
 

 

 

 

 

EARLY FOREST FIRE DETECTION VIA PRINCIPAL COMPONENT ANALYSIS OF 

SPECTRAL AND TEMPORAL SMOKE SIGNATURE 

 

 

 

 

 

 

 

 

 

 

 

A Thesis 

presented to 

the Faculty of California Polytechnic State University, 

San Luis Obispo 

 

In Partial Fulfillment  

of the Requirements for the Degree  

Master of Science in Electrical Engineering 

 

by  

David C. Garges  

June 2015 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2015 

David C. Garges 

ALL RIGHTS RESERVED 

  



iii 

 

COMMITTEE MEMBERSHIP 

 

 

TITLE:  Early Forest Fire Detection via Principal Component Analysis of 

Spectral and Temporal Smoke Signature 

 

 

AUTHOR:    David C. Garges 

 

 

DATE SUBMITTED:   June 2015 

 

 

 

 

 

 

 

 

COMMITTEE CHAIR:  John Saghri, PhD 

    Professor of Electrical Engineering Cal Poly 

 

 

COMMITTEE MEMBER:  John Jacobs, PhD  

Raytheon Professor of Practice Cal Poly 

 

 

COMMITTEE MEMBER:  Jane Zhang, PhD  

Associate Professor Cal Poly 

  



iv 

 

ABSTRACT 

 

Early Forest Fire Detection via Principal Component Analysis of  

Spectral and Temporal Smoke Signature 

 

David Garges 

 

The goal of this study is to develop a smoke detecting algorithm using digital image 

processing techniques on multi-spectral (visible & infrared) video. By utilizing principal 

component analysis (PCA) followed by spatial filtering of principal component images the 

location of smoke can be accurately identified over a period of exposure time with a given frame 

capture rate. This result can be further analyzed with consideration of wind factor and fire 

detection range to determine if a fire is present within a scene. 

Infrared spectral data is shown to contribute little information concerning the smoke 

signature. Moreover, finalized processing techniques are focused on the blue spectral band as it is 

furthest away from the infrared spectral bands and because it experimentally yields the largest 

footprint in the processed principal component images in comparison to other spectral bands. A 

frame rate of .5 images/sec (1 image every 2 seconds) is determined to be the maximum such that 

temporal variance of smoke can be captured. The study also shows eigenvectors corresponding to 

the principal components that best represent smoke and are valuable indications of smoke 

temporal signature. 

Raw video data is taken through rigorous pre-processing schemes to align frames from 

respective spectral band both spatially and temporally. A multi-paradigm numerical computing 

program, MATLAB, is used to match the field of view across five spectral bands: Red, Green, 

Blue, Long-Wave Infrared, and Mid-Wave Infrared. Extracted frames are aligned temporally 

from key frames throughout the data capture. This alignment allows for more accurate digital 

processing for smoke signature. 
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Clustering analysis on RGB and HSV value systems reveal that color alone is not helpful 

to segment smoke. The feature values of trees and other false positives are shown to be too 

closely related to features of smoke for in solely one instance in time.  

A temporal principal component transform on the blue spectral band eliminates static 

false positives and emphasizes the temporal variance of moving smoke in images with higher 

order. A threshold adjustment is applied to a blurred blue principal component of non-unity 

principal component order and smoke results can be finalized using median filtering.  These same 

processing techniques are applied to difference images as a more simple and traditional technique 

for identifying temporal variance and results are compared.  

 

Keywords: Image Processing, Multi-spectral Video, Principal Component Analysis (PCA), 

Temporal Variance, Feature Space, Median Filtering, Principal Component Images 
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Chapter 1: Introduction 

1.1 Motivation 

 Forest fires and wildfires are a great risk to human lives and they often times cause great 

ecological and economical damage. Historically, humans visually scan forest environments from 

elevated towers to prepare a timely emergency response to any signs of a potential forest fire. 

This method susceptible to human error and requires constant human attendance to remote 

locations. An autonomous forest fire detection system on the other hand gives the ability to 

eliminate many labor difficulties and hazards resulting from human operated towers [1]. 

To combat these natural disasters cost effectively, it is vital to detect forest fires in the 

early stages of combustion [2]. On Average, the United States spends $900 million/year to 

combat forest fires [3] and the fires themselves cause $733 million/year in property and crop 

damage [4]. In light of these factors, there is much motivation to develop a system that can 

accurately identify the early stages of a forest fire, and trigger an immediate and cost-effective 

response. 

1.2 Background 

 Conventional in-home smoke detectors use technology based on ionization and 

photometry to sense smoke particles in the air [5]. Successful operation of these detection systems 

relies on the device and sensors to be in the immediate vicinity of the smoke and fire. For this 

reason, the technological detection methods used by in-home smoke detectors are ineffective at 

detecting the presence of a forest fire at a far but observable distance. 

 Remote Sensing is an important field of engineering that deals with acquiring information 

about an object from afar without making physical contact with the object [6]. Currently, as an 

alternative to using human operated towers to catch wildfires in its early stages, satellites use 

remote sensing for larger scale fire detection [7], [8], and [9]. Unfortunately, the spatial resolution 

of satellite imagery is limited by temporal resolution and ground sampling distance. Other recent 
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developments in ground based Early Forest Fire Detection have been accomplished by the 

Croation iForestFire.  In this system, a Web Information System relays a multiple vision systems 

to an operator who’s task is to make a final decision on suspicious regions autonomously filtered 

by camera systems from and array of monitoring sites [10].  False alarm rates are reduced through 

the FAR system where information in the visible spectrum is compared to information in the 

infrared spectrum [11]. Although autonomous ground-based fire detection methods exist, there is 

much motivation and room for improvement in this important field of engineering. 

1.3 Spectral and Temporal Smoke Signature 

Using fire scene images from data collected at Raytheon in Goleta California, the spectral 

smoke signature is investigated. The location of “smoke” pixels will be examined in an image’s 

feature space to see if the identification of an explicit smoke signature is possible. Furthermore, 

the work in [12] and [13] has shown that the use of principal component analysis (PCA) can 

accurately classify atmospheric aerosols from multispectral satellite data using MODIS 

(Moderate Resolution Imaging Spectroradiometer) radiance information and GOCART aerosol 

speciation. A delta detection method can also be accomplished with principal component analysis 

by using temporal data to classify a “change” in a scene between two images at different times.  

Moreover, the work in [14] and [15] has shown that the dispersion and flickering of smoke above 

a fire is sensitive to PCA. Since smoke detection using multi-temporal PCA requires a set of 

image as an input, there is motivation to investigate optimal frame rates and which subsequent 

order of PCA best emphasizes the movement of smoke through time. Selective threshold 

adjustment and other image processing techniques can ultimately separate the moving smoke 

from a stagnant background. 

1.4 Proposed Early Forest Fire Detection 

 A land-based multi-spectral and multi-temporal video processing scheme is proposed to 

determine whether smoke, and thus fire, is present within a scene. The method will utilize 
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temporal, spatial, and spectral information from multiple camera views to segment and identify 

the smoke plume. Spectral features of the smoke are compared to the spectral features of other 

objects in the fire scene to investigate the uniqueness of the smoke’s spectral signature. Ideally, if 

the feature location of a pixel is within the vicinity of the smoke signature, it can be identified as 

smoke with a certain amount of confidence depending on the uniqueness of its spectral features. 

Using sets of images through time, the temporal variance of the smoke is identified through 

simple difference images and principal component transformation; a more complicated technique 

that provides better results. Other digital image processing techniques are utilized throughout to 

enhance the outcomes of each technique. 

1.5 Thesis Outline 

 This thesis is structured in the following way: Chapter 2 discusses the theory and 

algorithms behind the image processing techniques that are investigated throughout this study.  

Chapter 3 describes the methods of data capture, and provides a thorough documentation of the 

pre-processing techniques used in the alignment of data. Chapter 4 provides a thorough 

investigation of a variety of feature spaces and where the smoke signature resides within each 

one. The various levels of contribution from different channels will also be explored. Chapter 5 

explores the identification of temporal variance through difference imaging on different periods 

and frequencies of exposure. Chapter 6 shows successful results from selective threshold 

adjustment to principal component images on different periods and frequencies of exposure.  A 

discussion of the final results, weaknesses, and future work concludes the study in chapter 7. 
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Chapter 2: Theory and Algorithms 

 This chapter provides background to the theories and mathematical processes used in this 

study to create a successful smoke detection algorithm. The majority of processing and analysis is 

accomplished with MATLAB, a multi-paradigm numerical computing environment developed by 

MathWorks that allows for convenient matrix manipulations and data processing. Built-in 

MATLAB functions used will be identified when relevant and documented scripts are included in 

Appendix A. 

2.1 Feature Space 

A feature vector is a numerical n-dimensional vector that numerically represents some 

object. In this study, a feature vector can be constructed using values that correspond to the pixel 

location of an image or set of images. The feature space is the associated vector space that 

encompasses the image vectors [16]. As an example, a set of three images can be equivalently 

displayed in their three-dimensional feature space. Each pixel location in the image space has 3 

coordinate values picked up from the respective red, green, and blue image. Throughout this 

study, fire scenes will be analyzed in both the feature space and the image space in order to 

successfully identify smoke. Figures 1 and 2 offer a comparison of the red, green, and blue 

channels plotted as a visible image (image space) and plotted in the feature space.  
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Figure 1: Visible Image of Active Fire Scene with Identified Smoke 

 

 

Figure 2: RGB Feature Space of Fire Scene 
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The normalized rgb feature space is also useful for analysis. The conversion equations can be 

seen below where lowercase letters represent the new normalized values. 

 
𝑟 =

𝑅

𝑅 + 𝐺 + 𝐵
 𝑔 =

𝐺

𝑅 + 𝐺 + 𝐵
 𝑏 =

𝐵

𝑅 + 𝐺 + 𝐵
 (1) 

2.2 HSL and HSV 

 HSL (hue-saturation-lightness) and HSV (hue-saturation-value) are two of the most 

common cylindrical coordinate representations of the RGB color model.  These two 

representations, inspired by the color wheel, rearrange the geometry of the RGB color space to 

give a more intuitive representation of color. The angle around the vertical axis represents “hue” 

and the distance from the central axis is represented by “saturation”. The height corresponds to 

the system’s representation of luminance in relation to the saturation. In this study, the spectral 

signature of smoke will be investigated in both the RGB and HSV representations of an image’s 

feature space.  

2.3 Principal Component Transform 

            Principal component analysis (PCA) is a statistical process that results in as eigenvalue 

decomposition of sample data. Since eigenvalue decomposition is a linear transformation PCA 

maintains the signal integrity while revealing the internal structure of the data in a way that best 

explains the variance in the data. These new dimensions of orthogonal variance become linearly 

uncorrelated variables called principal components. Each principal component accounts for as 

much of the variability in the data as possible under the constraint that orthogonal and 

uncorrelated with preceding components. The number of principal components is always equal to 

or less than the number of dimensions that the data represents and is sensitive to the relative 

scaling of original variables [17]. Figure 3 shows the effect of a principal component 

transformation on the feature space of an image.  
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Figure 3: Principal Component Transformation of the Feature Space of a Visible Image 

2.4 Gaussian Mapping 

 In probability theory, the Gaussian distribution is a commonly used continuous 

probabilistic distribution. This distribution is an important part of data analysis as it is able to 

represent real-valued random variables whose distributions are not known. This type of statistical 

analysis is commonly used in natural and social sciences to analyze and make conclusions about 

different sets of data. The equation for a Gaussian distribution can be seen below. 

 
𝑓(𝑥, 𝜇, 𝜎) =

1

√2𝜋𝜎2
𝑒

− 
(𝑥−𝜇)2

2𝜎2   (2) 

The parameter µ is the mean or expectation of the distribution and represents the most common 

output of the probabilistic distribution. The parameter σ is the standard deviation and this quantity 

represents how vast the spread of variation of the data is. MATLAB provides the ability to 

receive a distribution of data and map that distribution to a Gaussian function while computing 

mean and standard deviation that corresponds to that data. These parameters can then be used to 

further process and manipulate a data set. 
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2.5 Z-Score 

 Data taken from different sources can often times have different ranges and weights. A 

normalization process known as Z-scoring scales tabulated data such that it has a mean of 0 and a 

standard deviation of unity while still preserving data trends and relationships. Z-scoring different 

sets of data provides the ability for equal weight comparison without bias. In this study, data from 

a visible camera is properly compared to data from an infrared camera after Z-scoring has taken 

place. 

2.6 Difference and Addition of Images 

 Images can be represented as data arrays that contain the respective values from a grid of 

pixels. Values from different arrays can be added or subtracted from one another to represent the 

addition or subtraction of two images. The difference image looks at the resulting absolute values 

of a subtraction of two images in order to maintain a commutative property.   

2.7 2-D Image Blurring 

 A bilateral filter can be used to smooth or blur and image while preserving edges and 

reducing noise. The intensity value in each pixel is changed in accordance to a weighted average 

of intensity values from nearby pixels. Adobe Photoshop provides a variety of different blurring 

functions similar to a bilateral filter with much flexibility in different parameters. Specifically, 

this study uses the “surface blur” function embedded in the Photoshop environment. 

2.8 Gamma Correction and AGC 

 Gamma Nonlinearity and Gamma Correction references a non-linear operation used to 

optimize the usage of bits when encoding an image. Images that are not gamma-encoded may 

allocate too much bandwidth to high outlier data values and not enough bandwidth to lower more 

relevant data. Gamma correction was first developed to counter the non-linearity of cathode ray 

tube (CRT) displays such that images could be displayed in full range [18]. By passing the input 
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signal through the Gamma function, the data can be spread in such a way that relevant data 

differences can be observed at all spectra.  

Below we can see the Gamma function and figure 4 shows how the function counters the 

CRT response to produce a linear relationship between the data’s true value and its displayed 

value. The effects of different Gamma values can also be observed.  

 𝐺𝑎𝑚𝑚𝑎 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑉𝑜𝑢𝑡 = 𝐴𝑉𝑖𝑛
𝛾

 (3) 

 

Figure 4: Gamma Correction for Cathode Ray Tubes  

 An automatic gain control function, agc.m, has been created using Gamma correction 

principles to better display features in the IR images. The effects of the automatic gain control 

can be observed below in the following IR image of a fire scene in figures 5 and 6 below. The 

agc function can be found in appendix A.  

 

Figure 5: Automatic Gain Control on a Long-Wave Infrared Image 
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Figure 6: Automatic Gain Control on a Long-Wave Infrared Image Histogram 

2.9 Histogram Equalization and Auto Contrast 

Histogram equalization is used to increase the global contrast of an image by better 

distributing the intensities across the histogram. This method can be very useful in images where 

both the backgrounds and foregrounds are light or dark. Using histogram equalization can 

effectively spread out the most frequently used intensity values.   

In matlab, histeq(I), transforms an intensity image I and outputs and image with a flat and 

desirable histogram. Although histogram equalization produces unrealistic effects in photographs, 

the transform can be very useful in scientific images and data processing [19]. The effects of 

histogram equalization can be observed on the IR image below in figures 13 and 14. 
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Figure 7: Histogram Equalization on a Long-Wave Infrared Image 

2.10 Median Filtering 

 In digital image processing, it is often desirable to be able to reduce the amount of noise 

in an image. Median filtering is a non-linear transformational technique that works well at 

eliminating “Salt and Pepper” noise while preserving edges. This filter runs through the image 

entry by entry and replaces each entry with the median value of neighboring entries. The median 

of a list of numbers can be found by picking the middle index of all ordered numbers in that list. 

The size of the neighborhood of pixels is known as the window, and the size of this parameter can 

be chosen to accommodate the size of the noise.  

Matlab provides medfilt2, a 2-dimensional median filtering function which by default 

outputs an image where each pixel contains the median value in a 3-by-3 neighborhood around 

the corresponding pixel in the input image. Different sizes of neighborhood classification are used 

in stages of median filtering in this study. Below we can observe the effects of median filtering on 

noise removal at one point in the smoke detection algorithm in figure 8. 
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Figure 8: Median Filtering Example 
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Chapter 3: Data Acquisition and Preprocessing 

3.1 Data Acquisition 

 A fire test was conducted at Raytheon Vision Systems (RVS) on June 18
th
, 2011 at 

Raytheon Vision Systems in Goleta, California. The data obtained on this clear and windy day 

accommodated the means to investigate the temporal, spectral and spatial characteristics of 

different components of a fire scene. This study is the result of copious analysis of this data.  

Over 300 GB of video data was generated from four types of cameras mounted on a 

tower 875 yards away and pointed at an elevated barbeque pit. A natural wildfire was simulated 

by burning various different fuels including wild oats, pine needles, pine cones, palm leaves, 

thistle, wet and dry leaves, wild rosemary, and apple wood in the barbeque pit. Fuels were added 

continuously in order to simulate a growing fire. The video analysis and image processing in this 

study focusses on a period of data that captures the burning of wild oats as fuel.  

3.2 Video Data Format 

The fire scene was captured in an 8-bit visible camera, and three 14-bit infrared (IR) 

cameras which include cooled mid-wave IR, cooled long-wave IR, and uncooled long-wave IR 

spectral bands. The visible data is saved as and AVI file with 24-bit pixel values. Each 24-bit 

value consists of three 8-bit vales which represent the Red, Green, and Blue channels. The IR 

data channels (CLWIR,CMWIR,ULWIR) are saved as 16-bit RAW bit streams with zero padding 

on the least significant bits to represent the captured 14-bit data.  

Each frame in the visible data is time stamped with the date and time (up to milliseconds) 

of capture. The IR video streams are not time stamped but aligned exactly with each other and 

pre-organized into smaller video files corresponding to each fuel stage. An excel document is 

included with the video files which documents when noticeable events occur in the fire scene 

such as the changing of fuel or extinguishment of the fire. Observations and details are included 
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from a Fire Site Team and a Command Center Team to aid in the alignment between video 

streams and the subsequent extracted images.   

The data specifications for all four cameras can be seen in table 1 below. IR cameras 

capture 30 IR frames a second with a resolution of 640 x 480 where each pixel is stored as a 14-

bit value. The visible camera captures 3 visible frames a second with a resolution of 1086 x 873 

where each pixel is stored as a 24-bit value. Each pixel in a visible frame is made of three 8-bit 

values representing the Red, Green, and Blue components each with a resolution of 1068 x 873.  

Sensor Visible Cooled MWIR Cooled LWIR Uncooled LWIR 

Resolution 1068 x 873 640 x 480 640 x 480 640 x 480 

Bit Depth 3 x 8-bit 14-bit 14-bit 14-bit 

Fames Per Sec 3 30 30 30 

Table 1: Video Capture Specifications 

3.3 Pre-Processing 

 In order to produce a successful smoke detection algorithm using the Goleta fire data, a 

considerable amount of pre-processing must be done to extract image frames from their 

respective video files and align them spatially and temporally. The following sections will follow 

the pre-processing techniques described in Tim Davenports’ master’s thesis, Early Forest Fire 

Detection using Texture Analysis of Principal Components [15]. Due to data corruption, the pre-

processing techniques are revised and documented to help future fire-fighters advance to a point 

where relevant processing can take place. Weekly exchanges with Tim Davenport, Dr. John 

Jacobs, and Dr. John Saghri not only provided the means to successfully pre-process the Goleta 

fire data but also their guidance was vital in guiding this study to a successful completion.  

 It is important to note that although data for the Uncooled LWIR band is included in the 

Goleta fire data; this channel makes little contribution to the signature of the smoke and thus adds 

no new information about a fire scene. Moreover, the relevant field of view (FOV) from the 
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Uncooled LWIR data channel provides a much lower resolution in comparison to the visible 

channels and the alternative IR channels. 

 The end goal of the following sections of this chapter is to be able to view images of 

consecutive fire scenes with the same field of view in 5 temporally aligned dimensions (Red, 

Green, Blue, LWIR, and MWIR). These different dimensions of data will also be referred to as 

channels and the next sections give detailed analysis of how to extract frames and align them both 

spatially and temporally. 

3.3.1 Frame Extraction from Visible and IR Data Channels 

 Figure 9 helps illustrate part of the data acquisition process. Visible data stored as an 

audio video interleave (AVI) file is extracted to frames saved as bitmaps (bmp). The Cooled 

MWIR and Cooled LWIR are stored as one as one dual band raw (RAW) bit stream and are 

extracted appropriately into separate raw images.  

 

Figure 9: Multi-Spectral Frame Extraction Process 

 MATLAB script visvid2frame and takes an AVI video file as an input and extracts all 

frames as bmp images to a specified directory. Similarly, CLWMWIRvid2frame receives a dual 
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band RAW bit stream and extracts RAW images to as specified directory. These scripts were 

written by Tim Davenport and edited by David Garges for this study. Both of these scripts can be 

found in Appendix A. 

3.3.2 Spatial Alignment 

 The visible camera and the IR camera have different field of views such that initially 

there is no direct spatial correspondence between images from each camera. Although the visible 

camera has a larger resolution than that of the IR camera, it has a much narrower field of view. 

The IR images will be cropped and mapped to the FOV and resolution of the visible images using 

an affine transformation. Twenty hand selected correlation coordinates used for the alignment are 

displayed in Figure 10. 

 

Figure 10: Unregistered FOV 

 The twenty pixel coordinates in the above images can be represented as {𝒙𝑰𝑹, 𝒚𝑰𝑹} and 

{𝒙𝑽𝒊𝒔, 𝒚𝑽𝒊𝒔} and are used to find the image transformation that will map FOV and resolution of 

the IR images to that of the Visible image. 

 
[
𝒙𝑰𝑹

𝒚𝑰𝑹
] = [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

] [
𝒙𝑽𝒊𝒔

𝒚𝑽𝒊𝒔

1
] (4) 

 

The coefficients for the transform can be determined by solving for the best fit solution of the two 

systems. 
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] [

𝑑
𝑒
𝑓
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After solving for the coefficients, equation 6 can be used to transform all IR images to have the 

same FOV as the visible images. The resolution can then be matched using equation 7 below. 

 

𝐼𝑅𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑥𝐼𝑅
𝑖 𝑦𝐼𝑅

𝑗

3

𝑗=0

3

𝑖=0

 (7) 

Where 𝑎𝑖𝑗 are the weighting coefficients derived from sixteen closest pixels in the unregistered 

IR frame. The new registered images can be observed in figure 19 below. The matlab script 

alignCLWIRFOV is used to accomplish this specific transformation and can be found in 

Appendix A. This script takes IR frames and transformation coefficients as inputs and outputs 

spatially aligned IR images to a specified directory. 

 

Figure 11: Registered FOV 

3.3.3 Temporal Alignment 

 The IR camera and the visible camera captured frames are not synchronous to each other. 

Because of this, temporal analysis is not possible without temporal alignment. Time stamps on 
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visible images, and timing notes included with the Goleta data are used for general alignment. 

Key frames are hand selected from the beginning, middle, and end of the videos when noticeable 

events took place within the scene. Using key frames and the known frame rates of the video, 

frames can be extrapolated such that IR images are temporally aligned with the visible images. 

Figure 12 provides an illustration of temporally alignment between visible and infrared video 

frames. 

 

Figure 12: Temporal Alignment 

3.3.4 Gamma Correction and Histogram Equalization of Fire Images 

 A combination of histogram equalization and gamma correction through the automatic 

gain control function is implemented on IR images to enhance contrast and spatial properties. A 

more detailed analysis of this process is explained in section 2.8 and 2.9. 

3.4 Working Data 

 The end result of the pre-processing of the data gives access to 100 consecutive instances 

in time each with 5 dimensions corresponding to the 5 channels. The visible camera contributes 

the red, blue, and green channels while the IR camera contributes the long-wave infrared and 
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mid-wave infrared channel. All image frames have the same resolution and field of view which 

allows for consistent and robust digital image processing techniques to successfully identify 

smoke in a fire scene. 
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Chapter 4: Feature Space Analysis 

4.1 Smoke Contribution From Infrared Images 

 The infrared channels are investigated to see their contribution to smoke information. 

Below in figures 13 and 14, a visible image is compared to two respective infrared images:  

 

Figure 13: Visible and Infrared Comparison  

 

Figure 14: Visible and Infrared Comparison (Zoomed)  

From these comparisons, it is concluded that smoke emits a weak and undetectable infrared 

signature. Smoke can be clearly observed in the visible image and there is no sign of smoke in the 

temporally aligned infrared images. To add continuity to this conclusion, fire fighters use infrared 

cameras to locate humans in a burning building when smoke is too thick to see through with the 

naked eye [20]. From this point forward, the infrared channels will not be used in data analysis as 

they provide little to no information about the smoke signature. 
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4.2 RGB and normalized rgb Feature Space 

 An image from the data set with a time stamp of 14.625 seconds will be analyzed in 

various feature spaces. Below in figure 15 the smoke has been manually identified using the spray 

paint tool in Microsoft paint.  

 

Figure 15: Fire Scene (Left) and Manually Identified Smoke (Right)  

The RGB and the normalized rgb feature space from these images are displayed below in figures 

16 and 17. Black values represent the manually selected smoke pixels while the red values 

represent all other pixels in the image.  
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Figure 16: Feature Space of Fire Scene in RGB 

 

Figure 17: Feature Space of Fire Scene in normalized rgb 

4.3 HSV Feature Space 

 Using the transformation equations defined in chapter 2.1, the features of the smoke can 

also be compared in the Hue, Saturation, and Value feature space. Below we have identified the 
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hue range of smoke pixels in comparison to the hue of all other pixels in figure 18. The hue is 

also compared to saturation and value in figures 19 and 20. 

 

Figure 18: Histogram of Hue Values 

 

Figure 19: Hue vs. Saturation of Fire Scene 
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Figure 20: Saturation vs. Value of Fire Scene 

In all of the feature space plots, the smoke pixels are localized to an area that can be defined as 

the spectral smoke signature. Unfortunately, other non-smoke features in the images are 

intermixed in the smoke signature region. This identification of a spectral smoke signature allows 

for classification of pixels up to a certain confidence but is susceptible to false positives because 

the smoke signature is not removed from other features. 
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Chapter 5: Difference Imaging Scheme 

 The next two chapters attempt to identify smoke by identifying and accentuating 

its temporal variance through time. Using a set of temporal images from a given exposure 

time and frame rate, many smoke false positives can be eliminated as they are stagnant in 

comparison to a moving smoke plume. The simplest way to identify a moving object in a 

set of images is to find the difference images. This process will be investigated in this 

chapter. 

5.1 Visible Comparison of Smoke Signature 

 The goal of this section is to determine which of the visible spectral bands (Red, Green, 

or Blue) provides the strongest smoke signature. If one of the visible channels yields a more 

pronounced smoke signature, future processing can be simplified by only viewing data from that 

channel. Below, aligned images from the three visible channels and their respective histograms 

can be observed. Qualitatively, it can be argued that the smoke in the center of the frame is most 

explicit in the blue channel. Using the manually identified smoke in section 4.2, the feature 

location of the smoke can be identified in each individual channel in figure 21. 
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Figure 21: Image and Histogram Comparison of Fire Scene with Visible Bands 

The normalized blue channel for this image has a notable separation in comparison to the red and 

green channels. Because the smoke pixels are more withdrawn from the distribution of other 

feature values in the blue channel, temporal analysis will be done on the blue channel for the 

remainder of this study. 

5.2 Layout and setup 

 In this process, four difference images are created by differencing 5 tabulated temporal 

frames with equal exposure time. A cumulative difference image is created by adding the 

resulting frames together. Histogram equalization can be applied to improve the contrast of the 

cumulative image. In this image, pixels with high intensity values are associated with high 

temporal variance. In figure 22 below, the temporal spacing of the original tabulated images is 2 

seconds. 
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Figure 22: Construction of Cumulative Difference Image 

5.3 Image Enhancement and Selective Threshold Adjustment  

 After difference images have been summed together, blurring is used to smooth out the 

intensities of the image’s features. A selective threshold adjustment tool in Photoshop is then 

used to separate areas with high intensities from areas with low intensities. Median filtering is 

used to identify large blobs of variance and eliminate small and irrelevant locations of variance. 

The block diagram in figure 23 below shows the processing scheme on four difference images. 
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Figure 23: Block Diagram of Difference Image Threshold Scheme 

5.4 Results from different intervals 

 Using 5 temporal images in each scenario, the image capture period is adjusted to see its 

effect on results. Below, results from capture intervals of 0.3 seconds, 2 seconds, and 5 seconds 

can be observed. 

   

Figure 24: Difference Imaging Scheme with Delta = .3sec 

   

Figure 25: Difference Imaging Scheme with Delta = 2sec 
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Figure 26: Difference Imaging Scheme with Delta = 5sec 

5.5 Conclusion 

 A differencing image scheme using five temporal images was created in attempt to locate 

moving smoke by identifying temporal variance. Using blurring, selective threshold adjustment, 

and median filtering, areas of large temporal variance are segmented from areas with low 

temporal variance. Unfortunately, small movements within the scene throughout the exposure 

time can contribute a comparably high temporal variance to that of the moving smoke. Moreover, 

vibrations in the tower from wind contribute strong problematic temporal edges within the 

difference images.  

Based on the results in figures 24, 25, and 26 above, it is determined that the temporal 

spacing of images needs to be at least 5 seconds in length in order for the smoke’s temporal 

variance to over-power that of the false positives. It also is important to note that the threshold 

adjustment value used to produce the results in section 5.4 is not consistent throughout all test 

cases and was manually chosen to produce the best result possible. If an autonomous system were 

to be implemented, the choice of the threshold value would provide further complications to this 

method. Overall, this study concludes that the difference imaging scheme for identifying smoke 

by its temporal variance is ineffective especially with high frequencies of frame rates.  
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Chapter 6: Selective Threshold Adjustment on Principal Component Images 

 Chapter 6 investigates an alternate and more successful method used to locate smoke by 

segmenting its temporal variance. Principal component images resulting from a principal 

component transform of temporal frames are processed using similar techniques to those used in 

chapter 5. The success of method motivates a technique to develop an autonomous threshold 

value for each principal component image. This chapter investigates the resulting effects of 

different parameters throughout the process and also provides results from two different data sets 

containing various levels of smoke. 

 The primary data set contains images with heavy smoke, while a secondary data set 

contains images with small amounts of smoke. The data was initially thought to contain no 

features of smoke, however results from the algorithm suggest that there is still faint amounts of 

smoke. The first data set will be referred as “Smoke” while the second data set is referred to as 

“NoSmoke”. 

6.1 Principal Component Transform of Five Temporal Blue Images 

 Just as in chapter 5, five temporal images with a given frame rate are selected for 

temporal processing. A principal component transformation is applied to the temporal 

images and the resulting principal component images can be seen in figure 27. In the 

resulting principal component images, areas with large temporal variance have intensity 

values outside of the mean value of the image. Section 6.2 discusses the autonomous 

process to segment the temporal smoke in the resulting principal component images.  
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Figure 27: 5 Temporal Blue Images and Principal Component Images 

6.2 Determining the Autonomous Threshold Value 

 In order to segment the temporal variance of the smoke, principal component 

images are blurred and then mapped to a best fit Gaussian function. An autonomous 

threshold adjustment value is then determined based off of the mean and standard 

deviation of the best fit Gaussian. The  automatic threshold value for each principal 

component image is determined by the following relationship: 

 𝑇ℎ𝑒𝑠ℎ𝑜𝑙𝑑 =  𝜇 + 𝐴 ∗ 𝜎 (8) 

Where µ is the mean intensity value and σ is the standard deviation of the intensity value 

distribution of a given principal component image. An experimental tuning constant A is 

included in the autonomous threshold adjustment to provide flexibility across different 

types of fire scenes. The following experiments show successful results with a tuning 

constant value of A=4.5. 
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 Figure 28 shows a block diagram of the principal component image analysis. 

Figures 29 and 31 show images throughout the process on a principal component image 2 

of 5, with an exposure rate of one image every 2 seconds. Figure 30 demonstrates the 

Gaussian mapping of the histogram from the principal component image used in this 

example. Lastly, figure 32 displays the results of the automatic threshold adjustment 

scheme on all the principal component images from this example. 

 

Figure 28: Block Diagram for Selective Threshold Adjustment on PC Images 

  

Figure 29: Principal Component Image (left) Blurred Principal Component Image (right) 
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Figure 30: Gaussian Mapping to Histogram of Blurred Principal Component Image 

  

Figure 31: Threshold Adjustment (Left) Median Filtered Result (Right) 
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Figure 32: Selective Threshold Adjustment Process on Principal Components 2 through 5 

6.3 Results from Different Intervals 

 Results from this process are compared using different intervals between five 

temporal images. Below in figure 33, we can observe that results grow stronger as 

exposure period increase. This makes sense because a longer capture period allows for 

more explicit temporal variance from moving smoke in a fire scene. This study concludes 

that 2 seconds per temporal image is the minimum required frame rate to produce 

successful results. 
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Figure 33: Selective Threshold Adjustment Results on 5 Blue Images, Varying Intervals 

6.4 Results from Different Spectral Channels 

 Using five temporal images with 2 seconds in between each temporal image, 

results can be compared using different channels from the visible spectrum. Below in 

figure 34, the effects of using the red, green, and blue channels can be compared to one 

another. The following results reinforce that the blue channel provides the strongest 

spectral and temporal smoke signature. 
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Figure 34: Comparison of Selective Threshold Adjustment on Visible Channels 

6.5 Results from Different Numbers of Temporal Images  

 Figures 35, 36, and 37 display results on principal components generated from 3, 

5, and 8 temporal images respectively from the Smoke and “NoSmoke” data set. Each 

temporal image is separated by 2 seconds in time. Results show that as the number of 

temporal images increase, results become stronger. However, an increased number of 

temporal images results in longer exposure time and a longer processing time. Although 

using different numbers of temporal image provides successful results, this study 

concludes that the use of 5 temporal images is a happy medium between exposure and 

processing time and consistency.  
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Figure 35: Results from 3 Temporal Images from Smoke and “NoSmoke” Data 

 

 

Figure 36: Results from 5 Temporal Images from Smoke and “NoSmoke” Data 
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Figure 37: Results from 8 Temporal Images from Smoke and “NoSmoke” Data 

6.6 Temporal Smoke signature from eigenvector 

 Using principal component analysis, an experimental temporal signature for 

moving smoke can be determined. Since all principal component images are linear 

combination of the original temporal images, the eigenvector associated with the 

principal component image that displays the temporal smoke most can be identified. The 

following temporal signature or “recipe” is based off of principal component image 2 of 5 

based off of images 2 seconds apart. 

 𝐼𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =  −.49 ∗ 𝐼1 + −.05 ∗ 𝐼2 + −.27 ∗ 𝐼3 − .01 ∗ 𝐼4 + .82 ∗ 𝐼5 (9) 

Which can be further simplified to: 

 𝐼𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 =  −.49 ∗ 𝐼1 + −.27 ∗ 𝐼3 + .82 ∗ 𝐼5 (10) 

This temporal smoke signature can be used to bypass a complete principal component 

transformation for a lowered processing time. 

6.7 Conclusion: Discussion of tuning constant, wind, and POV 

Chapter 6 provides a method to autonomously segment the temporal variance of 

smoke from sequences of images in time. Principal component images are generated 

from a principal component transform from a set of temporal images. The intensity 

spectrum of each principal component image is mapped to a Gaussian distribution to 
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determine the expectation and standard deviation and a threshold value is determined 

using the mean, standard deviation, and a tuning constant based on the fire scene. Results 

are then cleaned using median filtering. From this study, the best results come from 5 

temporal images 2 seconds apart with a tuning constant of 4.5. 

 The tuning constant A, ultimately determines the accepted level of temporal 

variance. A fire scene with song amounts of wind resulting in large movement of smoke 

would require a large value for the tuning constant. On the other hand, smoke in a fire 

scene that is very far away occupies much less space in the field of view of the camera 

and effectively results in less temporal variance. A lower tuning constant would allow for 

the sensitivity of smoke in this case.  

 

  



40 

 

Chapter 7: Conclusion 

7.1 Results 

 Throughout this study, there have been many strong conclusions. In chapter 4, the 

infrared channels are shown to contain little spectral features associated with smoke. Chapter 4 

and chapter 6 also show that the strongest smoke signature results from the use of the blue 

spectral band. These two results are in conjunction with each other as the blue spectral band is the 

furthest away from the infrared spectral band in frequency. The feature space location of the 

smoke is determined to be unique; however, many other objects in the frame also occupy and 

overlap through this feature space. From this, it is determined that smoke can only be identified 

up to a certain confidence based on its spectral features.  

 Difference image analysis in chapter 5 suggests at the ability to successfully segment the 

temporal variance of the smoke. However, this requires long periods of time between successive 

temporal frames (5 seconds minimum) and this process is susceptible to many false alarm rates as 

is shown in chapter 5. 

 An autonomous selective threshold adjustment scheme is shown to successfully identify 

smoke in chapter 6. The process requires 5 temporal images with a minimum period of 2 seconds 

between each image. The eigenvector associated with principal component images that greatly 

accentuate the smoke is treated as the temporal smoke signature, and can be used as a recipe to 

combine temporal images and reduce processing time by avoiding an entire principal component 

transform. 

7.2 Weaknesses 

 Ultimately, the success in identifying the location of smoke is based on the smoke’s 

temporal variance. It is not guaranteed that the smoke will be the only moving object in the fire 

scene. Birds, cars, and vibrations provide sources for false positives in the temporal domain. A 

saving grace of the data collected in this fire scene is that the size of the smoke plume is much 
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larger compared to other moving object in the field of view. Median filtering helps to filter out 

small areas of temporal variance. Nonetheless, the algorithmic process proposed in this study is 

still somewhat susceptible to large areas of temporal variance resulting from moving objects other 

than smoke. 

7.3 Future Work 

 There is potential for more confidence in the identification of smoke by combing 

methods presented in this study. Areas with large temporal variance can be verified in the feature 

space as smoke or something different. This combats the weaknesses addressed in section 7.2 by 

eliminating possible false positives that have the same temporal signature of smoke but a different 

spectral signature. In order for smoke to be confidently identified, the temporal and spectral 

variance must be correct. 

 The verification of the selective threshold adjustment scheme on data that contains no 

smoke in the atmosphere would prove to be useful. This study attempted to run processes on data 

containing no smoke in chapter 6, but positive results from this data and further visual 

investigation suggests that there are still small traces of smoke located in the atmosphere. The 

success of the algorithmic process would become much more valuable when true negatives have 

been verified. 
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Appendix A: MATLAB Scripts and Functions 
%% Matlab Script -----------------------------------------------------% 
% Script : CLWMWIRvid2frame.m 
% Author : Tim Davenport 
% Date : 10/1/11 
% 
% Description : Extracts individual frames of the dual band Cooled Long  
% Wave InfraRed (CLWIR) & Cooled Mid Wave InfraRed (CMWIR) 
% .raw video streams from the June 18 fire test at Raytheon  
% Vision Systems (RVS) in Goleta, CA.  
% 
% Notes : 1. Video files were originally provided in the folder: 
% Fire_Data_6-18-11_MW_LW 
% It has since been renamed to: 
% Fire_Data_6-18-11_UCLW_CMW_CLW 
% 2. The test video files are separated into multiple "burns"  
% that used various types of fuel. Both the source files  
% and the resulting frames are labeled as such, and the  
% frames for each burn are stored in separate folders.  
% 3. Pixel data is 14-bit w/ LSBs zero-padded to 16 
% so frame is rightshifted by dividing by 4. 
% Eg: #### #### #### ##00 >> ## #### #### ####  
% 4. Dual band video was captured with MidWave of left and 
% LongWave on right (MW has less 'blooming') 
% Resolution is (2*640=1280)x480 
% Frame Rate is 60 fps for both (30fps per band)  
% Frame size is 1280x480x2 = 1228800 bytes 
%  
% Revision(s) : 01/27/12 - cleaned code: updated description, comments, 

and 
% superfluous syntax to be more elegant/succinct. 
%---------------------------------------------------------------------% 
close all; clear; clc; tictime = tic; 
%---------------------------------------------------------------------% 
%% User Input: Source & Destination directory locations  
% Source location: raw video files 
vidfldr = ['F:\TestFolder1\']; 
% Target directory: raw frames will be stored here  
frmfldr = 'F:\Fire_Data_Target_Directory69'; 
%% Initialize & Allocate 
MWcols = 640; 
LWcols = 640; 
nrows = 480; 
frmnum = 0; 
fps = 30; 

  
% filename format: date_timestamp_fuel.raw 
vidfiles = {'2011-06-18_102125_LW-MW-14bit_charcoal1.raw'};  
vidlabels = {'charcoal1'};  

  
% mkdir(LWfrmfldr); 
% mkdir(MWfrmfldr); 

  
read_attempt = 0; 
%% Video Processing  
for i=1:1:numel(vidfiles) %step through each stream raw file 
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 vidtic = tic; 
 disp(['Opening Video : ' vidfiles{i}]); 

  
 % Update file names & locations 
 vidname = vidfiles{i}; 
 vidlabel = vidlabels{i}; 
 vidpath = [vidfldr vidname]; 
 LWprefix = ['CLWIR_' vidlabel '_']; 
 MWprefix = ['CMWIR_' vidlabel '_']; 
 LWsavefldr = [frmfldr 'CLWIR/' vidlabel '/']; 
 MWsavefldr = [frmfldr 'CMWIR/' vidlabel '/']; 

  
 mkdir(LWsavefldr); % make folder for each lwir video 
 mkdir(MWsavefldr); % make folder for each mwir video 
 fid = fopen(vidpath,'r'); % open file for read access 

  
 display('Extracting frames...') 
 % Extract successive frames from each raw video stream until eof 
 while ~feof(fid) 

  
 % Read in raw video frame of 1280x480 = 614400 16-bit pixels 
 dualfrm = uint16(fread(fid,[(MWcols+LWcols), nrows],'uint16')); 

  
 if ~isempty(dualfrm) 
 frmnum = frmnum + 1; 

  
 % Skip every other frame (ie. move file position 1228800 bytes) 
 % this is because at 60 fps (each band at 30) the new frame is 
 % captured on left side while the right still has the previous  
 % frame, then when the new right side frame is capture the 
 % 2 are in sync. Thus there is an 'inbetween' sample (@60fps)  
 % where the 2 frames are missaligned time-wise. For Example: 
 %  
 % t |lw |mw 
 %-------------------- 
 % t0 | 1 | 1 <= 
 % t(1/60) | 2 | 1 (skip) 
 % t(2/60) | 2 | 2 <= 
 % t(3/60) | 3 | 2 (skip)53 
 % t(4/60) | 3 | 3 <= 
 fseek(fid,2*(MWcols+LWcols)*nrows,'cof'); 

  
 % separate bands (lw on left, mw on right) & 
 % divide each pixel by 4 to right shift twice 
 LWframe = dualfrm(1:640,:)./4;  
 MWframe = dualfrm(641:1280,:)./4;  
 % save individual frame with the following file name 
 LWsavepath = [LWsavefldr LWprefix int2str(frmnum) '.raw']; 
 MWsavepath = [MWsavefldr MWprefix int2str(frmnum) '.raw']; 

  
 LWfsav = fopen(LWsavepath,'w'); % open for write access 
 MWfsav = fopen(MWsavepath,'w'); % open for write access 
 fwrite(LWfsav,LWframe(:,:),'uint16'); % write frame 16-bit data 
 fwrite(MWfsav,MWframe(:,:),'uint16'); % write frame 16-bit data 
 fclose(LWfsav); % close file  
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 fclose(MWfsav); % close file 
 end 
 end 

  
 disp(['Frames Saved : ' num2str(frmnum)]); 
 disp(['Video length : ' num2str(frmnum/fps) 's']); 
 disp(['Extract time : ' num2str(toc(vidtic)) 's']); 
 fclose(fid); 
 frmnum = 0; 
end 
%% End of Script -----------------------------------------------------% 
toc(tictime) 
%---------------------------------------------------------------------% 
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%% Matlab Script -----------------------------------------------------% 
% Script : UCLWIRvid2frame.m 
% Author : Tim Davenport 
% Date : 10/1/11 
% 
% Description : Extracts individual frames of the Uncooled Long Wave  
% InfraRed (UCLWIR) .raw video streams from the June 18 fire  
% test at Raytheon Vision Systems (RVS) in Goleta, CA.  
% 
% Notes : 1. Video files were originally provided in the folder: 
% Fire_Data_6-18-11_MW_LW 
% It has since been renamed to: 
% Fire_Data_6-18-11_UCLW_CMW_CLW 
% 2. The test video files are separated into multiple "burns"  
% that used various types of fuel. Both the source files  
% and the resulting frames are labeled as such, and the  
% frames for each burn are stored in separate folders.  
% 3. Pixel data is 14-bit w/ LSBs zero-padded to 16  
% So frame is rightshifted by dividing by 4. 
% Eg: #### #### #### ##00 >> ## #### #### ####  
% 4. Resolution is 640x480 
% Frame Rate is 30 fps  
% Frame size is 640x480x2 = 614400 bytes 
% 
% Revision(s) : 01/20/12 - cleaned code: updated description, comments, 

and 
% superfluous syntax to be more elegant/succinct. 
%---------------------------------------------------------------------% 
close all; clear; clc; tictime = tic; 
%---------------------------------------------------------------------% 

  
%% User Input: Source & Destination directory locations  
% Source location: raw video files  
vidfldr = ['F:\TestFolder\']; 
% Target location: raw frames will be stored here  
frmfldr = 'F:Fire_Data_Target_Directory69'; 

  
%% Initialize  
band = 'UCLWIR'; 
ncols = 640; 
nrows = 480; 
fps = 30; 
frmnum = 0; 

  
% filename format: date_timestamp_fuel.raw 
vidfiles = {%'2011-06-18_101351_setup.raw' 
'2011-06-18_102316_charcoal1.raw' 
'2011-06-18_102646_oats1.raw'}; 
vidlabels = {%'setup' 
'charcoal1' 
'oats1'}; 

  
% mkdir(frmfldr); 

  
%% Video Processing (frame extraction) 
for i=1:1:numel(vidfiles) % step thru each video stream raw file 
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vidtic = tic; 
disp(['Opening Video : ' vidfiles{i}]); 

  
% Update file names & locations 
vidname = vidfiles{i}; 
vidlabel = vidlabels{i}; 
vidpath = [vidfldr vidname]; 
prefix = [band '_' vidlabel '_']; 
savefldr = [frmfldr '/' band '/' vidlabel '/']; 

  
mkdir(savefldr); % make folder for each video (or test)  
fid = fopen(vidpath,'r'); % open file for read access 

  
disp('Extracting frames') 
% Extract successive frames from each raw video stream until eof 
while ~feof(fid) 

  
% Read in raw video frame of 640x480 = 307200 16-bit pixels 
frm = uint16(fread(fid,[ncols, nrows],'uint16')); 

  
if ~isempty(frm) 
frmnum = frmnum + 1; 

  
% divide each pixel by 4 to right shift twice 
frm = frm./4; 

  
% save individual frame with the following file name 
savepath = [savefldr prefix int2str(frmnum) '.raw']; 

  
fsav = fopen(savepath,'w'); % open file for write access 
fwrite(fsav,frm(:,:),'uint16'); % write frame with 16-bit data 
fclose(fsav); % close file 
end  
end 

  
disp(['Frames Saved : ' num2str(frmnum)]); 
disp(['Video length : ' num2str(frmnum/fps) 's']); 
disp(['Extract time : ' num2str(toc(vidtic)) 's']); 

  
frmnum = 0; 
fclose(fid); 
end 

  
%% End of Script -----------------------------------------------------% 
toc(tictime) 
%---------------------------------------------------------------------% 
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%% Matlab Script -----------------------------------------------------% 
% Script : visvid2frame.m  
% Author : Tim Davenport  
% Date : 10/31/2011 
% 
% Description : this script extracts all the frames from the visible 

video. 
% 
% Notes :  
% Revision(s) : 10/31/11 -- added get frame num 
% 01/28/12 -- cleaned code 
%---------------------------------------------------------------------% 
close all; clear; clc; tictime = tic; 
%---------------------------------------------------------------------% 

  
%% Initialize and Allocate 
nVISrows = 480; 
nVIScols = 587; 
fps = 30; 

  
% Source location: raw video files  
vidfldr = 'E:\Camtasia Videos\'; 
frmfldr = 'E:\Fire_Data_Target_DirectoryVisiblecapture-13new'; 
% mkdir(frmfldr); 
vidfiles = {'capture-13'}; 

  
for j = 1:numel(vidfiles) 
    vidtic = tic; 
    disp(['Opening Video : ' vidfiles{j}]); 

  
    visMov = VideoReader([vidfldr vidfiles{j} '.avi']); 
    frmnum = get(visMov, 'NumberOfFrames'); 

  
    savefldr = [frmfldr vidfiles{j} '/']; 
    mkdir(savefldr); 

  
    %% Extract each frame 
    disp('Extracting frames'); 
    for i = 1:frmnum 

  
        % clc 
        % disp(['extracting frame' ' ' num2str(i)]); 
        % read ith frame from visible video  
        frm = read(visMov, [i i]); 
        % write visible frame 
        savepath = [savefldr 'VISIBLE_' vidfiles{j} '_' num2str(i) 

'.bmp']; 
        imwrite(frm,savepath,'bmp'); 
    end 

  
disp(['Frames Saved : ' num2str(frmnum)]); 
disp(['Video length : ' num2str(frmnum/fps) 's']); 
disp(['Extract time : ' num2str(toc(vidtic)) 's']); 
end 
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%% End of Script -----------------------------------------------------%  
toc(tictime) 
%---------------------------------------------------------------------% 
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%% Matlab Script -----------------------------------------------------% 
% Script : alignCLWIRFOV.m  
% Author : Tim Davenport  
% Date : 10/31/2011 
% 
% Description : this script extracts all the frames from the visible 

video. 
% 
% Notes :  
% Revision(s) : 10/31/11 -- added get frame num 
% 01/28/12 -- cleaned code 
%---------------------------------------------------------------------% 
close all; clear; clc; tictime = tic;  
%---------------------------------------------------------------------% 
%% User Input: Source & Destination directory locations  
% Source location: raw un registered frame files  
unRegfrmfldr = 'F:\Fire_Data_Target_DirectoryUCLWIR\'; 

  
% Target location: raw frames will be stored here  
Regfrmfldr = 

'F:\Fire_Data_Target_DirectoryUCLWIR_SpacialAllignment_test'; 

  
%% Initialize  
band     = 'UCLWIR'; 
nIRcols  = 640;  
nIRrows  = 480;  
nVISrows = 873;  
nVIScols = 1068; 
frmnum     = 0; 

  
vidlabels = { 'charcoal1'  
    'oats1'  
    }; 

  
%% Generate Transformation coefficients 
VIS_x = [464 542 573 608 662 728 130 215 914 849 63 418 700 253 14 1030 

863 541 609 331 ]-2'; 
VIS_y = [577 573 571 566 291 639 625 157 146 751 721 846 801 433 805 

646 565 436 685 328 ]-27'; 
n     = length(VIS_x); 

  
% the length of all the correlation lists  
A      = ones ([n 3]); 
A(:,1) = VIS_x; 
A(:,2) = VIS_y; 
cIR_x  = [299 330 343 357 381 408 158 195 486 458 131 280 397 210 112 

532 461 326 358 243 ]'; % 578  
cIR_y  = [361 357 356 354 239 388 379 180 178 437 419 476 459 296 457 

392 349 298 406 253 ]'; % 424  
abc_IR = A\cIR_x; 
def_IR = A\cIR_y; 

  
%% Transform frames  
% create a reference grid where integer intersections represent the  
% locations of pixels (pixel centers?) in the visible frame  
[visible_x visible_y] = meshgrid (1:nVIScols, 1:nVISrows); 
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visible_x = visible_x(:); 
visible_y = visible_y(:); 

  
% create IR grids to sample from  
[ir_x ir_y] = meshgrid (1:nIRcols, 1:nIRrows); 

  
% create grids that will store the locations in the IR frames where 

pixels  
% in the visible image lie. start with an empty array, that is the size  
% of the visible image, and then fill it up pixel-by-pixel, using the  
% [a b c] and [d e f] transformations calculated above  
% each point (visible_x, visible_y) in the visible image corresponds to  
% a location in an IR image, here called (resmpl_IR_x, resmpl_IR_y).  
% The re-sample locations in each of the IR frames can be found using 

the  
% [a b c] and [d e f] transformations  
resmpl_IR_xy = ([abc_IR';def_IR']*[visible_x visible_y 

ones(nVISrows*nVIScols,1)]')'; 
resmpl_IR_x = reshape(resmpl_IR_xy(:,1),nVISrows,nVIScols); 
resmpl_IR_y = reshape(resmpl_IR_xy(:,2),nVISrows,nVIScols); 

  
for i=1:length(vidlabels) 
    disp(['Aligning Frames from : ' vidlabels{i} ' test']); 

     
    % Update file names & locations  
    testname  = vidlabels{i}; 
    unRegPath = [unRegfrmfldr testname '\']; % made change here 
    prefix    = [band '_' testname '_']; 
    frmnum    = numel(dir([unRegPath '*.raw'])); 
    savefldr  = [Regfrmfldr '\' band '\' testname '\']; 
    mkdir(savefldr) 

     
    % make folder for each video (or test)  
    % Align each frame within test video  
    %h = waitbar(0,['Aligning frame FOVs for uclwir ' testname ' 

test']); 
    for k = 1:frmnum  
        fid = fopen([unRegPath prefix num2str(k) '.raw'],'r');          

%source file 
        unRegfrm = uint16(fread(fid,[nIRcols, nIRrows],'uint16'))'; 
        fclose(fid); 

         
        % resample the IR images on the new grids. 
        Regfrm   = uint16 (interp2 (ir_x, ir_y, double (unRegfrm), 

resmpl_IR_x, resmpl_IR_y, 'bicubic')); 

         
        % save new registered frame 
        fid = fopen([savefldr prefix num2str(k) '_fov.raw'],'w')        

%end file 
        fwrite(fid,Regfrm(:,:)','uint16'); 
        fclose(fid) 
        disp(['Frames Registered : ' num2str(k)]); 
    end  
end  
%% End of Function ---------------------------------------------------% 



53 

 

function img_agc = agc (img, n_rows, n_cols) 

  
    % perform Plateau AGC on unsigned 14-bit image 
    max_bit = 2^14; 
    hist_bins = zeros (max_bit, 1); 
    img_agc = uint8 (zeros (n_rows, n_cols)); 

     
    % set up the histogram bins, one for each 16-bit grayscale level 
    for i_bin = 1:max_bit 
        hist_bins(i_bin) = i_bin - 1; 
    end 

  
    % matlab calculates the image histogram 
    img_hist = histc (img(:), hist_bins); 

     
    % for Plateau Equalization, clip the bins to some plateau level 
    img_hist(img_hist > 150) = 150; 

    
    % calculate the cumulative frequency histogram from the clipped 
    % histogram 
    cum_hist = cumsum (img_hist); 

     
    % scale the cumulative frequency histogram to 8-bit grayscale 
    cum_hist = uint8 (255 * cum_hist / cum_hist(max_bit)); 

  
    % use the scaled cumulative frequency histogram as an intensity 
    % transform table to map the original 16-bit data to 8-bit level 
    for i_row = 1:n_rows 
        for j_col = 1:n_cols 
            img_agc(i_row,j_col) = cum_hist(img(i_row,j_col) + 1); 
        end 
    end 

     
return 

 

 


