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ABSTRACT

Modification of the Cal Poly Spacecraft Simulator System

for Robust Control Law Verification

Tomoyuki Kato

The Cal Poly Spacecraft Dynamics Simulator, also known as the Pyramidal Reaction Wheel

Platform (PRWP), is an air-bearing four reaction wheel spacecraft simulator designed to simulate

the low-gravity, frictionless condition of the space environment and to test and validate spacecraft

attitude control hardware and control laws through real-time motion tests. The PRWP system

was modified to the new Mk.III configuration, which adopted the MATLAB xPC kernel for bet-

ter real-time hardware control. Also the Litton LN-200 IMU was integrated onto the PRWP and

replaced the previous attitude sensor. Through the comparison of various control laws through

motion tests the Mk.III configuration was tested for robust control law verification capability. Two

fixed-gain controllers, full-state feedback (FSFB) and linear quadratic regulator with set-point con-

trol(LQRSP), and two adaptive controllers, nonlinear direct model reference adaptive controller

(NDMRAC) and the adaptive output feedback (AOF), were each tested in three different cases of

varying plant parameters to test controller robustness through real-time motion tests. The first two

test cases simulate PRWP inertia tensor variations. The third test case simulates uncertainty of

the reaction wheel dynamic by slowing down the response time for one of the four reaction wheels.

The Mk.III motion tests were also compared with numerical simulations as well as the older Mk.II

motion tests to confirm controller validation capability. The Mk.III test results confirmed certain

patterns from the numerical simulations and the Mk.II test results. The test case in which actuator

dynamics uncertainty was simulated had the most effect on controller performance, as all four con-

trol laws experienced an increase in steady-state error. The Mk.III test results also confirmed that

the NDMRAC outperformed the fixed-gain controllers.
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Chapter 1

Introduction

With the rise of spacecraft technology, the demand for thorough testing of spacecraft systems

has grown tremendously. Due to the difficulty and expense of reaching outer space, space systems

are often not expected to be recovered. Therefore spacecraft are thoroughly tested before launch in

order for developers to ensure that their space systems will function as intended. In the context of

spacecraft attitude dynamics, it is crucial on the supplier’s side to ensure that their space systems

are capable of orienting itself properly such that the onboard payload can function properly.

One method for validating spacecraft attitude control systems is the development of numerical

simulations of the spacecraft. To an extent, simulations can offer insight into how well the spacecraft

attitude control system can function within its operating environment for its intended mission.

However numerical simulations are based on mathematical models and cannot predict the operating

environment and the physical space system perfectly. Especially among space systems that have a

high pointing-accuracy requirement such as communication satellites and telescopes, the importance

of validating attitude control systems before launch cannot be overstated.

An alternative method to spacecraft ground testing would be to recreate the system’s operating

environment. However the presence of the Earth’s gravity makes it difficult to simulate the space

environment. Particularly it is important to simulate the micro-gravity nature of the space envi-

ronment in order to accurately evaluate the effectiveness of the spacecraft attitude control system’s

capability to orient the space system and to guarantee a specific amount of pointing-accuracy.

An air-bearing spacecraft simulator (ABSS) is a testbed that is capable of simulating a micro-

gravity environment. First developed by the United States military[1], the ABSS consists of a

structure that holds attitude control hardware and an air compressor system. The structure is

1
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supported on an air-bearing with compressed air flowing between the bearing surfaces. The film of

compressed air between the bearing surfaces counteracts the testbed weight and therefore simulates

a low-gravity and frictionless environment. The simulation of the space environment allows for the

operation of hardware such as reaction wheels and control moment gyroscopes (CMG), and enables

the observation of dynamic phenomenon such as the effect of structural vibration and mass property

variation on the attitude control system performance. Therefore the ABSS can be utilized to perform

real-time attitude control tests and to evaluate control law performance and robustness.

However one condition for the ABSS to perform effectively is to align the ABSS center-of-gravity

(CG) with the air bearing center. Otherwise an offset between the CG and the bearing center will

introduce an external torque onto the ABSS system due to gravity and therefore necessitate greater

controller effort to compensate for the external torque. The ABSS has been proven as a reliable

testbed for validating numerous control laws and attitude control hardware such as reaction wheels,

CMGs, and thrusters. [2][3][4][5]

This thesis is organized as follows. The rest of Chapter 1 will cover the literature review as well as

a brief history of the development of the Cal Poly spacecraft simulator, also known as the pyramidal

reaction wheel platform (PRWP), and conclude with a statement of the thesis objective. Chapter 2

will give an overview of the hardware and software system on the current configuration of the Cal

Poly Spacecraft Dynamics Simulator as well as a description of the validation process of integrating

the LN-200 IMU onboard the PRWP. In chapter 3 the governing equations of spacecraft dynamics

and kinematics as well as the various control laws of this project will be described. Chapter 4 will

cover the motion test experiments. The results of the motion test experiments with the LN-200 IMU

onboard will be discussed in chapter 5. Concluding remarks as well as recommendations for further

development of the PRWP will be made in chapter 6.

1.1 Literature Review

This section will discuss relevant concepts of this investigation as well as discuss the results of

related publications.

1.1.1 Control Law Validation

To manipulate the behavior of an output of a dynamic system, a control law must be developed.

The attitude of a spacecraft is one such case of a dynamic system whose output is of interest and

requires a sophisticated controller to ensure a specific output behavior. However the development
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of a control law is only a part of the process, as the controller performance must be verified through

numerical simulations and real-time hardware-in-loop tests. Due to the ABSS’s ability to simulate

a micro-gravity environment, the testbed is utilized to verify various control laws applied to space-

craft attitude control. The ABSS experimental results serve as a good comparison with numerical

simulation results, and the comparison can either confirm the numerical simulation results or expose

certain phenomenon and disturbances the numerical simulation did not account for.

Jung and Tsiotras[6] validated a quaternion-based nonlinear feedback control law through motion

tests on an ABSS system. Though the controller was originally developed by Joshi et al[7], the control

law was validated through both a numerical simulation as well as a motion test on a cylindrical

spacecraft simulator. First the simulator CG was balanced through the combination of a least-

squares system identification algorithm and mass balancers, then the feedback control law was

tested by simulating an attitude maneuver. Starting at non-zero Euler angles, the spacecraft system

was commanded to an all-zero Euler angle. Both the simulation and motion test results consistently

show that the feedback controller effectively controlled the simulator attitude.

Romano and Agrawal[8] validated a PD control law for a bifocal relay mirror spacecraft simulator.

The simulator emulates a space system designed to redirect a laser beam from a ground source to

a different destination. Therefore the proposed PD controller was responsible for both the attitude

of the simulator and rejecting laser beam jitter to properly reflect the entire laser beam. The PD

controller was tested both in a numerical simulation as well as a hardware-in-loop experiment, and

both results were consistent in showing that the simulator system is capable of guaranteeing a

pointing accuracy of 0.1 degrees and a angular velocity error of less than 0.02 degrees per second.

Gao et al [9] validated a PD feedback controller on a single reaction wheel table-configuration

spacecraft simulator. Although the simulator is constrained to move only about its yaw axis, the

simulator successfully executed a yaw rotation of 10 degrees using the PD controller.

1.1.2 Adaptive Control

An inherent problem with fixed-gain control laws is that the gains are dependent on knowing

the plant dynamics and parameters. A sudden change in the plant parameter may actually alter the

behavior of the system of interest and therefore the plant model may no longer be valid. For example

for a space system, the deployment of solar panels and booms will change its mass property. To state

another example an aircraft system’s CG will change as it consumes fuel and load or unload supplies

and munition. Therefore robustness is a quality that is highly desirable for control laws. Robustness
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is a controller’s capacity to meet specific control performance requirements despite variations in

plant model parameters.[10][11] Although fixed-gain controllers can be designed to be robust, such

controllers still expect a specific plant model. If there is a sufficient amount of plant parameter

variations, fixed-gain controllers may not be robust enough to guarantee a certain output behavior

or the system may even become unstable.

Adaptive control is a type of controller that is more capable of dealing with uncertain plant

dynamics and disturbances. While most controllers are designed to control the system output for a

given system condition, the adaptive controller is a controller that changes itself in response to the

changes in plant dynamics. A particular type of adaptive control called model reference adaptive

control, which this investigation will focus on, does not rely on knowledge of the plant dynamics.

Instead, model reference adaptive controllers rely on a reference model which the controller forces

the plant to track. Therefore model reference adaptive controllers tend to be more robust compared

to fixed-gain controllers due to dependence on plant output rather than a plant model[12]. Adaptive

control itself has many different variations and is a widely-used solution for many different systems

today[13][14][15].

Adaptive control has been demonstrated to be a viable solution for spacecraft attitude control

and for balancing ABSS systems. Kim and Agrawal [16] applies adaptive control to an autonomous

CG balancing system for an air-bearing spacecraft simulator. This was accomplished by ensuring the

simulator’s total angular momentum tracks a specified trajectory using Lyapunov functions to prove

asymptotic stability of the angular momentum. When the simulator angular momentum follows the

ideal trajectory, the CG offset torque will be minimized.

Swei [17] develops a bounded adaptive controller to align the spacecraft vector with the sun

vector in order to maximize the power collection efficiency of a solar panel. The adaptive controller

takes into account the spacecraft’s limitation in producing torque, therefore the adaptive controller

parameters are bounded as to limit the torque command.

Yoon and Tsiotras [18] develop an adaptive controller that compensates for actuator uncertain-

ties. The authors simulated uncertainties with a variable-speed control moment gyroscope such that

its spin, gimbal, and transverse axis had a degree of uncertainty which affects the transformation ma-

trix between the CMG frame and the platform body frame. The authors ran numerical simulations

of both a nominal controller and the adaptive controller, and showed that the adaptive controller

reduced the Euler-angle error to less than 0.1 degrees, as opposed to the nominal controller which

suffered errors of almost 5 degrees.

While adaptive controllers show great potential for application on spacecraft attitude control
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systems, it remains to be seen how well adaptive control works in a motion test experiment such

as on an ABSS system. Though Kim and Agrawal as previously mentioned have applied adaptive

control to the CG balancing system of an ABSS system, it is of great interest to evaluate the

capability of adaptive controllers for ABSS motion tests. The application of adaptive controllers to

the PRWP will be discussed further in section 1.3.2.

1.2 History of the Cal Poly Spacecraft Dynamics Simulator

This chapter will give a brief history of the evolution of the PRWP, from its creation to its

current state of development. The initial design was developed by Mittlestead[19]. Figure 1.1 shows

the first configuration of the Cal Poly spacecraft simulator, also referred to as the Mk. I.

Figure 1.1: Cal Poly Spacecraft Simulator Mk.I.

Although the individual components of the Mk.I were functional, the Mk.I was ultimately shown

to be incapable of executing real-time motion tests. The data processing limitation of the Bluetooth

link and the onboard CPU prevented the Mk.I from being a viable system for real-time motion tests.

Therefore Kinnett[20] and Downs[21] revised the system hardware and software such that, for

the first time, the PRWP was capable of closed-loop attitude control in real-time. The most recent

configuration of the PRWP, the Mk. II, is shown in Figure 1.2.



6

Figure 1.2: Cal Poly Spacecraft Simulator Mk.II.

The Mk.I CPU was replaced with a PC/104 form-factor CPU using the Windows XP operating

system and running the MATLAB/Simulink program onboard. Although the Mark II configuration

was functional, it was also electrically unreliable. Unfortunately various incidents of electrical failures

have caused the failure of some of the hardware and a new revision of the PRWP system was required,

which resulted in the Mk. III configuration. The newest PRWP configuration will be described in

further detail in Chapter 2.

1.3 Thesis Objectives

This section will discuss the concurrent development on the PRWP as well as the actual thesis

objectives of interest.

1.3.1 Concurrent Development

Aside from myself another graduate student, Long Dam, is involved in the spacecraft simulator

project. Dam’s project will involve the implementation of the system identification algorithm and

the fine mass balancers for the purpose of the PRWP inertia estimations and to better balance the

platform[22]. Although the hardware and software have been previously developed by Sailes[23]

and Silva[24] respectively, the CG correction system have had limited results due to the Mk.II

configuration hardware limitations such as the attitude determination sensor bias drift.
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1.3.2 System Modification and Controller Validation

The first objective of this project is to integrate both the Litton LN-200 inertial measurement

unit (IMU) and the MATLAB xPC kernel onboard the PRWP. Although the Mark II configuration

of the PRWP was functional, a combination of onboard hardware failures and the control law

verification limitation motivated a modification of the PRWP system. The Mark II configuration of

the PRWP utilizes the CRS03 MEMS gyroscope for attitude determination. However the MEMS

gyroscopes have a high bias drift, which adds to the difficulty of evaluating control laws for attitude

control. Therefore the Litton LN-200 IMU, loaned to California Polytechnic State University by

the Northrop Grumman Corporation, will replace the MEMS gyroscopes in order to improve the

PRWP’s attitude determination capability and in turn improve the PRWP’s capability to validate

control laws.

However along with the LN-200 IMU, other PRWP system hardware had to be replaced due to

the destruction of much of the Mark II hardware due to several incidents of malfunctions. Therefore

a decision was made to switch the PRWP CPU operating system from Windows XP to the MATLAB

xPC kernel, since the xPC kernel is explicitly designed for real-time hardware tests. The greater

computational efficiency of the xPC kernel offered a wider variety of hardware to choose for the

PRWP system compared to the Windows XP operating system. The newer PRWP configuration

with the xPC kernel system as well as the LN-200 IMU integration process will be explained in

further detail in Chapter 2.

The second objective of this project is to verify the PRWP’s capability for verifying control

laws for spacecraft attitude control systems. Although ABSS systems have been proven to be an

effective ground test for control laws applied to spacecraft attitude control, much work have been

done on fixed-gain controllers such as PD control laws. Though numerous works as discussed in the

literature review have shown adaptive control law to have great potential for application on spacecraft

attitude control systems due to its robustness, those works have been done on numerical simulations.

However, Downs[21] has tested adaptive control laws onboard the Mk.II configuration of the PRWP

and compared adaptive controllers to a fixed-gain controller. Although Downs’ comparison was

weakened by the high bias drift of the attitude determination sensor, his investigation was able

to show that adaptive controllers consistently outperformed the fixed-gain controller. Therefore it

is of interest to see how well the new Mk.III configuration of the PRWP, with the LN-200 IMU

as the attitude determination sensor, can test the performance of various control laws including

adaptive controllers. Similar to Downs’, two variations of adaptive controllers will be compared to
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a fixed-gain control law by executing motion tests on the PRWP for three separate test cases where

plant parameter variations will be simulated. The first two test cases will simulate variations of the

PRWP mass property, and the third case will simulate uncertainty in the reaction wheel dynamic.

The purpose of the three test cases are to test the control law robustness. The controllers will be

evaluated based on how well they can control the simulator attitude amidst uncertainties in the

plant model.



Chapter 2

Overview of the PRWP System

This chapter will give a brief description of the PRWP hardware and of the Mk.III configuration.

Section 2.1 will explain the motivation for the Mk.III configuration of the PRWP. Section 2.2 will

briefly describe the hardware and software modification made to the PRWP. Section 2.3 will describe

the LN-200 IMU integration and validation process.

2.1 Motivation for the Mk.III Configuration

Although the Mk.II was a functional configuration of the PRWP, a redesign of the system was

motivated by a combination of hardware and software difficulties, and the destruction of much of

the Mk.II components. Most of the reaction wheel circuitry were destroyed due to poor power

management and poor soldering which led to the shorting of the circuits. Therefore the entire

reaction wheel system was replaced. All four motors were replaced with brushless DC motors which

have an integrated motion controller device with it. The motion controller is only a fraction of the

size of the Mk.II reaction wheel circuitry, and is far more reliable due to it being professionally

manufactured.

Also a decision was made to move away from using the Windows XP operating system running

MATLAB/Simulink and to adopt the MATLAB xPC kernel because the xPC kernel is specifically

designed for real-time hardware control. The Matlab xPC is specified to support real-time simulation

for a sample time as fast as 10µs1. Although running Simulink on the Windows XP operating system

was capable of real-time control on the Mk.II configuration, the configuration was limited to using

components using analog or digital I/O connections due to its low data transfer capability. Therefore

1http://www.mathworks.com/help/releases/R13sp2/pdf doc/xpc/xpc target gs.pdf

9
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this would present a restriction in the choice of hardware if more parts are to be added in the future.

The Mk.III configuration is shown in Figure 2.1.

Figure 2.1: Cal Poly Spacecraft Dynamics Simulator Mk.III Configuration.

2.2 Hardware and Software Overview

The schematic of the Mk.III configuration is shown in Figure 2.2.

Figure 2.2: PRWP Mk.III System Diagram.
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The power subsystem consists of batteries and voltage regulators and they are responsible for

providing regulated power to all the other subsystems. The actuator subsystem consists of the reac-

tion wheels and the fine-mass balancers (FMB) which provide attitude control and CG adjustment

capability for the PRWP respectively. The attitude sensor subsystem provides rotational veloc-

ity measurements for the PRWP. The command and data-handling subsystem is responsible for

communicating between the other subsystems and the ground computer.

The motion test experiment involves numerous interaction between the PRWP hardware and

software. The motion test process is explained further in the following section.

2.2.1 PRWP Test Process

The execution of the motion tests on the PRWP is made possible by the interaction between the

PRWP hardware, software, and the ground computer. The motion test process diagram is shown in

Figure 2.3.

Figure 2.3: PRWP Motion Test Process Diagram.

Unlike the Mk.II configuration, the ground computer serves a greater role in the function of the

motion tests. The ground computer is a desktop PC using the Windows XP operating system and

running MATLAB/Simulink. The motion test process is as follows,

1. The motion test simulation file is developed in the Simulink environment on the ground com-

puter.

2. The motion test simulation file is then compiled by MATLAB into the .DLM file format which

can be used by the MATLAB xPC kernel on the Mk.III CPU.
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3. The .DLM motion test file is transferred via wireless Ethernet link from the ground computer

to the Mk.III CPU.

4. The MATLAB xPC kernel on the Mk.III interprets the .DLM file

i. The xPC kernel reads and writes to the Mk.III hardware

ii. The xPC kernel stores the data from the simulation.

5. Once the motion test is executed, the Mk.III saves simulation data as .DAT files and transfers

the .DAT files via wireless Ethernet link back to the ground computer for data processing.

In the Mk. II configuration all the computational process occurred on the PRWP CPU and the

only role of the ground computer was to communicate with the PRWP CPU. However the difference

with the Mk.III configuration is that some of the computational effort is transferred to the ground

computer, and the Mk.III CPU is only responsible for hardware interaction and data storage. Now

that the motion test process have been explained, the PRWP CG balancing system will be discussed.

2.2.2 PRWP CG Balancing System

Due to the nature of ABSS systems, it is important to balance the PRWP CG as close to

the air-bearing center as possible. Otherwise the PRWP will experience an additional external

torque known as the CG offset torque. This effect is problematic because during the motion tests

the PRWP control law and reaction wheels will have to expend additional effort to counteract the

external torque. This can lead to the reaction wheels reaching its wheel speed saturation limits

faster, which will limit the motion range of the PRWP. The PRWP CG balancing system process is

illustrated in the diagram in Figure 2.4.
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Figure 2.4: PRWP CG Balancing System Diagram.

The PRWP CG balancing process can be further described as follows,

1. The CG vector is determined by the PRWP through a specific motion test.

2. The CG vector is used to determine to calculate the offset distance necessary for the FMBs.

3. The FMBs move its counterweight blocks to shift the CG location.

4. The process is repeated until the operator determines the CG location is acceptable.

Various algorithms in determining and balancing the CG of ABSS systems have been developed

by others[16][25]. The method utilized for the determination of the PRWP CG location is called the

system identification (ID) algorithm. The role of the system ID algorithm for the operation of the

PRWP is further explained in Chapter 3.3. The CG location supplied by the system ID algorithm

is then processed by another algorithm to determine the distance that the FMBs need to move their

counterweight blocks to adjust the CG. The full detail of the balancing system is beyond the scope

of this project and the reader is referred to Dam for a complete explanation of all the algorithm

involved in the balancing process[22].

2.3 IMU Integration Requirements

The Litton LN-200 inertial measurement unit (IMU) is a space-rated hardware for the purpose

of attitude determination. The device is shown in Figure 2.5.
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Figure 2.5: Litton-200 Inertial Measurement Unit.

The unit houses three accelerometers and three fiber-optic gyroscopes (FOG), and has a bias drift

rate of less than 3o per hour. The LN-200 has a rich heritage, being utilized various space systems

such as the Mars Spirit and Opportunity rovers2. The particular IMU used for the PRWP simulator

was loaned to Cal Poly by the Northrop Grumman Corporation. Phil Iversen[26] developed a test

procedure to independently test the LN-200. To install the LN-200 onboard the PRWP, various

requirements must be understood and satisfied. The following sections will go into detail about the

necessary requirements and the validation process of the integration.

2.3.1 Mechanical Requirement

The IMU was mounted onboard the bottom deck of the PRWP in order to provide conduction

cooling from the primary structure and to place the device as close to the CPU as possible. The IMU

is bolted down onto the bottom deck of the PRWP with four screws on its case. For the mechanical

drawing, refer to the LN-200 manual3.

2.3.2 Power Requirement

The IMU requires three separate voltage inputs of +5, +15, and -15 volts with a 5 percent

tolerance on each line. Also the +15 volts have to be supplied last when activating the LN-200,

and disconnected first when deactivating the LN-200. If not properly activated and deactivated, the

LN-200 may suffer electrical damage.

Rather than fabricating the circuit, a decision was made to buy board-mount DC/DC converters

because the converters are professionally manufactured and therefore more reliable than self-made

circuits. The IMU circuit schematic is shown below in Figure 2.6.

2http://www.northropgrumman.com/Capabilities/LN200FOG/Documents/ln200s.pdf
3Northrop Grumman Corporations proprietary document
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Figure 2.6: IMU Voltage Regulator Circuit.

There are three DC/DC converters: 24V, ±15V , and a 5V converter as well as a linear +15V

regulator. The 24V converter supplies power to the ±15V and the 5V converter since they are rated

to work best with an input voltage of at least 24V. Although there already exists a 24V battery

onboard the PRWP (the lead-acid batteries), a decision was made instead to use a separate battery

and boost the input voltage to 24V using the DC/DC converter. The reason is because the lead-acid

batteries are specifically for high-current load such as the reaction wheel system and should not be

mixed with the low-current circuitry of the voltage regulator circuit. The 5V and the ±15V supply

power to the +5V and the -15V input for the IMU, and the linear +15V regulator supplies power to

the +15V input of the IMU. In order to validate the fulfillment of the IMU power requirement, the

IMU’s internal voltage data can be accessed. The IMU’s internal voltage reading plots are shown in

Figure 2.7.
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Figure 2.7: IMU Voltage Plot over 60 seconds.

For each of the three plots the dotted lines indicate the ±5% voltage tolerance. The plots clearly

show that the IMU voltage falls well within the specification ratings.

2.3.3 Data Requirement

The LN-200 outputs information in the form of a RS-485 signal, and it uses an encoding protocol

called synchronous data link control (SDLC). Therefore the Commtech Fastcom ESCC-104 device4

was chosen to acquire data from the LN-200. The source code was written in the C language,

and compiled in Simulink to create an S-function. The source code can be examined in detail in

Appendix A of this document.

At a rate of 400Hz, the IMU sends out a multi-word stream, and each word consists of 16 bits.

However only three words are required, which are the gyroscope data. The data acquisition software

also checks specific bits of the data that corresponds to hardware malfunctions, and will transmit a

warning if the IMU detects an anomaly. An example of an IMU test is shown in Figure 2.8.

4http://www.commtech-fastcom.com/DataSheets/FastcomESCC104.html
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Figure 2.8: IMU Data Plot.

Figure 2.8 shows a 90 degree rotation about the IMU vertical axis. The gyroscope data is

converted to angular velocity data, and then the body rate is used to determine the current quater-

nion rate. Then the quaternion rate is numerically integrated to determine the current quaternion

trajectory.



Chapter 3

PRWP Dynamics and Control Law

This section will briefly cover the governing equations of spacecraft attitude dynamics as well

as the control laws for attitude control. Section 3.1 will cover the dynamics and kinematics of

spacecraft attitude motion. Section 3.2 will describe the various control laws that will be utilized

for this project. Section 3.3. will briefly describe the system identification (ID) algorithm and its

application for the PRWP.

3.1 Overview of Dynamics and Kinematics

To develop a framework for analyzing the attitude dynamics of a rigid-body spacecraft, we

must be aware of the different coordinate systems involved as well as the relationship between the

dynamics and kinematics. A free-body diagram of the PRWP is shown in Figure 3.1[21].

Figure 3.1: PRWP Free Body Diagram.

18
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There are three coordinate frames of interest; the first one is the inertial frame, shown with the

axes X, Y, and Z on the above figure. The second frame is the body frame, made up of the axes

x, y, and z. The body frame stays attached to the simulator, and the motion of the body frame is

measured relative to the inertial frame. The third frame is the reaction wheel frame, shown by the

axis i1 through i4. When performing analysis on the motion of the PRWP, it is crucial to represent

all vectors in the body frame axis. Figure 3.1 also allows us to derive the transformation matrices

between the different frames.

Next the dynamics between the simulator body and the reaction wheels must be understood.

The following expression is the equation of motion for a rigid-body spacecraft with four reaction

wheels:

r ×RE ·mg = J~̇ω + ~ω × J~ω +

4∑
l=1

Rwl


Iwl · ω̇wl

0

0

+ ~ω ×Rwl


Iwl · ωwl

0

0


 (3.1)

Although Eq. 3.1 has been derived by various others[27][28] including Healy[29], it is more

generally understood as the Euler’s equation of motion. Euler’s equation of motion, as derived in

various sources[30][31][32], states that for a rigid-body object the net external torque acting on it is

expressed as the net rate of change of the angular momentum with respect to time. In the context of

a rigid-body spacecraft with reaction wheels, the net change of angular momentum is the difference

between the change in angular momentum of both the spacecraft itself and the reaction wheels.

The left term of Eq. 3.1 is an external torque resulting from a center-of-gravity (CG) offset. The

right term consists of the torque on the simulator body and the torque from the four reaction-wheels.

Therefore CG alignment is important for ABSS in order to minimize external torque on the system

which has to be compensated for. Ideally the CG should be aligned with the air-bearing center of

rotation, which results in the CG vector being zero, which makes the expression on the left side of

Eq. 3.1 zero. When the CG torque term is zero, Eq. 3.1 can be reduced to:

J~̇ω + ~ω × J~ω +

4∑
l=1

Rwl


Iwl · ω̇wl

0

0

+ ~ω ×Rwl


Iwl · ωwl

0

0


 = 0 (3.2)

Eq. 3.2 states that the rate of change of the angular momentum of the simulator body is equal
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and opposite to the rate of change of the reaction wheel’s angular momentum, assuming no external

torque acting on the system. Next the quaternion kinematic equation is introduced:

~̇q =
1

2
(q4~ω − ~ω × ~q)

q̇4 = − 1

2
~ωT ~q

(3.3)

Eq. 3.3 have been derived by several sources for the analysis and simulation of rigid-bodies[33][34][35].

Quaternion kinematics build a framework for the analysis of the PRWP’s angular position and veloc-

ity. In the context of spacecraft attitude control, quaternions are preferred for spacecraft kinematics

because it has advantages over Euler angle kinematics. Unlike Euler angles, quaternions do not suffer

from singularities. The expression for Euler angles involves trigonometric terms in the denominator

while quaternion kinematics do not deal with denominator terms. Also quaternions tend to be more

computationally efficient compared to Euler angles due to the quaternion’s lack of trigonometric

terms.[28]

Based on the body rate data which is provided by the LN-200 IMU, the quaternion rates can

be determined. The quaternion rates are numerically integrated to give the rotational position

of the PRWP expressed as quaternions. The combination of the equation of motion in Eq. 3.1

and quaternion kinematics in Eq. 3.3 builds a framework for analyzing the rotational motion and

dynamics of the PRWP. However for this project it is insufficient to analyze the dynamics and

kinematics of the PRWP, as the purpose of the PRWP is to verify control laws applied to spacecraft

attitude control. In the context of control system theory the PRWP is a dynamic system in which

the output of interest is its angular position. Therefore control laws must be developed in order to

guarantee a specific behavior of the PRWP angular position. The following section will describe the

design of the control laws to be tested on the PRWP.

3.2 Control Laws

3.2.1 Full-State Feedback

Full-State Feedback (FSFB) is a control algorithm which generates a plant input by feeding

back the plant states. A control-loop diagram is shown in the next page as Figure 3.2.
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Figure 3.2: Full-State Feedback Control.

The control law assumes that the plant dynamics are well known and that all the states of the

system are accessible. While FSFB has the advantage to full system state access, such condition

is not always realistic and also the controller is dependent upon the knowledge of the plant model.

Wie[28] derived a particular expression of the FSFB such that the quaternion error is included:

u = −KFSFB · ~qe − CFSFB · ~ω (3.4)

The KFSFB and CFSFB terms in Eq. 3.4 are the gain matrices. The FSFB controller in Eq.

3.4 have been proven to be asymptotically stable in Lyapunov’s definition for specific KFSFB and

CFSFB gains as described by Wie. However Mittlestead[19] derived a different expression of the

KFSFB and CFSFB gains:

KFSFB = 2ω2
n


Jxx 0 0

0 Jyy 0

0 0 Jzz

 (3.5)

CFSFB = 2ξωn


Jxx 0 0

0 Jyy 0

0 0 Jzz

 (3.6)

The KFSFB and CFSFB gains are functions of the natural frequency, the damping ratio, and the

PRWP inertia tensor. The reason is that the control law assumes the PRWP to be an underdamped
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second-order oscillator, and the gains allow the selection of the system poles based on the desired

natural frequency and damping ratio. The natural frequency, for an underdamped second-order

system, is given as a function of the settling time, settling percentage, and the damping ratio[36].

ωn =
− log(percent)

ts ∗ ξ
(3.7)

In Eq. 3.7 ts is defined as the settling time, percent is defined as the settling percentage, and ξ is

defined as the damping ratio. As described in the next chapter, the system settling time and settling

percentage will be the criteria used to evaluate controller performance. Therefore Mittlestead chose

to derive the KFSFB and CFSFB gains such that the gain selection is dependent upon the desired

settling time and percentage.

3.2.2 Linear Quadratic Regulator and Set-Point Control

The Linear Quadratic Regulator (LQR) is a type of a linear optimal controller[37][11]. The

feedback controller algorithm is given,

u = −Kx (3.8)

The LQR gain K in Eq. 3.8 is constructed such that the cost function of the following form is

minimized,

J =

∫ t

0

(xTQx+ uTRu)dt (3.9)

The LQR gain K is solved for by the following expression,

K = −R−1BTP (t) (3.10)

The P (t) term is solved through the algebraic Ricatti equation,

ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q = − ˙P (t) (3.11)

Starting with the A and B matrices of the state-space representation of the linearized plant

and the Q and R gains of our choosing, the P (t) term in the algebraic Ricatti equation is solved

to determine the LQR gain K. One condition for determining K is that the plant must be fully

controllable and observable. Otherwise a solution for the K gain may not exist.
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However for an application in which the reference input to the plant is nonzero, the LQR control

law may not be best suited for converging the plant output to the reference input quickly or the

plant output may not even converge at all to the nonzero reference input. The set-point controller is

designed to make the plant output, either a specific output or all the output, converge to a reference

input as fast as possible. Set-point is particularly designed to converge a plant output to nonzero

reference input, in other words a set-point (hence the name of the controller). Set-point accomplishes

output control by applying two feedforward gains to the reference input. The controller diagram is

shown in Figure 3.3[37].

Figure 3.3: LQR Control Combined with Set-Point Control.

In Figure 3.3 the signal labeled z coming out of the plant is the specific plant output to be

controlled by the set-point controller. The design of the set-point controller assumes a linearized

plant model shown as,

~̇x = A~x+B~u y(t) = C~x z(t) = G~x+H~u (3.12)

In Eq. 3.12 the variable z is known as the controlled output and can either be specific output(s)

of y(t) or be equal to y(t). For the PRWP system the state vector is given as,

~x =



ω1

ω2

ω3

q1

q2

q3


(3.13)

The plant input term ~u is the input moment exerted on the PRWP expressed as,
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~u =


M1

M2

M3

 (3.14)

M1, M2, and M3 are the input moment terms in the three body axis. The state vector is a

six-element vector consisting of the three-axis body rate and the three-element quaternion vector.

Although there are six plant states, the set-point controller will only regulate the three-element

quaternion vector. Therefore the z(t) expression becomes,

z(t) = y1 = [C1~x] = [C1] ~x+ [0] ~u (3.15)

In Eq. 3.15 y1 is the particular output of y(t) such that it only contains the quaternion vector

terms. Therefore C1 is the output matrix with dimensions such that when multiplied with the plant

states only the three-element quaternion vector remains. The G and H matrices from Eq. 3.12

becomes C1 and zero respectively. Therefore the expression of the G and H matrices becomes,

G =


0 0 0 G1 0 0

0 0 0 0 G2 0

0 0 0 0 0 G3

 H =


0 0 0

0 0 0

0 0 0

 (3.16)

The terms G1, G2, and G3 are variable terms of the G matrix. They multiply with the desired

plant outputs, which is the quaternion vector terms q1, q2, and q3 respectively. Hespanha, by

combining the LQR controller and the set-point controller, derives the expression of the control

input as follows,

u = −K(x− x∗) + u∗ (3.17)

The terms x∗ and u∗, defined as the equilibrium state and equilibrium input respectively, are

defined as follows,

x∗ = FUr

u∗ = NUr

The F and N feed-forward gains are determined by inverting the P matrix which is defined,
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P =

 A B

G H

 (3.18)

The A and B matrices are from the state-space representation of the linearized plant. The G and

H matrices are from the expression of the controlled output z(t). Once the P matrix is inverted, the

F and N gains both have the column dimension equal to the dimension of the desired plant output.

The row for the F gain is the dimension of the plant state, and the dimension of the N gain row is

the dimension of the reference input. In practice, the set-point controller is adjusted through the

G matrix. The G matrix will change the F and N gain, which in turn changes the weighting of the

reference input for the entire control law.

3.2.3 Nonlinear Direct Model Reference Adaptive Control

NDMRAC is a form of adaptive control, originally developed by Mehiel[38] and modified by

Torres[39]. The property that sets NDMRAC apart from a fixed-gain control law such as FSFB is

that the control gains are variable and will adjust according to changes in the system parameters.

Also the NDMRAC requires minimal knowledge of the plant model, unlike the FSFB or the LQR

controllers. Given the correct initial conditions, the NDMRAC can offer significant improvements

in control performance over fixed-gain controllers such as the FSFB. The control diagram for the

NDMRAC is shown in Figure 3.4[21].

Figure 3.4: Nonlinear Direct Model Reference Adaptive Controller Diagram.
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NDMRAC manipulates the plant output such that the plant is forced to track a reference model

of equal or lower order. The output error is expressed as:

ey = yp − ym (3.19)

The output error is the difference between the plant output yp and the model output ym. Proven

to be asymptotically stable by Lyapunov’s definition, the NDMRAC seeks to reduce ey to zero.

NDMRAC does so by taking the model state xm, model input um, and the output error ey and

applying the following control law,

u = Geey + S21xm + S22um (3.20)

The terms Ge, S21, and S22 are the error, input, and state gains respectively. Moreover the

adaptive gain rates are defined as:

Ṡ21 = −eyxTmH1

Ṡ22 = −eyuTmH2

Ġe = −eyeTyH3

(3.21)

The gain rates are numerically integrated to solve for the adaptive gains according to Eq. 3.20.

The H1, H2, and H3 are known as the adaptive parameters. The adaptive parameters must be

positive-definite matrices in order for NDMRAC to work. As the control simulation is being executed,

the adaptive gains will change depending on the output error and if the controller works correctly,

the gains will settle to a certain value.

Currently there are no reliable methods for determining the adaptive gain initial conditions and

the adaptive parameters, and therefore several iterations of the control loop must be performed to

decide on acceptable values. This process will be explained in further detail in Chapter 4. Although

Patel[40] has attempted a method using an optimization command in MATLAB and expressing the

adaptive parameters as a cost function to determine the initial gains and adaptive parameters, the

results lacked consistency and therefore the method was not reliable.

The reference model for the adaptive control laws is shown in Figure 3.5.



CHAPTER 3. PRWP DYNAMICS AND CONTROL LAW 27

Figure 3.5: Adaptive Controller Reference Model.

The reference model is a purely numerical simulation of the PRWP motion using the FSFB con-

troller. The reference model of Figure 3.5 was chosen because it best represents the ideal trajectory

that the plant should follow. The reference model assumes no external torque and that the body

torque command from the FSFB controller is exactly the plant input instead of going through a

reaction wheel system first. Also the FSFB gains are selected such that the motion test performance

requirements are satisfied. The reference model algorithm will be explained further in Chapter 4.

3.2.4 Adaptive Output Feedback

Adaptive Output Feedback (AOF) is a simplified version of the NDMRAC. While the NDMRAC

utilizes the output error, model state, and model input for its control input, the AOF only utilizes

the error output for its control input. The AOF control law was developed by Patel[40], and the

control diagram is shown in Figure 3.6[40].

Figure 3.6: Adaptive Output Feedback Diagram.
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Similar to the NDMRAC, the FSFB control law in Figure 3.5 is used as the reference model, which

the plant is to track. The AOF control law has been shown in simulation to outperform NDMRAC

in certain cases, and AOF is also less expensive computationally since there is only one adaptive

gain as opposed to three. Although the control algorithm is slightly different than the NDMRAC,

the AOF controller has also been proven to be asymptotically stable through Lyapunov’s definition.

3.3 System Identification

Although the dynamics, kinematics, and the control laws of the PRWP system are important

regarding the analysis of the PRWP motion, there are still two outstanding issues that must be

resolved in order to operate the PRWP system. The first issue is that the mass property of the PRWP

must be determined. In order to design the controllers, the fixed-gain controllers in particular, the

PRWP system must be well understood. A poor estimation of the PRWP inertia tensor can lead to

bad controller design which in turn will have poor control performance.

The second issue is that the PRWP CG must be balanced as close as possible in order to

minimize the CG offset torque. The CG offset torque will constantly act on the PRWP throughout

the motion test, and therefore the control law and the reaction wheel must expend additional effort

to compensate for it. This is problematic because the additional torque necessary to counteract the

CG offset torque will cause the reaction wheels to reach its wheel speed saturation limit faster which

in turn will limit the motion range of the PRWP.

One method to address both issues is the system identification algorithm. The system identifica-

tion algorithm is a well known method to determining an empirical model of a dynamic system based

on its input and output data[41][42][43]. There are many variations of the system ID algorithm, and

Healy[29] develops an algorithm specific to the PRWP using the least-squares method of the system

ID algorithm. For the rest of this thesis a distinction is made between the terms system ID algorithm

and the PRWP system ID algorithm which is derived by Healy. For the sake of brevity the PRWP

system ID algorithm will not be discussed in detail and the reader is urged to refer to Healy[29]

for a complete derivation of the PRWP system ID algorithm. Through a separate motion test in

which the PRWP undergoes oscillatory motions about all three of its body axis, the PRWP system

ID algorithm uses the test data to estimate both the PRWP inertia tensor and the CG vector. For

more information regarding the test refer to Dam[22].

Although the PRWP inertia can also be determined using solid-modeling software, the solid-

modeling program determines mass property information based on user-supplied numerical data as
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opposed to experimental data. In the context of this project it is of interest how utilizing different

estimates of the PRWP inertia will affect the control law performance. This will be discussed further

in the next chapter.

The PRWP system ID algorithm is also crucial in the proper balancing of the PRWP. Comple-

mented with the FMBs, the PRWP system ID algorithm determines both the PRWP CG location

and the CG correction necessary to balance the simulator. This completes the derivation of all

necessary concepts necessary for the analysis and operation of the PRWP system.



Chapter 4

PRWP Motion Tests

This chapter will describe the motion test experiments that will be performed on the PRWP.

The purpose of the motion tests are to determine if the PRWP Mk.III configuration can function as

a reliable test apparatus for robust control law verification. Section 4.1 will describe the motion test

parameters and maneuver. Section 4.2 will describe the three different motion test cases designed

to determine control law robustness. Section 4.3 will discuss the initialization of the control law

parameters.

4.1 Motion Test Description

To evaluate the performance of the different control laws in the different parameter cases,

control performance requirements have to be identified. The motion test performance requirements

are defined as,

1. The settling time, ts, is set to 20 seconds.

2. The settling percentage is set to 1 percent.

For the PRWP system the control laws are applied to the attitude control motion tests, so the

plant output to be controlled is the PRWP’s angular position expressed as quaternions. Unlike

the Mk. II configuration motion tests, the Mk. III motion tests will follow a different quaternion

trajectory. The Mk.II configuration started with an initial quaternion of [0, 0, 0, 1] and moved to

[0.145, 0.111, 0.145, 0.972] which is equivalent to an 18 degree rotation in the roll and yaw axis,

and a 10 degree rotation in the pitch axis. The Mk.III motion test will maneuver from an initial

quaternion of [0, 0, 0, 1] to [0, 0, 0.1305, 0.9914] which is equivalent to a 15 degree counter-clockwise

30
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rotation about the yaw axis. The motion test maneuver had to be adjusted because of the Mk.III’s

limitations in executing roll and pitch axis maneuvers which will be discussed further in Chapter 5.

The motion test is 40 seconds long, and the PRWP will initiate rotation 5 seconds into the

simulation. To satisfy the expected control performance, the PRWP has to reach its destination no

later than the 25 second-mark of the motion test with a steady-state error of no more than 1% of

the command quaternion destination.

4.2 Motion Test Cases

For the purpose of control law validation it is not enough to confirm the performance of a control

law through one test. It is also of interest to determine the robustness of the controller, which is

a measure of how well the control law can perform under variations of the plant model. For this

project three test cases will be utilized to determine the robustness of each of the four control laws.

Therefore there will be twelve tests total performed for this project since each control law will be

tested through motion tests in three separate test cases.

The first test case is referred to as the system identification inertia estimate case. The PRWP

system ID algorithm is utilized to estimate the inertia tensor and the CG vector, and the system

states from separate motion tests are required. Although the PRWP system ID algorithm takes into

account the nonlinear effects acting on the PRWP (e.g. measurement noise and external torque), the

algorithm is still a model and by nature cannot perfectly determine the exact inertia of the simulator.

Therefore to validate the inertia tensor estimation, multiple trials are required to determine the

inertia tensor within a specified confidence interval. Through Dam’s tests the system ID inertia was

determined to be, within a 95% confidence interval,

Isysid =


0.6071 0.0266 0.0149

0.0266 0.6560 0.001

0.0149 0.001 0.6376

 (4.1)

The second test case is referred to as the solid-model inertia estimate case. The PRWP inertia

tensor will be estimated using a solid-model of the PRWP. The solid model is shown below in Figure

4.1.
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Figure 4.1: Solid Model of the PRWP.

Since the solid-model estimate is not based on physical test data, the solid-model inertia estimate

is expected to vary significantly from the system ID estimate. Therefore using both the system ID

and the solid-model inertia estimates in the motion tests may reveal how the different control laws

perform with varying mass property data. The result of interest from the motion tests is to determine

the robustness of the control laws. As defined in Chapter 1, the robustness of a controller is a measure

of how well the control law performs under variations of the plant model. A robust control law should

be able to satisfy expected control performances even when there are uncertainties in the parameters

of the plant model. In the context of this project, it is of interest to determine if the control laws

can satisfy control performance even with varying inertia tensor estimates. A control law with low

robustness will experience control performance issues (e.g. higher overshoot, longer settling time,

higher steady-state error) while a more robust control law will consistently meet expected control

performance despite uncertainty in the plant model.

The inertia tensor determined by the SolidWorks1 program is:

Iest =


0.5485 −0.0002 −0.0003

−0.0002 0.5884 −0.0005

−0.0003 −0.0005 0.6456

 (4.2)

The differences between the solid-model and the system ID inertia estimates are the moment

of inertia (diagonal terms) and the products of inertia. The solid-model estimate, except for the

principal z-axis, has a lower moment of inertia. Also the product of inertia terms are much higher

for the system ID estimate compared to the solid-model estimate. While the solid-model of the

1www.solidworks.com
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PRWP modeled much of the large components on the physical PRWP system, there are still many

components that were not modeled such as cables and the three FMBs which may explain why the

solid-model estimate is lower in magnitude than the system ID estimate. Also the solid-model makes

assumptions about the material property of the various components of the PRWP, which affects the

density and mass data. Therefore the mass data may vary from the actual real-world value, and

this may also account for discrepancies between the system ID and the solid-model inertia tensor

estimates.

The third test case is called the degraded wheel case. The solid-model inertia estimate will again

be used, but this time a reaction wheel malfunction will be simulated. To do so, the fourth reaction

wheel, which lies on the -Y body axis, will be modeled as an overdamped second-order oscillator.

The differential equation and its state-space representation is shown below.

Ω̈ + 2ξωnΩ̇ + ωnΩ = ω2
nu (4.3)

A =

 0 1

−ω2
n −2ξωn

 B =

 0

ω2
n

 C =

[
1 0

]
D = [0] (4.4)

The damping ratio will be raised to 1.1 and the natural frequency is set at 1
rad

sec
. An overdamped

system will operate considerably slower than an underdamped system which is how the wheels behave

nominally. The purpose of this test case is to determine how well the controller can perform when

actuator dynamics uncertainty is introduced.

4.3 Controller Setup

Now that the motion test has been described, the controller setup must be explained. To complete

the design of the control laws, the control law algorithm must be designed according to the PRWP

plant model. The FSFB controller was set up by selecting the KFSFB and CFSFB gains based on

the desired damping ratio and natural frequency, in which the latter is a function of the settling

time and settling percentage. The damping ratio and the natural frequency were chosen as,

ξ = 0.85

ωn =
− log(0.01)

20 ∗ 0.85
= 0.2709

rad

sec
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Therefore the KFSFB and CFSFB gains are,

KFSFB = 0.1468I (4.5)

CFSFB = 0.4605I (4.6)

I is the controller’s inertia tensor, which could either be the system ID estimate or the solid-model

estimate depending on the desired test case.

The LQR gain was determined by linearizing the plant around the desired equilibrium point, and

then using the ’lqr’ command in MATLAB to compute the LQR gain. The ’lqr’ command needs

the A and B state-space matrices as well as the positive-definite Q and R matrices. The Q and R

matrices are currently set as identity matrices as shown:

Q =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


R =


1 0 0

0 1 0

0 0 1



The equilibrium point of which the plant was linearized about is,

ωe =

[
0 0 0

]
~qe =

[
0 0 0.1305

]
q4e = 0.9914

At the equilibrium point the PRWP should be stationary (all zero angular-velocities) and should

have rotated 15 degrees from its initial angular position about the z-axis. The state-space A and B

matrices of the plant are,

A =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

2
q4e −1

2
q3e 0 0 0

1

2
q4e

1

2
q3e 0 0 0

0 0
1

2
q4e 0 0


B =



1

I11
0 0

0
1

I22
0

0 0
1

I33

0 0 0

0 0 0

0 0 0


q3e and q4e are the third vector term and the scalar term of the equilibrium quaternion which the

plant is linearized about respectively. I11, I22, and I33 are the first, second, and third diagonal terms
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of the PRWP inertia tensor respectively. The model state vector is a six-element vector consisting

of the body rate and the quaternion vector, and the reference input Ur is a three-element vector

consisting of the desired quaternion vector. Regarding the motion test cases, changing the inertia

tensor estimate will affect the A and B state-space matrices, which will then affect the value of the

LQRSP controller gains.

The set-point controller was designed by combining the A and B state-space matrices with the

G and H gains set as:

G =


0 0 0 G1 0 0

0 0 0 0 G2 0

0 0 0 0 0 G3

 H =


0 0 0

0 0 0

0 0 0



For the PRWP motion tests, G1 and G2 are set to 1, and G3 varies in order to adjust the F and

N gains. The G3 term multiplies with the third quaternion vector term, which is the yaw axis term,

and therefore adjusting G3 would allow for the adjustment of the set-point controller output torque

on the yaw axis.

The setup of the NDMRAC and the AOF controllers will now be discussed. Between the motion

test cases, only the reference model inertia tensor changes. As mentioned in Chapter 3, the reference

model is a numerical simulation of the PRWP using the FSFB controller. The setup is the same

as the FSFB setup described earlier in this section. The FSFB controller gains selection is based

on the settling time and the steady-state error requirements as well as the desired inertia tensor

estimate, and is equivalent to the expressions in Eq. 4.5 and Eq. 4.6. The plant model is nonlinear

but assumes no external torque, and the model is the same as Eq. 3.2.

Figure 4.2 shows the reference model quaternion vector output for the system ID inertia estimate.
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Figure 4.2: Reference Model Quaternion Vector, System ID Inertia Tensor Estimate.

Figure 4.3 shows the reference model quaternion vector output for the solid-model inertia estimate

and the degraded wheel case (since the reference model does not model the reaction wheel system).

Figure 4.3: Reference Model Quaternion Vector, Solid-Model Inertia Tensor Estimate.

Both reference models show a maneuver of a 15 degree yaw-axis rotation, which is what the

motion test will execute. The dotted lines indicate the ±1% steady-state error bound. Both Figures

4.2 and 4.3 are similar in showing that the reference model satisfies the settling time requirement of

20 seconds and the steady-state error requirement of 1% of steady-state value. During the motion

tests the adaptive controllers will make the PRWP system track the outputs of Figure 4.2 or Figure

4.3 depending on the test case.



CHAPTER 4. PRWP MOTION TESTS 37

The adaptive gain initial conditions and the adaptive parameters need to be initialized. The

initial gains were determined in the numerical simulations by running numerous iterations. The

adaptive gains would start with an all-zero initial condition for the first iteration, and then the final

value of the adaptive gains after several iterations would then become the initial conditions of the

adaptive gains for the motion test. Adaptive control works by making the plant output track the

output of a reference model, and this is accomplished by adjusting the adaptive gains as necessary.

Although in theory there exists an ideal set of adaptive gains to make the plant track a reference

model perfectly, there currently is no known method to reliably determine the ideal gains. Therefore

the adaptive gain initial conditions must be determined through several iterations of numerical

simulations until the adaptive gains do not experience significant change in magnitude. Then the

final values of the adaptive gains from the numerical simulations are used as the adaptive gain initial

conditions for the motion tests.

The adaptive parameters are also determined through numerical simulations. So far the process

of choosing the adaptive parameters is also iterative, and therefore various combinations are tested

in a numerical simulation to see which adaptive paramter matrices yield the best results. Higher

adaptive parameters enable the adaptive gains to respond faster to the plant error but it also increases

the risk of instability due to higher gain values. Lower adaptive parameters are less likely to suffer

instability, but comes at the sacrifice of controller response time. The adaptive parameters used for

the NDMRAC are,

1. Adaptive Parameter H1 = 10*Id6×12

2. Adaptive Parameter H2 = 0.1*Id6×4

3. Adaptive Parameter H3 = 100*Id6×6

The variable Id indicates an identity matrix with the dimensions detailed in the subscript terms.

The AOF controller adaptive paramter is,

H3 = 500 ∗ Id6×6

This concludes the explanation for the motion test setup.
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Motion Test Results

This chapter will discuss the results of the PRWP numerical simulations and motion tests.

The performance of all 4 control laws (FSFB, LQRSP, NDMRAC, and AOF) will be evaluated for

all three cases of the platform parameters as discussed in the previous chapter. Again the control

law effectiveness is evaluated based on its ability to meet the settling time and steady-state error

requirements for the quaternion vectors. Section 5.1 will summarize the results from the Mk. II

motion tests. Section 5.2 will go over the results from the numerical simulations. Section 5.3 will

describe the Mk.III motion test results with the LN-200 IMU onboard the PRWP.

5.1 Past Results: PRWP Mk.II Configuration

Downs and Kinnett have developed closed-loop attitude control tests for the PRWP. In this

section Downs’ motion test results will be reviewed, with all three test case results. Downs ran both

the numerical simulations and motion tests for each parameter case, and compared both results. In

all the test cases, the simulator was commanded to maintain a home quaternion coordinate of [0 0

0 1] for the first 20 seconds of the simulation, then commanded to rotate to the new coordinate of

[0.145 0.111 0.145 0.978], which is equivalent to an 18 degree rotation in the roll and yaw axis, and

a 10 degree rotation in the pitch axis. The motion tests were 70 seconds long.
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Controller Results

FSFB Did not settle within 1 percent

Case I NDMRAC Settled within 1 percent, under 20 seconds

AOF Settled within 1 percent, under 20 seconds

FSFB Did not settle within 1 percent

Case II NDMRAC Settled within 1 percent, under 20 seconds

AOF Settled within 1 percent, under 20 seconds

FSFB Did not settle within 1 percent

Case III NDMRAC Settled within 1 percent, under 20 seconds,

required adaptive parameter reduction

AOF Settled within 1 percent, under 20 seconds,

required adaptive parameter reduction

Table 5.1: Summary of Mark II Motion Test Data.

The results of the Mk. II motion tests are summarized in Table 5.1. In all 3 parameter cases, the

FSFB failed to meet the settling percentage requirement. The cause of the FSFB controller’s failure

to settle the quaternion vector was most likely a combination of the MEMS gyroscope drift after 70

seconds and the CG offset of the platform. The NDMRAC met the performance requirements for

cases I and II, but the quaternion vector went unstable for case III. The AOF’s results were similar

to the NDMRAC’s, as the controller went unstable for the third case. However both adaptive

controllers was eventually able to stabilize the quaternion and meet the performance requirement

after the adaptive parameter matrix for the error gain was reduced, and the third case tests were

repeated.

Unfortunately the Mark II experimental results were insufficient to make a good comparison

between the various control laws. Both case I and II performances were nearly identical, and therefore

it was not clear if all three control laws performed better with the system ID iertia estimates as

opposed to the solid-model inertia estimates. Also the adaptive controllers became unstable for the

degraded wheel test case, and a change in adaptive parameter was necessary to stabilize the system.

Even though the adaptive control laws were shown to consistenly outperform the FSFB controller,

it became clear that a reduction in the attitude determination sensor bias drift was necessary to

make stronger comparisons between the controllers under varying plant parameters.
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5.2 Numerical Simulation Results

This section will discuss the results of the numerical simulations for all four control laws for

each simulation case with the PRWP Mk.III as the plant. The numerical simulations does not take

into account any external torque, and therefore assumes that the CG is perfectly balanced.

5.2.1 Numerical Simulations Case I: System ID Estimate

First the quaternion vectors from the system ID estimate case is shown below in Figure 5.1.

Figure 5.1: Numerical Simulation Quaternion Vector, System ID Estimate Case.

All four controllers met both the settling error and settling-time requirements. All four controllers

settle around the 15 to 20 second mark, well before the 25 second mark which is the settling time

limit. Shown in Figure 5.2 are the steady-state error plot for each of the four controllers.
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Figure 5.2: Numerical Simulation Steady-State Error, System ID Estimate Case.

The steady-state error is calculated as the absolute value of the difference between the command

quaternion and the actual quaternion. The steady-state error plot begins on the 24 second mark,

right before the settling-time mark of 25. The blue curve is the steady-state error, and the dashed

line is the error bound of 1% of the steady-state quaternion value. If the respective controller met

the steady-state error requirement, the steady-state error curve should stay under the steady-state

bound line.

The FSFB, LQRSP, and the NDMRAC control laws all perform similarly with a near-zero steady-

state error. However the AOF, though it eventually settles close to the command quaternion,

experiences a significant amount of overshoot from the 24 to 32 second mark. This is a possible

indication that the AOF controller has some difficulty in conforming the plant outputs to track the

reference model.

5.2.2 Numerical Simulations Case II: Solid-Model Estimate

The numerical simulation results for the solid-model inertia estimate case will now be discussed.

Shown in Figure 5.3 are the quaternion vectors for the four controllers.
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Figure 5.3: Numerical Simulation Quaternion Vector, Solid-Model Estimate Case.

Shown below in Figure 5.4 are the steady-state error plots.

Figure 5.4: Numerical Simulation Steady-State Error, Solid-Model Estimate Case.

Both the quaternion vector and steady-state error data are very similar to the system ID estimate

case. Once again the FSFB, LQRSP, and NDMRAC controllers settle the quaternion vectors within

the settling time requirement and the steady-state errors are near-zero. Also the AOF again shows
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an overshoot between the 24 and 32 second-mark, showing that the AOF controller is experiencing

difficulty in making the plant track the reference model. The similarity of the results between the

system ID estimate and the solid-model estimate cases indicate that the inertia tensor difference

may not have too much effect on the control law performances.

5.2.3 Numerical Simulations Case III: Degraded Wheel

The numerical simulation results for the degraded wheel case will now be discussed. The

quaternion vector plots are shown in Figure 5.5.

Figure 5.5: Numerical Simulation Quaternion Vector, Degraded Wheel Case.

The steady-state error plots are shown in Figure 5.6.
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Figure 5.6: Numerical Simulation Steady-State Error, Degraded Wheel Case.

Out of all the test cases the quaternion vectors exhibit the highest amount of oscillations. This

is to be expected because the degradation of one reaction wheel means the wheel speed command

cannot keep up with the body torque signal from the control laws. However the oscillations in all

three axis damps out by the 30 second-mark.

The steady-state errors are also noticeably higher compared to the steady-state errors from

the previous two test cases. Although the quaternion vector eventually settles within the error

bound, the FSFB controller does not meet the settling-time requirement and takes longer to settle

properly. The LQRSP still retains good control performance, but its steady-state error is noticeably

higher than the other two test cases. The NDMRAC, despite slightly higher steady-state error,

also delivered good control performance. The AOF controller’s overshoot worsened such that the

quaternion vector was not able to settle by the 25 second-mark. Overall the introduction of actuator

degredation, even in a numerical simulation, noticeably worsens control law performance and alters

the plant dynamics.
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5.3 PRWP Mk.III Motion Test Results

This section will discuss the motion test results from the PRWP Mk. III configuration, with

the LN-200 as the attitude determination sensor.

5.3.1 Platform System Limitations

Although the PRWP system is operational and capable of executing motion tests, there are

several system hardware limitations that restrict the testing capability of the PRWP. One of the

limitations is that the reaction wheel saturation limits are smaller compared to the Mk. II configu-

ration. Since the shafts of the new motors are significantly smaller compared to the previous motor,

the reaction wheels cannot be spun as fast without incurring damage to the actuators. Therefore

the current reaction wheel saturation limits are smaller, set at 3000 rpm in both directions. Since

the wheel saturation limits are smaller, the actuators cannot deliver as much torque as the Mk. II

configuration. The lower saturation limits especially affect PRWP motion in the pitch and roll axis.

Shown in Figure 5.7 below is a pitch motion by the PRWP using the NDMRAC for the control law.

Figure 5.7: PRWP Pitch Motion.

A pitch maneuver of 10 degrees was commanded, but the PRWP could only reach 6 degrees. At

the 16 second-mark, the wheels reached its saturation limits and therefore the pitch curve oscillates

wildly.

Another unforseen limitation is the presence of a disturbance torque most likely resulting from

actuator dynamics uncertainties. Before the motion tests are executed, the reaction wheels are spun
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to their initial speeds. It is after the wheels are spun to their bias values that the simulator tends

to drift, indicating the presence of a disturbance torque. Particularly the drift tends to be in the

clockwise direction around the yaw axis of the simulator, regardless of the wheel spin direction.

To illustrate the effect of the drift effect, the quaternion vector from two separate motion tests

with the FSFB controller is shown in Figure 5.8.

Figure 5.8: Comparison of Counter-Clockwise and Clockwise Rotations.

The left plot is a clockwise yaw rotation of 15 degrees, and the right plot is a counter-clockwise

yaw rotation of 15 degrees. Although the settling-time requirement is still not met, the clockwise

rotation quaternion vector successfully settles within the error bounds by the end of the simulation

while the counter-clockwise rotation fails to do so. These results are consistent with the clockwise

drift observed when the reaction wheels are biased. When executing a clockwise yaw rotation, the

FSFB does not have to exert as much controller effort to arrive at the command quaternion due to

the drift torque. However stopping the simulator and keeping the simulator at the desired quaternion

now becomes more difficult since the controller has to resist the drift. When executing a counter-

clockwise yaw rotation, the FSFB controller not only has to supply torque to move the platform,

but it must also go against the drift torque. This may explain why the quaternion vector remains

so far from the command quaternion.

Besides the quaternion vector, other data from the counter-clockwise yaw test indicate the exis-

tence of a significant amount of external torque. Shown in Figure 5.9 are the reaction wheel speed,

controller output, and the IMU body rate data.
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Figure 5.9: Full-State Feedback Test Data, System ID Estimate Case.

Even after the PRWP motion ceased around the 20 second-mark (as indicated by the near-zero

body rate curve), the FSFB controller output continues to command a torque and the reaction wheels

continue to decelerate. It becomes evident that the drift torque has changed the plant dynamics

such that the current FSFB controller cannot compensate for it.

The drift torque must now be taken into account when analyzing the different control laws.

The drift torque will necessitate greater controller effort, especially when a counter-clockwise yaw

rotation is executed. While it remains unknown the exact cause of the drift torque, it is evident

that the reaction wheels are responsible and that further investigations are required to understand

the nature of the actuator uncertainty.

5.3.2 Case I: System Identification Inertia Estimate Case

The system ID tests, performed by Dam[22], was used to determine an estimate for the PRWP

inertia tensor and CG location. The results for the four controllers are shown in Figure 5.10.
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Figure 5.10: System ID Estimate Case Quaternion Vectors.

Both the FSFB and the AOF controllers were not able to settle within the 1% limit, while

both the NDMRAC and the LQRSP controllers managed to meet the settling requirements. The

steady-state error of the quaternion vectors are also introduced as Figure 5.11 for further comparison

between the controllers.

Figure 5.11: Quaternion Steady-State Error, System ID Estimate Case.
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The steady-state error plot starts at the 24 second mark, right before the quaternion vector is

expected to settle within the error bound, and proceeds to the 40 second mark. The steady-state

error is the absolute value of the difference between the commanded and the actual quaternion vector

third term. If the control law’s steady-state error curve lies under the 1% bound, the steady-state

error requirement is satisfied.

Unlike the numerical simulation, the FSFB failed to settle within the steady-state error bound.

Again the FSFB’s inability to settle is attributed to the drift torque caused by the reaction wheels.

To compensate for the settling issue, the FSFB controller was modified such that it can command

higher torque values. Specifically the KFSFB and C gains were multiplied by 6, and the damping

ratio was reduced to 0.35. The quaternion vector result is shown in Figure 5.12.

Figure 5.12: Quaternion Vector of Counter-Clockwise Yaw, K and C Gains Adjusted.

At the expense of higher overshoot, the damping ratio was reduced to reduce the C gain and

increase the natural frequency of the PRWP which in turn will increase the K gain. The KFSFB

and CFSFB gain of the PRWP are equivalent to a PD controller, where the proportional gain

places weight on the error signal directly and the derivative gain reduces overshoot at the expense

of increasing steady-state error. By placing higher weight on the KFSFB gain and reducing the

CFSFB gain, the FSFB now behaves like a PID controller with only a proportional gain. Also the

error quaternion, because it is multiplied with the KFSFB gain, now has greater influence in the

torque command so that even when the PRWP body rate goes to zero (which nullifies the C gain
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term), the FSFB controller will still output a significant amount of body torque.

Until the issue of the drift torque from the reaction wheels can be compensated for, the current

KFSFB and CFSFB gains for the FSFB controller are not suited to meet control performance

requirements. Although the FSFB control law itself is proven to be asymptotically stable, the

KFSFB and CFSFB gains as derived by Mittelstead cannot reliably deliver control performance.

For this reason the LQR controller complemented with a set-point controller will serve as the fixed-

gain controller for comparison with the adaptive controllers.

The LQRSP controller had the best performance for the system ID estimate case, with the fastest

settling time of about 10 seconds and a steady-state error of less than 0.4 × 10−3. This result was

expected since the LQR and set-point controllers were designed for a very specific plant model.

The LQR was derived by linearizing the plant model about a 15 degree yaw equilibrium point,

and the set-point gains were adjusted until the quaternion vector settled as close as possible to the

commanded quaternion value. Even with the presence of external torques, the LQRSP controller

meets performance requirements because the set-point controller is specifically designed to converge

the PRWP state to a non-zero equilibrium point as fast as possible.

The NDMRAC controller took the full 20 seconds to reach within the steady-state error bound

and shows a higher steady-state error compared to the LQRSP. While it is unknown why the

NDMRAC experiences such a high steady-state error compared to the two remaining test cases,

as will be discussed, the NDMRAC still proves to be asymptotically stable and meet our control

performance requirements.

The AOF controller, even though the quaternion vector settled to a constant value, has not settled

the quaternion vector within the error bounds. Even though the AOF met settling requirements

for the numerical simulations, the difference in plant model due to the external torques may affect

the controller such that it is no longer asymptotically stable. One of the condition of asymptotic

stability for the adaptive controller is for the plant error to damp to a near-zero value. Although

the plant error signal could not be directly obtained, the adaptive gains can confirm the behavior of

the plant error since the adaptive gain rates are a function of the plant error. Shown in Figure 5.13

are the adaptive gains for the NDMRAC controller.
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Figure 5.13: NDMRAC Adaptive Gains, System ID Estimate Case.

Shown in Figure 5.14 is the adaptive gain for the AOF controller.

Figure 5.14: AOF Adaptive Error Gain, System ID Estimate Case.

Recalling Eq. 3.21, the adaptive gain rates are a function of the plant error, model input, model

states, and adaptive parameters. All 3 adaptive gains for the NDMRAC controller settles to a

constant value, indicating that the gain rates reach near-zero values. When the gain rates approach



CHAPTER 5. MOTION TEST RESULTS 52

zero, the plant error also damps out to a near-zero value. This fact is consistent with the quaternion

vector steady-state error from the NDMRAC, which shows that the quaternion vector settles within

the steady-state error bounds. However the AOF error gain has several terms that do not settle to a

constant value, which indicates that the AOF controller has not achieved asymptotic stability. This

is consistent with the quaternion vector data for the AOF controller, since the quaternion vector

was not able to reach the error bound.

5.3.3 Case II: Solid-Model Estimate Case

The motion test results for the solid-model estimate case will now be discussed. The quaternion

vectors for the four controllers are shown below in Figure 5.15.

Figure 5.15: Solid-Model Estimate Case Quaternion Vectors.

The quaternion steady-state error plots are shown in Figure 5.16.
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Figure 5.16: Quaternion Steady-State Error, Solid-Model Estimate Case.

The steady-state error shows that the LQRSP and the NDMRAC controllers met the steady-

state error and settling time requirements while the FSFB and the AOF controllers did not. Overall

the results are similar to the system ID estimate case, with a few differences. One interesting

observation to note is that except for the NDMRAC, all the controllers’ steady-state error values

are higher compared to the steady-state error data from the system ID estimate case. Although it

is unknown why only the NDMRAC performance improved compared to the result from the system

ID estimate case, the NDMRAC still remains asymptotically stable for both test cases.

To verify asymptotic stability for the adaptive controllers, the respective adaptive gains will now

be discussed. Shown in Figure 5.17 are the NDMRAC gains.
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Figure 5.17: NDMRAC Adaptive Gains, Solid-Model Estimate Case.

Shown in Figure 5.18 is the AOF adaptive error gain.

Figure 5.18: AOF Error Gain, Solid-Model Estimate Case.

Again the gain behavior indicates if the adaptive control law achieved asymptotic stability or

not because the adaptive gains should settle to a fixed value since the gain rates are dependent on

the plant error. All except one term in the AOF error gain settled to a fixed value at the end of the

simulation; this fact indicates that the AOF has yet to contain the plant error and therefore may not
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have achieved asymptotic stability. On the other hand the NDMRAC adaptive gains all managed to

settle to fixed values by the end of the simulation, indicating the achievement of asymptotic stability.

The NDMRAC controller may have performed better for this test case due to a better selection of

the initial gains compared to the system ID estimate test case.

With the exception of the NDMRAC data, the results from the other controllers suggest that

the solid-model inertia tensor estimate may not be as accurate as the system ID inertia estimate

due to the higher quaternion vector steady-state errors. However the difference in the inertia tensor

estimates does not seem to seriously impact the performance of the controllers. While the quaternion

vector curves look quite different between the numerical simulations and the motion tests for the

solid-model inertia estimate, both results are consistent in showing that the variation in the inertia

tensor did not impact controller performance by much.

5.3.4 Case III: Degraded Wheel Case

The results of the motion test for the degraded wheel case will now be discussed. To verify the

degradation of the -Y axis wheel, Figure 5.19 shows the wheel speed plot from the FSFB test.

Figure 5.19: -Y Axis Reaction Wheel Plot, Commanded vs. Actual.

The green line is the commanded wheel speed, and the blue line is the actual wheel speed.

The commanded wheel speed suffers from greater oscillations than the nominal cases such that the

reaction wheel cannot keep up with the commanded speeds. Since the -Y axis wheel is now modeled

as an overdamped second-order oscillator, the wheel speed command can no longer keep up with the

control law output and therefore will exhibit more oscillations.
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In Figure 5.20 the quaternion vectors from the 4 controllers are shown.

Figure 5.20: Degraded Wheel Case Quaternion Vectors.

Shown in Figure 5.21 are the steady-state error data.

Figure 5.21: Quaternion Steady-State Error, Degraded Wheel Case.

In this test case only the NDMRAC controller managed to make the quaternion vector settle

within the error bound. However the NDMRAC fails to meet the settling time requirement of
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20 seconds, as the steady-state error does not fall within bounds until after the 26 second mark.

At the expense of settling time, the NDMRAC was still able to achieve asymptotic stability and

settle the quaternion vector within the error bounds even with actuator uncertainty involved. Also

the quaternion vector pitch and roll axis for all controller results experienced greater oscillations

compared to the system ID estimate and the solid-model estimate cases. This additional oscillation

verifies the presence of actuator uncertainty, since a faulty reaction wheel can negatively affect pitch

and roll axis control.

The LQRSP controller, though it settled to a constant steady-state value, was not able to meet the

steady-state error bound requirement. Since the LQR and Set-Point controller gains were determined

assuming a specific plant model, the introduction of actuator uncertainty made the controller unable

to provide control performance. Therefore the LQRSP result verifies that the plant model has

significantly changed due to actuator uncertainty.

The NDMRAC adaptive gains are shown in Figure 5.22.

Figure 5.22: NDMRAC Adaptive Gains, Degraded Wheel Case.

Shown in Figure 5.23 is the AOF adaptive gain.
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Figure 5.23: AOF Adaptive Error Gain, Degraded Wheel Case.

The NDMRAC gains all settle to constant values by the end of the test, while several terms of

the AOF adaptive error gains are not settling to constant values. The gain behaviors are consistent

with the quaternion vector data, as the NDMRAC still settles to the command quaternion value

while the AOF clearly has too much steady-state error and therefore has a non-trivial amount of

plant error remaining.

Of all three test cases, the degraded wheel case had the greatest effect on controller performance.

This is in agreement with the numerical simulation results, which also showed that the simulation

of actuator performance degradation had the largest impact on controller performance. Unlike the

system ID estimate and the solid-model estimate case results, the controllers all showed increasing

oscillations and difficulty or inability in meeting performance requirements. However the NDMRAC

controller proved to be the most robust of all the controllers, as the fixed-gain controllers (FSFB

and LQRSP) couldn’t handle significant variations in the plant model without altering the controller

algorithm. Although the AOF controller could not settle for all three test cases, the controller all

settled to nearly the same equilibrium point. This may indicate that the AOF is stable to a degree

but not asymptotically stable. Due to the lack of the state and input gains of the NDMRAC, the

AOF may not be able to force the plant to track the reference model properly.

5.3.5 Analysis and Comparison of Motion Test Result

This section will analyze the results from the Mk.III motion tests. In order to confirm the control

law validation capability of the Mk.III configuration the motion test results must be compared with
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the results from the numerical simulation as well as the Mk.II motion test results produced by

Downs[21].

Test Case Controller Results

FSFB Did not settle within 1%

Case I LQRSP Settled within 1%, settled within 20 seconds

NDMRAC Settled within 1%, settled within 20 seconds

AOF Did not settle within 1%

FSFB Did not settle within 1%

Case II LQRSP Settled within 1%, settled within 20 seconds

NDMRAC Settled within 1%, settled within 20 seconds

AOF Did not settle within 1%

FSFB Did not settle within 1%

Case III LQRSP Did not settle within 1%

NDMRAC Settled within 1%, but exceeded 20 seconds settling time

AOF Did not settle within 1%

Table 5.2: PRWP Mk.III Motion Test Result Summary.

Table 5.2 summarizes the PRWP Mk.III motion tests. In terms of meeting the control per-

formance requirements, the NDMRAC consistently met performance requirements. Although the

NDMRAC was not able to meet the settling-time requirement of 20 seconds for case III, the NDM-

RAC still showed the best control performance compared to the other three control laws. While the

LQRSP controller was able to meet requirements for cases I and II, the controller failed for case III.

Both the FSFB and the AOF failed to meet all control performance requirements for all three test

cases. In terms of the results between the three test cases, the results between cases I and II were

similar and case III showed a general decrease in control performance. The steady-state error for all

the controllers were higher and the quaternion vectors experienced more oscillations for the case III

test.

Compared to the numerical simulation results the motion test results show that the controllers did

not perform as well. In the numerical simulations all four controllers met performance requirements

while the motion test results show that only the NDMRAC and the LQRSP met performance

requirements for certain test cases. The difference in results indicate a discrepancy between the

numerical simulation’s plant model and the physical PRWP system. Particularly the external torque
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may be responsible for the difference between the results of the numerical simulation and the motion

test. While the numerical simulation assumes no external torque acting on the system, the PRWP

may have been experiencing a substantial amount of external torque throughout the motion test. A

significant amount of external torque will necessitate greater effort from the controller to counteract

it or cause the controller to miss its requirements completely. The FSFB and the AOF controllers’

inability to meet performance requirements may be explained by the presence of external torque

acting on the PRWP. A combination of the drift torque, as mentioned in chapter 5 section 3.1, and

the CG offset torque is likely the cause of the FSFB and the AOF controller’s inability to settle the

PRWP quaternion vector.

In terms of the controller robustness the Mk.III confirmed the trends shown in the numerical

simulation. Both the numerical simulation and the motion test results show that both the case I

and II tests had similar results. While the inertia estimate between the system ID and the solid-

model estimates were different, the variations in inertia tensor estimate did not significantly affect

the controller performance. Also both the numerical simulations and the motion tests show that the

introduction of actuator dynamic uncertainty in the case III test had the most effect on controller

performance. Both the numerical simulation and the motion test results showed the quaternion

vectors experiencing increased oscillations and increased steady-state error compared to the case I

and II results.

The Mk.III motion test results have various similarities as well as differences compared to the

Mk.II motion test results. Both the Mk.II and the Mk.III tests show that the results between

cases I and II were similar. Although the two test cases’ inertia tensor estimates were different,

the estimate difference was not enough to significantly affect the performance of the control laws.

Just like the Mk.II degraded wheel case results, the Mk.III degraded wheel case results show that

all the quaternion vectors experienced more oscillations. Both the Mk.II and the Mk.III test results

agree that the introduction of actuator dynamics uncertainty has had a greater effect on controller

performance than using varying inertia tensor estimates of the PRWP. Also the Mk.III test results

confirm that the NDMRAC consistently meets performance requirements in all three test cases.

While the LQRSP controller was specific to the Mk.III test, the NDMRAC has shown itself to be

more robust than both the FSFB and LQRSP fixed-gain controllers. Both the Mk.II and the Mk.III

tests show the adaptive control laws outperforming fixed-gain control laws.

However the Mk.III motion test results showed some differences from the Mk.II test results.

Although in all three test cases for both the Mk.II and the Mk.III the FSFB control law was not

able to meet the 1% steady-state requirement, the Mk.III results show that the steady-state error
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for the FSFB controller is much worse than what the Mk.II results show. A possible explanation of

the difference is the external torque acting on the PRWP Mk.III as well as the higher bias drift that

the Mk.II attitude determination sensor suffers from. As explained in section 5.3.1, the external

torque acting on the PRWP system will necessitate greater effort from the control law or result

in greater steady-state error if the controller is not robust enough to compensate for it. In the

case of the PRWP Mk.III configuration there is good evidence to believe that the drift torque, an

external torque acting in the clockwise direction about the yaw axis, exists and that it is affecting

the performance of the PRWP control laws. While it is unknown if the Mk.II configuration of the

PRWP experienced an equal amount of external torque compared to the Mk.III configuration, the

external torque seems to have had a significant effect on the Mk.III test results.

In the case of the Mk.II configuration a high sensor bias drift can also affect motion test results.

Because the sensor bias measurement is constantly drifting, the Mk.II is using a flawed measurement

of the PRWP attitude and may not complete attitude maneuvers correctly. In the Mk.II motion

tests the FSFB, although it still did not settle to the desired quaternion value, had a far lower steady-

state error compared to the FSFB controller from the Mk.III test results. The Mk.II configuration’s

higher sensor bias drift may account for the discrepancy, meaning that the Mk.II sensor showed an

attitude rotation that may have been higher than how much the PRWP physically rotated.

Even the AOF controller, which had consistently met performance requirements on the Mk.II

tests, failed to meet performance requirements on the Mk.III tests likely due to external torque

acting on the PRWP. The Mk.III results may have exposed a limitation of the AOF controller that

was not made apparent in the Mk.II motion tests. Even though the AOF controller was proven

to be asymptotically stable by Lyapunov’s definition, the stability proof also assumes that the

nonlinear portion of the plant model is bounded. The external torque acting on the PRWP Mk.III

may have violated such assumption and therefore caused the AOF controller to be unable to meet

the performance requirements. While the stability proof and its assumptions are the same for the

NDMRAC, the NDMRAC outperformed the AOF controller possibly due to the difference in its

control input algorithm. Unlike the AOF the NDMRAC utilizes the plant error, the model input,

and the model state as part of its control input. Therefore the NDMRAC is able to produce greater

control effort compared to the AOF controller.

The Mk.III results confirm both with the numerical simulations and the Mk.II test results that

uncertainties in the actuator dynamics affect controller performance more than variations of the

PRWP inertia tensor estimates. This confirmation shows that the PRWP Mk.III configuration is

capable of testing the robustness of control laws for attitude control. The Mk.III results showed some
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differences of the performance of the individual controllers such as the FSFB and AOF controllers.

However the Mk.III motion test results still agree with the numerical simulations and the Mk.II

motion test results that the NDMRAC performance exceeds that of fixed-gain controllers. Overall

the Mk.III configuration has shown itself to be capable of testing control law performance and

robustness despite interference from external torque acting on the system.
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Concluding Remarks

6.1 Conclusion

Four different control laws were tested through motion tests on the Mk.III configuration of the

PRWP. To test the robustness of the controllers, three different cases of the plant parameters were

investigated.

The integration of the LN-200 IMU significantly reduced the sensor bias drift compared to

the MEMS gyroscope, and the Mk.III motion tests revealed controller capabilities and limitations

previously not seen from the Mk.II motion test results. One important result from the motion

tests is that the PRWP experiences a significant amount of external torque besides the CG torque.

Named the drift torque, the drift torque is most likely caused by the spinning of the reaction wheels.

Only when the wheels are spun, does the simulator drift clockwise. This is problematic because the

drift torque necessitates higher effort from the controllers to compensate for it, if the controller can

compensate for it at all.

The motion tests also revealed that the FSFB controller, as it is currently derived, is not capable

of counteracting the external torque on the system. Only after manipulating the gains by increasing

both feedback gains and reducing the system damping ratio did the quaternion vector converge to

its commanded value. The FSFB controller’s inability to settle is likely due to the external torque,

since the numerical simulation showed that the FSFB should be able to control the simulator.

Therefore the LQRSP controller was used as the fixed-gain controller to be compared with the

adaptive controllers. The LQRSP controllers met performance requirements for the system ID and

the solid-model estimate cases, but failed on the degraded wheel case.

63
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The NDMRAC turned out to have the best control performance of all the controllers, as the

NDMRAC settled the quaternion vector within the ±1% consistenly for all three cases. However

the NDMRAC failed the settling time requirement on the degraded wheel case, as it took slightly

longer for the quaternion vector to settle properly. The AOF controller was not able to meet the

settling error requirement for all three test cases, though the steady-state error remained consistent

for all three test cases. This result may indicate that the AOF is only asymptotically stable when

the external torque acting on the PRWP is under a certain amount. While the numerical simulations

showed that the AOF is stable assuming no external torque acting on the PRWP, the CG torque

combined with the drift torque may have been too much for the AOF controller to compensate for.

Unfortunately the Mk.III test results also revealed several limitations of the Mk.III testing ca-

pability. Due to the external torque acting on the system as well as the lower reaction wheel speed

saturation limits the PRWP Mk.III’s motion range is limited only to yaw-axis rotations. Despite

attempts for pitch and roll-axis motions the PRWP cannot rotate more than 6 degrees before the

reaction wheels encounter speed saturation limits.

Despite the Mk.III’s limitations as well as several differences in test results, the Mk.III motion

test results tend to agree with the results from the numerical simulations as well as the Mk.II

motion test results. The Mk.III confirms that the introduction of actuator dynamics uncertainty

has a greater effect on the controllers than using different estimates of the PRWP inertia tensor. The

Mk.III tests also confirm that the NDMRAC tends to be more robust than fixed-gain controllers.

6.2 Further Development for the PRWP

The drift torque, which is likely caused by uncertainty in the reaction wheels, must be under-

stood and compensated for for further work. The drift torque significantly increases controller effort

requirements and changes the plant model, and therefore it must either be minimized or accounted

for in the future plant model. The cause is most likely a poor balancing of the reaction wheels, as

the reaction wheel noticeably vibrate while spinning. The proper mating of the reaction wheel and

the motor shaft may correct the wheel imbalance and thereby reduce the drift torque.

Also the motion of the PRWP is currently limited to yaw axis rotations, as a sustained roll or

pitch rotation of over 6 degrees cannot be performed with the current reaction wheels. To give

the simulator a greater range of rotational maneuvers, a new set of reaction wheels and motors

that have higher saturation limits and higher torque capabilities are necessary to deliver the high

amount of torque necessary for pitch and roll axis motions. Another alternative would be to integrate
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another attitude control device such as cold-gas thrusters or control moment gyroscopes. Using a

combination of reaction wheels and thrusters and/or CMGs can reduce required effort from the

reaction wheels which can reduce the likelihood of reaction wheel saturations.

Although the bias drift of the LN-200 IMU is significantly lower than that of the Mk.II configu-

rations’ MEMS gyroscopes, the IMU drift is not negligible and will affect the validity of the Mk.III

configuration’s attitude determination. Therefore it would be beneficial to add a second attitude

determination device onto the PRWP Mk.III such as a horizon sensor, star tracker system, or an

optical system such as laser guidance. A secondary attitude determination can be used to correct

the IMU drift as well as determine the absolute inertial position of the PRWP. Currently the PRWP

Mk.III does not have a method for obtaining its position in an inertial frame, and therefore the ad-

dition of a second attitude determination device would help in improving the Mk.III configuration’s

attitude determination capability.
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Appendix A

Appendix: Software

This appendix section outlines the software developed for the Mk.III configuration of the PRWP.

Section A.1 will go over the software developed to operate the Litton LN-200 inertial measurement

unit (IMU). Section A.2 will go over the software developed to operate the reaction wheel system.

Section B will go over motion test setup m-file scripts.

A.1 LN-200 IMU Code

The data-acquisition code for the LN-200 IMU consists of components written in both the C

language as well as Simulink. The source code is written in C, and is compiled and executed in the

Simulink environment. Subsection A.1.1 will cover the Simulink files. Subsection A.1.2 contains the

source codes written in the C language.

A.1.1 Simulink Block

Shown in Figure A.1 is the first level of the Simulink block for the LN-200 IMU data-acquisition

code.

70
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Figure A.1: LN-200 Data Acquisition Code, Simulink Diagram Level 1.

Figure A.2 shows the second level of the Simulink block of the LN-200 IMU data-acquisition

code.
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Figure A.2: LN-200 Data Acquisition Code, Simulink Diagram Level 2.

The code reads the IMU data through the Fastcom ESCC-104 board and converts the raw data

to body rate and quaternion data. The LN-200 Simulink block consists of three custom-developed

sub-blocks:

1. fastcom104setup

2. fastcom104read

3. fastcom104hook

The block ’fastcom104setup’ is responsible for initializing the Fastcom ESCC-104 board. Specif-

ically the code sets up the board chip registers such that it will operate in the correct configuration

to read the IMU’s data.

The block ’fastcom104read’ is responsible for extracting the IMU’s raw data from the Fastcom

board buffer and transfer the raw data to Simulink to be processed.

The block ’fastcom104hook’ is responsible for the proper handling of interrupt signals from the

Fastcom board. Specifically the code recognizes the Fastcom 104 board’s interrupt signals that

ensure proper timing of data-acquisition by the CPU.
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A.1.2 C Language Code

’fastcom104read.c’ source code:

/∗
Filename : fastcom104read . c
Created by : Tomoyuki Kato , Long Dam
Last ed i t : 11/6/2013

Desc r ip t i on : This code w i l l a c c e s s the Fastcom ESCC104 data .
∗/

#de f i n e S FUNCTION LEVEL 2
#undef S FUNCTION NAME
#de f i n e S FUNCTION NAME fastcom104read

#inc lude <s tdde f . h>
#inc lude <s t d l i b . h>

#inc lude ” s imstruc . h”

#i f d e f MATLAB MEX FILE
#inc lude ”mex . h”
#end i f

#i f n d e f MATLAB MEX FILE
#inc lude <windows . h>
#inc lude ” xpctarget . h”
#inc lude ” fastcom104 . h”

#end i f

i n t framecount = 0 ;
i n t f r ame lo s t = 0 ;

short i n t data [ 1 2 8 ] ; // For temporary s to rage o f FIFO data

#de f i n e NO I WORKS (1)
#de f i n e NO R WORKS (0)
s t a t i c char T msg [ 2 5 6 ] ;
#de f i n e REG I IND (0)

#de f i n e NUMBER OF ARGS (1)
#de f i n e ADDRESS ARG ssGetSFcnParam (S , 0 )

/∗ S−Function ∗/

s t a t i c void md l I n i t i a l i z e S i z e s ( SimStruct ∗S)
{

ssSetNumSFcnParams (S , NUMBER OF ARGS) ;
i f ( ssGetNumSFcnParams (S) != ssGetSFcnParamsCount (S) ) {

s p r i n t f (msg , ”Wrong number o f input arguments passed .\n%d arguments are expected\n” ,
NUMBER OF ARGS) ;

s sSe tEr ro rSta tus (S ,msg) ;
re turn ;

}

ssSetNumContStates (S , 0) ;
ssSetNumDiscStates (S , 0) ;

i f ( ! ssSetNumOutputPorts (S , 4) ) return ;
ssSetOutputPortWidth (S , 0 , 33) ;
ssSetOutputPortWidth (S , 1 , 1) ;
ssSetOutputPortWidth (S , 2 , 1) ;
ssSetOutputPortWidth (S , 3 , 1) ;
ssSetOutputPortDataType (S , 0 , SS INT32 ) ;
ssSetOutputPortDataType (S , 1 , SS INT32 ) ;
ssSetOutputPortDataType (S , 2 , SS INT32 ) ;
ssSetOutputPortDataType (S , 3 , SS INT32 ) ;

i f ( ! ssSetNumInputPorts (S , 0) ) return ;

ssSetNumSampleTimes (S , 1) ;

ssSetSimStateCompliance ( S , HAS NO SIM STATE ) ;

ssSetNumRWork(S , NO R WORKS) ;
ssSetNumIWork (S , NO I WORKS) ;
ssSetNumPWork(S , 0) ;

ssSetNumModes (S , 0) ;
ssSetNumNonsampledZCs (S , 0) ;

}

s t a t i c void mdl In i t ia l i zeSampleTimes ( SimStruct ∗S)
{

ssSetSampleTime (S , 0 , INHERITED SAMPLE TIME) ;
ssSetOf fsetTime (S , 0 , 0) ;

}

#de f i n e MDL START
s t a t i c void mdlStart ( SimStruct ∗S)
{
}

s t a t i c void mdlOutputs ( SimStruct ∗S , int T t id )



APPENDIX A. APPENDIX: SOFTWARE 74

{
#i f n d e f MATLAB MEX FILE

in t sab = ( uint16 T )mxGetPr(ADDRESS ARG) [ 0 ] ; //
SAB82532 Reg i s t e r s

int T ∗OPtr = ssGetOutputPortSignal (S , 0 ) ; // Pointer
to the output s i g n a l

int T ∗ rb c l = ssGetOutputPortSignal (S , 1 ) ;
int T ∗ rbch = ssGetOutputPortSignal (S , 2 ) ;
int T ∗ r s t a = ssGetOutputPortSignal (S , 3 ) ;
i n t count = 0 ;

// Counter
i n t c ;

// Temp. var .
i n t i ;
i n t j ;

r b c l [ 0 ] = xpcInpB (( uint16 T ) ( sab + XBCL) ) ;
rbch [ 0 ] = xpcInpB (( uint16 T ) ( sab + XBCH) ) ;

whi le ( count < ( rb c l [0]−1) ) // s t a r t FIFO read (32 bytes deep + count )
{

count++;
c = xpcInpB (( uint16 T ) ( sab + DATA) ) ;
OPtr [ count ] = c ;

}

// rbc l [ 0 ] = xpcInpB ( ( uint16 T ) ( sab + XBCL) ) ;
// rbch [ 0 ] = xpcInpB ( ( uint16 T ) ( sab + XBCH) ) ;

r s t a [ 0 ] = xpcInpB (( uint16 T ) ( sab + RSTA) ) ;

OPtr [ 0 ] = count ;

xpcOutpB (( unsigned short ) ( sab + CMDR) , ( uint8 T ) (CMDRRMC) ) ; // Receive
message complete

/∗ Convert data word content to double ∗/
// f o r ( i = 0 ; i < 13 ; i++)
// {
// OPtr [ i ] = ( data [2∗ i ] + ( data [ (2∗ i )+1] << 8) ) ;
// }
// OPtr [ 1 3 ] = 0 ;
// OPtr [ 1 4 ] = 0 ;
// OPtr [ 1 5 ] = 0 ;

#end i f
}

s t a t i c void mdlTerminate ( SimStruct ∗S)
{
}

#i f d e f MATLAB MEX FILE /∗ I s t h i s f i l e being compiled as a MEX− f i l e ? ∗/
#inc lude ” s imul ink . c” /∗ Mex glue ∗/
#e l s e
#inc lude ” cg s fun . h” /∗ Code generat ion g lue ∗/
#end i f

’fastcomm104setup.c’ source code:

/∗
Filename : fastcomm104setup . c
Created by : Tomoyuki Kato , Long Dam
Last ed i t : 11/6/2013

Desc r ip t i on : This code w i l l i n i t i a l i z e the Fastcom ESCC−PCI dev ice f o r operat ion .
∗/

#de f i n e S FUNCTION LEVEL 2
#undef S FUNCTION NAME
#de f i n e S FUNCTION NAME fastcom104setup

#inc lude <s tdde f . h>
#inc lude <s t d l i b . h>

#inc lude ” s imstruc . h”

#i f d e f MATLAB MEX FILE
#inc lude ”mex . h”
#end i f

#i f n d e f MATLAB MEX FILE
#inc lude <windows . h>
#inc lude ” xpctarget . h”
#inc lude ” fastcom104 . h”
#end i f

#de f i n e NO I WORKS (1)
#de f i n e NO R WORKS (0)
s t a t i c char T msg [ 2 5 6 ] ;
#de f i n e REG I IND (0)

#de f i n e NUMBER OF ARGS (1)
#de f i n e ADDRESS ARG ssGetSFcnParam (S , 0 )

/∗ S−Function ∗/
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s t a t i c void md l I n i t i a l i z e S i z e s ( SimStruct ∗S)
{

ssSetNumSFcnParams (S , NUMBER OF ARGS) ;
i f ( ssGetNumSFcnParams (S) != ssGetSFcnParamsCount (S) ) {

s p r i n t f (msg , ”Wrong number o f input arguments passed .\n%d arguments are expected\n” ,
NUMBER OF ARGS) ;

s sSe tEr ro rSta tus (S ,msg) ;
re turn ;

}

ssSetNumContStates (S , 0) ;
ssSetNumDiscStates (S , 0) ;

i f ( ! ssSetNumOutputPorts (S , 0) ) return ;

i f ( ! ssSetNumInputPorts (S , 0) ) return ;

ssSetNumSampleTimes (S , 1) ;

ssSetSimStateCompliance ( S , HAS NO SIM STATE ) ;

ssSetNumRWork(S , NO R WORKS) ;
ssSetNumIWork (S , NO I WORKS) ;
ssSetNumPWork(S , 0) ;

ssSetNumModes (S , 0) ;
ssSetNumNonsampledZCs (S , 0) ;

s sSetOpt ions (S , SS OPTION DISALLOW CONSTANT SAMPLE TIME | SS OPTION EXCEPTION FREE CODE ) ;
} // End md l I n i t i a l i z e S i z e s

s t a t i c void mdl In i t ia l i zeSampleTimes ( SimStruct ∗S)
{

ssSetSampleTime (S , 0 , INHERITED SAMPLE TIME) ;
ssSetOf fsetTime (S , 0 , FIXED IN MINOR STEP OFFSET) ;

} // End mdlIn i t ia l i zeSampleTimes

#de f i n e MDL START
s t a t i c void mdlStart ( SimStruct ∗S)
{

#i f n d e f MATLAB MEX FILE

uint16 T base ;

base = ( uint16 T )mxGetPr(ADDRESS ARG) [ 0 ] ; // The base address o f the Fastcom
104 board .

/∗ I n i t i a l i z e SAB 82532 Reg i s t e r s ∗/

// xpcOutpB ( ( uint16 T ) ( base + CCR1) , ( uint8 T ) (0 x10 ) ) ; // CCR1
xpcOutpB (( uint16 T ) ( base + CCR0) , ( uint8 T ) (0 x80 ) ) ; // CCR0 ( Set t ing HDLC mode)

xpcOutpB (( uint16 T ) ( base + CCR1) , ( uint8 T ) (0 x10 ) ) ; // CCR1
xpcOutpB (( uint16 T ) ( base + CCR2) , ( uint8 T ) (0 x18 ) ) ; // CCR2
xpcOutpB (( uint16 T ) ( base + BRG) , ( uint8 T ) (0 x00 ) ) ; // BGR

xpcOutpB (( uint16 T ) ( base + PRE) , ( uint8 T ) (0 x00 ) ) ; // Preamble (PRE)
xpcOutpB (( uint16 T ) ( base + MODE) , ( uint8 T ) (0 x88 ) ) ; // Mode (MODE) ( Transparent mode 0 ,

r e c e i v e r a c t i v e )
xpcOutpB (( uint16 T ) ( base + TIMR) , ( uint8 T ) (0 x1f ) ) ; // Timer (Timer )

// xpcOutpB (( uint16 T ) ( base + XAD1) , ( uint8 T ) (0 x00 ) ) ; // Transmit address (XAD1)
// xpcOutpB (( uint16 T ) ( base + XAD2) , ( uint8 T ) (0 x00 ) ) ; // Transmit address (XAD2)
// xpcOutpB (( uint16 T ) ( base + RAH1) , ( uint8 T ) (0 x00 ) ) ; // Receive address high (RAH1) (

Transparent mode 0 , so address doesn ’ t matter )
// xpcOutpB (( uint16 T ) ( base + RAH2) , ( uint8 T ) (0 x00 ) ) ; // Receive address high (RAH2) (

Transparent mode 0 , so address doesn ’ t matter )
// xpcOutpB (( uint16 T ) ( base + RAL1) , ( uint8 T ) (0 x00 ) ) ; // Receive address low (RAL1) (

Transparent mode 0 , so address doesn ’ t matter )
// xpcOutpB (( uint16 T ) ( base + RAL2) , ( uint8 T ) (0 x00 ) ) ; // Receive address low (RAL2) (

Transparent mode 0 , so address doesn ’ t matter )
xpcOutpB (( uint16 T ) ( base + XAD1) , ( uint8 T ) (0 x00 ) ) ; // Transmit address (XAD1)
xpcOutpB (( uint16 T ) ( base + XAD2) , ( uint8 T ) (0 x00 ) ) ; // Transmit address (XAD2)
xpcOutpB (( uint16 T ) ( base + RAH1) , ( uint8 T ) (0 x00 ) ) ; // Receive address high (RAH1) (

Transparent mode 0 , so address doesn ’ t matter )
xpcOutpB (( uint16 T ) ( base + RAH2) , ( uint8 T ) (0 x00 ) ) ; // Receive address high (RAH2) (

Transparent mode 0 , so address doesn ’ t matter )
xpcOutpB (( uint16 T ) ( base + RAL1) , ( uint8 T ) (0 x00 ) ) ; // Receive address low (RAL1) (

Transparent mode 0 , so address doesn ’ t matter )
xpcOutpB (( uint16 T ) ( base + RAL2) , ( uint8 T ) (0 x00 ) ) ; // Receive address low (RAL2) (

Transparent mode 0 , so address doesn ’ t matter )
xpcOutpB (( uint16 T ) ( base + XBCL) , ( uint8 T ) (0 x00 ) ) ; // Transmit byte count low (XBCL)
xpcOutpB (( uint16 T ) ( base + XBCH) , ( uint8 T ) (0 x00 ) ) ; // Transmit byte count high (XBCH)

// xpcOutpB (( uint16 T ) ( base + CCR3) , ( uint8 T ) (0 x04 ) ) ; // CCR3 ( Act ivate CRC fo r r e c e i v e r )
xpcOutpB (( uint16 T ) ( base + CCR3) , ( uint8 T ) (0 x00 ) ) ; // CCR3 ( Act ivate CRC fo r r e c e i v e r )
xpcOutpB (( uint16 T ) ( base + RLCR) , ( uint8 T ) (0 x00 ) ) ; // RLCR
xpcOutpB (( uint16 T ) ( base + IVA) , ( uint8 T ) (0 x00 ) ) ; // In t e r rupt vector address (IVA)

// xpcOutpB (( uint16 T ) ( base + IPC) , ( uint8 T ) (0 x83 ) ) ; // In t e r rupt port c on f i gu r a t i on (IPC)
(Masked i n t e r r up t s s t i l l v i s i b l e , INT pin push−pu l l dra in output )

xpcOutpB (( uint16 T ) ( base + IPC) , ( uint8 T ) (0 x03 ) ) ; // In t e r rupt port c on f i gu r a t i on (IPC) (
Masked i n t e r r up t s s t i l l v i s i b l e , INT pin push−pu l l dra in output )

xpcOutpB (( uint16 T ) ( base + IMR0) , ( uint8 T ) (0 x00 ) ) ; // In t e r rupt mask r e g i s t e r (IMR0)
xpcOutpB (( uint16 T ) ( base + IMR1) , ( uint8 T ) (0 x f f ) ) ; // In t e r rupt mask r e g i s t e r (IMR1)
xpcOutpB (( uint16 T ) ( base + PVR) , ( uint8 T ) (0 x00 ) ) ; // Port value r e g i s t e r (PVR)
xpcOutpB (( uint16 T ) ( base + PIM) , ( uint8 T ) (0 x f f ) ) ; // Port i n t e r rup t mask (PIM)
xpcOutpB (( uint16 T ) ( base + PCR) , ( uint8 T ) (0 xe0 ) ) ; // Port c on f i gu r a t i on r e g i s t e r (PCR)

// xpcOutpB ( ( uint16 T ) ( base + CCR0) , ( uint8 T ) (0 x80 ) ) ; // CCR0 (Power Up)

// xpcOutpB ( ( uint16 T ) ( base + CMDR) , ( uint8 T ) (0 x41 ) ) ; // Reset the TFIFO and the
RFIFO to i n i t i a l i z e i n t e r r up t s

#end i f
} // End mdlStart

s t a t i c void mdlOutputs ( SimStruct ∗S , int T t id )
{
#i f n d e f MATLAB MEX FILE

#end i f
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} // End mdlOutputs

s t a t i c void mdlTerminate ( SimStruct ∗S)
{
#i f n d e f MATLAB MEX FILE
// uint16 T base = ( uint16 T ) (0 x340 ) ;
//
// xpcOutpB (( uint16 T ) ( base + IMR0) , ( uint8 T ) (0 x f f ) ) ; // Mask a l l i n t e r r up t s
// xpcOutpB (( uint16 T ) ( base + CCR0) , ( uint8 T ) (0 x00 ) ) ; // Power down Fastcom ESCC−PCI∗/
#end i f
} // End mdlTerminate

/∗=============================∗
∗ Required S−f unc t i on t r a i l e r ∗
∗=============================∗/

#i f d e f MATLAB MEX FILE /∗ I s t h i s f i l e being compiled as a MEX− f i l e ? ∗/
#inc lude ” s imul ink . c” /∗ MEX− f i l e i n t e r f a c e mechanism ∗/
#e l s e
#inc lude ” cg s fun . h” /∗ Code generat ion r e g i s t r a t i o n funct i on ∗/
#end i f

’xpcfastcom104hook.c’ source code:

/∗
Filename : xpcfastcom104hook . c
Created by : Tomoyuki Kato , Long Dam
Last ed i t : 11/6/2013

Desc r ip t i on : Contains xPC ta rge t hook func t i on s des igned to s e r v i c e i n t e r r up t s from the Fastcomm
ESCC−104 board .

∗/

#i f n d e f XPCFASTCOM104HOOK C
#de f i n e XPCFASTCOM104HOOK C

#inc lude <conio . h>
#inc lude <windows . h>
#inc lude ” xpctarget . h”

/∗ Function Prototypes ∗/

in t c d e c l xpcfastcom104prehook ( xpcPCIDevice ∗pc i ) ;
void c d e c l xpc fastcom104start ( xpcPCIDevice ∗pc i ) ;
void c d e c l xpcfastcom104stop ( xpcPCIDevice ∗pc i ) ;

/∗ Function De f i n i t i o n s ∗/

// Prehook Function
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n t c d e c l xpcfastcom104prehook ( xpcPCIDevice ∗pc i )
{

uint16 T sab = ( uint16 T ) ( pci−>BaseAddress [ 0 ] ) ; // SAB82532 Reg i s t e r s
uint8 T g i s ; //

Var iab le f o r SAB chip g l oba l i n t e r rup t s ta tu s r e g i s t e r
uint8 T i s r 0 ;

/∗ Read the SAB82532 in t e r rup t r e g i s t e r ∗/

g i s = xpcInpB (( uint16 T ) ( sab + 24) ) ; // Read the g l oba l s t a tu s
i n t e r rup t r e g i s t e r .

// p r i n t f ((”%x\n”) , g i s ) ; // Debug

// The i n t e r r up t s w i l l automat i ca l ly r e s e t upon read o f the ISR .

i f ( g i s != 0)
{

i s r 0 = xpcInpB ( ( uint16 T ) ( sab + 26) ) ;
// p r i n t f (”%x\n” , i s r 0 ) ;

i f ( ( i s r 0 & 0x01 ) == 0x01 )
{

// p r i n t f (”%x\n” ,0 x01 ) ;
return XPC RUN ISR ;

}

i f ( ( i s r 0 & 0x80 ) == 0x80 )
{

// p r i n t f (”%x\n” ,0 x80 ) ;
return XPC RUN ISR ;

}
// i f ( ( i s r 0 & 0x40 ) == 0x40 )
// {
// // p r i n t f (”%x\n” ,0 x40 ) ;
// return XPC RUN ISR ;
// }

return XPC RUN ISR ;
}

// p r i n t f (”%u\n” ,456) ;
re turn XPC DROP ISR ;

}

// Star t Function
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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void cd e c l xpc fastcom104start ( xpcPCIDevice ∗pc i )
{

uint16 T sab = ( uint16 T ) ( pci−>BaseAddress [ 0 ] ) ; // SAB82532 Reg i s t e r s

xpcOutpB (( uint16 T ) ( sab ) , ( uint8 T ) (0 x41 ) ) ; // Reset the TFIFO and the RFIFO to i n i t i a l i z e
i n t e r r up t s

return ;
}

// Stop Function
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

void cd e c l xpcfastcom104stop ( xpcPCIDevice ∗pc i )
{

uint16 T sab = ( uint16 T ) ( pci−>BaseAddress [ 0 ] ) ;
// p r i n t f ((”%u\n”) ,33333) ;
xpcOutpB (( uint16 T ) ( sab + 26) , ( uint8 T ) (0 x f f ) ) ; // Mask a l l i n t e r r up t s
xpcOutpB (( uint16 T ) ( sab + 12) , ( uint8 T ) (0 x00 ) ) ; // Power down Fastcom ESCC−PCI
return ;

}

#end i f

A.2 Reaction Wheel Code

The software for the reaction wheels is responsible for both commanding the motors and reading

the motor speed data. The source code is written in the C language and is compiled and executed in

the Simulink environment. Subsection A.2.1 contains the Simulink block diagrams and subsection

A.2.2 contains the source code.

The code operates the Diamond Systems Emerald MM-8P board which communicates with the

reaction wheel motors. The reaction wheel code is nearly identical to that of the Emerald MM-8

board code that was pre-developed by Mathworks available with the purchase of the MATLAB xPC

system, with a few differences. The only change made with the MM-8P board code is the block

’sersetupemeraldmm8p’, which is responsible for initializing the chip registers for each of the 8 serial

ports. The source code of the block ’sersetupemeraldmm8p’ is shown in subsection A.2.2.

A.2.1 Simulink Block

Shown in Figure A.3 is the Simulink block for the reaction wheel driver code.
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Figure A.3: Reaction Wheel Driver Code, Simulink Diagram.

Figure A.4 shows the first level of the reaction wheel driver code.
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Figure A.4: Reaction Wheel Driver Code, Simulink Diagram, First Level.

Figure A.5 shows the second level of the reaction wheel driver code.
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Figure A.5: Reaction Wheel Driver Code, Simulink Diagram, Second Level.

Figure A.6 shows the third level of the reaction wheel driver code.
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Figure A.6: Reaction Wheel Driver Code, Simulink Diagram, Third Level.

A.2.2 C Language Code

/∗
Filename : sersetupemeraldmm8p . c
Created by : Tomoyuki Kato
Last ed i t : 4/11/2013

Desc r ip t i on : Setup block f o r the Diamond Systems Emerald MM−8P board .
∗/

#de f i n e S FUNCTION LEVEL 2
#undef S FUNCTION NAME
#de f i n e S FUNCTION NAME sersetupemeraldmm8p

#de f i n e DEBUG PRINTFS 0

#inc lude <s tdde f . h>
#inc lude <s t d l i b . h>

#inc lude ” s imstruc . h”

#i f d e f MATLAB MEX FILE
#inc lude ”mex . h”
#end i f

#i f n d e f MATLAB MEX FILE
#inc lude <windows . h>
#inc lude ”xpcimports . h”
#inc lude ” s e r i a l d e f i n e s . h”

// Emerald MM8P UART dr i v e r s have 230400 max baud rate
s t a t i c int32 T ba s ed i v i s o r s [ 1 4 ] =
{

1 , // 115200
2 , // 57600
3 , // 38400
6 , // 19200

12 , // 9600
24 , // 4800
48 , // 2400
96 , // 1200

192 , // 600
384 , // 300
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} ;

#end i f

/∗ Input Arguments ∗/
#de f i n e NUMBER OF ARGS (8)
#de f i n e ADDR ARG ssGetSFcnParam (S , 0 )
#de f i n e IRQ ARG ssGetSFcnParam (S , 1 )
#de f i n e BAUD ARG ssGetSFcnParam (S , 2 )
#de f i n e WIDTH ARG ssGetSFcnParam (S , 3 )
#de f i n e NSTOP ARG ssGetSFcnParam (S , 4 )
#de f i n e PARITY ARG ssGetSFcnParam (S , 5 )
#de f i n e CTSMODE ARG ssGetSFcnParam (S , 6 )
#de f i n e RLEVEL ARG ssGetSFcnParam (S , 7 )

#de f i n e NO I WORKS (2)
#de f i n e BASE I IND (0)
#de f i n e FIRST I IND (1)

#de f i n e NO R WORKS (0)

// De f i n i t i o n s f o r the FCR TXFIFO t r i g g e r l e v e l s
#de f i n e FCRTX8 0
#de f i n e FCRTX16 0x10
#de f i n e FCRTX32 0x20
#de f i n e FCRTX56 0x30

s t a t i c char T msg [ 2 5 6 ] ;

s t a t i c void md l I n i t i a l i z e S i z e s ( SimStruct ∗S)
{

i n t i ;

ssSetNumSFcnParams (S , NUMBER OF ARGS) ;
i f ( ssGetNumSFcnParams (S) != ssGetSFcnParamsCount (S) ) {

s p r i n t f (msg , ”Wrong number o f input arguments passed .\n%d arguments are expected\n” ,
NUMBER OF ARGS) ;

s sSe tEr ro rSta tus (S ,msg) ;
re turn ;

}

ssSetNumContStates (S , 0) ;
ssSetNumDiscStates (S , 0) ;

i f ( ! ssSetNumOutputPorts (S , 0) ) return ;

i f ( ! ssSetNumInputPorts (S , 0) ) return ;

ssSetNumSampleTimes (S , 1) ;

ssSetSimStateCompliance ( S , HAS NO SIM STATE ) ;

ssSetNumRWork(S , NO R WORKS) ;
ssSetNumIWork (S , NO I WORKS) ;
ssSetNumPWork(S , 0) ;

ssSetNumModes (S , 0) ;
ssSetNumNonsampledZCs (S , 0) ;

f o r ( i = 0 ; i < NUMBER OF ARGS ; i++ )
{

ssSetSFcnParamTunable (S , i , 0 ) ; /∗ None o f the parameters are tunable ∗/
}

ssSetOpt ions (S , SS OPTION DISALLOW CONSTANT SAMPLE TIME | SS OPTION EXCEPTION FREE CODE ) ;
}

s t a t i c void mdl In i t ia l i zeSampleTimes ( SimStruct ∗S)
{

ssSetSampleTime (S , 0 , INHERITED SAMPLE TIME) ;
ssSetOf fsetTime (S , 0 , FIXED IN MINOR STEP OFFSET) ;

}

#de f i n e MDL START
s t a t i c void mdlStart ( SimStruct ∗S)
{

#i f n d e f MATLAB MEX FILE

int T addr ;
i n t port ;
i n t bauddiv ;
i n t i ;
i n t lcrtemp ;
i n t con f i gbase ;
i n t i r q ;

// Save the base address f o r mdlterminate
addr = ( int T )mxGetPr(ADDR ARG) [ 0 ] ;
i r q = ( in t )mxGetPr(IRQ ARG) [ 0 ] ;

// p r i n t f (” addr = 0x%x , addr>>3 = 0x%x , i r q = 0x%x\n” , addr , addr>>3, i r q ) ; // DEBUG

// Derive the con f i gu r a t i on base address and port number from base .
// This assumes that addr i s ( con f i gbase + ( port+1)∗8) and the l a s t port
// over l aps the next con f i gbase address .
con f i gbase = ( addr − 1) & ˜0 x3f ;
port = ( ( ( addr − 1) >> 3) & 7) ; // 0 based port number , range

[ 0 , 7 ]

xpcOutpB( ( uint16 T ) ( con f i gbase ) , port ) ; // s e t address po in te r to t h i s port
UART address

xpcOutpB( ( uint16 T ) ( con f i gbase+1) , addr>>3 ) ; // Set t h i s port address to addr .
xpcOutpB( ( uint16 T ) ( con f i gbase ) , port+8 ) ; // s e t address po in te r to t h i s port

IRQ number
xpcOutpB( ( uint16 T ) ( con f i gbase+1) , i r q ) ; // Set t h i s port i r q number to i r q .
xpcOutpB( ( uint16 T ) ( con f i gbase ) , 0x80 ) ; // Enable the port
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// p r i n t f (”%x\n” , xpcInpB (( uint16 T ) ( con f i gbase + 2) ) ) ; // DEBUG

// Debug readback
// {
// in t testaddr , t e s t i r q ;
// xpcOutpB( ( uint16 T ) ( con f i gbase ) , port ) ;
// te s taddr = ( xpcInpB ( ( uint16 T ) ( con f i gbase+1) ) & 0 x f f ) << 3 ;
// xpcOutpB( ( uint16 T ) ( con f i gbase ) , port+8 ) ;
// t e s t i r q = xpcInpB ( ( uint16 T ) ( con f i gbase+1) ) & 0 x f f ;
// p r i n t f (”Readback : addr = 0x%x , i r q = %x\n” , testaddr , t e s t i r q ) ;
// }

// End debug readback

ssSetIWorkValue (S , BASE I IND , addr ) ; // Save the port address
bauddiv = ba s ed i v i s o r s [ ( i n t ) (mxGetPr(BAUD ARG) [ 0 ] − 1) ] ; // S e l e c t baud rate d i v i s o r

// p r i n t f (”%d\n” , bauddiv ) ; // DEBUG

// Set the DLAB b i t so we can get to the baud rate d i v i s o r
// and the opt ions r e g i s t e r
lcrtemp = xpcInpB ( ( uint16 T ) ( addr + LCR) ) ;
xpcOutpB( ( uint16 T ) ( addr + LCR) , ( uint8 T ) ( lcrtemp | LCRDLAB) ) ;

// Set the baud rate d iv i s o r , assumes 1x mu l t i p l i e r
xpcOutpB( ( uint16 T ) ( addr + DLSB) , ( uint8 T ) ( bauddiv & 0 x f f ) ) ;
xpcOutpB( ( uint16 T ) ( addr + DMSB) , ( uint8 T ) ( ( bauddiv >> 8) & 0 x f f ) ) ;

// p r i n t f (”DLSB: %x\n DMSB: %x\n” , xpcInpB (( uint16 T ) ( addr+DLSB) ) , xpcInpB ( ( uint16 T ) ( addr+DMSB)
) ) ; // DEBUG

// Clear the DLAB b i t
xpcOutpB( ( ushort T ) ( addr + LCR) , ( uint8 T ) lcrtemp ) ;

// Construct the contents o f the LCR r e g i s t e r .
lcrtemp = 0 ;

// Determine the word length
switch ( ( i n t ) (mxGetPr(WIDTH ARG) [ 0 ] ) )
{

case 1 :
i = LCR5BIT ;
break ;

case 2 :
i = LCR6BIT ;
break ;

case 3 :
i = LCR7BIT ;
break ;

case 4 :
i = LCR8BIT ;
break ;

}
lcrtemp |= i ;

i f ( ( i n t ) (mxGetPr(NSTOP ARG) [ 0 ] ) == 2 ) // I f 2 stop b i t s are chosen ,
lcrtemp |= LCRSTOP;

// Par i ty s e l e c t i o n invo l v e s 3 b i t s in the LCR
i = 0 ;
switch ( ( i n t ) (mxGetPr(PARITY ARG) [ 0 ] ) )
{

case 1 : // no par i ty
i = 0 ;
break ;

case 2 : // even par i ty
i = LCRPARITY | LCREVEN;
break ;

case 3 : // odd par i ty
i = LCRPARITY;
break ;

case 4 : // mark par i ty
i = LCRPARITY | LCRSTICK;
break ;

case 5 : // space par i ty
i = LCRPARITY | LCREVEN | LCRSTICK;
break ;

}
lcrtemp |= i ;

xpcOutpB( ( uint16 T ) ( addr + LCR) , ( uint8 T ) lcrtemp ) ;

// Set the RFIFO t r i g g e r l e v e l .
switch ( ( i n t ) (mxGetPr(RLEVEL ARG) [ 0 ] ) )
{

case 1 : // i n t e r rup t at 1 byte
i = FCRONE;
break ;

case 2 : // i n t e r rup t at quarter f u l l (4 or 16)
i = FCRQUARTER;
break ;

case 3 : // i n t e r rup t at ha l f f u l l (8 or 32)
i = FCRHALF;
break ;

case 4 : // i n t e r rup t at almost f u l l (14 or 56)
i = FCRFULL;
break ;

}

i |= FCREBL | FCRRCLR | FCRTCLR; // Enable and c l e a r both FIFOs , s e t TX FIFO
t r i g g e r to 8 cha rac t e r s

// Set the FCR
xpcOutpB( ( uint16 T ) ( addr + FCR) , ( uint8 T ) i ) ; // Load con f i gu r a t i on onto FCR

i = MCROUT2; // On the baseboard UARTS, OUT2 i s an extra i n t e r rup t mask !
i f ( ( i n t ) (mxGetPr(CTSMODE ARG) [ 0 ] ) == 1 )
{

i |= MCRAFE | MCRRTS; // Auto RTS/CTS mode
}
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// Defau l t s to DTR, RTS, OUT1, OUT2 a l l high , b i t s = 1 s e t s outputs high
xpcOutpB( ( uint16 T ) ( addr + MCR) , ( uint8 T ) i ) ;

// c l e a r power modes ,
// but wait f o r mdlOutputs to Enable r e c e i v e i n t e r r up t s
xpcOutpB( ( ushort T ) ( addr + IER) , 0 ) ;
ssSetIWorkValue (S , FIRST I IND , 1) ;

// Transmit i n t e r rup t isn ’ t enabled yet , but i s delayed un t i l there
// are cha rac t e r s a va i l a b l e to be sent .

#end i f

}

s t a t i c void mdlOutputs ( SimStruct ∗S , int T t id )
{

#i f n d e f MATLAB MEX FILE
in t addr = ssGetIWorkValue ( S , BASE I IND ) ;
i n t f i r s t = ssGetIWorkValue ( S , FIRST I IND ) ;
i n t i ;

i f ( f i r s t == 1 )
{

// Since TX enable block may have executed f i r s t , read i e r and modify .
i n t i e r = xpcInpB ( ( ushort T ) ( addr + IER) ) ;
// Flush the hardware f i f o on star tup .
i = 0 ;
whi le ( i++ < 65 && xpcInpB ( ( unsigned short ) ( addr + LSR) ) & LSRDR )
{

// Read and d i s ca rd the data .
xpcInpB ( ( unsigned short ) ( addr + DATA) ) ;

}

// Now enable the i n t e r rup t .
xpcOutpB( ( ushort T ) ( addr + IER) , i e r | IERRCV) ;
ssSetIWorkValue ( S , FIRST I IND , 0 ) ;

}

#end i f

}

s t a t i c void mdlTerminate ( SimStruct ∗S)
{
#i f n d e f MATLAB MEX FILE

in t addr = ssGetIWorkValue (S , BASE I IND) ;
// in t uarttype = ssGetIWorkValue (S , TYPE I IND) ;

i f ( addr == 0 ) // This UART i s not con f i gured
return ;

// Disab le i n t e r r up t s .
xpcOutpB( ( ushort T ) ( addr + IER) , 0 ) ;

// Flush the transmit and r e c e i v e f i f o s so the next s t a r t w i l l be c l ean
xpcOutpB( ( ushort T ) ( addr + FCR) , FCREBL | FCRRCLR | FCRTCLR ) ;

#end i f
}

#i f d e f MATLAB MEX FILE /∗ I s t h i s f i l e being compiled as a MEX− f i l e ? ∗/
#inc lude ” s imul ink . c” /∗ Mex glue ∗/
#e l s e
#inc lude ” cg s fun . h” /∗ Code generat ion g lue ∗/
#end i f

A.3 Motion Test Scripts

This section contains MATLAB scripts which initialize the Simulink motion test files. There

are four scripts:

• rxnwhl calibration setup.m

• fsfbsetup.m

• ndmracsetup.m

• aofsetup.m

Wheel Calibration Script
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% Filename : r xnwh l c a l i b r a t i on s e tup .m
% Created by : Tomoyuki Kato , Long Dam
% Last ed i t : 12/14/2013
%
% Desc r ip t i on : This m− f i l e s c r i p t w i l l i n i t i a l i z e the i n i t i a l wheel speed
% values f o r the Simulink f i l e ’RXNWHL CALIBRATION.mdl ’ .

%% Var iab l e s

% Desired t e s t case (1 = motion tes t , 2 = s in e wave t e s t )
t e s t = 2 ;

% Motion t e s t i n i t i a l speeds
whl0 = 1500;
% whl01 = 1500;

% Sinewave t e s t i n i t i a l speeds
% s in e = [ 1 0 ; −100; −25; −10]∗60/2/ pi ;
s i n e = 500∗ ones (1 ,4 ) ;

%% Get parameters

id = tg . getparamid ( ’ Parameter Command/ I n i t i a l Speed ’ , ’ Value ’ ) ;
id1 = tg . getparamid ( ’ Parameter Command1/ I n i t i a l Speed ’ , ’ Value ’ ) ;
id2 = tg . getparamid ( ’ Parameter Command2/ I n i t i a l Speed ’ , ’ Value ’ ) ;
id3 = tg . getparamid ( ’ Parameter Command3/ I n i t i a l Speed ’ , ’ Value ’ ) ;

%% Set parameters

i f t e s t == 1
tg . setparam ( id , whl0 ) ;
tg . setparam ( id1 , whl0 ) ;
tg . setparam ( id2 , whl0 ) ;
tg . setparam ( id3 , whl0 ) ;

e l s e i f t e s t == 2
tg . setparam ( id , s i n e (1) ) ;
tg . setparam ( id1 , s i n e (2) ) ;
tg . setparam ( id2 , s i n e (3) ) ;
tg . setparam ( id3 , s i n e (4) ) ;

e l s e
d i sp ( ’Do nothing ’ ) ;

end

disp ( tg . getparam ( id ) )
d i sp ( tg . getparam ( id1 ) )
d i sp ( tg . getparam ( id2 ) )
d i sp ( tg . getparam ( id3 ) )

Full-State Feedback Test Setup

% Filename : f s f b s e t up .m
% Created by : Tomoyuki Kato
% Last ed i t : 12/5/2013
%
% Desc r ip t i on : This m− f i l e s c r i p t w i l l i n i t i a l i z e the p r op e r t i e s o f a l l the
% blocks in the Simulink f i l e ’FSFB SIM IMU .mdl ’ .

%% Var iab l e s

t e s t c a s e = 1 ; % 1 : system ID 2 : Sol idworks 3 : degraded wheel
cont = 2 ; % 1 : FSFB 2 : LQR + set−point 3 . Optimal feedback + set−point

i f cont == 1
disp ( ’ Full−State Feedback Control\n ’ ) ;

e l s e i f cont == 2
disp ( ’LQR + Set−Point Control\n ’ ) ;

e l s e
d i sp ( ’ Optimal Feedback + Set−Point Control\n ’ ) ;

end

% Sample r a t e s
imudt = 1/400; % IMU sample ra te ( sec )
dt = 1/50; % Simulat ion sample ra te ( sec )

% I n i t i a l c ond i t i on s
q0 = [0 0 0 1 ] ’ ; % Quaternion i n i t i a l c ond i t i on s
w0 = [0 0 0 ] ’ ; % Body rate i n i t i a l c ond i t i on s ( rad/ sec )
whl0vect = [1500 1500 1500 1500]∗(2∗ pi /60) ; % I n i t i a l wheel speed vector ( rad/ sec )

% Reaction Wheel Performance
zetarw = 1 . 1 ; % Damping r a t i o o f degraded wheel
wnrw = 1 ; % Natural f requency o f degraded wheel ( rad/ sec )

% Mass Property
Jsys id = [ . 6 071 0.0266 0 . 0149 ;

0 .0266 .6560 0 . 0 01 ;
0 .0149 0.001 . 6 3 7 6 ] ; % System ID est imate

Jes t = [ . 5 485 −.0002 − .0003;
−.0002 .5884 − .0005;
−.0003 −.0005 . 6 4 5 6 ] ; % Sol idworks est imate

% Jsys id = [ .6071+0.035421 0.0266 0 . 0149 ;
% 0.0266 .6560+0.031053 0 . 0 01 ;
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% 0.0149 0.001 .6376+0.027591 ] ; % System ID upper bound
% Jsys id = [.6071−0.035421 0.0266 0 . 0149 ;
% 0.0266 .6560−0.031053 0 . 0 01 ;
% 0.0149 0.001 .6376−0.027591] ; % System ID Lower bound

% Continuous−time state−space model o f 4 th wheel
AWc = [0 1;−wnrwˆ2,−2∗ zetarw∗wnrw ] ;
BWc = [ 0 ; wnrw ˆ 2 ] ;
CWc = [ 1 , 0 ] ;
DWc = [ 0 ] ;
sysC = ss (AWc,BWc,CWc,DWc) ;

% Convert to d i s c r e t e−time state−space model
sysD = c2d ( sysC , dt ) ;
A4 = sysD . a ;
B4 = sysD . b ;
C4 = sysD . c ;
D4 = sysD . d ;

% Wheel d i s ab l e command time
whldi = 39 . 5 ;

%% Set−point ga ins

% State−space matr i ces o f the l i n e a r i z e d spa c e c r a f t EOM
a = −(( Jes t (3 ,3 )−Jes t (2 ,2 ) ) / Jes t (1 ,1 ) ) ;
b = −(( Jes t (1 ,1 )−Jes t (3 ,3 ) ) / Jes t (2 ,2 ) ) ;
c = −(( Jes t (1 ,1 )−Jes t (2 ,2 ) ) / Jes t (3 ,3 ) ) ;
hp = . 5 ;
hm = −.5;
eu l = [0 0 −pi / 1 2 ] ;
qd = e2q ( eu l ) ;

% L inea r i z e spa c e c r a f t EOM about a 15 deg . yaw ro ta t i on
A = zero s (6 ,6 ) ;

A(4 ,1 ) = 0.5∗qd (4) ;
A(4 ,2 ) = −0.5∗qd (3) ;
A(5 ,1 ) = 0.5∗qd (4) ;
A(5 ,2 ) = 0.5∗qd (3) ;
A(6 ,3 ) = 0.5∗qd (4) ;

% A(7 ,3 ) = −0.5∗qd (3) ;
B = zero s (6 ,3 ) ;

B(1 ,1 ) = 1/ Jes t (1 ,1 ) ;
B(2 ,2 ) = 1/ Jes t (2 ,2 ) ;
B(3 ,3 ) = 1/ Jes t (3 ,3 ) ;

C = eye (6) ;
D = zero s (6 ,3 ) ;
% G and H matr ices to make input dimension equal to output dimension
G = zero s (3 ,6 ) ;

G(1 ,4 ) = 1 ;
G(2 ,5 ) = 1 ;
G(3 ,6 ) = 1 . 1 ;

H = zero s (3 ,3 ) ;

% Form a square matrix o f s tate−space matr i ces and inve r t
P = [A B;G H] ;
dim = s i z e (P) ;
i f dim (1) == dim (2)

P1 = inv (P) ;
e l s e

P1 = pinv (P) ;
end
[ row , co l ] = s i z e (B) ;

ob = rank ( obsv (A,C) ) ; % Check f o r ob s e r v ab i l i t y
wo = rank ( ctrb (A,B) ) ; % Check f o r c o n t r o l l a b i l i t y
ev = [−1 −0.7 −1.1 −0.1 −0.5 −0 .8 ] ’ ; % Case 1 and 2
% ev = [−.5 −1 −1.5 −2 −2.5 −3] ’ ; % Case 3
kopt = place (A,B, ev ) ; % Optimal feedback−gain

F = P1 (1 : 6 , end−5:end ) ; % Set−point feedforward gain F
N = P1 ( 7 : end , end−5:end ) ; % Set−point feedforward gain N
feed = N + kopt∗F; % Total f eed forward term
feedfwd = feed ∗ [ 0 ; 0 ; 0 ; 0 ; 0 ; . 1 3 0 5 ] ;

%% LQR
Q = eye (6) ;
Q(1 ,1 ) = Q(1 ,1 ) ∗ . 0 5 ;
Q(2 ,2 ) = Q(2 ,2 ) ∗ . 0 5 ;
Q(3 ,3 ) = Q(3 ,3 ) ∗ . 0 5 ;
Q(4 ,4 ) = Q(4 ,4 ) ∗ . 0 01 ;
Q(5 ,5 ) = Q(5 ,5 ) ∗ . 0 01 ;
Q(6 ,6 ) = Q(6 ,6 ) ∗ . 0 5 ;
R = eye (3) ;
k lq r = l q r (A,B,Q,R) ;

%% Get parameters

imublock = ’IMU LN−200 ’; % Directory to ’IMU LN−200’ subsystem
rxnwhl = ’ Reaction Wheels ’ ; % Directory to ’ Reaction Wheels ’ subsystem
motalg = ’Motion Algorithm ’ ; % Directory to ’Motion Algorithm ’ subsystem

whl0id = tg . getparamid ( ’ Motion Algorithm/Discrete−Time Integrator ’ , ’ I n i t i a lCond i t i on ’ ) ;
j i d = tg . getparamid ( ’ Motion Algorithm/ Ine r t i a ’ , ’ Value ’ ) ;
% rwid = tg . getparamid ( ’ Motion Algorithm/Manual Switch ’ , ’ Value ’ ) ;
kopid = tg . getparamid ( ’ Motion Algorithm/optgain ’ , ’ Value ’ ) ;
f e ed id = tg . getparamid ( ’ Motion Algorithm/ feedfwd ’ , ’ Value ’ ) ;
l q r i d = tg . getparamid ( ’ Motion Algorithm/ lqr ’ , ’ Value ’ ) ;
cont id = tg . getparamid ( ’ Motion Algorithm/ con t r o l l e r ’ , ’ Value ’ ) ;

%% Set parameters

% Set up i n i t i a l wheel speeds

tg . setparam ( whl0id , whl0vect ) % Set i n i t i a l wheel speed
tg . setparam ( kopid , kopt ) ; % Set optimal feedback gain
tg . setparam ( feed id , f eed ) ; % Set feedforward gain
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tg . setparam ( lq r id , k lq r ) ; % Set LQR gain

% Set up i n e r t i a t ensor and choose nominal or degraded r ea c t i on wheel
i f t e s t c a s e == 1

tg . setparam ( j id , J sys id ) ;
tg . setparam ( contid , cont ) ;
d i sp ( ’ Case 1 : System ID Estimate ’ ) ;

e l s e
tg . setparam ( j id , Je s t ) ;
tg . setparam ( contid , cont ) ;
i f t e s t c a s e == 3

% tg . setparam ( rwid , 0 ) ;
d i sp ( ’ Case 3 : Degraded Wheel ’ ) ;

e l s e
% tg . setparam ( rwid , 1 ) ;

d i sp ( ’ Case 2 : Sol idworks Estimate ’ ) ;
end

end

NDMRAC Test Setup

% Filename : ndmracsetup .m
% Created by : Tomoyuki Kato
% Last ed i t : 5/22/2013
%
% Desc r ip t i on : This m− f i l e s c r i p t w i l l i n i t i a l i z e the p r op e r t i e s o f a l l the
% blocks in the Simulink f i l e ’AOF SIM IMU .mdl ’ .

%% Var iab l e s

t e s t c a s e = 1 ; % 1 : p e r f e c t i n e r t i a 2 : est imated 3 : degraded wheel

f i l e = input ( ’Which ga ins would you l i k e to load ?\n ’ , ’ s ’ ) ;
load ( f i l e )
Ge0 = Ge0NDMRAC;
H1 = 0.1∗ eye (12) ;
H2 = 0.1∗ eye (4) ;
H3 = 100∗ eye (6) ;

imudt = 1/400; % IMU sample ra te ( sec )
dt = 1/50; % Simulat ion sample ra te ( sec )
q0 = [0 0 0 1 ] ’ ; % Quaternion i n i t i a l c ond i t i on s
w0 = [0 0 0 ] ’ ; % Body rate i n i t i a l c ond i t i on s ( rad/ sec )
whl0 = 100∗2∗ pi /60 ; % I n i t i a l wheel speed ( rad/ sec )
whl0vect = whl0∗ones (1 ,4 ) ; % I n i t i a l wheel speed vector ( rad/ sec )

zetarw = 1 . 1 ; % Damping r a t i o o f degraded wheel
wnrw = 1 ; % Natural f requency o f degraded wheel ( rad/ sec )

% Continuous−time state−space model o f 4 th wheel
AWc = [0 1;−wnrwˆ2,−2∗ zetarw∗wnrw ] ;
BWc = [ 0 ; wnrw ˆ 2 ] ;
CWc = [ 1 , 0 ] ;
DWc = [ 0 ] ;
sysC = ss (AWc,BWc,CWc,DWc) ;

% Convert to d i s c r e t e−time state−space model
sysD = c2d ( sysC , dt ) ;
A4 = sysD . a ;
B4 = sysD . b ;
C4 = sysD . c ;
D4 = sysD . d ;

% Wheel d i s ab l e command time
whldi = 39 . 5 ;

% Mass Property
Jsys id = [ . 6 071 0.0266 0 . 0149 ;

0 .0266 .6560 0 . 0 01 ;
0 .0149 0.001 . 6 3 7 6 ] ; % System ID est imate

Jes t = [ . 5 485 −.0002 − .0003;
−.0002 .5884 − .0005;
−.0003 −.0005 . 6 4 5 6 ] ; % Sol idworks est imate

%% Get parameters

e r r i d = tg . getparamid ( ’ Motion Algorithm/NDMRAC/Adaptive Error Gain/ g a i n i n i t ’ , ’ Value ’ ) ;
h3id = tg . getparamid ( ’ Motion Algorithm/NDMRAC/Adaptive Error Gain/H3 ’ , ’ Value ’ ) ;
inp id = tg . getparamid ( ’ Motion Algorithm/NDMRAC/Adaptive Input Gain/ g a i n i n i t ’ , ’ Value ’ ) ;
h2id = tg . getparamid ( ’ Motion Algorithm/NDMRAC/Adaptive Input Gain/H2 ’ , ’ Value ’ ) ;
s t a t e i d = tg . getparamid ( ’ Motion Algorithm/NDMRAC/Adaptive State Gain/ g a i n i n i t ’ , ’ Value ’ ) ;
h1id = tg . getparamid ( ’ Motion Algorithm/NDMRAC/Adaptive State Gain/H1 ’ , ’ Value ’ ) ;
rwid = tg . getparamid ( ’ Reaction Wheels/Wheel Degradation /Manual Switch ’ , ’ CurrentSett ing ’ ) ;
j i d = tg . getparamid ( ’ Motion Algorithm/ Ine r t i a ’ , ’ Value ’ ) ;
rw0id = tg . getparamid ( ’ Motion Algorithm/Discrete−Time Integrator ’ , ’ I n i t i a lCond i t i on ’ ) ;

%% Set parameters

tg . setparam ( er r id , Ge0) ;
tg . setparam ( inpid , S220 ) ;
tg . setparam ( s ta t e id , S210 ) ;
tg . setparam ( h1id ,H1) ;
tg . setparam ( h2id ,H2) ;
tg . setparam ( h3id ,H3) ;
tg . setparam ( rw0id , whl0vect ) ;

i f t e s t c a s e == 1
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tg . setparam ( rwid , 1 ) ;
tg . setparam ( j id , J sys id ) ;
d i sp ( ’ Case 1 : System ID Estimate ’ ) ;

e l s e
tg . setparam ( j id , Je s t ) ;
i f t e s t c a s e == 2

tg . setparam ( rwid , 1 ) ;
d i sp ( ’ Case 2 : Sol idworks Estimate ’ ) ;

e l s e
tg . setparam ( rwid , 0 ) ;
d i sp ( ’ Case 3 : Degraded Wheel ’ ) ;

end
end

AOF Test Setup

% Filename : ao f se tup .m
% Created by : Tomoyuki Kato
% Last ed i t : 11/14/2013
%
% Desc r ip t i on : This m− f i l e s c r i p t w i l l i n i t i a l i z e the p r op e r t i e s o f a l l the
% blocks in the Simulink f i l e ’AOF SIM IMU .mdl ’ .

%% Var iab l e s

t e s t c a s e = 3 ; % 1 : system ID 2 : Sol idworks 3 : degraded wheel

% load ( ’AOFDATA 20130524 .mat ’ ) ;
% Ge0 = reshape ( out1 ( end , : ) , [ 6 , 6 ] ) ;
% Ge0 = zero s (6 ,6 ) ;
f i l e = input ( ’Which ga ins would you l i k e to load ?\n ’ , ’ s ’ ) ;
load ( f i l e ) ;
Ge0 = Ge0AOF;
H3 = 500∗ eye (6) ;

imudt = 1/400; % IMU sample ra te ( sec )
dt = 1/50; % Simulat ion sample ra te ( sec )
q0 = [0 0 0 1 ] ’ ; % Quaternion i n i t i a l c ond i t i on s
w0 = [0 0 0 ] ’ ; % Body rate i n i t i a l c ond i t i on s ( rad/ sec )
whl0 = 1500∗2∗ pi /60 ; % I n i t i a l wheel speed ( rad/ sec )
whl0vect = whl0∗ones (1 ,4 ) ; % I n i t i a l wheel speed vector ( rad/ sec )

zetarw = 1 . 1 ; % Damping r a t i o o f degraded wheel
wnrw = 1 ; % Natural f requency o f degraded wheel ( rad/ sec )

% Mass Property
Jsys id = [ . 6 071 0.0266 0 . 0149 ;

0 .0266 .6560 0 . 0 01 ;
0 .0149 0.001 . 6 3 7 6 ] ; % System ID est imate

Jes t = [ . 5 485 −.0002 − .0003;
−.0002 .5884 − .0005;
−.0003 −.0005 . 6 4 5 6 ] ; % Sol idworks est imate

% Continuous−time state−space model o f 4 th wheel
AWc = [0 1;−wnrwˆ2,−2∗ zetarw∗wnrw ] ;
BWc = [ 0 ; wnrw ˆ 2 ] ;
CWc = [ 1 , 0 ] ;
DWc = [ 0 ] ;
sysC = ss (AWc,BWc,CWc,DWc) ;

% Convert to d i s c r e t e−time state−space model
sysD = c2d ( sysC , dt ) ;
A4 = sysD . a ;
B4 = sysD . b ;
C4 = sysD . c ;
D4 = sysD . d ;

% Wheel d i s ab l e command time
whldi = 39 . 5 ;

%% Get parameters

ge0 id = tg . getparamid ( ’ Motion Algorithm/AOF/Adaptive Error Gain/ g a i n i n i t ’ , ’ Value ’ ) ;
h3id = tg . getparamid ( ’ Motion Algorithm/AOF/Adaptive Error Gain/H3 ’ , ’ Value ’ ) ;
rwid = tg . getparamid ( ’ Reaction Wheels/Wheel Degradation /Manual Switch ’ , ’ CurrentSett ing ’ ) ;
j i d = tg . getparamid ( ’ Motion Algorithm/ Ine r t i a ’ , ’ Value ’ ) ;

%% Set parameters

tg . setparam ( ge0id , Ge0) ; % Set i n i t i a l e r r o r gain
tg . setparam ( h3id ,H3) ; % Set adaptive parameter

i f t e s t c a s e == 1
tg . setparam ( rwid , 1 ) ;
tg . setparam ( j id , J sys id ) ;
d i sp ( ’ Case 1 : System ID Estimate ’ ) ;

e l s e
tg . setparam ( j id , Je s t ) ;
i f t e s t c a s e == 2

tg . setparam ( rwid , 1 ) ;
d i sp ( ’ Case 2 : Sol idworks Estimate ’ ) ;

e l s e
tg . setparam ( rwid , 0 ) ;
d i sp ( ’ Case 3 : Degraded Wheel ’ ) ;

end
end



Appendix B

Appendix: Motion Test Data

This appendix section contains relevant data from the PRWP motion test experiments. Each

plot set contains four plots: the top-left is the actual wheel speed, the top-right is the command

wheel speed, the bottom-left is the IMU body rate, and the bottom-right is the command body

torque.

Figure B.1: Motion Test Data, FSFB, System ID Estimate Case.
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Figure B.2: Motion Test Data, LQRSP, System ID Estimate Case.

Figure B.3: Motion Test Data, NDMRAC, System ID Estimate Case.
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Figure B.4: Motion Test Data, AOF, System ID Estimate Case.

Figure B.5: Motion Test Data, FSFB, Solid-Model Estimate Case.



APPENDIX B. APPENDIX: MOTION TEST DATA 92

Figure B.6: Motion Test Data, LQRSP, Solid-Model Estimate Case.

Figure B.7: Motion Test Data, NDMRAC, Solid-Model Estimate Case.
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Figure B.8: Motion Test Data, AOF, Solid-Model Estimate Case.

Figure B.9: Motion Test Data, FSFB, Degraded Wheel Case.
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Figure B.10: Motion Test Data, LQRSP, Degraded Wheel Case.

Figure B.11: Motion Test Data, NDMRAC, Degraded Wheel Case.
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Figure B.12: Motion Test Data, AOF, Degraded Wheel Case.
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