware to be compliant with software 

written with the engine. The Kinect Framework was used in the design of this interface so all that 

needs to be done for a specific implementation is to wrap the provided SDK functions with the 

interface functions. 
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8. Hand Tracking 

Part of implementing a truly natural user interface, is building in functionality to allow users to 

interact with virtual objects as they would with real world objects. That means paying special 

attention to the hands. The purpose of this chapter is to outline the development of a simple but 

robust hand tracking model so that a foundation for an extensible gesture recognition framework 

may be implemented. A basic grab detector will also be implemented as a proof of concept. 
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8.1. The Human Hand 

It would be hard to imagine life without our hands. For most of us, the hands are our primary means 

of interacting with the world around us. From a purely physiological point of view, the hands are 

extremely complex biomechanical structures. From a mechanical perspective, the human hand 

including the wrist has 26 degrees of freedom: three for hand/wrist position, three more for wrist 

articulation, and four articulated joints per finger. These joints are by no means unconstrained, but 

they still allow for a huge number of poses, both static and motional.  

8.2. Sensors 

There are sensors currently available on the market that can track hand and finger positions to a 

very high degree of accuracy. The Leap Motion Controller is one such device. It uses an IR 

emitter/receiver to map out a point cloud of a user’s hands.  

High resolution sensors like these make the problem of hand tracking simpler, but they have their 

limitations when it comes to applications where users need the freedom to move around a bit more. 

The rest of this chapter will outline a procedure to make hand tracking at a distance through a 

traditional RGB-D sensor a more viable option for VR applications. Understandably, the results 

might not be as accurate as a specialized sensor, but even the ability to reliably detect a few distinct 

poses allows for a huge increase in interfacing possibilities. 

8.3. Localizing the Hand 

Logically, the first step of any hand tracking process should be to localize the hands within the 

image. The ability to track individual joints from the skeleton makes this an almost trivial task. 

However, it is important to remember that there are two image streams available for this process: 

depth and color. There are upsides and downsides to using each one but before those issues can be 

discussed, there is a more immediate problem. The joint coordinates are provided in 3D skeleton 

space. Before anything else can be done, those points must be projected back onto the 2D images 

so that they may be dealt with in pixel space. Conveniently, this is not a new concept. Thinking 
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back to the pipeline, all it takes is a projective transform to figure out where the joints are in pixel 

space. Luckily, the Kinect SDK provides utility functions that can map coordinates between all 

three spaces.  

Figure 8-1: Hand in Depth Space 

 

Figure 8-2: Hand in RGB Space 
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Figure 8-1 shows the result of successfully projecting the joint coordinate of the right hand back 

into the pixel space of the depth image. This is accomplished by applying a perspective projection 

matrix to the joint coordinate to find the pixel that represents it. The white rectangle representing 

the Region of Interest (ROI) is centered on the pixel representing the position of the hand. In order 

to get the ROI in the proper position in the corresponding RGB image, the pixel at the center needs 

to be transformed into color space. Once again, the built in utility functions take care of this and 

the resulting ROI in color space is obtained as shown in Figure 8-2.  

All that needs to be done now is to crop out the parts of the image outside of the ROI before any 

other processing is done.  

8.4. Binarization 

The images coming in from the previous stage might look like what is shown Figure 8-3. The goal 

of this stage is to convert these images to clean binary images. 

Figure 8-3: Localized Images 

 

There is a choice to be made here regarding where the binary image will come from. A simple 

depth thresholding operation would be good enough to binarize the depth image, but it is already 

clear in the figure above that the depth image is a fair bit grainier. The other option is to binarize 

the color image, which is clearly sharper, using a skin classification technique of some sort but 

good skin classifiers tend to be computationally expensive, and if the application is to run at least 

30fps, this could be a problem. There is also the issue of the background rejection, which is more 

difficult in color images than depth images. 
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Figure 8-4 shows the results of these two operations. The image on the left is the result of a rough 

skin classification based solely on hue thresholding of the color image. The image on the right is 

the result of a direct depth thresholding of the depth image. In this case all depth points in the image 

greater than the depth of the shoulder center joint were rejected.  

Figure 8-4: Binarized Images 

 

In the interest of frame rate and reliability, the (right) depth image is definitely the better option 

for hand tracking procedures. It provides an easier way to reject background pixels and is 

completely independent of lighting conditions. 

8.5. Contour Extraction 

With the hand localized and binarized, we are now free to begin extracting other information. 

Contour extraction refers to the identification and storage of the edge pixels of the hand. Given that 

the input is a clean binary image, a simple edge detection routine is all that is needed to produce a 

crisp edge map of the hand. The images below outline the process. 
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Figure 8-5: Process 

 

The contour is extracted by creating a list of all connected, non-zero pixels. The longest list is 

determined to be the contour of the hand. The figure below shows the contour overlaid on the 

original depth image. 

Figure 8-6: Contour on Original 

 

8.6. Finger Counting and Grab Detection 

Using this basic information, it is possible to extract some higher level features from the image. 

For example, it would be useful to know how many fingers are being held up. This may seem like 

a simple task, but in order for it to be useful, it needs to be fast enough to keep up with the rest of 

the engine. For this reason, the first step will be to approximate the polygon for the given contour. 

This is important as it keeps the number of contour points to be further processed low while at the 

same time producing a clean geometric representation of the user’s hand without the contour noise. 

Depth Image

•

Binary

•

Contour

•
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Once the contour has been approximated, a convex hull operation is performed on the 

approximation. The convex hull of a polygon can be thought of as the shape a rubber band would 

form if wrapped around that polygon. In the case of the hand, the convex hull forms another 

polygon with vertices at the fingertips and the base of the contour. The figure below illustrates these 

processes. 

Figure 8-7: Finger Tracking 

 

The red line is the contour of the depth image of the hand and the green lines represent the 

approximation of this contour. The yellow polygon is the convex hull of the approximate polygon. 

In the figure above, the convex hull has 7 vertices, which are the candidate fingertips. You might 

notice that the fingertips coincide with smaller angles in the approximate polygon than the angles 

formed at the base of the hand. This is how fingertips, marked with blue circles, are distinguished. 

From here, grab detection is accomplished simply by checking that no fingers were found.   
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9. Conclusions 

This project is by no means complete. The nature of the task is such that there is always room for 

improvement and extension. The purpose of this chapter is to discuss these possibilities as future 

work, validate results, describe the contributions to the field made through this paper, and provide 

final thoughts for anyone who would like to use the work in the future. 
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9.1. Testing and Results 

The framework was used to create a series of demos which were tested on a PC with the following 

specs. 

 Intel Core i7 3770K @ 3.5 GHz 

 EVGA NVidia GeForce 670 FTW (OpenGL 4.4 Capable) 

 32 GB DDR3 RAM (4 GB used for applications) 

 Windows 8.1 Professional x64 

As with most graphics based applications, frame rate is an important measure of performance. In 

all demos, the frame rate was measured using an in game timer system at each frame, by performing 

the following calculation. 

 𝐹. 𝑃. 𝑆 =
1

𝑡𝑐𝑢𝑟𝑟 − 𝑡𝑙𝑎𝑠𝑡
 9.1-1 

The equation essentially measures the frequency of the main rendering loop. As stated earlier, a 

sustained frame rate between 25 and 30 frames per second (fps) is our threshold of success. Below 

this threshold, the lag between frames becomes noticeable. VSYNC was enabled in all cases to 

prevent screen tearing. 

All demos ran at 30 fps with no problems. Demos involving the Oculus Rift also ran comfortably 

at 30 fps even with a relatively large number of items rendering to the scene despite a two pass 

rendering pipeline (one for each eye). Demos involving the use of the Kinect and Rift in conjunction 

suffered a small loss in frame rate due to the simultaneous use of both image streams and skeleton 

tracking, but still remained above 25 fps. Even with the introduction of the grab detection code 

operating for both hands, the frame rate remained about the same mostly due to the fact that the 

vision code was implemented with OpenCV which makes use of multiple threads.  
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From a developer’s point of view, the creation of the demos was greatly eased by the abstracted 

OOP design of the engine. There was absolutely no need to directly access any of the low level 

graphics calls from the main application. All OpenGL calls were made through the specific 

implementation of the OpenGL renderer. The same can be said about interfacing with the Oculus 

Rift and Microsoft Kinect. The demo application code contained no references to the APIs provided 

by Oculus or Microsoft. All access to the hardware was successfully abstracted through the custom 

interfaces designed over the course of this project. 

9.2. Future Work 

VR is a massive field. It has been in development for over five decades and the possibilities for 

extension are rich. Here we will discuss other possible modules to extend the functionality of the 

engine, perhaps even for future thesis projects. 

First off, Audio. 3D/Stereo Audio is now commonplace in many multimedia applications. The 

implementation of a 3D audio engine is a huge undertaking in itself as it involves not only the 

sourcing and decoding of audio data, but requires real time delay and propagation computations for 

use in virtual reality environments. Many modern audio libraries such as OpenAL and FMOD allow 

for abstractions to perform these calculations on dedicated hardware or software by default. 

Another important aspect of VR is physics. If the user is to be truly immersed in a simulated reality, 

objects must behave as if they are under the influence of real physics. Physics simulation in gaming 

applications has been commonplace for quite a while, and a fast, accurate physics engine would 

provide a hugely noticeable increase in the qualitative “reality” of VR. 

A more functional hand tracking algorithm could provide a massive boost in interface capabilities. 

As stated earlier, the hand has over 20 degrees of freedom and the rudimentary grab detector 

outlined in this paper only takes advantage of 3 per hand. A hand tracking system that could reliably 
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provide information about orientation and finger position would provide a huge improvement in 

gestural control for the user. 

Lastly, a speech recognition module would be an interesting extension that would allow for the user 

to communicate directly and naturally with other agents within the environment. Along with 

gesture recognition, it forms the basis of modern natural interfacing and would prove to be a 

valuable tool within the engine. 

9.3. Contribution 

The contribution of this work to the field as a whole ultimately comes down to simplification. 

Creating a series of interfaces that abstract the software away from the hardware and bringing 

multiple VR technologies under the same engine and API makes it possible for developers to begin 

experimenting right away. Having to fiddle with low level graphics details or debug a specific 

hardware component is frustrating and discourages innovation. 

In this paper, a common abstract interface for HMDs, 3D Sensors and Graphics libraries has been 

proposed, implemented and demonstrated to work. Incentivizing a common interface for both 

developers and manufacturers leads to standardization, implying profits for all involved. This is 

crucial for the growth and adoption of VR. 
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