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ABSTRACT

A Hybrid Approach to General Information Extraction

Marie Grap

Information Extraction (IE) is the process of analyzing documents and identifying

desired pieces of information within them. Many IE systems have been developed

over the last couple of decades, but there is still room for improvement as IE remains

an open problem for researchers. This work discusses the development of a hybrid IE

system that attempts to combine the strengths of rule-based and statistical IE systems

while avoiding their unique pitfalls in order to achieve high performance for any type

of information on any type of document. Test results show that this system operates

competitively in cases where target information belongs to a highly-structured data

type and when critical contextual information is in close proximity to the target.
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Chapter 1

Introduction

Today, the amount and variety of information available is not only immense, but

also ever-expanding. From news articles to order confirmations to social media posts,

it has never been so easy to create data and send it out into the world. However,

despite this great abundance of information, much of it remains virtually useless

to machines because it is written in human language. Information Extraction (IE)

addresses this problem by analyzing documents and identifying desired pieces of infor-

mation within them. Much more sophisticated than a simple keyword search, IE aims

to identify rich information such as the proteins mentioned in a biomedical journal

or the relevant pieces of data needed to cite an article.

Many methods for IE have been developed over the last couple of decades, but

there is still room for improvement as IE remains an open problem for researchers.

Over the years, it has been observed that most state-of-the-art methods fall under two

camps: rule-based and statistical. This work explores the possibility of combining

techniques from these two methods to create a hybrid system. The goal of the hybrid

system is to achieve high performance by utilizing the strengths of its parents while

at the same time avoiding their pitfalls. Specifically, this system aims to extract

information of any type from documents of any text type.

The basic work flow of this system begins with a corpus of labeled documents,

which are split into training and testing sets. The training set is used to generate

rules for targets using both the actual target text and a data type prediction. Once
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potential targets have been extracted using these generated rules, contextual features

are collected and passed to a classifier. Finally, the classifier uses this contextual

information to predict whether or not the potential targets is a desired result.

Testing has shown that this system performs best when targets belong to highly

structured data types, such as times or money values, and when important contextual

information is in close proximity to the target itself. In a few cases, the system outper-

forms other state-of-the-art systems, but in most cases its performance is significantly

lower.

Here is a brief outline of this paper. Chapter 2 provides background information

on IE, machine learning, classifier algorithms, and performance evaluation standards.

Chapter 3 discusses related work. Chapter 4 explains the methodology used to create

this system in detail. Chapter 5 outlines the experimental procedures used to test

the system. Chapter 6 reviews the testing results. Chapter 7 proposes future work

for the project. Chapter 8 offers concluding remarks about the project.
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Chapter 2

Background

2.1 A Brief History of IE

IE first became recognized as a valuable tool in the 1980’s. Between 1987 and

1998 the Defense Advanced Research Projects Agency (DARPA) hosted and financed

a series of Message understanding conferences (MUC [13]) with the intention of stim-

ulating research in the area of IE [28]. At these conferences, research groups were

given a corpus of documents such as military reports or news reports, and competed

to create a system that could identify information about provided topics such as fleet

operations or terrorist activities in Latin America [13]. Similar programs have since

been launched, including ACE (Automatic Content Extraction [7]; MUC’s successor)

and CoNNL (Conference on Computational Natural Language Learning [37]), which

have further encouraged progress in the field of IE.

The earliest IE systems utilized manually-crafted rules, which identified pieces of

information by looking for specified patterns in documents [31, 28]. Although these

systems served their purpose, they faced the major disadvantages of being extremely

domain-specific and needing programmers with extensive domain knowledge, linguis-

tic understanding, and programming skills. These issues were somewhat alleviated

with the advent of rule-learning systems, which used hand-labeled documents to train

machine learning extraction models [31, 28]. Rule-learning systems perform especially
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well in documents where data follows some structural rules, such as resumes or re-

ceipts.

Statistical approaches to IE were developed in response to the cases where rule-

learning systems fall short, that is, when a task involves extracting data from free text

[31, 28]. These systems also require labeled training documents, but differ in that

they focus on linguistic data rather than formatted patterns to discover information.

Although statistical systems are typically slower, more difficult to program, and and

harder to interpret than their rule-learning counterparts, they are more robust to

noise in unstructured documents.

In spite of all the research that has been done, there is still no clear answer as

to whether rule-learning or statistical IE systems are better, since each one performs

better in different situations. The purpose of this project is to present a single,

hybrid system that works for all types of documents (structured, semi-structured,

and unstructured) by reconciling the differences between rule-learning and statistical

approaches.

2.2 Machine Learning

Machine Learning (ML) can be defined as “a set of methods that can automatically

detect patterns in data, and then use the uncovered patterns to predict future data,

or to perform other kinds of decision making under uncertainty” [20]. In this case,

the data of interest is natural language text. This project uses supervised learning,

meaning that it uses a set of labeled training documents in order to learn how to

make predictions.

The process for supervised learning begins with a set of user-supplied documents

and the expected output of the system in relation to those documents. For example,

in our system, the user supplies a set of documents containing labeled text that

represents the expected output of the program. The next step of the process is

feature selection. A feature can be any piece of information that can be determined

from the text of a document and any outside resource, barring the expected output

labels of course. Examples of a feature include: number of words, most popular
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Figure 2.1: Supervised Learning Process [3].

words, most popular groups of three words (commonly referred to as trigrams), least

popular parts of speech, or the presence of a specific word. With so much possible

data to choose from, selecting which features are useful is a difficult and crucial task,

and is currently an open problem in ML. Once the features have been selected, they

are extracted from each document.

After the feature sets have been extracted, they are split into two groups: a

training set and a testing set. Typically, the training set represents a half or more

of the original document set, and is used to train a classifier. In simple terms, a

classifier is an algorithm that makes a prediction based on a set of features. During

the training process, a classifier looks at both the features and the expected results

and learns which features are the best predictors for certain results. Our system uses

a Naive Bayes classifier, which will be discussed in further detail in the next section.

Once the classifier has been trained, it may be used for testing, during which the

classifier only looks at the given set of features and tries to make a prediction. Once

the prediction has been made, the expected results can be compared to the prediction.

2.3 Classifiers

Several classification algorithms were tested during the development of this sys-

tem, including Naive Bayes, Maximum Entropy, Decision Trees, and SVM. Naive

Bayes was chosen as the system’s classifier because it outperformed all the others. As

such, only Naive Bayes will be discussed in detail in this section.
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2.3.1 Naive Bayes

Naive Bayes classifiers operate under the “naive” assumption that all features

are independent of each other (This is commonly referred to as the independence

assumption). This is, of course, very unrealistic since it is highly likely that selected

features have some sort of dependence on one another. However, despite this fact,

Naive Bayes classifiers often outperform classifiers that use more sophisticated algo-

rithms that try to account for feature relationships. Because of their simplicity and

high performance, Naive Bayes classifiers have become one of the most popular and

commonly used techniques for ML [3].

Naive Bayes classifiers use the independence assumption with Bayes Theorem

(Figure 1.1) to calculate the most likely expected result based on a feature set [3].

P (result|features) =
P (features|result)P (result)

P (features)

Figure 2.2: Bayes Theorem.

Consider this example: pretend that we are trying to classify people as male or

female (result) based on their first name (feature). First, we collect some information

about first names and the sex associated with them (training). Table 2.1 shows the

collected information.

Suppose we then wish to classify the name Alex as male or female. With the

collected information, we can use Bayes’ Theorem to determine if it is more likely for

Alex to be male or female.

P (Male|Alex) =
(2
6
)( 6

10
)

( 3
10

)
= 0.66

P (Female|Alex) =
(1
4
)( 4

10
)

( 3
10

)
= 0.33

Figure 2.3: Since the likelihood that Alex is male is greater than the
likelihood that Alex is female, we decide to classify Alex as male.
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Name Sex

Lexi Female

Alex Male

John Male

Alberta Female

Alex Female

Katie Female

Sean Male

Alex Male

Peter Male

Joe Male

Table 2.1: Information collected about the first name Alex and the corre-
sponding sex.

2.4 Performance Measures

Once a classifier has been created, it is necessary to determine how well it performs.

There are four common measurements used for this purpose: accuracy, precision,

recall, and F-measure [16]. These values are calculated using the numbers of true

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)

generated by a classifier during testing, which are modeled in Table 2.2.

Correct Incorrect

Selected TP FP

Not Selected FN TN

Table 2.2: Contingency table.

Accuracy represents the overall correctness of a classifiers predictions and is cal-

culated by dividing the number of correct classifications by the total number of clas-
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sifications (Figure 2.4)[16].

Accuracy =
TP + TN

TP + TN + FP + FN

Figure 2.4: Accuracy Equation.

Unfortunately, accuracy alone is not a good measure of a classifier’s performance.

Consider the case where there are very few correct items in a data set. If a classifier

chose not to select any items as correct, it could still have an extremely high accuracy

since the number of TN would be very high.

To account for this shortfall, precision and recall are also calculated (Figure 2.5).

Precision is the percent of selected items that are correct and is important when the

user requires reliable results. Recall is the percent of correct items that are selected

and is important when the user wishes to capture the largest possible number of

correct results[16].

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Figure 2.5: Equations for Accuracy, Precision, and Recall.

Since there is a major trade-off between precision and recall, developers often

make use of the weighted harmonic mean, or F-measure, of these two values (Figure

2.6)[16].

F =
(β2 + 1)PR

β2P +R
F1 =

2PR

P +R

Figure 2.6: Equations for F-Measure and Balanced F1-Measure, where P
represents precision and R represents recall. β is the desired weight for
precision and recall.

If either precision or recall is more important, a weight (β) can be used to affect

the F-measure accordingly. In most cases, however, precision and recall are weighted

equally (i.e. β = 1), resulting in what is known as the Balanced F1-Measure (Figure

2.6)[16]. The F1 measure ranges from 0 (worst) to 1 (best).
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2.5 Natural Language Toolkit (NLTK)

NLTK is a Python-based platform that provides tools for natural language process-

ing tasks including text classification, tokenization, stemming, tagging, and parsing

[3]. The following features of NLTK are used in this project:

• Part-of-Speech Tagger: NLTK has a built-in part-of-speech tagger which

uses a maximum-entropy model with the Penn Treebank tag-set [3, 17]. This

project uses the output of the part-of-speech tagger to help with the generation

of rules and features from text.

• Stemmer: This project uses NLTK’s Snowball stemmer to make words more

generic by reducing them to their roots.

• Tokenizers: NLTK’s Word and sentence tokenizers are used to break up text

along natural boundaries.

• Stop-words: Stop-word are common words that do not add much meaning to

text, such as “the”, “and” or “it”. NLTK provides a list of stop-words for the

purposes of identification and removal.

• Classifiers: NLTK not only offers numerous types of classifier implementations,

but also provides an API that can be used to access all of them in the same

way. This project primarily uses the built-in Naive Bayes classifier, but other

classifiers were used to test performance as well.

2.6 Stanford Named Entity Recognizer (NER)

Stanford NER is a Java-based tool that labels instances of named entities within

text [8]. It is primarily recognized for its ability to identify references to the names

of people, locations, and organizations, but it is also capable of finding other entities

such as dates, monetary values, and percentages.
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Chapter 3

Related Work

This section discusses the implementations, strengths, and weaknesses of three

current state-of-the-art IE systems: BWI, LP2, and ELIE. All three systems aim to

accomplish the same task: to extract any type of information from documents of any

text type. The performance of these three systems is compared in Tables 6.5 and 6.2.

3.1 Boosted Wrapper Induction (BWI)

In 2000, a rule-learning technique called Boosted Wrapper Induction (BWI) was

used to create an IE system [11]. In this context, a wrapper simply refers to a con-

textual pattern. An example of a wrapper that identifies URLs in HTML documents

might look like this: [<a=href‘‘] [’’>]. Wrapper induction is the process of au-

tomatically learning wrappers, instead of hand-coding them. Traditionally, simple

wrappers have been very effective for retrieving data from highly structured sources,

such as csv files or documents generated by databases. However, wrapper induction

has allowed for information extraction from less-structured sources. For instance,

patterns such as [Who:] or [Dr.] could be used to identify the beginning of speaker

names within a seminar announcement corpus. Still, although these learned wrappers

have very high precision, their recall is very low. In order to raise recall, a process

called Boosting is used, which combines many high-precision patterns to create a

10



single high-recall pattern.

Before going into the details of BWI, a few terms need to be defined. A field

is the desired piece of information, and a boundary consists of the prefix and suf-

fix patterns that surround a field. A boundary detector is a pair of patterns d =

<p, s>, where p is a prefix pattern and s is a suffix pattern, and C (d), a con-

fidence value. Using the previous URL example, when presented with the text

<a=href‘‘www.coolbeans.com’’>, p = <a=href‘‘ and s = ’’>. In addition to

using exact tokens, patterns can also include wildcards, which are special tokens that

represent a set of tokens. The wildcards used by BWI are listed in Table 3.1. A

wrapper is represented by W = <F, A, H>, where F is a set of “fore” boundaries, A

is a set of “after” boundaries, and H (k) is a function that represents the probability

that a field representing a desired piece of information has length k.

Wildcard Description

<Alph> matches any token that contains only alphabetic characters

<ANum> contains only alphanumeric characters

<Cap> begins with an upper-case letter

<LC> begins with a lower-case letter

<SChar> any one-character token

<Num> containing only digits

<Punc> a punctuation token

<*> any token

Table 3.1: Wildcards used by BWI [11].

Figure 3.1: BWI algorithm [11].
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Figure 3.2: The LearnDetector weak learner [11].

The algorithm used by BWI is shown in Figure 3.1. BWI begins by accepting

two training sets, S and E, which are both constructed from the same documents.

S and E both contain sets of boundaries labeled Begin(b) and End(b) respectively.

AdaBoost calls LearnDetector T times to learn the set of “fore” and “after” detectors,

and H is determined by counting the number of fields with length k. LearnDetector

creates a single boundary detector by determining which pattern of length L or less is

most successful over the training set. Each time a detector is returned to AdaBoost,

a confidence value is assigned to it, and the training set is updated accordingly,

with the misclassified items receiving higher priority for the next iteration. Once

the algorithm has completed, a wrapper has been produced that can be used for

information extraction.

3.2 Learning Pinocchio (LP2)

Learning Pinocchio (LP2) was developed shortly after BWI in 2001 [6]. Also a

rule-learning system, (LP2) has two distinct phases:

1. Sets of tagging rules are induced that insert a preliminary tagging.

2. Correction rules are induced that refine the tagging by correcting mistakes
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and imprecision.

In the first phase, initial rules are generated from the training set. Rules consist

of two parts: a left-hand side and a right-hand side. The left-hand side contains a

pattern of conditions over a window of words. These conditions include the word,

lemma, lexical category, case, and semantic class (from a user-defined dictionary or

gazetteer when available). The right-hand side is an action, which inserts a single

XML tag indicating the beginning or end of a target. Table 3.2 represents an initial

rule that is induced from the text, “the seminar at <stime>4 pm will...”.

Condition Some Data Action

word index word lemma LexCat case SemCat Tag

1 the the Art low

2 seminar seminar Noun low

3 at at Prep low <stime>

4 4 4 Digit low

5 pm pm Other low timeid

6 will will Verb low

Table 3.2: Initial rule for “the seminar at <stime>4 pm will...” [6].

After the initial rules are generated, LP2 attempts to generalize them by reducing

their length and relaxing constraints from some of the conditions. An example of a

generalization of the rule in Table 3.2 is shown in Table 3.3. LP2 then accepts the k

best generalizations of the initial rules. A generalization is accepted if it:

1. covers at least a minimum number of cases on the training corpus

2. has an error rate less than a user-defined threshold

Although best rules have very high precision, they also have low recall. In order

to adjust for this, LP2 creates contextual rules, which it draws from the pool of rules

initially rejected in the creation of best rules. In order to increase the reliability of
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Condition Some Data Action

word index word lemma LexCat case SemCat Tag

3 at <stime>

4 Digit

5 timeid

Table 3.3: A generalization for rule in Table 3.2. The pattern is relaxed
in length (conditions on words 1, 2 and 6 were removed) and conditions
on the other words were substituted by other constraints [6].

these rejected rules, they are only used in the context of best rules. For example,

a rule that places </speaker> between and upper-case and lower-case word is not

very reliable on its own. However, if a best rule has been able to insert an opening

<speaker> tag, this rule can be used to close the tag very reliably. The acceptance

of contextual rules is calculated in the same way as best rules, but only matches in

constrained contexts are counted.

The second phase of the LP2 algorithm is the generation of correction rules. The

purpose of a correction rule is to improve boundary detection when tags are misplaced

by tagging rules. Consider this example: “at <time>4</time> pm”. A correction

rule would shift the </time> tag over so that “pm” would be included in the target.

Correction rules are very similar to tagging rules with two exceptions. First, the

conditions on the left-hand side of correction rules include tags that have been inserted

by tagging rules. Second, the action performed by a correction rule shifts the position

of a tag, rather than creating a new one. Correction rules are accepted using the same

algorithm as tagging rules. Using these generated tagging and correction rules, LP2

is able to perform information extraction.

3.3 ELIE

ELIE was developed in 2004 and uses a statistical approach to IE. This system

is a very powerful example of how relatively “standard” machine learning techniques
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can be used to create a competitive system [9].

Similar to BWI and LP2, ELIE separates the identification of start and end tokens

into two distinct tasks. During training, documents are word-tokenized, and all tokens

are used to train two SVM classifiers: a start classifier and an end classifier. All tokens

that have been labeled as the start of a field are used as positive examples for the start

classifier, while all other tokens are used as negative examples. The end classifier is

trained in the same way using field endings. The features associated with tokens and

their surrounding text include part-of-speech, part-of-speech chunking, orthographic

information (i.e. case, punctuation, alphanumeric characters), and gazetteer lookups.

Once the start and end classifiers have been trained, they can be used to create a

learning model (L1), which contains a set of start tokens and a set of end tokens.

This learning model has very high precision, since it is based on a very large number

of negative examples, and a small number of positive ones.

The start and end tokens from L1 are passed to a Tag Matcher, which attempts

to determine which start tokens belong with which end tokens based on position and

average field length. The pairs created by the Tag Matcher are accepted as positive

instances, and any tokens that could not be paired are used to create a second learning

model (L2). L2 also uses a start and end classifier. To train the L2 start classifier,

the unmatched end tokens are used to extract potential start tokens that are within a

fixed distance. A similar process is used for the L2 start classifier. Since the training

data used by L2 has a much higher ratio of positive to negative examples, L2 is likely

to have high recall and low precision. Once L2 has predicted start and end tokens,

the Tag Matcher is used once again to pair the unmatched tokens from L1 with the

newly predicted tokens from L2. These pairs, along with the first set of pairs are

returned as extracted fields. The entire IE process used by ELIE after training is

shown in Figure 3.3.
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Figure 3.3: The IE process used by ELIE [9].
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3.4 Discussion

Although BWI performs competitively with other state-of-the-art methods, it has

a few weaknesses that could be improved on. Firstly, it makes no use of linguistic

data other than the literal words surrounding a target. It is true that wildcards are

used to help generalize text, but they are very limited and a lot of potentially useful

linguistic features, such as part of speech or semantic categorization, are lost. In

addition, the only feature used for the target itself is the average length. The use

of more features such as case, data type, or part of speech for the target field could

greatly improve upon the quality of extracted text.

Unlike BWI, LP2 does very well at making use of all available linguistic infor-

mation and, as a result, performs slightly better. However, as with BWI and other

rule-based systems, the identification of rules is biased towards overfitting to the

particularities of the training data [31]. This becomes an important problem when

dealing with free text, since there can be many ways to communicate a similar idea.

As a statistical approach, ELIE is able to avoid the over-dependence on patterns

demonstrated by BWI and LP2. One potential weakness however, which was also

present in BWI, is the lack of attention paid to target features. Although it is true

that ELIE collects features for the first and last words in a target, nothing besides

average length is ever noted for the target as a whole.
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Chapter 4

Methodology

4.1 Corpora

For this project, corpora were selected to represent each of the structured, semi-

structured, and unstructured text types. The intention for this was that good perfor-

mance across all three corpora would indicate that a system was well-suited for any

text type.

Corpus # Docs Avg Doc Size Labels

CMU Seminar

Announcements

484 1.0 KB speaker, location, stime (start

time), etime (end time)

Seattle Times

Rentals

256 0.1 KB neighborhood, bedrooms, price

GENIA 800 1.4 KB protein, entity

U.S. Company

10-K’s

49 8.7 KB pre (permanently reinvested earn-

ings)

Table 4.1: The corpora used to develop and test the system.
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4.1.1 Carnegie Mellon University Seminar Announcements

The Carnegie Mellon University Seminar Announcements corpus is the most popu-

lar corpus for testing IE systems and consists of 485 seminar announcements collected

from campus newsgroups in 1998 [31]. These documents are an excellent example of

semi-structured text. The labels used by this corpus are presented in Table 4.2. There

can be more than one speaker for a seminar, but only one location, start time, and

end time. However, when annotating a document, the goal is to find every mention of

each. It is important to note that although this corpus is widely used, it is not perfect

as it contains “numerous labeling errors and inconsistencies” [9]. As such, a goal of

perfect performance on this data set is unrealistic. This corpus can be obtained from

the RISE Repository (http://www.isi.edu/info-agents/RISE/ ) [21].

Description

speaker A person who will speak at a seminar

location The location of a seminar

stime The starting time of a seminar

etime The ending time of a seminar

Table 4.2: The labels used by the CMU Seminar Announcements corpus.

4.1.2 Seattle Times Rentals

This corpus is a collection of 256 apartment rentals listed in the Seattle Times and

was created by Stephen Soderland in 1999 in order to test his IE system, WHISK

[33]. These documents follow a highly structured format. A list of labels used in

this corpus is shown in Table 4.3. Each document represents one advertisement,

which can list multiple properties with different neighborhoods, prices, and num-

bers of bedrooms. During annotation, every instance of a neighborhood, price, and

bedroom listing is labeled. This corpus can be obtained from the RISE Repository

(http://www.isi.edu/info-agents/RISE/ ) [21].
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Description

Neighborhood The neighborhood(s) of a rental property

Bedrooms The number of bedrooms in a rental property

Price The price of a rental property

Table 4.3: The labels used by the Seattle Times Rentals corpus.

4.1.3 GENIA

The GENIA corpus contains PubMed abstracts on transcription factors in hu-

man blood cells and was used in the BioNLP’11 shared task [14]. These documents

contain unstructured text, and are particularly interesting because the labeled enti-

ties are not associated with traditional data types and are difficult for people with

no field expertise to identify. For the sake of time and simplicity, a subset of 800

documents and only two of the eleven possible labels are evaluated in this system.

The labels that are used are shown in Table 4.4. Each document can, and usually

does, have many entity and protein labels. This corpus can be obtained from

http://www.nactem.ac.uk/tsujii/GENIA/SharedTask/downloads.shtml.

Description

protein A gene or gene product

entity A cell or cell product

Table 4.4: The labels used by the GENIA corpus.

4.1.4 2012 United States Company 10-K’s

This corpus consists of 49 truncated 10-K’s from U.S. companies in 2012 and was

created for this project. The text within these documents is entirely unstructured.

There is only one label used in this corpus, pre, which represents a company’s Perma-

nently Reinvested Earnings (PRE) for a certain year. Typically, a PRE is only men-

tioned once in a document, although multiple PRE’s from multiple years can be listed.
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The pre is used to find every mention of any PRE within a document. This corpus

was created using publicly available documents from the U.S. Securities and Exchange

Commission EDGAR Database (http://www.sec.gov/edgar/searchedgar/companysearch.html).

Description

pre A company’s Permanently Reinvested Earnings (PRE) for a certain year

Table 4.5: The labels used by 2012 United States Company 10-K corpus.

4.2 Annotation

After the corpora had been selected and obtained, they had to be labeled. The

seminar announcements and rental ad had already been labeled, but the formatting

of the labels for the two was incredibly dissimilar. In order to standardize label

formatting, all corpora were labeled using stand-off format. With the exception of

the BioNLP corpus, which had already been labeled in this fashion, all corpora were

identically hand-labeled using the Brat Rapid Annotation Tool (BRAT)[35]. BRAT

is a flexible, web-based tool that allows users to label entities, relationships between

entities, events involving entities, and attributes of entities within document corpora.

For the purposes of this project, only entity labeling was used. Figure 4.1 shows a

screen-shot of the BRAT user interface.
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Figure 4.1: Using BRAT to annotate a document from the CMU Seminar
Announcements corpus.
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4.3 Training

The IE system begins by accepting an labeled corpus, which it splits into parts:

one for training and another for testing. This section describes what is done with the

training data.

4.3.1 Rules

The first step taken by the system is to generate rules for positive examples of a

target in the training data.

Data Type Rules

The system has several built-in data type rules that search for specific data types

(For a complete list, see Table 4.6). For example, there is a time rule that can be

used to identify instances of times within a document. The system begins by using

these rules to try and identify the data type of the information to be extracted. This

is done by checking the number of positive examples within the training data that

are covered by the targets extracted by a data type rule. If a data type rule finds at

least 90% of the positive examples in the training data, this is considered sufficient

evidence that the information to extract belongs to this data type, and this rule alone

is used to generate potential entities. However, if no data type rules can produce such

excellent coverage, then the rule with the highest coverage percentage above a certain

threshold is accepted as a helper rule, which are used in conjunction with basic rules

to generate potential targets. If no data type rules achieve a coverage percentage

above the minimum threshold for that type, then no helper rule is used.

Basic Rules

For each labeled instance of a target in the training data, a basic rule is created

which consists of three parts: case, part-of-speech (POS), and semantic (SEM). The

POS information is provided by NLTK’s part-of-speech tagger and the SEM informa-
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Data Type Method for Extraction

time Regular expressions

number, int, float Python type checking

named entity, person, organization,

location, date, money

Stanford Named Entity Recognizer

Table 4.6: The built-in data type rules.

tion comes from Stanford NER. Table 4.7 shows what a basic rule would look like for

the text “Prof. John Cool”. Once a basic rule has been generated for every positive

example of a target in the training data, the rules are reduced so that there are no

duplicates. All targets found by both the helper rule (if one exists) and the collection

of basic rules are viewed as potential targets.

Prof. John Cool

Case UPPPER UPPPER UPPPER

POS NNP NNP NNP

SEM O PERSON PERSON

Table 4.7: A basic rule for the text “Prof. John Cool”.

This method of rule-creation is designed to avoid over-fitting in two ways. First,

unlike other systems that generate rules using surrounding text, this system uses only

target text. The reasoning behind this is that there are many ways to express an idea

in free text, and restricting the system to finding contextual patterns from training

documents is potentially limiting. Since the data type of the target generally does not

change and its context does, it makes more sense just to look for possible instances

of the target and then determine if the context is correct later using less restrictive

statistical methods. Second, although basic rules are created directly from patterns

in the text, helper rules are generated using patterns in data types, so the system

does not rely solely on the way targets are portrayed in the training documents.
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4.3.2 Feature Selection

For each resulting potential target, three sets of features are created: prev, post,

and target features.

Target Features

Target features are generated from just the text of a potential target (i.e. no

contextual information is used). The types of features included in the target feature

set heavily depends on the data type predicted during rule generation. The purpose of

target features is to gather information that can be used to tell if the potential target

looks like the correct data type. Consider the task of extracting starting times from

the CMU Seminar Announcements corpus. Times can be written and understood by

humans in various forms (e.g. 4:00pm, 4:00, 4 pm, etc). Assume that during rule-

generation, the system encounters a starting time in the form “4 pm”. The rule that

would be created from this example is shown in Table 4.8. With this rule in place, any

piece of text that matches will be extracted as a potential target. This is problematic,

since any occurrence of a number proceeded by a lower case singular noun will be

considered a potential target. However, we cannot simply discard this rule, because

it has already been proven to capture positive examples. In this case, target features

become very useful, since they can provide information on the similarity of a potential

target to positive examples.

4 pm

Case OTHER LOWER

POS CD NN

SEM O O

Table 4.8: A basic rule for the text “4 pm”.
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Prev and Post Features

Prev and Post features are collected in order to analyze the context of a potential

target within a document. Prev features are based on the words that precede a

potential target, beginning with the first word of the sentence that contains the entity

and ending with the word that directly precedes the entity. Sentence boundaries

are discovered using NLTK’s sentence tokenizer. If sentence boundaries cannot be

detected, as may be the case with structured or semi-structured text, than prev

features are based on up to ten words directly preceding a potential target. The same

process is used to derive post features, except that these are based on words that

proceed a potential target. The same feature types are collected for both prev and

post features, and they are not affected by the predicted data type of a potential

target. Table 4.9 shows the information collected by prev and post features.
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Feature Description

NUM WORDS number of words preceding or proceeding a target (used

only if sentence boundaries are found)

CLOSEST WORD nearest alphanumeric word preceding or proceeding a tar-

get, stemmed, numbers replaced with generic <NUM> to-

kens

CLOSEST PUNCT non-alphanumeric word immediately preceding or pro-

ceeding a target, if one exists

CLOSEST TRIGRAM trigram immediately preceding or proceeding a target,

stemmed, numbers replaced with generic <NUM> tokens

CLOSEST POS TRIGRAM part-of-speech trigram immediately preceding or proceed-

ing a target

CLOSEST PREPOSITION preposition nearest to the start or end of a target

CLOSEST VERB verb nearest to the start or end of a target

CLOSEST NOUN noun nearest to the start or end of a target

Table 4.9: Prev and post features.
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4.3.3 Classifiers

A Naive Bayes classifier is defined for each set of features for a total of three clas-

sifiers: a target classifier, prev classifier, and post classifier. Once each classifier has

been trained, the system is ready to extract information from unlabeled documents.

4.4 Extraction

When given a set of unlabeled documents, the system uses the rules generated

during training to produce a set of potential entities. Features are extracted in the

same way they were during training, and passed to the appropriate classifier. If all

three classifiers positively classify the feature sets of a potential target, then it is

added to the set of results. Figure 4.2 shows an overview of the entire information

extraction process.

Figure 4.2: The entire information extraction process.
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Chapter 5

Experiment

When testing the system, a random 50/50 split of training and testing data was

used, since this was the most popular ratio used by comparable IE systems. All

reported results were obtained by taking the average of performance measures from

ten repetitions of randomly splitting data and extracting results.

5.1 Exact vs. Loose Matches

An issue that requires consideration during evaluation is determining what consti-

tutes a true positive. One standard that can be used is to count only exact matches.

An exact match occurs when the starting and ending indexes of a result exactly match

those of an expected target. For instance, if “Prof. John Cool” with a starting in-

dex of 42 was an expected target and the system returned “Prof. John” with the

same starting index, then “John Cool” would be counted as a false positive, and the

missing “Prof. John Cool” would be counted as a false negative. This approach is

very conservative and is used by all of the systems discussed in the “Related Work”

section.

Another method is to allow “loose” matches to count as true positives. A result

is a “loose” match if any part of it’s text is within the boundaries of an expected

target. In that case, “John Cool” from the previous example would be counted as a
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true positive, and no false positives or false negatives would be produced. However,

if the system returned “John Cool” with a starting index of 213, that would not be

considered a match.

The system was tested using both exact and loose matches in order to provide an

understanding of how well boundary detection is achieved.

5.2 All Slot vs. Single Slot Occurrences

Another question is how to count correct extractions and errors. One method

is to expect the system to return all slot occurrences (ASO). In other words, if a

document contains three targets for a single label, even if the value is the same, the

system is expected to return all three. For instance, if a document from the Seminar

Announcements corpus has two labeled ending times (e.g. “4:00pm” at starting index

23 and “4:00pm” at starting index 55), if the system only returns one, then that

one is counted a true positive, and the other is counted as a false negative. One

important aspect of this approach is that it is highly dependent upon the consistency

of annotations. This is the primary approach used by this system, since most of the

corpora allow multiple values for a single field. ELIE also prefers this system [9].

Another approach is to only expect a single slot occurrence (SSO) for each field.

This method operates on the idea that there is only one value per label in each

document. In the previous example with the two ending times, if the system only

returns one, then that is counted as a true positive, and no false negatives are added.

Despite the fact that this method limits systems to extracting information that only

occurs once in a document, it is used by most IE systems for testing [31].

The system was tested using mostly ASO, although the SSO results for the Semi-

nar Announcements corpus have been provided for the sake of even comparison with

other systems.
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5.3 Questions

The experiment aims to answer the following questions:

1. How does the system perform compared to other systems?

2. How well does system perform boundary detection?

3. How well do rules capture expected results?

4. How does the number of training documents impact system perfor-

mance?

5. How does the system perform with other classifiers?
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Chapter 6

Results

6.1 How Does the System Perform Compared to

Other Systems?

6.1.1 ASO

Table 6.1 shows the system’s precision, recall, and F1 scores using ASO extraction

with both exact and loose matching. The Seattle Times Rentals corpus had the best

overall F1 scores, averaging 82.8 for exact matching and 83.4 for loose matching. The

best F1 performance for a single label was 94.6 for etime. The system performed

significantly better on structured and semi-structured text than it did on unstructured

text.
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Corpus Field
ASO Exact ASO Loose

P R F1 P R F1

CMU Seminar

Announcements

speaker 66.0 43.2 51.8 68.6 44.8 53.8

location 62.1 47.6 53.6 68.6 52.4 59.1

stime 95.7 77.7 85.7 96.3 78.2 86.2

etime 98.5 87.9 92.9 99.3 88.6 93.6

Seattle Times

Rentals

neighborhood 97.5 66.3 78.9 99.9 67.9 80.7

bedrooms 84.8 77.8 81.1 84.8 77.8 81.1

price 97.4 80.9 88.3 97.4 80.9 88.3

GENIA
protein 26.1 26.0 26.1 43.8 43.7 43.8

entity 28.5 49.5 36.1 35.0 60.7 44.4

10-K’s pre 27.6 43.8 32.2 27.6 43.8 32.2

Table 6.1: ASO results. The headers P, R, and F1 stand for precision,
recall, and F1-score respectively.
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Table 6.2 displays the performance results from LP2 and ELIE on the Seminar

Announcements corpus using ASO and exact matching. Both LP2 and ELIE perform

significantly better for speaker and location. They also outperform the system for

stime and etime, but the results are much closer.

Field
System LP2 ELIE

P R F1 P R F1 P R F1

speaker 66.0 43.2 51.8 71.4 68.7 70.0 84.6 85.2 84.9

location 62.1 47.6 53.6 87.2 68.3 76.6 90.0 82.2 85.9

stime 95.7 77.7 85.7 89.0 87.7 88.3 84.7 96.3 90.2

etime 98.5 87.9 92.9 95.4 86.5 90.8 94.8 94.4 94.6

Table 6.2: A comparison of precision (P), recall (R), and F1-measures (F1)
for LP2 and ELIE on the CMU Seminar Announcements corpus using all
slot occurrence (ASO) with exact matching [9].

Unfortunately, it was impossible to obtain any of the other corpora used to test

BWI, LP2, and ELIE, with the exception of the Jobs corpus, which consists of 300

newsgroup messages detailing jobs available in the Austin area. However, it seemed

redundant to compare performance on the Jobs corpus, since it is also semi-structured

text and it was decided that the time it would have taken to hand-annotate the corpus

in standoff format could be better used. In addition, although the Rental Ad and

GENIA corpora did come from outside sources, the performance of other systems on

that data was incomparable to the results from this system.

Since not all corpora used by this system were tested by other systems, a baseline

for performance was created for the sake of comparison. To produce baseline mea-

surements, documents were word-tokenized and the pool of potential targets consisted

of all possible n-grams within range of a label’s average word length. The features

passed to the prev, post, and target classifiers were the respective unigrams, stemmed

and with stop-words removed. Baseline results are shown in Table 6.3. Generally,

the system greatly outperforms the baseline.
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Corpus Field
Baseline System

Exact Loose Exact Loose

CMU Seminar

Announcements

speaker 16.2 32.4 51.8 53.8

location 3.5 45.3 53.6 59.1

stime 0.0 33.9 85.7 86.2

etime 1.5 15.1 92.9 93.6

Seattle Times

Rentals

neighborhood 69.8 79.8 78.9 80.7

bedrooms 48.7 48.7 81.1 81.1

price 39.4 39.4 88.3 88.3

GENIA
protein 2.3 29.5 26.1 43.8

entity 40.1 42.4 36.1 44.4

10-K’s pre 10.2 23.4 32.2 32.2

Table 6.3: ASO Baseline performance for exact and loose matching.
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6.1.2 SSO

Table 6.4 shows the system’s precision, recall, and F1 scores using SSO extraction

with both exact and loose matching. Only the Seminar Announcements corpus is

shown because it does not make sense to use SSO for the other corpora. Technically, it

does not make sense to use SSO with speaker, but since other systems have reported

SSO results for it, they are included. The system’s SSO performance is much better

than its ASO performance. This is expected, since it is much easier to return a

single correct result for a label than finding all possible correct results. The best

performance for a single label was achieved by stime, and etime came in very close

second.

Corpus Field
SSO Exact SSO Loose

P R F1 P R F1

CMU Seminar

Announcements

speaker 73.4 49.3 58.8 75.2 50.5 60.2

location 68.1 44.1 53.4 77.9 50.4 61.0

stime 99.3 99.3 99.3 99.4 99.4 99.4

etime 99.3 97.6 98.4 99.6 97.9 98.7

Table 6.4: SSO results. The headers P, R, and F1 stand for precision,
recall, and F1-score respectively.

Table 6.5 displays the performance results from BWI, LP2, and ELIE on the

Seminar Announcements corpus using SSO and exact matching. All systems perform

better for speaker and location. However, this system outperforms LP2 and ELIE

for exact matching on stime as well as all three systems for etime.
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Field
BWI LP2 ELIE

P R F1 P R F1 P R F1

speaker 79.1 59.2 67.7 87.0 70.0 77.6 91.0 86.0 88.5

location 85.4 69.6 76.7 87.0 66.0 75.1 93.1 80.7 86.5

stime 99.6 99.6 99.6 99.0 99.0 99.0 98.6 98.5 98.5

etime 94.4 94.4 94.4 94.0 97.0 95.5 95.7 97.3 96.4

Table 6.5: A comparison of precision (P), recall (R), and F1-measures (F1)
for BWI, LP2, and ELIE on the CMU Seminar Announcements corpus
using single slot occurrence (SSO) [11, 6, 9].

6.2 How Well Does the System Perform Boundary

Detection?

Boundary detection is the process of finding the correct starting and ending points

for a target. If a system performs well at boundary detection, the targets returned

will be match exactly to the expected output, while a less adept system will return

targets that only loosely match.

The gaps between exact and loose F1 scores in Table 6.6 provide some information

on how well boundary detection is accomplished. The gaps are largest for protein,

entity, and location, whose targets do not have highly formatted data types, if any.

Conversely, bedrooms, price, and pre have no gaps at all, closely followed by stime

and etime. Based on this data, it can be said that the system performs boundary

detection very well, and in some cases perfectly, on targets with structured data

types such as times or dollar amounts. However, as targets become less structured,

boundary detection performance deteriorates.
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Corpus Field
ASO

Exact Loose Difference

CMU Seminar

Announcements

speaker 51.8 53.8 2.0

location 53.6 59.1 5.5

stime 85.7 86.2 0.5

etime 92.9 93.6 0.7

Seattle Times

Rentals

neighborhood 78.9 80.7 1.8

bedrooms 81.1 81.1 0.0

price 88.3 88.3 0.0

GENIA
protein 26.1 43.8 17.7

entity 36.1 44.4 8.3

10-K’s pre 32.2 32.2 0.0

Table 6.6: A comparison of the gaps between F1 scores for exact and loose
matches using ASO.

6.3 How Well do Rules Capture Expected Results?

Table 6.7 shows what precision and recall would be if the system just used the po-

tential targets returned by rules without collecting features and running them through

classifiers. Columns A and B show the results of using both basic and helper rules

with exact and loose matching, respectively. Columns C and D show the results of

using only basic rules to produce potential targets with exact and loose matching, re-

spectively. The goal of rules should be to achieve the highest recall possible, since they

provide the pool of possible results for the classifiers to choose from. In other words,

the maximum F1 score achievable by the entire system is directly related to the recall

score of the rules alone. As expected, loose matching allows for higher recall than

exact matching in almost all cases. Additionally, all recall values for loose matching

with both basic and helper rules are above 96%, which is very good. The data also

shows that in almost every case using helper rules is beneficial to performance.
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Corpus Field A B C D

CMU Seminar

Announcements

speaker 64.6 98.5 68.8 98.3

location 69.6 96.7 67.2 94.1

stime 97.7 99.8 95.9 99.6

etime 97.6 99.5 95.7 98.7

Seattle Times

Rentals

neighborhood 95.7 99.3 92.7 98.2

bedrooms 99.0 99.0 99.0 99.0

price 100.0 100.0 99.3 99.3

GENIA
protein 35.2 99.6 35.4 99.5

entity 36.5 98.8 33.3 96.3

10-K’s pre 94.4 100.0 79.6 83.2

Table 6.7: Recall results when only rules are used without classifiers to
make predictions. Four types of ASO results are shown: (A) exact matches
found with helper and basic rules, (B) loose matches found with helper
and basic rules, (C) exact matches found using only basic rules, (D) loose
matches found using only basic rules.

Table 6.8 shows how much precision is improved by using classifiers instead of just

rules. As expected, classifiers vastly improve precision in all cases.
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Corpus Field A B C D E F

CMU Seminar

Announcements

speaker 3.1 4.9 3.4 5.0 66.0 68.8

location 2.0 2.8 2.3 3.1 62.1 68.6

stime 2.4 2.5 3.2 3.3 95.7 96.3

etime 1.8 1.9 10.3 10.6 98.5 99.3

Seattle Times

Rentals

neighborhood 22.4 23.2 21.1 22.5 97.5 99.9

bedrooms 4.3 4.3 4.6 4.6 84.8 84.8

price 12.1 12.1 8.6 8.6 97.4 97.4

GENIA
protein 3.0 8.9 3.0 8.6 26.1 43.8

entity 0.2 0.5 0.2 0.6 28.5 35.0

10-K’s pre 3.4 3.6 4.9 5.1 27.6 27.6

Table 6.8: A comparison of precision results when only rules are used
without classifiers to make predictions versus the precision results of the
entire system. Four types of ASO results using rules only are shown:
(A) exact matches found with helper and basic rules, (B) loose matches
found with helper and basic rules, (C) exact matches found using only
basic rules, (D) loose matches found using only basic rules. The E and F
columns represent the precision of the entire system using exact and loose
matching respectively.
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6.4 How Does the System Perform with Other Clas-

sifiers?

Table 6.9 shows the ASO results with exact and loose matching using Maximum

Entropy (20 iterations), Decision Tree, and Naive Bayes classifiers. Naive Bayes is

clearly the dominant choice, outperforming the other classifiers in most cases.

Corpus Field
MaxEnt DecTree NBayes

E L E L E L

CMU Seminar

Announcements

speaker 31.1 40.5 25.6 25.6 51.8 53.8

location 51.6 63.5 36.9 38.8 53.6 59.1

stime 90.5 91.6 75.3 75.5 85.7 86.2

etime 91.9 92.9 79.2 79.5 92.9 93.6

Seattle Times

Rentals

neighborhood 78.1 79.8 52.4 52.4 78.9 80.7

bedrooms 83.4 83.4 33.0 33.0 81.1 81.1

price 86.8 86.8 88.1 88.1 88.3 88.3

GENIA
protein 9.5 27.6 8.3 9.2 26.1 43.8

entity 7.7 13.0 71.7 72.5 36.1 44.4

10-K’s pre 27.9 27.9 8.1 8.1 32.2 32.2

Table 6.9: ASO results for Maximum Entropy (MaxEnt), Decision Tree
(DecTree), and Naive Bayes (NBayes) classifers using exact (E) and loose
(L) matching.
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6.5 How Does the Number of Training Documents

Impact System Performance?

Figures 6.1, 6.2, 6.3, and 6.4 show how the F1 scores change with different numbers

of training documents for each corpus. In all cases, F1 score demonstrates logarithmic

growth and generally begins to level out after 40 to 80 documents are used for training.

In some cases, F1-scores drop when the number of training documents increases. This

could be attributed to increased noise in the data.
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Figure 6.1: F1 scores using increasing amounts of training data for the
CMU Seminar Announcements corpus.
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Figure 6.2: F1 scores using increasing amounts of training data for the
Seattle Times Rentals corpus.
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Figure 6.3: F1 scores using increasing amounts of training data for the
GENIA corpus.
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Figure 6.4: F1 scores using increasing amounts of training data for the
10-K corpus.
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Chapter 7

Future Work

The primary goal of any future work would be to improve performance. One

possible solution might be to try using different sets of features. Although many

combinations of features were experimented with during development, it is possible

that there exist features that were not considered.

Another way to improve the system is to allow custom data types. Consider

the speaker label from the Seminar Announcements corpus. It seems correct that

this label falls under the PERSON data type, but this actually leads to poor recall for

exact matching, since the labeled targets typically include titles such as “Professor”

or “Dr.”, which are not considered part of a person’s name by Stanford NER. In this

case, a custom data type such as TITLED PERSON could improve performance.
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Chapter 8

Conclusions

In this project, an IE system that combines techniques from rule-based and sta-

tistical IE systems is developed. It begins with a rule-based approach by creating

rules for targets based on training data, and also introduces a new approach of using

target data types as a secondary form of rule. Once the rules have been used to

extract potential entities, statistical methods are introduced by using classifiers to

analyze target and contextual data to predict results. This hybrid system is able

to avoid certain pitfalls faced by its singular counterparts, including over-fitting to

training data and ignoring target features.

Best performance is observed when targets belong to structured data types and

when important contextual details are nearby. In these cases, results from the sys-

tem were close to, if not better than, other state-of-the-art systems, especially when

using SSO. Unfortunately, in other cases the system performs considerably worse and

significant improvement is needed before the system can be considered a competitive

solution.
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