
DCAMP : DISTRIBUTED COMMON API FOR MEASURING

PERFORMANCE

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Alexander Paul Sideropoulos

December 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32434206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2014

Alexander Paul Sideropoulos

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: dCAMP : Distributed Common API for
Measuring Performance

AUTHOR: Alexander Paul Sideropoulos

DATE SUBMITTED: December 2014

COMMITTEE CHAIR: Michael Haungs, Ph.D.
Associate Professor of Computer Science

COMMITTEE MEMBER: Aaron Keen, Ph.D.
Assistant Professor of Computer Science

COMMITTEE MEMBER: John Bellardo, Ph.D.
Associate Professor of Computer Science

iii

ABSTRACT

dCAMP : Distributed Common API for Measuring Performance

Alexander Paul Sideropoulos

Although the nearing end of Moore’s Law has been predicted numerous times

in the past [22], it will eventually come to pass. In forethought of this, many

modern computing systems have become increasingly complex, distributed, and

parallel. As software is developed on and for these complex systems, a common

API is necessary for gathering vital performance related metrics while remaining

transparent to the user, both in terms of system impact and ease of use.

Several distributed performance monitoring and testing systems have been

proposed and implemented by both research and commercial institutions. How-

ever, most of these systems do not meet several fundamental criterion for a truly

useful distributed performance monitoring system: 1) variable data delivery mod-

els, 2) security, 3) scalability, 4) transparency, 5) completeness, 6) validity, and

7) portability [30].

This work presents dCAMP : Distributed Common API for Measuring Per-

formance, a distributed performance framework built on top of Mark Gabel and

Michael Haungs’ work with CAMP. This work also presents an updated and ex-

tended set of criterion for evaluating distributed performance frameworks and

uses these to evaluate dCAMP and several related works.

iv

ACKNOWLEDGMENTS

In no small part, this thesis is the result of the continuous support I have received

from my family and friends throughout the process. I would also like to say a

special thanks to my committee members and especially to my relentless advisor,

Dr. Michael Haungs, who stuck with this project across all the years.

Lastly, I would like to express very special thanks to my beautiful bride,

Jessica Lindsay, for always encouraging me in this endeavor and selflessly giving

of her time and energy that I might master this work for Father’s glory.

v

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTERS

1 Introduction 1

1.1 Distributed Performance Framework Criterion 2

1.1.1 Data Delivery Models . 2

1.1.2 Security . 2

1.1.3 Scalability . 3

1.1.4 Transparency . 3

1.1.5 Completeness . 3

1.1.6 Validity . 4

1.1.7 Portability . 4

1.2 dCAMP . 4

1.2.1 Terminology . 5

2 Design 9

2.1 Architecture . 9

2.2 Requirements . 10

2.2.1 Functional . 10

2.2.2 Non-Functional . 11

2.3 dCAMP Roles and Services . 11

2.3.1 Services . 11

2.3.2 Roles . 12

2.4 Fault Tolerance . 14

2.4.1 Heartbeating (Detecting Disconnections) 14

2.4.2 Reminder Algorithm (Metric Node Recovery) 15

2.4.2.1 Detection . 16

vi

2.4.3 Promotion Algorithm (Collector Node Recovery) 16

2.4.3.1 Detection . 16

2.4.4 Election Algorithm (Root Node Recovery) 17

2.4.4.1 Detection . 18

2.5 dCAMP Metrics . 18

2.5.1 Global Metrics . 18

2.5.2 Network I/O Metrics . 19

2.5.3 Disk I/O Metrics . 19

2.5.4 Per-process Metrics . 19

2.5.5 Inquiry Metrics . 20

2.6 Configuration . 20

2.6.1 Node Specification . 21

2.6.2 Sample Specification . 22

2.6.2.1 Accumulative Time-Based Filtering Pitfall 22

3 Implementation 24

3.1 dCAMP Operation . 24

3.1.1 Sequence of dCAMP Operation 24

3.1.2 Threading Model . 25

3.2 ZeroMQ Protocols . 27

3.2.1 Topology Protocols . 27

3.2.1.1 Message Definitions 28

3.2.2 Configuration Replication Protocol 29

3.2.2.1 Message Definitions 31

3.2.3 Data Flow Protocol . 34

3.2.3.1 Performance Measurement 35

3.2.3.2 Message Definitions 36

3.2.4 Recovery Protocols . 37

4 Analysis 40

4.1 Transparency . 40

4.1.1 Workload . 41

4.1.2 dCAMP Configuration . 42

4.1.3 Results . 43

4.2 Scalability . 46

4.2.1 Workload . 46

4.2.2 dCAMP Configuration . 46

4.2.3 Results . 47

vii

5 Related Work 51

5.1 Analysis . 51

5.1.1 NetLogger . 52

5.1.2 JAMM . 53

5.1.3 Hawkeye . 53

5.1.4 SCALEA-G . 54

5.1.5 IMPuLSE . 55

5.1.6 Host sFlow . 55

5.1.7 Ganglia . 56

5.2 Summary . 57

6 Conclusions 58

6.1 Summary of Contributions . 58

6.2 Future Work . 59

6.2.1 Additional Features . 59

6.2.2 Fault Tolerance . 60

6.2.3 Improve Performance and Scalability 61

6.2.4 Metric Extensions . 62

BIBLIOGRAPHY 64

APPENDICES

A ZeroMQ Primer 68

A.1 Why ZeroMQ . 68

A.2 Sockets and Message Patterns . 69

A.2.1 Sockets and Messages . 69

A.2.2 Messaging Patterns . 70

A.3 Useful Features for dCAMP . 71

A.3.1 Topic Filtering . 71

A.3.2 Easy Message Debugging 72

A.3.3 Simplified Threading Design 72

A.3.4 Quick Simulation . 72

B Real Life 74

viii

LIST OF TABLES

2.1 Role to Service Mappings . 13

3.1 Metric Types . 36

ix

LIST OF FIGURES

2.1 Configuration File - Node Specification 21

2.2 Configuration File - Sample Specification 22

3.1 Sample Watchdog Script . 24

3.2 Node, Role, Services Threading Model Diagram 26

3.3 Topology Protocols . 27

3.4 Topology Protocol Diagram . 28

3.5 TOPO Message Definition . 28

3.6 CONTROL Message Definition . 29

3.7 WTF Message Definition . 29

3.8 Configuration Protocol Specification 30

3.9 Configuration Protocol Diagram 31

3.10 ICANHAZ Message Definition . 32

3.11 KVSYNC Message Definition . 32

3.12 KTHXBAI Message Definition . 33

3.13 KVPUB Message Definition . 33

3.14 HUGZ Message Definition . 33

3.15 Data Flow Diagram . 34

3.16 Data Flow Specification . 35

3.17 DATA Message Definition . 37

3.18 Branch Recovery Protocol . 37

3.19 Branch Recovery Protocol Diagram 38

3.20 Root Recovery Protocol . 38

3.21 Root Recovery Protocol Diagram 39

4.1 Recursive 25th Fibonacci PHP Script 42

4.2 Transparency - 25th Fibonacci . 44

x

4.3 Transparency - 5MB Download 45

4.4 Scalability - Steady-State Network Bytes 47

4.5 Scalability - Steady-State Network Packets 48

4.6 Scalability - Average Network Utilization 49

4.7 Scalability - Average Network Utilization Per Node 50

xi

CHAPTER 1

Introduction

As the Internet has become more pervasive in today’s business economy, there

has been a natural trend of distributing large, complex systems across multiple

components locally and throughout the world. These systems are not always

homogeneous with respect to hardware architecture or even operating system,

and development of these systems can prove to be quite difficult even with the

best tools available. In order to effectively build these systems, software engineers

must be able to test their system for performance defects as well as bottlenecks.

Additionally, distributed systems must respond to changes in availability and

work load on its individual nodes.

Distributed performance testing frameworks supply software practitioners and

system administrators with tools to evaluate the performance of a system from

both black box and white box perspectives by publishing interfaces for instru-

menting, collecting, analyzing, and visualizing performance data across the dis-

tributed system and distributed applications. Distributed performance monitor-

ing frameworks, often considered part of the testing framework, provide a black

box interface into monitoring a distributed system or application and usually in-

cludes mechanisms for triggering actions based on performance events. For the

purpose of this work, the term distributed performance framework is introduced

to collectively refer to both distributed performance testing and distributed per-

formance monitoring frameworks.

1

1.1 Distributed Performance Framework Criterion

In order for practitioners and researchers alike to effectively choose a distributed

performance framework, it is necessary to have a set criteria for evaluation. Pre-

sented here is an extended criterion of the general requirements presented by [30]

for grid systems. Data Delivery Models and Security have been taken directly

from their work. Scalability has been modified to only consider good performance

as its goal while Low Intrusiveness has been turned into Transparency. Extensi-

bility has been removed from the list, and Completeness and Validity have been

added. This work provides an alternate definition for Portability.

1.1.1 Data Delivery Models

Monitoring information includes fairly static (e.g., software and hardware con-

figuration of a given node) and dynamic events (e.g., current processor load,

memory), which suggests the use of different measurement policies (e.g., periodic

or on demand). In addition, consumer patterns may vary from sparse interac-

tions to long lived subscriptions for receiving a constant stream of events. In this

regard, the monitoring system must support both pull and push data delivery

models. [30]

1.1.2 Security

Certain scenarios may require a monitoring service to support security services

such as access control, single or mutual authentication of parties, and secure

transport of monitoring information. [30]

2

1.1.3 Scalability

Monitoring systems have to cope efficiently with a growing number of resources,

events and users. This scalability can be achieved as a result of good performance

which guarantees that a monitoring system will achieve the needed throughput

within an acceptable response time in a variety of load scenarios. [30]

1.1.4 Transparency

Transparency refers to the lack of impact a distributed performance framework

makes on the system being monitored. As [30] states, it is “typically measured

as a function of host (processor, memory, I/O) and network load (bandwidth)

generated by the collection, processing and distribution of events.” If a frame-

work lacks transparency it will fail to allow the underlying distributed system

to perform well and will produce inaccurate performance measurements, thereby

reducing its Scalability and destroying its Validity.

1.1.5 Completeness

The Completeness of a distributed performance framework refers to the exhaus-

tiveness to which it gathers performance metrics. At a minimum, a framework

must provide interfaces for measuring and aggregating performance data about a

system’s processor, memory, disk, and network usage. Several distributed perfor-

mance frameworks provide further detailed performance metrics about the given

distributed system being monitored, but this is usually at the cost of Portability.

3

1.1.6 Validity

A distributed performance framework is only as good as the data is produces;

if the sensors or gathering techniques are inaccurate, then the data is useless at

best, misleading at worst. Validity of a framework is achieved when the authors

of a framework provide formal verification of its accuracy.

1.1.7 Portability

A framework’s ability to run on a completely heterogeneous distributed system

without special considerations by the practitioner is what this work defines as

Portability. More specifically, a portable framework has a unified API regard-

less of the system architecture, does not restrict itself to applications written in

specific programming languages, and does not require practitioners to manually

instrument their application code. This black box characteristic is vital for a

viable distributed performance framework’s effectiveness as it allows practition-

ers to focus on the performance data and not on a myriad of APIs for various

architectures or languages.

1.2 dCAMP

The Distributed Common API for Measuring Performance (dCAMP) is a dis-

tributed performance framework built on top of Mark Gabel and Michael Haungs’

2007 research on CAMP: a common API for measuring performance [4]. The

fundamental functionality of CAMP is providing an accurate and “consistent

method for retrieving system performance data from multiple platforms.”

dCAMP takes advantage of this functionality and the authors’ work done

in validating CAMP ’s accuracy and adds the core feature sets listed below. As

4

shown in the analysis work presented in Chapter 4, dCAMP adds these features

while still maintaining minimal impact on the systems, processes, and networks

being monitored.

The key contributions of dCAMP are:

• a stateful performance API,

• distributed performance data aggregation,

• performance filters and triggers, and

• simplistic fault tolerance.

1.2.1 Terminology

Knowing the following terminology will make it easier to understand and discuss

the dCAMP project, its main goals, its usage, its components, and its inner

workings.

Distributed Performance Testing Framework (DPTF),

Distributed Performance Monitoring Framework (DPMF),

Distributed Performance Framework (DPF): An DPTF or DPMF (collec-

tively termed DPF) is a framework which allows its users to evaluate the

performance of a system from both black box and white box perspectives

by publishing interfaces for instrumenting, collecting, analyzing, and vi-

sualizing performance data across the distributed system and distributed

applications. Typically, the framework provides a black box interface into

monitoring a distributed system or application and includes mechanisms

for triggering actions based on performance events. The dCAMP project

is designed to be a DPF.

Performance Metric,

5

Performance Counter: Performance metrics are any data about a given node

relating to its throughput, capacity, utilization, or latency. In dCAMP,

these are grouped into four different sets of performance metrics—global,

network, disk, and per-process—and a fifth set of inquiry metrics. They

are described fully in section 2.5.

Metric Aggregation: Metric aggregation is the process of combining metrics

from multiple nodes into a single metric. Performance metrics, while useful

at an individual system granularity, can be rather limited in value for a DPF

where the goal is measurement of the distributed system as a whole. Met-

ric aggregation provides a coarser granularity for the performance metrics,

calculating a sum, average, percent, or any other mathematically relevant

operation across multiple nodes in the system.

Metric Calculation: Metric calculation is the process of combining identical

metrics from multiple timestamps into a single metric. Various equations

and inputs are used to do this calculation, chosen depending on the type of

metric and desired representation; these equations are listed in Table 3.1.

Filter,

Throttle,

Threshold: Filtering (or throttling or thresholding) provides a mechanism for

reducing the amount of data sent between nodes of the system. Filtering

allows a user to specify when or at what point to report metrics from one

level to its parent. For example, a filter might be set to only report average

CPU utilization that is over seventy-five percent.

dCAMP Node,

dCAMP Process: A single, independently running instance of dCAMP in the

distributed system is called a dCAMP node or process. More than one

6

node may exist on a single computer. A node consists of the Node role and

zero or more other dCAMP roles.

dCAMP Service: Services are a way of logically grouping functions within

the dCAMP system, from performance metric sampling to dCAMP system

management. A description of all the dCAMP services can be found in

section 2.3. Each service is implemented in dCAMP as an independent

thread.

dCAMP Role: Roles in the dCAMP system are groupings of one or more

dCAMP services. There does not exist a one-to-one relationship between

roles and services; the dCAMP role-to-service mapping can be seen in Table

2.1.

dCAMP Hierarchy: The dCAMP system is organized in a hierarchical pat-

tern with respect to data movement and system control functionality. The

hierarchy can be thought of as a tree structure, with leaf nodes being at

the top of the hierarchy and a single root node at the bottom. Metric data

moves down the hierarchy from leaves to the root; configuration data and

control commands move up from the root to the leaves.

dCAMP Level: Levels are a way of organizing the dCAMP hierarchy horizon-

tally. Levels are defined by their distance from the root node. For example,

level one is one node away from the root node, or said another way, the first

level is directly “connected” to the root node. The second level is two nodes

away from the root node, or any node in the second level is connected to

the root node by another node (in the first level). This necessarily means

the root is in level zero (all by itself).

Parent Node: Nodes are called parent nodes if there exists at least one node

connected to it from a level of higher ordinal value. For example, a node in

7

level one with at least one node connected to it from level two is considered

a parent node. The root node is inherently a parent node.

Child Node: A node is called a child node if it is connected to another node in

a level of lower ordinal value. For example, a node in level one is connected

to the root node (in level zero), so it is called a child node. The root node

is the only node in the dCAMP system which is not a child node.

dCAMP Configuration: The dCAMP configuration specifies everything about

the system, including hierarchy levels, metrics, sampling periods, reporting

periods, filtering, communication details, etc. The configuration is set at

the root node and then distributed to the rest of the dCAMP system. Con-

figuration details can be found in section 2.6.

ZeroMQ,

zmq,

ØMQ: ZeroMQ is a message queuing framework which allows a developer to

build distributed systems by focusing on the data and implementing simple

design patterns.

ZeroMQ Address: A ØMQ address is the combination of network host iden-

tifier (i.e. an IP Address or resolvable name) and Internet socket port

number.

ZeroMQ Endpoint: An endpoint is the combination of any ZeroMQ transport

(pgm, inproc, ipc, or tcp) and a ØMQ address.

Metric Collection,

Metric Sampling: Metric collection or sampling is the process of measuring

metrics on a given node.

Metric Reporting: Metric reporting is the process of sending sampled metrics

to a parent node.

8

CHAPTER 2

Design

dCAMP is designed to be simple and only add complexity where needed. This

allows for quick and easy, large scale testing, for example. Additionally, in order

to be transparent, minimizing network traffic was an important concern.

To this end, dCAMP configuration and management protocols are designed

to be human-readable and verbose; this makes them easy to debug and modify

as needed. The data protocol, while also human-readable in its current form, is

terse with respect to the number of required messages and can be easily modified

to use a more compact encoding scheme.

2.1 Architecture

dCAMP is designed as a semi-centralized, hierarchical peer-to-peer system uti-

lizing the UNIX Pipes and Filter architectural pattern [6] in which leaf (Metric)

nodes of the hierarchy collect data, filter out extraneous data, and send it up

the pipe to a parent (Collector) node which subsequently filters out more data

and sends it up to another parent (Collector or Root) node. This architecture

is efficient in that unwanted data is discarded earlier in the data path, reducing

transport and processing costs.

9

2.2 Requirements

As with any software engineering project, it is vital to have clearly stated require-

ments. dCAMP is no different. Below are the list of functional and non-functional

requirements which guide its design and implementation.

2.2.1 Functional

1. Configuration and Management

• An interface to instantiate and administer the system MUST be pro-

vided.

• Topology coordination MUST be handled automatically.

• An interface for configuring metric collections MUST be provided.

2. Metric Collection

• An API for stateful, aggregate metrics on top of CAMP must be pro-

vided.

• Filters and thresholds SHOULD be configurable at any level in the

collection topology.

• Aggregation of metrics across nodes MUST be supported.

• Performance data SHOULD be written to log files on each node.

3. Fault Tolerance

• The topology MUST sustain brief network disconnectivity of any node.

• The topology MUST handle entrance/exit of any node(s) in the sys-

tem.

– Metric nodes MUST be allowed to enter/exit topology at any

time.

10

• Root/Collector nodes (i.e. parents) MUST failover in case of extended

disconnectivity.

– Loss of previously collected data SHOULD be minimized during

failover.

• Management node MAY be allowed to enter/exit topology at any time.

2.2.2 Non-Functional

1. Transparency: dCAMP SHOULD introduce negligible performance impact

on Metric nodes.

2. Accuracy: dCAMP MUST accurately report performance of Metric nodes

(individual and aggregated).

3. Scalability: dCAMP SHOULD maintain its transparency and accuracy as

it scales (i.e. the number of Metric nodes increases).

2.3 dCAMP Roles and Services

The dCAMP distributed system is comprised of one or more nodes, each execut-

ing a role. The role is essentially a named grouping of a specific, known set of

functionality or service. Roles have little to no actual run-time logic but simply

act as containers for the services; services manage ZeroMQ sockets, communicat-

ing with other services/nodes, and do the real work of dCAMP.

2.3.1 Services

Each dCAMP service has a specific purpose, but its scope can vary depending

on the node’s level in the dCAMP topology.

11

For example, the Configuration service has a specific purpose of replicating

the dCAMP configuration from the Root to every node in the system via three

distinct scopes: root, branch, and leaf. As part of the Root node, the Configura-

tion service acts as a master copy of the configuration and publishes new values

as needed. As part of a Collector node, the Configuration service stores every

update from the Root (for possible use if the Root dies) but no other changes

are allowed to be written. Lastly as part of a Metric node, only configuration

updates relevant to the node are stored by the Configuration service.

• Node—rudimentary dCAMP functionality; handles topology communica-

tion, heartbeat monitoring, and failure recovery.

• Sensor—local performance metric gathering; essentially the dCAMP layer

on top of the OS and hardware performance APIs (accessed via CAMP).

• Filter—performance metric filtering; provides throttling and thresholding

of metrics.

• Aggregation–performance metric aggregation; provides collection of and

calculation on metrics from multiple Sensor and/or Aggregation services.

• Management–primary entry-point for end-user control of dCAMP dis-

tributed system; this is the dCAMP instrument panel, providing basic ad-

ministration functions (e.g. start, stop, etc.).

• Configuration–complete or partial configuration replication; provides topol-

ogy and configuration distribution.

2.3.2 Roles

The Base role must be running on each node for it to be part of the dCAMP

distributed system. In this document, a “Base node” is defined as a dCAMP

node which has not yet been configured, i.e. it has not joined a running dCAMP

12

Role Service(s)
Root Management, Aggregation, Filter, Configuration (Full)
Collector Aggregation, Filter, Configuration (Full)
Metric Sensor, Filter, Configuration (Partial)
Base Node

Table 2.1 – Role to Service Mappings

system. All other roles are launched from within the Base role; see Section 3.1.2

for more details.

The Metric role runs on the nodes from which performance metrics should

be collected. The Collector role acts as an aggregation point in the system,

combining performance data from multiple Metric (and Collector) nodes and

providing additional aggregated performance metrics.

There is only one Root role active in the system; it acts as the master copy

of the dCAMP configuration and sole user-interface point. The Root role is not

strictly attached to any given node in the system. Rather, the Root role may

dynamically move to any first-level Collector node if the current Root node fails.

Depending on the use case and desired system performance, an administrator

may choose to split roles across multiple nodes or collapse them onto a single

node. For example, a single node may act as Metric, Collector, and Root for

smaller systems while larger systems would employ dedicated Collector nodes.

The dCAMP Configuration syntax easily provides this flexibility to the system

administrator.

Table 2.1 lists the roles which can be executed by a dCAMP node and the

services which they implement.

13

2.4 Fault Tolerance

In order to maintain a healthy distributed topology, dCAMP quickly and effi-

ciently recovers from node failures using simple fault tolerance rules. These rules

define how and when nodes are considered to have failed as well as the specific

steps for recovering and/or rebuilding the distributed topology.

2.4.1 Heartbeating (Detecting Disconnections)

dCAMP detects node failures or disconnections via a lack of messages, e.g. missed

X consecutive messages or no messages received after D seconds. All messages

act as heartbeats, not just the special HUGZ messages. By designing the protocols

with this in mind, network traffic can be minimized.

The dCAMP node failure detection rules are the following:

• Metric nodes MUST detect when their parent (Collector) node disconnects.

(Promotion Algorithm)

• The Root node MAY detect when a Collector node disconnects. (Promotion

Algorithm)

• Collector nodes MUST detect when the Root node disconnects. (Election

Algorithm)

• The Root node MUST detect when a Metric node rejoins the system. (Re-

minder Algorithm)

Because of the nature of ZeroMQ sockets, Collector nodes should not need to

know when a child (Metric) node disconnects—when the child node reenters the

topology, it is simply reassigned underneath the Collector and resume its metric

collection and reporting.

14

Alternative approaches to Collector node failure detection are (A) use of an

ephemeral time-to-live (TTL) property stored by the Configuration service and

(B) Collector -to-Collector heartbeating. (B) introduces additional network traf-

fic and cannot scale with sufficiently large topologies. Furthermore, the same

essential functionality is present in (A) as the TTL would propagate to all Col-

lector nodes via the Configuration service.

While approach (A) provides an additional detection mechanism for Collector

node disconnections (namely the Root would detect Collector failures as the TTL

expires), it is simpler and arguably no less resilient to solely detect failures from

the child node’s perspective.

2.4.2 Reminder Algorithm (Metric Node Recovery)

Metric nodes can leave and enter the dCAMP system at any time. When they

rejoin, they are placed back into the same location within the topology so as to

maintain as much consistency within the performance data as possible.

The crux of this algorithm is the group definitions within the dCAMP config-

uration: nodes are always defined to be within a group, and the groups define the

network topology. Essentially, this algorithm is incorporated into the Topology

protocol; no additional work is necessary.

1. Metric node rejoins the system with POLO response to Root node’s MARCO

message.

2. Root node detects Metric node is already part of dCAMP system.

3. Root node (re)sends ASSIGN message to Metric node.

Collector nodes will not be overloaded by this algorithm since Metric nodes

are statically defined in groups via the dCAMP Configuration. As Metric nodes

15

disconnect and reconnect, the Collector node virtually always has the same child

nodes beneath it.

2.4.2.1 Detection

Detecting when a Metric node disconnects is not necessary. Rather the Root node

only needs to detect when a Metric node rejoins the dCAMP system, comparing

the Metric node’s UUID to the UUID already saved in the topology.

2.4.3 Promotion Algorithm (Collector Node Recovery)

As with the Reminder Algorithm, this recovery relies heavily on the Topology

Management Protocol. When a Metric node, M, detects its Collector node, C,

is down,

1. M sends an SOS message to the Root node, R.

2. If R has received an SOS message from more than 1/3 of C’s group, the

algorithm proceeds as per below.

When the Root node, R, detects one of the Collector nodes has disconnected,

1. R broadcasts a STOP message to all nodes within C’s group and clears the

groups configuration from the dCAMP system.

2. R then broadcasts a MARCO message and begins rebuilding the group topol-

ogy via the Topology protocol.

2.4.3.1 Detection

M will use the Configuration Replication Protocol (HUGZ message is sent when

there are no configuration updates) to detect when C disconnects. R will use the

16

Data Flow Protocol (DATA(type=’HUGZ’) message is sent when no data is sched-

uled to be reported) to detect when any of its Collector nodes has disconnected.

That is, if M or R receives no messages from C within D seconds, C is considered

disconnected.

2.4.4 Election Algorithm (Root Node Recovery)

This recovery algorithm is based on the bully algorithm presented by H. Garcia-

Molina in [5]. Only Collector nodes participate in the election, initiated when a

Collector node, C, detects the Root node, R, is down.

1. C sends WUTUP message to all nodes whose UUID is higher than its own,

expecting a YO message in response.

2. If C does not receive any YO messages,

(a) C declares victory by sending IWIN message to all nodes, and

(b) C waits W seconds before transitioning to become the Root, allowing

for another node to replace it as Root via a separate election.

3. If C receives a YO message,

(a) C waits for W seconds to receive an IWIN message from another node

whose UUID is higher than its own.

(b) If no IWIN message is received, C resends its WUTUP message and goes

through the election process again.

Additionally,

• If C receives a WUTUP message from a node whose UUID is lower than its

own, C responds with a YO message and then starts its own election.

• If C receives an IWIN message from a node whose UUID is lower than its

own, C immediately begins a new election.

17

2.4.4.1 Detection

C will use the Configuration Replication Protocol (HUGZ message is sent when

there are no configuration updates) to detect when R disconnects. That is, if C

receives no message from R within D seconds, R is considered disconnected.

2.5 dCAMP Metrics

The crux of any DPF are the performance metrics to which it provides access.

This section lists the set of performance metrics designed within dCAMP. Metrics

marked with “(dCAMP)” are extensions added by the dCAMP project to the

basic CAMP metrics. These provide a performance view of multiple nodes in the

distributed network and are collected by the Aggregation service rather than the

Sensor service.

It should be noted here: only a basic subset of these metrics are actually

implemented in the current version of dCAMP as a proof of concept. Please,

refer to page 62 of the Future Work section for more details.

2.5.1 Global Metrics

Global metrics measure overall CPU, process, thread, and memory usage of the

system.

• Node CPU usage

• Node free physical memory

• Aggregate average CPU usage (dCAMP)

• Aggregate free physical memory (dCAMP)

18

2.5.2 Network I/O Metrics

Network metrics measure utilization of a given network interface on the system.

• Total bytes sent on the given interface

• Total packets sent on the given interface

• Total bytes received on the given interface

• Total packets received on the given interface

• Aggregate bytes sent (dCAMP)

• Aggregate packets sent (dCAMP)

• Aggregate bytes received (dCAMP)

• Aggregate packets received (dCAMP)

2.5.3 Disk I/O Metrics

Disk I/O metrics measure throughput of a given disk or partition on the system.

• Number of read operations on the given disk

• Number of write operations on the given disk

• Number of read operations on the given partition

• Number of write operations on the given partition

• Aggregate number of read operations (dCAMP)

• Aggregate number of write operations (dCAMP)

2.5.4 Per-process Metrics

Per-process metrics measure CPU, memory, and thread usage for a single process

on the system.

• Number of major and minor page faults

19

• Process CPU utilization

• Process user mode CPU utilization

• Process privileged mode CPU utilization

• Size of the process’ working set in KB

• Size of the used virtual address space in KB

• Number of threads contained in the process

2.5.5 Inquiry Metrics

Inquiry metrics provide a mechanism for enumerating various properties of the

system.

• Enumeration of the available disk partitions

• Enumeration of the available physical disks

• Enumeration of the valid inputs to the network functions

• Number of CPUs in the system

• “process identifier” for the given PID

• “process identifier” for each running process launched from an executable

of the given name

2.6 Configuration

A main feature of dCAMP is the configuration language which gives a system

administrator a concise, powerful tool for defining its performance monitoring

behaviour. Two primary sets of parameters are needed in this configuration: the

set of nodes to include in dCAMP and the set of metrics those nodes will collect.

While it would be possible for dCAMP to be designed such that branches

of the distributed hierarchy are automatically formed based on dynamic inputs

20

(e.g. node locality, performance metric configuration, balance of network vs

CPU/memory impact), the approach taken in dCAMP gives the system admin-

istrator control over this parameter.

Specifically, nodes are defined in groups within the dCAMP configuration,

and each group is defined to collect one or more distinct performance metrics.

This gives the system administrator the freedom to collect varying metrics from

each branch of the topology and/or collect metrics at varying sample periods.

2.6.1 Node Specification

Nodes may be specified individually (as ZeroMQ addresses) or as groups (IP

subnets). Additionally, nodes may be included or excluded based on host name

or IP Address matching. Name matching does a case-insensitive comparison

of the node’s host name; left, right, or whole name matching can be specified.

Address matching checks that the node’s IP Address falls within a given subnet

(i.e. IP Address and mask length).

node-spec = address / node-group

address = host ":" port

host = name / ip-address

node-group = name 1*(address / (subnet ":" port)) *filter

subnet = ip-address "/" mask-length

filter = ["+" / "-"] (name-match / subnet-match)

name-match = [("L" / "R" / "W") SP] name

subnet-match = subnet

Figure 2.1 – Configuration File - Node Specification

21

2.6.2 Sample Specification

Performance metric samples are specified as:

1. the node(s) on which to sample the data,

2. the rate at which data should be sampled,

3. the threshold past which data should be reported, and lastly

4. the actual performance metric to be sampled.

The report threshold can be specified as “hold and report every N seconds” or

“report when the metric value is greater/less than X”. When “hold” is specified

(via an *), all metric values sampled during the time limit are sent. Otherwise, the

< or > character indicates the metric should only be reported when its calculated

value is less-than or greater-than the given threshold value.

sample-spec = 1*sample

sample = sample-rate [report-threshold] metric

sample-rate = seconds

report-threshold = ("*" seconds) / (("<" / ">") 1*DIGIT)

metric = (global-metric / process-metric process-name)

global-metric = "CPU" / "MEMORY" / "DISK" / "NETWORK"

process-metric = "PROC_CPU" / "PROC_MEM" / "PROC_IO"

seconds = 1*DIGIT "s"

Figure 2.2 – Configuration File - Sample Specification: Only a basic

subset of metrics are implemented in the current version of dCAMP as a proof

of concept. Please, refer to page 62 of the Future Work section for more details.

2.6.2.1 Accumulative Time-Based Filtering Pitfall

Filtering can be thought of being done in one of two ways: accumulatively or

discretely. Accumulative means only one final value is reported for each time

range (e.g. collect every second but report every minute, so sixty samples are

22

combined into a single value and then sent). Discrete means each constituent

value is sent for each time range, but they are “held” until the time limit is

reached.

However, accumulation is not valuable for monotonically increasing values—

it is the same as just sampling at the slower frequency. Accumulation is only

valuable for non-monotonically increasing values, but in that case, one should

find the raw, monotonically increasing values from which it is calculated and

collect that metric instead.

23

CHAPTER 3

Implementation

3.1 dCAMP Operation

3.1.1 Sequence of dCAMP Operation

The following steps describe how the dCAMP system is turned on. The Base

nodes (other than the node assigned to be the Root) can be started at any time by

using the dCAMP CLI, before or after the Root node is initialized. It is expected

these Base nodes are managed by a watchdog utility that automatically restarts

the node if it exits for any reason; a sample watchdog utility is shown in Figure

3.1.

#!/usr/bin/env bash

while [true]

do

dcamp base --address localhost :56789

done

Figure 3.1 – Sample Watchdog Script

1. User promotes a Root node via the dCAMP CLI, specifying a configuration

file and a Base node’s address.

2. Root node connects to each Base node and begins the discover Topology

Protocol.

24

3. Base nodes join the dCAMP system at any time, being assigned as Collector

or Metric nodes in the topology.

4. dCAMP runs in a steady state, nodes entering or exiting the system at any

time.

• Performance counters are sampled, filtered, reported, and logged by

the Metric nodes at regular intervals according to the dCAMP Con-

figuration.

• Performance counters received from child nodes are aggregated, fil-

tered, reported, and logged by Collector nodes at regular intervals

according to the dCAMP Configuration.

• Performance counters received from child nodes are aggregated and

logged by Root node for later processing (e.g. graphing metrics during

a test scenario or correlating statistics with a distributed event log).

5. User stops dCAMP by using the dCAMP CLI command.

6. Root node begins the stop Topology Protocol.

7. Collector and Metric nodes exit the topology and revert to Base nodes.

8. Root node exits, reverting to Base node.

3.1.2 Threading Model

As mentioned above as the first and third steps of dCAMP operation, a Base

node can transform into one of the three active dCAMP roles: Root, Collector,

or Metric. This transformation is actually the Base role (via the Node service)

launching and managing another role internally. This interaction is depicted in

Figure 3.2.

25

Figure 3.2 – Node, Role, Services Threading Model Diagram: Thread

boundaries are represented by dashed lines. Except for the Node service’s SUB

and REQ sockets, all arrows represent PAIR socket communication.

When a Base node is running, only the bottom two threads (the Base role and

the Node service) are active. Once it receives an assignment from the discover

Topology Protocol or the dCAMP CLI, the Node service launches an appropriate

role thread which, in turn, launches one or more role-specific service threads.

All communication between the roles and services occurs across PAIR control

sockets. There are also various service-to-service communications which occur

via inproc transport sockets (e.g. the internal Data Flow Protocol) and shared

memory data structures (e.g. the Configuration service).

Also mentioned in section 3.1.1 as the last two steps, each role exits and, by

doing so, reverts itself back to a Base node. This is handled just like before, with

the Node service receiving a STOP message via the stop Topology Protocol and

then notifying the internally running role to shut down. The role thread then

26

notifies its service threads, waits for them to finish, then exits.

3.2 ZeroMQ Protocols

ZeroMQ is a fantastic message queuing framework that essentially provides more

intelligent sockets as building blocks for distributed systems. ZeroMQ handles

the intricacies of sending messages between two endpoints and lets the application

handle the rest of the logic. The protocols described in this section do not come

from ZeroMQ, rather they are built using ZeroMQ sockets and message patterns.

For a quick background on ZeroMQ socket types and message patterns, please

see Appendix A.

3.2.1 Topology Protocols

The dCAMP distributed topology is dynamically established as the Root node

sends out its discovery message and receives join messages from Base nodes.

When a Base node responds to the Root, the Base node is given its assignment.

To reduce network traffic and load on the Root, Base nodes are designed to

ignore MARCO messages from nodes whose UUID matches a previous successful

topology discovery handshake. The Root node uses this to its advantage when

attempting to stop nodes: the same MARCO / POLO pattern is used, but the Root

node uses a different UUID in the MARCO message and a responds with a STOP

message instead of an assignment.

discover = *R-MARCO B-POLO (R-ASSIGN / R-WTF)

stop = R-MARCO B-POLO (R-STOP / R-WTF)

Figure 3.3 – Topology Protocols: R- represents the Root node sending a

message and B- represents a Base node sending a message.

27

Figure 3.4 – Topology Protocol Diagram: (1) Root sends MARCO at regular

intervals, (2) Base sends POLO request, (3) Root replies with ASSIGN or STOP

3.2.1.1 Message Definitions

TOPO is a generic topology message consisting of four frames. This message type

is designed to be sent across a PUB/SUB connection, from which subscribers

filter incoming messages using the first frame. This design proves useful for the

Recovery Protocols.

The MARCO message is simply shorthand for TOPO(key="/MARCO").

Frame 0: key, as 0MQ string

Frame 1: root address, as 0MQ string

Frame 2: root UUID, 16 bytes in network order

Frame 3: <empty> or content, as 0MQ string

Figure 3.5 – TOPO Message Definition

CONTROL is a generic control message consisting of four frames and designed to

be sent across a REQ/REP connection. The POLO, ASSIGN, and STOP messages are

shorthand for CONTROL(command="POLO"), CONTROL(command="ASSIGN"), and

CONTROL(command="STOP") respectively.

28

In the case of ASSIGN, the third frame contains the specific topology instruc-

tions (level-one collector, leaf node, etc.) being sent to the Base node.

Frame 0: command, as 0MQ string

Frame 1: base address, as 0MQ string

Frame 2: base UUID, 16 bytes in network order

Frame 3: properties, JSON-encoded, as 0MQ string

command = "polo" / "assignment"

properties = *(parent / level / group)

parent = "parent=" <node-address>

level = "level=" ("root" / "branch" / "leaf")

group = "group=" <group-identity>

Figure 3.6 – CONTROL Message Definition

WTF is dCAMP ’s error message type. It has three frames (though Frame 2

may be empty) with the first designed to make error detection simple.

Frame 0: "WTF", as 0MQ string

Frame 1: error code, 4 bytes in network order

Frame 2: <empty> or error message, as 0MQ string

Figure 3.7 – WTF Message Definition

3.2.2 Configuration Replication Protocol

dCAMP configuration and topology state are replicated across the system using

key-value pairs, with the keys laid out in a hierarchical fashion. This lends itself

nicely to PUB/SUB topic filtering.

For example, because a Metric node only needs the configuration values for

its particular group, the node subscribes only to the "/CONFIG/<group-name>/"

topic. Any KVPUB whose key does not start with this string is then discarded.

In practice, Metric nodes need more than just their group-specific configura-

tion, but the general principle holds true: nodes only receive the configuration

29

data they require and nothing more. In the case of first-level Collector nodes,

they receive all updates since they are fail-over candidates for the Root node.

config-replication = *update / snap-sync

update = P-KVPUB / P-HUGZ

snap-sync = C-ICANHAZ ((*P-KVSYNC P-KTHXBAI) / P-WTF)

Figure 3.8 – Configuration Protocol Specification: P- represents the par-

ent node (Root or Collector) sending a message and C- represents the child node

(Collector or Metric) sending a message.

A newly assigned first-level Collector node will first subscribe to new con-

figuration updates from the Root node and then send a configuration snapshot

request to the Root node. A newly assigned Metric (or non-first-level Collector)

node will first subscribe to new configuration updates from its parent Collector

node, and then send its parent Collector node a filtered configuration snapshot

request. Once its snapshot has been successfully received, a node will process any

pending configuration updates and then, in the case of a Collector node, respond

to child node snapshot requests.

The dCAMP configuration replication algorithm adheres to the Clustered

Hashmap Protocol[12] with a few minor (and one major) modifications:

1. only the Root node MUST write updates to the configuration,

2. the full configuration table MUST be replicated across all first-level Col-

lector nodes (lower-level nodes MAY filter their configuration to only store

relevant data),

3. a different set of command names are used (as described below), and

4. configuration updates are distributed via the dCAMP hierarchy (instead of

directly from the Root node).

30

Figure 3.9 – Configuration Protocol Diagram: (*) Parent node sends KVPUB

or HUGZ at any time, (1) child node sends ICANHAZ request, (2) parent node replies

with zero or more KVSYNC messages followed by exactly one KTHXBAI message.

3.2.2.1 Message Definitions

These messages come from the CHP protocol. Additionally, a WTF error message

may be sent by the parent in case of error. It should be noted, each of the

following messages is really the same five-frame format with varying keys and

semantics.

As shown in Figure 3.8, the ICANHAZ, KVSYNC, and KTHXBAI messages are sent

across a REQ/REP connection type. KVPUB (as the name would imply) along

31

with the HUGZ heartbeat message are designed for the PUB/SUB pattern.

ICANHAZ is a configuration snapshot request sent by the child node when it

first starts. Multiple ICANHAZ requests can be sent for the different topics or

subtrees needed by the node, and the node will not begin normal operation until

all of the requested values have been received.

Frame 0: "ICANHAZ", as 0MQ string

Frame 1: <empty>

Frame 2: <empty>

Frame 3: <empty>

Frame 4: subtree specification, as 0MQ string

Figure 3.10 – ICANHAZ Message Definition

KVSYNC is a configuration snapshot response message. For every key-value

pair within the requested subtree, a KVSYNC message is sent to the child node.

Note: if no values exist for a requested subtree, a KTHXBAI message will be the

only response received by the child node.

The sequence number in Frame 1 SHOULD be ignored by the recipient since

no order guarantees exist for configuration snapshots requests.

Frame 0: key, as 0MQ string

Frame 1: sequence number, 8 bytes in network order

Frame 2: <empty>

Frame 3: <empty>

Frame 4: value, as blob

Figure 3.11 – KVSYNC Message Definition

KTHXBAI marks the end of a successful snapshot request. Frame 4 MUST con-

tain the highest sequence number of all the values in the configuration snapshot.

32

Frame 0: "KTHXBAI", as 0MQ string

Frame 1: sequence number, 8 bytes in network order

Frame 2: <empty>

Frame 3: <empty>

Frame 4: subtree specification, as 0MQ string

Figure 3.12 – KTHXBAI Message Definition

KVPUB is a configuration update sent from parent to child. The sequence

number in Frame 1 must be monotonically increasing. When a KVPUB is received

which has a sequence number lower than a previously received KVPUB, the node

MUST delete its saved configuration values and request a new snapshot.

Frame 2 SHOULD contain the UUID of the node from which the value orig-

inated. In dCAMP, this should only be the Root node’s UUID. Frame 3 MAY

contain additional properties for the key-value pair, such as an ephemeral time-

to-live.

Frame 0: key, as 0MQ string

Frame 1: sequence number, 8 bytes in network order

Frame 2: UUID, 16 bytes in network order

Frame 3: properties, JSON-encoded, as 0MQ string

Frame 4: value, as blob

Figure 3.13 – KVPUB Message Definition

HUGZ is the heartbeat message sent from parent to child when the rate of KVPUB

messages being sent drops below a configured threshold. The HUGZ message is

critical to maintaining topological consistency in dCAMP.

Frame 0: "HUGZ"

Frame 1: 00000000

Frame 2: <empty>

Frame 3: <empty>

Frame 4: <empty>

Figure 3.14 – HUGZ Message Definition

33

3.2.3 Data Flow Protocol

There are two data flow protocols in the dCAMP system: the external protocol for

data flowing from one node to the next (via PUB/SUB) and the internal protocol

for data flowing between components of a single node (via PUSH/PULL). Both

protocols have the same specification and use the same message formats.

Figure 3.15 – Data Flow Diagram

The dCAMP data flow protocol is very simple, comprised of a single data

message type. The data flows from one node to another via PUB/SUB sockets.

Internally, data flows from the upstream data producers, through a filtering/pro-

cessing unit, and out to downstream data consumers via PUSH/PULL sockets.

When data rate is slower than a predefined threshold, heartbeats are sent

instead to keep inter-node connections alive.

34

data-flow = *(DATA / HUGZ)

Figure 3.16 – Data Flow Specification: All messages are sent from child

(Metric or Collector) to parent (Collector or Root).

3.2.3.1 Performance Measurement

When discussing performance measurement, it is important to understand how

metrics are sampled, calculated, and presented to an end user.

Performance metrics, also called counters, are usually monotonically increas-

ing values. That is, reading its raw, instantaneous value is virtually meaningless;

to correctly read the counter it must be sampled at two different points in time

and then calculated.

For example, when displaying a graph of data points for non-basic metric

types, each data point is really the result of a calculation involving the metric’s

value at the current timestamp and that at a previous timestamp. It is possible

to look at fewer data samples to first get a course-grain view (e.g. five-minute

samples) of the metric before drilling in and looking at finer-grain samples (e.g.

one-second samples).

Non-monotonically increasing counters do exist (e.g. disk speed, Ethernet

uplink speed, etc.), but these are usually fairly static configuration values and

do not need to be sampled frequently. dCAMP supports these types of counters

with the “basic” metric type.

Table 3.1 shows how each of the dCAMP metric types are calculated. Note:

unlike some other performance measurement frameworks[17], dCAMP stores all

metrics in their raw, uncalculated form and only presents a calculated value upon

display.

35

Type Contents of Single Sample Calculation of Two Samples

basic raw value at timestamp C = Vt2

delta raw value at timestamp C = Vt2 − Vt1

rate raw value at timestamp C =
Vt2−Vt1

t2−t1

average raw value and base value at timestamp C =
Vt2−Vt1

Bt2−Bt1

percent raw value and base value at timestamp C = 100
Vt2−Vt1

Bt2−Bt1

Table 3.1 – Metric Types: C represents the value calculated from two samples

taken at t1 and t2. V is the value and B is the base value in the DATA message

3.2.3.2 Message Definitions

DATA is a five-frame message containing the performance metric data sampled by

the Sensor service or calculated by the Aggregation service. The HUGZ message

is simply shorthand for DATA(type="HUGZ").

A single data sample MUST contain: source identifier (node or aggregation),

metric identifier, timestamp, and one or two values depending on the metric type.

In case of HUGZ, no other property strings are used, and Frames 3 through 5

are all empty. Frame 4 will be non-empty for average and percent types.

36

Frame 0: data source (leaf or collector node address), as 0MQ string

Frame 1: properties, JSON-encoded as 0MQ string

Frame 2: time in ms epoch utc, 8 bytes in network order

Frame 3: value, 8 bytes in network order

Frame 4: base value, 8 bytes in network order; only for average and

percent types

properties = *(type / detail / config / seqid)

type = "type=" ("HUGZ" / "basic" / "delta" / "rate" /

"average" / "percent")

detail = "detail=" <string>

config = "config-name=" <string>

seqid = "config-seqid=" <integer>

Figure 3.17 – DATA Message Definition

3.2.4 Recovery Protocols

The dCAMP Recovery Protocols are used for the Promotion and Election al-

gorithms and use the same base messages as the Topology Protocol, TOPO and

CONTROL.

branch-recovery = *sos group-stop

sos = M-SOS R-KEEPCALM

group-stop = R-GROUP M-POLO R-STOP

Figure 3.18 – Branch Recovery Protocol: R- represents the Root node

sending a message and M- represents a Metric node sending a message.

The Branch Recovery Protocol is initiated by Metric nodes when they detect

their Collector has died. Once the Root node has received an SOS message from

at least one third of the branch’s Metric nodes, the Root proceeds to shutdown

the entire branch using the stop Topology Protocol. Once shut down, a new Col-

lector is selected and the branch is rebuilt using the standard discover Topology

Protocol.

37

Figure 3.19 – Branch Recovery Protocol Diagram: (1) Metric nodes send

SOS requests, (2) Root replies with KEEPCALM, (3) Root sends GROUP only to nodes

in branch, (4) Metric nodes send POLO requests, (5) Root replies with STOP

SOS and KEEPCALM are shorthand for the CONTROL message with a command

value of "sos" and "keepcalm" respectively. The POLO and STOP messages come

directly from the Topology Protocol.

The GROUP message is similarly shorthand for the TOPO message with a key

value of "/GROUP/<group-name>". This takes advantage of ZeroMQ’s PUB/SUB

filtering to only stop the faulty branch.

root-recovery = *election

election = C-WUTUP *C-YO C-IWIN

Figure 3.20 – Root Recovery Protocol: C- represents a Collector node

sending a message.

As each Collector node detects the Root node has died, it attempts to start an

election via the WUTUP message. Collector nodes with higher UUIDs will respond

to the first Collector by sending the YO message. If no YO messages are received

38

by the first Collector, the IWIN message is sent out to all Collector nodes, self-

declaring the first Collector as the new Root.

Figure 3.21 – Root Recovery Protocol Diagram: (1) WUTUP, (2) YO, (3)

WUTUP, (4) IWIN

The WUTUP and IWIN messages are shorthand for TOPO(key="/RECOVERY/wutup"

and TOPO(key="/RECOVERY/iwin" respectively. The YO message is shorthand for

CONTROL(command="yo").

39

CHAPTER 4

Analysis

To verify dCAMP meets both the transparency and scalability distributed perfor-

mance framework criterion outlined in Chapter 1, several experiments were run

on an installation of dCAMP in a test environment. The goal of these experi-

ments was two-fold: measure dCAMP ’s transparency in a real-world environment

as well as determine the thresholds for several key configuration parameters as

dCAMP scales.

Any DPF can be configured in such a way that it impacts the performance

of the system being monitored, for example by collecting and reporting every

available global metric and per-process metrics at the fastest sampling period.

Therefore, it is necessary for the system administrator to know what reasonable

configuration values should be used to monitor a given distributed system.

Likewise, for dCAMP to scale, it is important for the number of child nodes

per parent to be limited to a reasonable number. These experiments help to define

“reasonable” for various scenarios, environments, and performance monitoring

requirements.

4.1 Transparency

To measure the impact of dCAMP on a monitored process, a workload is de-

fined and measured with and without dCAMP active. The measured difference

40

in performance of the monitored process is defined to be dCAMP ’s monitoring

overhead.

4.1.1 Workload

Apache JMeter[15] (v2.11) is used to run load against a default-configured Apache

instance on a Lenovo Thinkpad (dual 2.16GHz Centrino Duo T2600, 2GB 667MHz

DDR2, SATA) running Ubuntu 13.10. The client machine, a MacBook Pro

(2.7GHz Core i7, 8GB 1333MHz DDR3, SSD) running OSX 10.9, is directly

connected to the Apache server via crossover gigabit Ethernet. When dCAMP

is active, a Metric node is running on the server, reporting data to a Collector

node running on the client machine. The Root node is also running on the client.

Each test run includes 18 different load points, scaling the number of client

threads from 2 to 2048. For every load point, the threads continuously (in this

order)

1. load a static home page,

2. load a PHP page which calculates the 25th Fibonacci number (see Figure

4.1), and

3. download a 5MB file of random binary data.

The 25th Fibonacci workload is CPU-bound, and the 5MB download is IO-

bound; the home page workload is only used to seed the client connection and

is not part of the analysis measurements. After the ramp up phase of each load

point (launching 10 threads per second), the test ensures all threads continue to

execute simultaneously for five minutes before shutting down.

The arithmetic mean of the request latency for each step at each load point

is then calculated and averaged across three distinct runs of the same test.

41

<?php

function F($n) {

if ($n == 0) { return 0; }

if ($n == 1) { return 1; }

return F($n - 1) + F($n - 2);

}

?>

<html >

<body >The 25th Fibonacci number is <?= F(25) ?>.</body >

</html >

Figure 4.1 – Recursive 25th Fibonacci PHP Script: A naive approach was

used in the implementation of F() in order to put more load on the server CPU.

4.1.2 dCAMP Configuration

Each dCAMP configuration level monitors four global metrics and three process-

specific metrics on the Apache process(es). The global metrics are CPU usage

(proc), memory usage (mem), disk throughput (disk), and network through-

put (net); the Apache metrics are CPU usage (apache cpu), memory usage

(apache mem), and combined disk/network throughput (apache io). Below are

the various sample periods used for the transparency test runs.

• baseline – dCAMP off

• 5m – all metrics every 300 seconds, heartbeats every 60 seconds

• 1m – all metrics every 60 seconds, heartbeats every 60 seconds

• 10s – global metrics every 300 seconds, Apache metrics every 10 seconds,

heartbeats every 300 seconds

• 1s – global metrics every 300 seconds, Apache metrics every 1 second,

heartbeats every 300 seconds

42

No thresholds were defined for any of the above configurations. That is,

Metric nodes immediately reported every sample instead of holding them for

later reporting.

4.1.3 Results

In the CPU-bound Fibonacci test, the biggest relative increase in request latency

occurs between the runs with two and four threads. This correlates to the two

physical CPU cores on the system exceeding capacity. The 1m config run exhibits

the worst performance of all the CPU-bound tests. This shows that global metric

monitoring is actually more CPU intensive than collecting per-process metrics,

even for processes with many active processes.

The rate at which request latency worsens begins to level off starting at the

512 thread load point. This is also the load point at which Apache begins to

return errors. As the percentage of requests resulting in errors increases, the

latency of the successful requests improves slightly. This explains the trend line

shift.

43

2" 4" 8" 12" 16" 24" 32" 48" 56" 64" 96" 128" 256" 512" 1024" 1280" 1536" 2048"
baseline" 94" 224" 450" 727" 1013" 1586" 2082" 3241" 3802" 4068" 6320" 8017" 9777" 12697" 16797" 17989" 19119" 20388"

5m" 99" 228" 454" 744" 1043" 1651" 2314" 3472" 3943" 4722" 6506" 9072" 10370" 13770" 17895" 19290" 19812" 21465"

1m" 103" 243" 594" 989" 1338" 2096" 2795" 4166" 4331" 5431" 8174" 10364" 11890" 15466" 19194" 21436" 21495" 22838"

10s" 104" 200" 436" 717" 1042" 1640" 2221" 3541" 3963" 4608" 7095" 8944" 11116" 13754" 17954" 18906" 19894" 21284"

1s" 98" 206" 447" 786" 1077" 1736" 2279" 3523" 4018" 4760" 6863" 9600" 11370" 14357" 18527" 19508" 20535" 22152"

0"

5000"

10000"

15000"

20000"

25000"

Re
qu

es
t'L
at
en

cy
'(m

s)
'

Figure 4.2 – Transparency - 25th Fibonacci

Apache’s IO-bound performance measured in the 5MB download test is rela-

tively unaffected by dCAMP. This is expected since the infrequent samples being

logged to an output file are dCAMP ’s only disk access and the Data Protocol

is designed to have a small network footprint. This graph also shows the 512

thread load point as the beginning of a trend line shift, again correlating with

the increase in request error rate.

44

2" 4" 8" 12" 16" 24" 32" 48" 56" 64" 96" 128" 256" 512" 1024" 1280" 1536" 2048"
baseline" 82" 80" 131" 134" 132" 144" 160" 268" 315" 362" 598" 859" 1037" 5584" 11548" 13512" 14754" 17103"

5m" 81" 79" 125" 123" 128" 138" 144" 268" 314" 368" 584" 857" 991" 5766" 12267" 14421" 15327" 17981"

1m" 76" 76" 106" 103" 109" 118" 132" 261" 364" 365" 575" 801" 1073" 6016" 12726" 15276" 16506" 18704"

10s" 80" 81" 128" 125" 128" 132" 146" 254" 312" 356" 588" 813" 883" 5500" 12268" 14308" 15770" 17868"

1s" 68" 78" 125" 124" 125" 138" 153" 267" 315" 359" 554" 751" 870" 5507" 12566" 14390" 15984" 18459"

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

20000"

Re
qu

es
t'L
at
en

cy
'(m

s)
'

Figure 4.3 – Transparency - 5MB Download

A few conclusions can be drawn from these results.

When nodes are not expected to fail frequently, using longer heartbeat periods

reduces the impact dCAMP has on the system. It is better to monitor a process

using a faster sample period than an entire system using a slower sample period.

The dCAMP system impact is noticeable but a considerably smaller factor than

the impact hardware limitations have on performance monitoring.

Lastly, holding all else constant, slower sample periods have an obviously

lower impact on system performance compared to faster sample periods. Possibly

using dCAMP ’s reporting threshold, system impact can be minimized while still

maintaining fine sample granularity.

45

4.2 Scalability

One of the primary measures of scalability for a distributed system is its network

traffic.[30] By simulating successively larger dCAMP systems (with respect to

node count), one can extrapolate dCAMP ’s effectiveness at monitoring large

distributed systems and how to best configure its metric collections.

4.2.1 Workload

dCAMP is setup to monitor a machine’s global metrics, scaling the number of

simulated nodes in the dCAMP system from three nodes (one Root, one Col-

lector, one Metric) up to 200 nodes (eight groups with twenty-five nodes per

group). The metric configuration is kept constant for each test run. As dCAMP

starts, monitors in steady state, and shuts down, the machine’s network traffic is

monitored and recorded every five seconds.

The test machine is a MacBook Pro (2.7GHz Core i7, 8GB 1333MHz DDR3,

SSD) running OSX 10.9. All simulated dCAMP nodes use endpoints on the

machine’s loopback interface, and only the loopback interface traffic is monitored.

The machine is otherwise entirely idle during the test runs.

4.2.2 dCAMP Configuration

dCAMP is configured to monitor and report the below global metrics, using a

heartbeat of 60 seconds.

• CPU usage every 60 seconds

• total disk throughput every 120 seconds

• total network throughput every 120 seconds

46

• memory usage every 60 seconds

No thresholds were defined for the above configuration. That is, Metric nodes

immediately reported every sample instead of holding them for later reporting.

4.2.3 Results

Sparklines of each load point (not shown in this work) display the same pattern:

highest network traffic occurs during start up and then also on shutdown. This

pattern follows the design of dCAMP which uses a chatty configuration protocol

and a terse data protocol. The rest of steady-state operation shows an expected

bursty pattern, with mostly low network traffic except on sample periods.

0"

20"

40"

60"

80"

100"

120"

140"

KB
yt
es
/s
(

b3" b10" b25" b50" b100" b150" b200"

Figure 4.4 – Scalability - Steady-State Network Bytes: Network bytes

during steady-state operation as the number of dCAMP nodes increases.

47

0"

100"

200"

300"

400"

500"

600"

700"

800"

Pa
ck
et
s/
s)

p3" p10" p25" p50" p100" p150" p200"

Figure 4.5 – Scalability - Steady-State Network Packets: Network packets

during steady-state operation as the number of dCAMP nodes increases.

As the node count increases, the rate at which bytes/packets are sent and

received increases. This correlates with the larger configuration which dCAMP

must track as well as the additional nodes sending and receiving data. Looking

at the same values but also relating them to the number of nodes in the system,

one sees the configuration size grows faster than the number of nodes.

However, the number of messages being sent per node actually goes down and

levels off just under 1 packet per node per second. This can be attributed to the

fact that the number of Metric nodes increases faster in relation to the number

of Collector nodes. That is, Metric nodes do not require full-configuration repli-

cation and send/receive fewer messages since they are relatively uninvolved with

topology coordination in comparison to Collector nodes.

As this ratio increases, it is expected the number of messages per node to

48

decrease. This latter observation indicates a higher number of child nodes per

parent would result in lower network utilization and better dCAMP scalability.

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

200"

0"

20"

40"

60"

80"

100"

120"

140"

3" 10" 25" 50" 100" 150" 200"

Pa
ck
et
s/
se
c)

KB
yt
es
/s
ec
)

Bytes" Packets"

Figure 4.6 – Scalability - Average Network Utilization: Average network

utilization as the number of dCAMP nodes increases.

49

0.0#

0.2#

0.4#

0.6#

0.8#

1.0#

1.2#

1.4#

1.6#

0#

100#

200#

300#

400#

500#

600#

700#

3# 10# 25# 50# 100# 150# 200#

Pa
ck
et
s/
se
c)

By
te
s/
se
c)

Bytes/Node# Packets/Node#

Figure 4.7 – Scalability - Average Network Utilization Per Node: Av-

erage network utilization per node as the number of dCAMP nodes increases.

50

CHAPTER 5

Related Work

Being distributed, a framework must collect data from a large number of nodes

and aggregate the data to one node or client. Implementations have been built us-

ing centralized, hierarchical, peer-to-peer and any number of other architectures.

There are three types of metric gathering techniques: (1) hardware counters and

sensors use specialized hardware to gather highly accurate metrics and are highly

dependent on the underlying hardware architecture, (2) software sensors use mod-

ern operating system interfaces to acquire moderately accurate performance met-

rics in an architecture-independent interface, and (3) hybrid approaches use a

combination of hardware and software sensors to attain a balance between the

two.

5.1 Analysis

There are a number of distributed performance frameworks being actively re-

searched and developed, both academically and commercially. The frameworks

listed in this section were chosen based on their categorization in the [30] tax-

onomy; only level 2 frameworks are included. Level 2 frameworks are defined as

having at least one type of republisher in addition to producers; these frameworks

usually distribute functionality across multiple hosts. [30] A limited analysis is

conducted by reviewing the available literature, and further analysis (i.e., verify-

ing scalability, transparency, and validity) is left as future work.

51

5.1.1 NetLogger

Work done by Brian Tierney and Dan Gunter [26] [9] presents the Network Ap-

plication Logger Toolkit (NetLogger). This framework can be used to monitor

the performance of distributed systems at a very detailed level. With a new log-

ging format and activation service [10] the authors improved upon their previous

work and increased the toolkit’s scalability and data delivery models. NetLogger

is being actively developed and is one of the more well known distributed perfor-

mance frameworks. The toolkit is composed of four parts: an API and library for

instrumenting a given application, a set of tools for collecting and sorting logs,

performance sensors, and a visualization user interface for the log files.

Each part assumes the system clocks of the individual nodes are accurate

and synchronized (the authors mention the use of NTP to achieve a required

clock synchronization of one millisecond). The instrumentation of code allows

NetLogger to gather more detailed data from an application-to-application com-

munication path, such as traces of network packets through a call hierarchy. The

instrumentation also allows the activation service to update the monitoring of

parts of the system dynamically as consumers subscribe to various events and

metrics.

Their research has shown NetLogger to be highly scalable, complete, and

transparent as well as valid. The activation service provides a push data delivery

and can utilize the security mechanisms part of current web services in order to

authenticate requests for performance data. NetLogger is currently implemented

for C, C++, Java, Perl, and Python applications. Because the framework lacks

black box characteristics, its portability is greatly reduced.

52

5.1.2 JAMM

Java Agents for Monitoring and Management (JAMM) [25] is the fruit of work

by the authors of NetLogger to build a monitoring system with managed sensors.

The JAMM system consists of six components: sensors, sensor managers,

event gateways, directory service, event consumers, and event archives. There is

a sensor manager on each host, with the sensors acting as producers for the gate-

ways which they publish the data to. The gateways can then filter and aggregate

the incoming data according to consumer queries. The directory service is used

to publish the location of the sensors and gateways, allowing for dynamic discov-

ery of active sensors by the consumers. The event archive is used for historical

analysis purposes.

JAMM explicitly uses a pull data delivery model where data is only sent

when requested by a consumer. The overall architecture is generally distributed

with the directory service being centralized. JAMM, being heavily based off

of NetLogger, inherits the validity, completeness, security, and transparency of

NetLogger along with its lack of portability. JAMM does, however, prove itself

in terms of scalability with it’s own architecture.

5.1.3 Hawkeye

Hawkeye [11] is a monitoring and management tool for distributed systems which

makes use of technology previously researched and developed as part of the Con-

dor project [16]. Condor provides mechanisms for collecting information about

large distributed computer systems. Hawkeye is being readily developed and is

freely available for download on Linux and Solaris.

53

Hawkeye uses a general push delivery model by configuring Condor to ex-

ecute programs, or modules, at given time intervals, collect performance data,

and send it to the central manager. These modules are configurable such that

the “period” of module execution can be set to a given time frame in seconds,

minutes, or hours or the module can be executed in “continuous” mode where the

module’s execution never ends. The available modules for monitoring a Condor

pool include: disk space, memory used, network errors, open files, CPU monitor-

ing, system load, users, Condor Node, Condor Pool, and Grid Probe. Custom

modules can also be developed and installed for monitoring of arbitrary resources

and metrics. Data can be accessed from the central manager via an API, CLI,

or GUI.

While no experiments have been run, the generally centralized manager re-

duces the Hawkeye framework’s scalability, and its transparency is unknown. The

frameworks module based producer architecture gives it an infinite completeness,

but being only available on Linux and Solaris makes the framework less portable.

Lastly, the ability to run jobs securely on target machines has been left as future

work by the authors.

5.1.4 SCALEA-G

Truong and Fahringer present SCALEA-G [29], an unified monitoring and per-

formance analysis system for distributed systems. It is based on the Open Grid

Service Architecture [3] and allows for a number of services to monitor both

grid resources and grid application. SCALEA-G uses dynamic instrumentation

to profile and trace Java and C/C++ applications in both push and pull data

delivery models, making the framework both scalable and portable.

54

The SCALEA-G framework is composed of several services: directory service,

archival service, sensor manager service, instrumentation service, client service,

and user portal. These services provide the following functionality respectively:

publishing and searching of producers and consumers, storage of performance

results, management of sensors, dynamic instrumentation of source code, ad-

ministering clients and analyzing data, and on-line monitoring and performance

analysis.

The framework makes use of secure sockets to achieve secure communications

and achieves high completeness via code instrumentation. Unfortunately, the

authors do not provide any report on SCALEA-G’s validity or transparency.

5.1.5 IMPuLSE

Integrated Monitoring and Profiling for Large Scale Environments [1] was de-

signed to address “operating system-induced performance anomalies” and provide

“accurate, low-overhead, whole-system monitoring.” The authors have chosen to

develop a message-centric approach which associates data with messages rather

than hosts and a system-wide statistical sampling to increases the framework’s

scalability.

The IMPuLSE framework is still in the design stage, and therefore lacks any

implementation data outside of their new message-centric design pattern which

shows promising results. Unfortunately, this leaves the framework with unknown

transparency, security, completeness, portability, and validity.

5.1.6 Host sFlow

sFlow is a network monitoring protocol consisting of sFlow Agents, built directly

into the router and switch network device management layer by each vendor,

55

which analyze traffic and send metrics to sFlow Collectors on the network. [23]

Host sFlow is an open-source implementation of the sFlow protocol which uses

sFlow Agents to monitor multi-vendor physical and virtual servers. Host sFlow is

capable of application layer monitoring (e.g. node.js, Memcached), as well, and

may be implemented directly by device/OS manufacturers for easier deployment.

[14]

In supporting host and application performance metric analysis alongside net-

work metrics in one common system, sFlow has an advantage over more tradi-

tional host-only distributed performance frameworks. While sFlow’s claims to

scalable and accurate network level monitoring have been validated, less work

has been done to show the same for Host sFlow.

5.1.7 Ganglia

Ganglia is a distributed performance framework designed specifically for high-

performance computing (HPC) environments, and it has been used to monitor

real-world HPC, grid, and “planetary-scale” systems. Ganglia uses different pro-

tocols for intra- and inter-cluster communication: a multicast listen/announce

protocol within a single cluster and a tree of point-to-point connections between

clusters. Ganglia is well used and is actively used to monitor over 500 different

systems. [17]

The analysis presented in [17] shows the design scales and maintains trans-

parency for systems of several hundred nodes. Still, scalability is a concern of the

authors since the multicast protocol exhibits a quadratic trendline as the number

of nodes within a cluster increases. Memory usage and inter-cluster bandwidth

also increase as the number of nodes increases, albeit much more linearly. In

56

comparison, dCAMP memory usage is nearly constant since performance data is

not persisted in memory to the same extent.

5.2 Summary

There are a number of high quality and effective distributed performance frame-

works being actively researched and developed, but with some frameworks having

more research than others, there is a natural disparity of information about each

framework. While the frameworks vary in distributed architecture and features,

they all fulfill the minimum requirements of performance frameworks. The frame-

works listed in this work are mainly software based sensor frameworks. This was

chosen due to the inherent portability advantage of software sensors over hard-

ware or hybrid sensors.

Many authors have failed to address their framework’s validity, transparency,

and scalability explicitly, thinking the framework’s architecture speaks for itself

or blindly assuming it is accurate and introduces negligible load on the measured

system. It is left as future work to conduct formal experiments to test validity,

transparency, and scalability of the distributed performance frameworks listed

here.

57

CHAPTER 6

Conclusions

This work presents dCAMP : Distributed Common API for Measuring Perfor-

mance, a distributed performance framework built on top of Mark Gabel and

Michael Haungs’ CAMP [4]. This work describes the design and implementation

of dCAMP, using roles and services on top of ZeroMQ to build a simple, reliable

distributed system.

A set of criterion for evaluating distributed performance frameworks is also

given by extending and updating the criterion presented in [30]. This criterion is

then used to evaluate dCAMP along with several other related works.

6.1 Summary of Contributions

dCAMP itself extends CAMP with (1) a stateful performance measurement API,

(2) distribution and aggregation of performance metrics, (3) filtering and trig-

gering of performance metrics across the distributed system, and (4) simple fault

tolerance to recover from node failures.

The updated distributed performance framework criterion is introduced and

used to evaluate dCAMP. Chapter 4 presents an empirical evaluation of dCAMP ’s

transparency and scalability. Validity and portability are inherited from CAMP

as well as the use of portable Python libraries. dCAMP ’s data delivery models

and completeness are apparent in the system’s design and configuration.

58

Updating dCAMP to meet the security criterion is unfinished work as de-

scribed in the next section along with the rest of dCAMP ’s future directions.

6.2 Future Work

6.2.1 Additional Features

While dCAMP in its current implementation meets the requirements of a basic

DPF, these features should advance it into a more complete, end-to-end dis-

tributed performance monitoring solution.

An end-to-end tool built on top of dCAMP could allow a system admin-

istrator to quickly look at the performance of a large part of the network via

aggregate metrics and easily drill down into the groups and/or nodes which ex-

hibit problematic behaviour. Three options toward this goal are most readily

apparent. The first would be to implement a lightweight web server within

each Base node, adding support for REST API access to historical metric data

along with a graphical user interface for easier dCAMP system management. The

second would be a more traditional API, allowing dCAMP to run as a module

inside another Python application. The third option is a slight variation of the

second, exposing an API via ZeroMQ so dCAMP continues to operate as a sep-

arate process but still gives direct programmatic access to performance data and

system management.

The current dCAMP protocols leave much to be desired when it comes to

secure communication and operation, failing the Security criterion presented in

Chapter 1. A more secure implementation would include a form of salted pass

phrases with every control message or even encrypt all messages sent from one

node to another.

59

One of the possible pain points with dCAMP is the control given to the

system administrator through group specifications. Specifically, administrators

are tasked not only with identifying which nodes to include in the system, but

also how those nodes are placed into the distributed topology. Instead of this

manual configuration, automatic grouping of nodes may be implemented based

on network locality, metric configuration and sample periods, or even a tunable

such as preference of network vs. CPU/memory overhead. The administrator

would be left with the task of defining which metrics a given node should collect

and dCAMP would best select where the nodes sit in the hierarchy, how many

children nodes a single parent manages, etc.

6.2.2 Fault Tolerance

The fault tolerance of dCAMP could be improved by implementing these features

which were considered out-of-scope for the original project.

dCAMP does not support any fault tolerance for network failures—it only

attempts to recover from node failures. It is assumed that if (part of) the network

goes down, the lack of data from that subnet will suffice. Specifically, dCAMP

cannot currently tolerate a split-brain syndrome in which the network has

been partitioned and entire subsets of the system cannot communicate with each

other. It may be enhanced to recover from such network partitions, though.

The system time among multiple nodes in the distributed system may vary

significantly. dCAMP is not meant to be a high-resolution system with respect

to the ordering of performance data occurrences. It is assumed that the

standard Network Time Protocol (NTP) provides sufficient time synchronization

across all nodes in the system OR the precise ordering of performance events in

the system is not required.

60

To further increase fault tolerance of the topology, dCAMP should be able to

operate without a Root node. That is, the Management service should not

be continuously needed for the system to operate. Essentially this comes down

to all top-level Collector nodes being potential endpoints for end-user control, at

which point it momentarily acts as a Root, sending out configuration updates.

Lastly, as described in Chapter 3, dCAMP could become more resilient to

software failures by running Base nodes within a self-restarting executable.

If the process crashes for any reason, it would automatically be restarted and join

back into the network.

6.2.3 Improve Performance and Scalability

With several places for improvement, increasing the efficiency and performance

of dCAMP ’s own implementation could make really large systems feasible.

The current implementation of each ZeroMQ protocol heavily relies on a com-

mon polling pattern. Not only does this waste thread resources waiting on socket

connections, but the code becomes hard to maintain as well. An alternate solu-

tion to this polling is event-driven I/O. ZeroMQ supports this alternate messaging

pattern via Facebook’s Tornado IOLoop[27][28] and libev via gevent[7][8].

With IOLoop, it may be possible to use a single IO loop, hosted by the

Base node, shared among all the active services. This reduces the number of

idle threads per node, freeing valuable operating system resources and reducing

dCAMP ’s processing overhead.

Although dCAMP only uses classic TCP protocols for all communication, Ze-

roMQ does support multicast network protocols. Using multicast judiciously

within dCAMP could greatly reduce configuration costs and network traffic, for

61

example in the Topology Protocols. For dCAMP systems spanning multiple sub-

nets, the use of multicast would require special network configurations or special

ZeroMQ gateways for passing messages from one subnet to the next.

Multiple-level branches are not supported in the current implementation.

That is, all Collector nodes have the Root node as their parent and only have

Metric nodes as their children. Extending support for multiple levels of Collectors

would allow large group configurations to be automatically split into multiple

(identically configured) branches for improved scalability

Compiling the various critical paths within dCAMP, such as the metric sam-

pling code in the Sensor service, using Pyrex[19] or Cython[2] may boost per-

formance and lower the cost of metric collection such that faster sample periods

can be used without issue.

Due to Python’s Global Interpreter Lock[21], there are limitations to the

parallel execution of threads on an SMP system. While dCAMP ’s use of threads is

heavily I/O-bound, some gains may also be found by using full-fledged processes

instead of threads.

While not a huge cost, dCAMP currently requires two nodes to execute along-

side each other on a system which hosts a Collector. An improvement would be

to provide full support for metric sampling directly within the Collector

role.

6.2.4 Metric Extensions

Only a small subset of metrics were implemented in dCAMP as a proof of concept.

The rest of the full set listed in the dCAMP Metrics section are left as future

work.

62

Beyond the list of statically defined metrics, user-defined metrics would

expand the performance monitoring infinitely. This could be implemented as a

Python module integrated into the distributed system being monitored or through

a plug-in system built into dCAMP itself.

Additionally, dCAMP could support additional data types such as histograms

and variable length strings or even more fine grained control over when met-

rics are sampled. For example, metrics could be collected on demand, driven

by user requests via the Management service, or collected at a special “once”

sample period so data is sent to the Root node only at start.

There are also two features which can be implemented to improve collection

and reporting efficiency. First, a more compact data message format could be

used to combine multiple data samples into a single message, e.g. for

aggregation purposes or representing entire branches in the topology. This would

improve network efficiency as fewer packets would require routing and data could

be more effectively compressed. Second, metrics could be sampled regularly but

reported randomly within the period in order to distribute arrival of data from

child nodes and not overload the Aggregation service.

Lastly, dCAMP could be extended to support some hardware performance

counters, bringing it more in-line with hybrid performance frameworks. In par-

ticular, it would be interesting to add support for Graphical Processing Unit

metrics such as those available via the NVIDIA Management Library[18] which

already has Python bindings support [20].

63

BIBLIOGRAPHY

[1] P. G. Bridges and A. B. MacCabe. Impulse: integrated monitoring and

profiling for large-scale environments. In LCR ’04: Proceedings of the 7th

workshop on Workshop on languages, compilers, and run-time support for

scalable systems, pages 1–5, New York, NY, USA, 2004. ACM.

[2] Cython: C-extensions for python. http://www.cython.org.

[3] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for dis-

tributed system integration. Computer, 35(6):37–46, 2002.

[4] M. Gabel and M. Haungs. CAMP: a common API for measuring perfor-

mance. In LISA’07: Proceedings of the 21st conference on Large Installation

System Administration Conference, pages 1–14, Berkeley, CA, USA, 2007.

USENIX Association.

[5] H. Garcia-Molina. Elections in a distributed computing system. IEEE Trans-

actions on Computers, 31(1):48–59, 1982.

[6] D. Garlan and M. Shaw. An introduction to software architecture. Technical

report, Pittsburgh, PA, USA, 1994.

[7] gevent: A coroutine-based network library for python. http://www.gevent.

org.

[8] libev: A full-featured and high-performance event loop. http://libev.

schmorp.de.

64

http://www.cython.org
http://www.gevent.org
http://www.gevent.org
http://libev.schmorp.de
http://libev.schmorp.de

[9] D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee. Netlogger: A

toolkit for distributed system performance analysis. International Sympo-

sium on Modeling, Analysis, and Simulation of Computer Systems, 0:267,

2000.

[10] D. Gunter, B. Tierney, K. Jackson, J. Lee, and M. Stoufer. Dynamic monitor-

ing of high-performance distributed applications. In Applications, Proceed-

ings of the 11th IEEE Symposium on High Performance Distributed Com-

puting, pages 163–170, 2002.

[11] Hawkeye. http://www.cs.wisc.edu/condor/hawkeye/.

[12] P. Hintjens. Clustered hashmap protocol. http://rfc.zeromq.org/spec:

12/CHP, April 2011.

[13] P. Hintjens. Code Connected Volume 1, Learning ZeroMQ. CreateSpace

Independent Publishing Platform, January 2013. http://zguide.zeromq.

org.

[14] About Host sFlow: Data center wide server performance monitoring. http:

//host-sflow.sourceforge.net/about.php.

[15] Apache JMeter. http://jmeter.apache.org.

[16] M. Litzkow, M. Livny, and M. Mutka. Condor-a hunter of idle worksta-

tions. Distributed Computing Systems, 1988., 8th International Conference

on, pages 104–111, Jun 1988.

[17] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed moni-

toring system: Design, implementation and experience. Parallel Computing,

30:817–840, 2003.

65

http://www.cs.wisc.edu/condor/hawkeye/
http://rfc.zeromq.org/spec:12/CHP
http://rfc.zeromq.org/spec:12/CHP
http://zguide.zeromq.org
http://zguide.zeromq.org
http://host-sflow.sourceforge.net/about.php
http://host-sflow.sourceforge.net/about.php
http://jmeter.apache.org

[18] NVIDIA Management Library. https://developer.nvidia.com/

nvidia-management-library-nvml.

[19] Pyrex — a language for writing python extension modules. http://www.

cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/.

[20] Python bindings for the NVIDIA Management Library. https://pypi.

python.org/pypi/nvidia-ml-py/.

[21] Python 3: Global interpreter lock. https://docs.python.org/3/

glossary.html#term-global-interpreter-lock.

[22] R. Schaller. Moore’s law: past, present and future. Spectrum, IEEE,

34(6):52–59, Jun 1997.

[23] Traffic monitoring using sFlow. http://www.sflow.org/sFlowOverview.

pdf.

[24] M. Sustrik, M. Lucina, and P. Hintjens. zmq socket — create ØMQ socket.

http://api.zeromq.org/3-2:zmq-socket, 2012.

[25] B. Tierney, B. Crowley, D. Gunter, J. Lee, and M. Thompson. A monitoring

sensor management system for grid environments. In Proceedings of the IEEE

High Performance Distributed Computing Conference (HPDC-9), pages 97–

104, 2000.

[26] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter.

The netlogger methodology for high performance distributed systems per-

formance analysis. In In Proc. 7th IEEE Symp. on High Performance Dis-

tributed Computing, pages 260–267, 1998.

[27] Tornado. http://www.tornadoweb.org.

66

https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
https://pypi.python.org/pypi/nvidia-ml-py/
https://pypi.python.org/pypi/nvidia-ml-py/
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
http://www.sflow.org/sFlowOverview.pdf
http://www.sflow.org/sFlowOverview.pdf
http://api.zeromq.org/3-2:zmq-socket
http://www.tornadoweb.org

[28] tornado.ioloop — main event loop. http://www.tornadoweb.org/en/

stable/ioloop.html.

[29] H.-L. Truong and T. Fahringer. Scalea-g: A unified monitoring and perfor-

mance analysis system for the grid. Sci. Program., 12(4):225–237, 2004.

[30] S. Zanikolas and R. Sakellariou. A taxonomy of grid monitoring systems.

Future Gener. Comput. Syst., 21(1):163–188, 2005.

67

http://www.tornadoweb.org/en/stable/ioloop.html
http://www.tornadoweb.org/en/stable/ioloop.html

APPENDIX A

ZeroMQ Primer

A.1 Why ZeroMQ

Not surprisingly, the most succinct description of ZeroMQ is found in The Guide[13]

preface,

ØMQ (also known as ZeroMQ, 0MQ, or zmq) looks like an embed-
dable networking library but acts like a concurrency framework. It
gives you sockets that carry atomic messages across various transports
like in-process, inter-process, TCP, and multicast. You can connect
sockets N-to-N with patterns like fan-out, pub-sub, task distribution,
and request-reply. It’s fast enough to be the fabric for clustered prod-
ucts. Its asynchronous I/O model gives you scalable multicore ap-
plications, built as asynchronous message-processing tasks. It has a
score of language APIs and runs on most operating systems. ØMQ is
from iMatix [http://www.imatix.com] and is LGPLv3 open source.

No appendix could justly explain ZeroMQ or give the reader a true under-

standing of its abilities and proper use. Read The Guide (a freer and more

up-to-date version is online at http://zguide.zeromq.org) and, if truly adven-

turous (or just morbidly curious), go through all 750+ examples in any of the 28

programming languages available.

Forget about RPC, MPI, and raw sockets. ZeroMQ allows a developer to

build distributed systems by focusing on the data and implementing simple design

patterns. In short, ZeroMQ allows the distributed systems developer to have fun.

No joke.

68

http://www.imatix.com
http://zguide.zeromq.org

A.2 Sockets and Message Patterns

To begin understanding ZeroMQ, a foundational knowledge of ØMQ sockets,

messages, and patterns is needed.

A.2.1 Sockets and Messages

ØMQ sockets mimic standard TCP sockets, exposing interfaces for creating and

destroying instances, binding and connecting to network endpoints, and sending

and receiving data. However, they have two key differences from their TCP

counterparts.

First, they are asynchronous—the actual sending and receiving of data on a

ZeroMQ socket is handled by a background thread. Second, ØMQ sockets have

built-in support for one-to-many connections. That is, a single socket can send

and receive data from multiple endpoints.

ZeroMQ sockets are explicitly typed, with the type dictating how data is

routed and queued to and from the socket. Furthermore, this explicit typing

means only certain socket types can be connected to each other.

ZeroMQ messages are the building blocks of all data sent across ZeroMQ

sockets. A message is comprised of one or more frames (or parts), and a single

frame can be any size (including zero) that fits in memory. ZeroMQ guarantees

messages are delivered atomically, meaning either all frames of the message are

sent/received or none of the frames. Lastly, because sockets are asynchronous

and messages are atomic, the entire message must fit in memory.

69

A.2.2 Messaging Patterns

Generally speaking, the ZeroMQ messaging patterns are defined by the socket

routing and queuing rules as well as each socket’s compatible type pairings. As

listed in the zmq socket man page[24], ZeroMQ supports the following core mes-

saging patterns.

Publish-Subscribe: “The publish-subscribe pattern is used for one-to-many

distribution of data from a single publisher to multiple subscribers in a fan

out fashion.”

The two socket types used for this pattern are PUB, which can only send

messages, and SUB, which can only receive messages. Naturally, this is a

unidirectional pattern. This work refers to the publish-subscribe pattern as

PUB/SUB.

Request-Reply: “The request-reply pattern is used for sending requests from

a [...] client to one or more [...] services, and receiving subsequent replies

to each request sent.”

The two basic socket types for this pattern, REQ and REP, require strict

ordering of messages: a message must be first be sent on the REQ socket

before a message can be received on the socket, and vice versa for the

REP socket. Two advanced socket types, XREQ (or DEALER) and XREP (or

ROUTER), allow a more lenient communication pattern. This work refers to

both request-reply patterns as REQ/REP.

Pipeline: “The pipeline pattern is used for distributing data to nodes arranged

in a pipeline. Data always flows down the pipeline, and each stage of

the pipeline is connected to at least one node. When a pipeline stage is

connected to multiple nodes data is round-robined among all connected

nodes.”

70

PUSH (send-only) and PULL (receive-only) socket types are used for this

pattern. Like PUB/SUB, this is a unidirectional pattern. This work refers

to the pipeline pattern as PUSH/PULL.

Exclusive Pair: “The exclusive pair pattern is used to connect a peer to pre-

cisely one other peer. This pattern is used for inter-thread communication

across the inproc transport.”

Only the PAIR socket type can be used for this pattern.

A.3 Useful Features for dCAMP

Apart from the general happiness ZeroMQ offers to the distributed systems de-

veloper, some features are particularly useful in dCAMP.

A.3.1 Topic Filtering

All messages sent using PUB/SUB are filtered (usually by the publisher) based

on the “topics” to which each subscriber subscribes. Topics, stated simply, are

the leading bytes of a message’s first frame. By default, a SUB socket is not

subscribed to any topics.

Consider a PUB message which contains b’/fruit/apple’ as its first frame.

A subscriber would receive this message if it subscribed to b’/fruit’ or b’/’ or

even b’’ (an empty frame). But if the subscriber was not subscribed to any topics

or only subscribed to the b’/plants’ topic, it would not receive the message.

Do note: the topic can be any binary data, not just character data.

Topic filtering fits naturally into the Configuration Replication Protocol where

different roles only replicate portions of the config and the Topology Discovery

Protocol where the root node needs to send commands to a subset of the topology.

71

A.3.2 Easy Message Debugging

ZeroMQ’s atomic multipart message passing lends itself to what The Guide calls

the “Cheap or Nasty pattern” [13]. That is, use cheap, easy to write/read, overly

verbose messages for infrequent control scenarios and nasty, compact, highly

performant messages for long-lived and frequent data scenarios.

In dCAMP, all control messages follow the cheap pattern, making them easy

to debug. But the data messages, which tend to not need a lot of debugging, are

free to be more optimized.

A.3.3 Simplified Threading Design

While much care must still be taken in their use, the inherent properties of

ZeroMQ sockets (asynchronous nature, utilization of send/receive queues, ability

to round-robin and fair-queue messages) allow for more attention to be paid to

the design, purpose, and real work of each thread rather than the mechanics of

sending and receiving data.

This is clearly seen in dCAMP Service implementations where, for example,

a single thread can be used to process both remote nodes’ performance metrics

and the local node’s performance metrics without any special coding: one socket

with multiple endpoints connected and the built-in fair-queuing taking care of

routing.

A.3.4 Quick Simulation

The nature of ZMQ bind/connect endpoints just being a transport and a network

address means simulation of large distributed systems can take place on a single

72

machine using unique port numbers. Additionally, the interoperability of inproc

(within the same process) and TCP transports allows for even larger simulations,

not bound by port availability on the host.

This is demonstrated several times in examples within The Guide, and it

indeed held true during dCAMP development and testing.

73

APPENDIX B

Real Life

Finishing a master’s thesis after college is no joke. Get it done now. Seriously. Do

not waste your time. Real life is full of real work. Real deadlines. Relationships.

Marriage. Babies. Nothing slows down.

Life is not waiting for you to complete unfinished work. There will be a tinge

of guilt with every new project and every day spent not working towards its

completion. Goodwill runs out; good intentions are just false promises.

Plus, a degree is a nice thing to have, if not now, at least at some point in

the future. Best of luck!

74

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Distributed Performance Framework Criterion
	Data Delivery Models
	Security
	Scalability
	Transparency
	Completeness
	Validity
	Portability

	dCAMP
	Terminology

	Design
	Architecture
	Requirements
	Functional
	Non-Functional

	dCAMP Roles and Services
	Services
	Roles

	Fault Tolerance
	Heartbeating (Detecting Disconnections)
	Reminder Algorithm (Metric Node Recovery)
	Detection

	Promotion Algorithm (Collector Node Recovery)
	Detection

	Election Algorithm (Root Node Recovery)
	Detection

	dCAMP Metrics
	Global Metrics
	Network I/O Metrics
	Disk I/O Metrics
	Per-process Metrics
	Inquiry Metrics

	Configuration
	Node Specification
	Sample Specification
	Accumulative Time-Based Filtering Pitfall

	Implementation
	dCAMP Operation
	Sequence of dCAMP Operation
	Threading Model

	ZeroMQ Protocols
	Topology Protocols
	Message Definitions

	Configuration Replication Protocol
	Message Definitions

	Data Flow Protocol
	Performance Measurement
	Message Definitions

	Recovery Protocols

	Analysis
	Transparency
	Workload
	dCAMP Configuration
	Results

	Scalability
	Workload
	dCAMP Configuration
	Results

	Related Work
	Analysis
	NetLogger
	JAMM
	Hawkeye
	SCALEA-G
	IMPuLSE
	Host sFlow
	Ganglia

	Summary

	Conclusions
	Summary of Contributions
	Future Work
	Additional Features
	Fault Tolerance
	Improve Performance and Scalability
	Metric Extensions

	BIBLIOGRAPHY
	ZeroMQ Primer
	Why ZeroMQ
	Sockets and Message Patterns
	Sockets and Messages
	Messaging Patterns

	Useful Features for dCAMP
	Topic Filtering
	Easy Message Debugging
	Simplified Threading Design
	Quick Simulation

	Real Life

