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ABSTRACT 

Proliferation, migration, and survival of cells in the telencephalon 

of the ball python, Python regius 

Thomas B. Bales 
 

Reptiles exhibit neurogenesis throughout the brain during adulthood. However, very 
few studies have quantified telencephalon-wide neurogenesis in adulthood, and no 
studies have performed these investigations in snakes. Quantifying neurogenesis in 
the adult snake is essential to understanding class-wide adult neurogenesis and 
providing insight into the evolution of this trait. The thymidine analog 5-bromo-2’-
deoxyuridine (BrdU) was used to quantify cell proliferation, migration, and survival in 
the ball python (Python regius). First, to determine the proper dose of BrdU for 
injection we subcutaneously injected 50mg/kg, 100mg/kg, and 250mg/kg into 15 
adult male P. regius. We found the 250mg/kg dose marked significantly more cells 
than the 50mg/kg dose, but not the 100mg/kg dose. Then we subcutaneously 
injected 100mg/kg BrdU into 15 juvenile male P. regius at 3 different time points (2 
days, 2 weeks, 2 months) prior to sacrifice to quantify proliferation, migration, and 
survival of cells in several telencephalic subregions. After sectioning and 
immunohistochemical staining, we found proliferation to be highest in the accessory 
olfactory bulb (AoB), retrobulbar regions (AD, AV), dorsal ventricular ridge (DVR), 
and dorsolateral amygdala/lateral amygdala (DLA/LA). Of the proliferating cells, the 
proportions of cells that migrated after 2 weeks were highest in the ventral lateral 
region (VL), anterior medial and lateral cortices (aMC, aLC), and anterior NS (aNS). 
After 2 months, the highest proportional survival was in the AoB, aLC, aMC, aNS, 
DVR, and ventral medial regions (VM). Regions involved in long-term functions like 
spatial memory may require less proliferation and longer survival, while regions 
involved in short-term functions undergo more proliferation with higher relative 
attrition.  
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Chapter 1. The use of pythons for studying adult neurogenesis 

Introduction 

This chapter is a comprehensive review of the literature pertaining to 

comparative neurology of the adult ball python, Python regius. First, I will provide 

information about P. regius in the laboratory and their natural habitat with a brief 

overview of their unique peripheral sensory systems. Then, I will discuss the 

evolution of the python and review past studies of the python central nervous system 

(CNS). The rest of this chapter will cover various aspects of adult neurogenesis, 

providing an overview of past adult neurogenesis research and techniques used for 

studies and the use of reptiles in adult neurogenesis studies, including information 

regarding the remarkable ability of the reptile CNS to regenerate. Lastly, I will 

comment on the future of research on adult neurogenesis in reptiles and include 

proposals for future python studies. 

1. Python regius in the laboratory 

Python regius (commonly known as “Ball Pythons” or as “Royal Pythons”) are 

not regularly used in the laboratory for physiology studies. This is unexpected 

because P. regius are ideal organisms for laboratory study. Due to considerable use 

in the international exotic pet trade, they are typically byproducts of captive breeding 

for several generations. This process reduces the variation in the developmental 

environment and genetic diversity, potentially improving the internal validity of 
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experiments. Instead of requiring labor-intensive strategies for capturing them in the 

wild, they can be purchased from online retailers and can be easily maintained in 

cages. They are very docile and easy to handle without risk of injury to the handler 

or the snake. They do not require intricate laboratory housing and can be maintained 

by giving them access to water ad libitum, a heating device, and regular access to 

feeder mice. In fact, contrary what many researchers might expect, pythons are 

easier to handle and maintain than rats (Secor et al., 2001). 

Yet there are also drawbacks to using snakes and other reptiles in the 

laboratory. Genetic and developmental laboratory studies of reptiles have been 

hindered by the class’s slow maturation rates, ectotherm metabolism, habituation 

needs, and seasonal reproduction. Studies of the cellular and molecular evolution of 

development in reptiles are limited by the technical difficulties of embryonic 

manipulation (Nomura et al., 2013a). Even with these hindrances, P. regius has the 

potential to be an excellent laboratory study species. Considerable laboratory 

research has been done on several reptile species including anoles (Greenberg et 

al., 1984) and garter snakes (Morris and Crews, 1990). These studies can help 

provide points of comparison to prompt future examination of neurophysiology in P. 

regius. 

Studies of P. regius are beneficial to comparative research because snakes 

have so many distinctive traits.  For example, snakes are limbless, so comparisons 

of brain physiology between snakes and limbed reptiles may provide insight into the 

evolutionary development or loss of brain regions responsible for limb control and 
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motor function. Snakes are missing motor neurons at the limb level of the spinal 

cord. Instead a single medial motor column developed along the entire spinal cord 

(Fetcho, 1987). The rubrospinal tract is also missing in some snakes such as the 

boidae (ten Donkelaar, 1988). Python regius also have special sensory systems 

(e.g. vomeronasal, pit organ/infrared, and completely internalized hearing), for which 

there have been virtually no reptilian studies of telencephalic neurogenesis (Font et 

al., 2012). 

Most pythons are constricting, sit-and-wait predators (Enok et al., 2012). 

Since they consume large prey relative to their body size, several of their 

physiological systems undergo metabolic changes, including the digestive and 

cardiovascular systems (Andersen et al., 2005; Secor and Diamond, 1998). Some 

species of female pythons will also undergo shivering thermogenesis. In order to 

keep their eggs warm during brooding, female pythons will shiver, moving from a 

series of muscular contractions of the whole body thus generating heat (Harlow and 

Grigg, 1984; Stahlschmidt and DeNardo, 2008; 2009; 2010; Vinegar et al., 1970). In 

order to determine the role the CNS plays in these systems, it is important to do 

preliminary studies of neuroanatomy and neuroplasticity, and then perform 

experiments modifying these systems to determine their effect on the brain and vice 

versa.   

Recently, there has been progress in understanding reptilian cognition and 

intelligence, which can provide insights into the evolution of cognition, social 

function, and the CNS. Behavioral laboratory studies of reptiles are very challenging, 
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because the classic behavioral studies are modeled on stimulus-reward, a practice 

not easily applied to large ectothermic reptiles that eat only every few weeks. 

Several researchers have attempted cognitive laboratory studies in reptiles, which 

have supported, at minimum, limited memory and learning (Baird Day et al., 1999b; 

Manrod et al., 2008; Wilkinson et al., 2007; Wilkinson et al., 2010). As examples, 

Gaalema (2011), using Varanus rudicollis (rough-necked monitor lizards), paired 

either black or white 5cm disk stimuli with reinforcement (thawed pinkie mice). V. 

rudicololis not only successfully learned to discriminate between the two colors, but 

also successfully learned two reversals, with the second reversal requiring fewer 

sessions than the first. Davis and Burghardt (2011) discovered that Pseudemys 

nelsoni (the Florida redbelly turtle) can observe conspecifics using visual object cues 

to obtain food, and then perform the task of using cues themselves to feed, even 

when the conspecific demonstrator is absent, regardless of spatial position. As these 

studies become more refined and accepted we may be able to do comparative 

studies of learning behavior, neurogenesis, and neuroplasticity. 

2. Python regius in its native and altered habitat 

Little is known about African pythons including P. regius in their native habitat 

(Luiselli et al., 2007; Luiselli and Angelici, 1998; Starin and Burghardt, 1992). Python 

regius has been most researched in Togo (Aubret et al., 2005a; Aubret et al., 2003; 

Aubret et al., 2005b; Aubret et al., 2005c), Ghana (de Buffrenil, 1995; Gorzula et al., 

1997) and Nigeria (Luiselli, 2006; Luiselli et al., 2007; Luiselli and Angelici, 1998). 
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They are widely distributed in western Africa and abundant in southern Nigeria (Fig. 

1).  

 

Figure 1: Distribution of P. regius in western Africa highlighted in green. 

Python regius are habitat generalists, well adapted especially to disturbed 

forest areas like plantations and farmland (Luiselli et al., 2007). Butler and Reid 

(1986) considered P. regius to be among those snakes with the highest degree of 

habitat generalism in the forested regions of southeastern Nigeria. In fact, P. regius 

are challenging to find in their unaltered habitat, and deforestation has allowed for an 

increase in their population size (Gorzula et al., 1997). It is also likely that P. regius 
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are more abundant than they are predicted to be from surveys, especially those in 

heavily forested areas (Barker and Barker, 2006).  

Above-ground activity in P. regius peaks and remains continuous during the 

wet months (June-August) and then is comparatively reduced during the dry season 

(Luiselli et al., 2007). Most observations of these snakes are during nocturnal hours; 

they are rarely seen during mid-day, when they are resting in burrows during both 

the wet and the dry seasons. In Togo, they are in very high density, especially in 

fields where rodents are present, and both males and females spend most of the 

daytime in rodent burrows or termite mounds, where females also protect and 

incubate eggs (Aubret et al., 2005a). 

Female P. regius attain significantly larger body sizes than males, which is 

associated with their ability to lay 3-11 large, leathery eggs per clutch (most 

commonly 4-6) (Barker and Barker, 2006). Typically the female incubates her eggs 

underground, where they hatch after 55 to 60 days (Luiselli et al., 2007). While 

parental care of eggs is rare among squamate reptiles, it is ubiquitous in the python 

lineage, as female pythons coil tightly around their eggs throughout incubation and 

shiver to generate warmth (Hutchison et al., 1966).  

Both age and weight are involved in determining when a python is capable of 

breeding. Males reach sexual maturity at 6–18 months, and for females sexual 

maturity is reached at 12–36 months. Males will breed at 500 grams or less, but in 

captivity they are often not bred until they reach approximately 800 grams; females 

will begin breeding at 800 grams, though 1200 grams or more is most common. 
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Parental care of the eggs ends once they hatch and the females leave their offspring 

(McCurley, 2005).  

Python regius are long lived and typically grow to exceed 1m in length. 

Several have been captive for over 30 years in U.S. zoos (Barker and Barker, 2006), 

and the record for longest lived snake in captivity exceeds 47 years (Conant, 1993). 

When Gorzula et al. (1997) conducted a field survey of 206 adult specimens in 

Ghana, the range in total length was from 83.9cm to 185.9cm. The average total 

length of all male and female specimens at 3 years was 125cm. These populations 

can, although rarely, reach lengths exceeding 185cm (Cansdale, 1961).  

Python regius are primarily terrestrial and climb frequently. They have also 

been observed spending substantial time in water, but to date, their overall 

ecological water presence remains unquantified. The diet of P. regius consists 

almost entirely of homeothermic prey, which is typical of other pythons of varying 

sizes (Luiselli et al., 2007; Shine et al., 1999; Shine et al., 1998). They consume a 

large proportion of arboreal species, mostly birds, in southern Nigeria (Luiselli et al., 

2007; Luiselli and Angelici, 1998). 

3. Sensory systems of Python regius 

Contrary to popular belief, snakes are not deaf, even though they lack an 

external ear opening. Snakes, including P. regius, have a well-developed inner ear, 

even though they have lost a functional outer and middle ear (Christensen et al., 

2012). In order for snakes to form a gape to consume large prey items, the 

mandibular tips of snake jaws must be able to move freely. In turn, they must be 
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stabilized by a complex muscular system. Snakes have evolved to hypertrophy 

these muscles, which has excluded the tympanic cavity, making the snakes’ hearing 

ability inferior to that of other reptiles (Berman and Regal, 1967). Christensen et al. 

(2012) measured evoked potentials dorsal to the VIIIth cranial nerve and the 

brainstem in response to a wide range of frequencies and found they have lost 

effective pressure hearing, but have maintained or developed vibration sensitivity via 

sound-induced head vibrations. 

Reptiles, including snakes, possess a Jacobson’s organ for vomeronasal 

chemical sensing (mainly for detecting pheromones and prey chemoattractants). 

Distinctively, only sceroglossans (skinks, gekkos, varanoids, amphisbaenids, 

mosasaurs, and snakes) perform tongue-flicking in order to bring chemical stimuli to 

their Jacobson’s organ from the environment. Snakes may have the most developed 

vomeronasal system, and are considered models for determining the structure, 

function, and behaviors involved with vomeronasal sensing and processing (Lanuza 

and Halpern, 1997b).   

Furthermore, a select group of snakes, in which pythons are included (pit 

vipers, pythons, and boas), possess pits (containing what is commonly referred to as 

a “pit organ”) which serve as very sensitive infrared detectors, linked to the CNS via 

the trigeminal ganglion (Molenaar, 1978a; Molenaar, 1978b). Information from labial 

pits synapses at the visual center of the brain, thus they act as infrared vision 

sensors allowing for the python to “see” in the infrared spectrum (Goris, 2011; 

Kobayashi et al., 1992).  
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4. Evolution and phylogenetic analysis of P. regius 

Python regius has been placed in the Linnaean classification: Animalia 

Chordata Vertebrata Reptilia Squamata Serpentes Pythonidae Python regius. The 

order Squamata includes lizards (~4770 species), snakes (~3000 spp.), and 

amphisbaenians (~170 spp.) Snakes can be organized into two main groups: 

Fossorial scolecophidians (blindsnakes and threadsnakes, ~340 sp.), and 

Alethinophidians (all other snakes, ~2640 sp.) (Heise et al., 1995; Vidal and David, 

2004). Python regius belongs to Alethinophidia, which diverged from 

scolecophidians approximately 150MYA, and is typically divided into caenophidians 

(advanced snakes, ~2470 sp.), also known as venomous snakes, and henophidia, 

which includes several other groups that utilize constriction. Pythonidae belongs to 

the constrictive group, of which Python is one of the 8 genera, and regius is one of 

the 33 species (Vidal and David, 2004). The evolutionary history of snakes is 

controversial. Currently, it is expected they are secondly-most basal to lizards 

(Bruce, 2007). Pythons are the most basal extant macrostomatan species (Castoe et 

al., 2011; Slowinski and Lawson, 2002), thus, P. regius may provide insight into the 

evolutionary origins of adult neurogenesis and the evolution of brain morphology. 

5. Evolution, anatomy, and physiology of the squamate CNS 

Amniote brains are organized according to the species-specific development 

of the highly-divergent telencephalon.  Since mammalian and avian brains have 

highly specialized structures, the evolutionary development of the amniote brain can 

be determined by comparing the brain structures of prototypic taxa. Owen (1848) 
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coined the term “homology” to refer to organs that have originated similarly 

regardless of form and function in different species. Studying homologs allows 

researchers to deduce the evolution of brain structure and function by determining 

similar origin.  

Brain morphology and neural networks have diverged greatly between 

vertebrate species in accordance with each clade’s unique environment. Several 

species have developed very specialized brain anatomy and physiology in response 

to environmental pressures (Butler and Hodos, 2005; Nieuwenhuyis et al., 1998; ten 

Donkelaar, 1988) while others have simply inherited ancestral traits, thus providing 

extant evidence for tracing the evolution of morphology (Nomura et al., 2013b). For 

example, reptiles and birds share several characteristics, including presence of the 

dorsal ventricular ridge (DVR) and absence of callosal projections. Yet both the 

structure and function of the avian DVR seem to be entirely different from the 

reptilian DVR. Understanding the similarities and differences of the DVR not only 

gives insight into regional function in both of these classes, but it can also give clues 

as to why the DVR originally formed and how it will continue to develop. 

Warner’s (1931; 1946; 1947) and Carey’s (1967) investigations were the first 

studies of the snake telencephalon, and have served as the foundation leading to 

the advent of morphology and pathway studies begun by Ulinski and Halpern in the 

1970s (Halpern, 1980; Ulinski, 1974; Ulinski, 1975; Ulinski, 1978). Reptiles are the 

first vertebrate class in which distinct cortical regions become obvious. They develop 

physically in a way that is between the amphibian and mammalian telencephalon, 
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which allows for an intermediate comparison point for making generalizations across 

vertebrata (Halpern, 1980). 

The three clearest distinctions in the reptilian forebrain are the ventricles, the 

telencephalon, and the diencephalon (fig. 2). The lateral ventricle extends almost 

completely along the lengthwise aspect of the superior medial telencephalon, 

bilaterally. It begins as ovoid in shape in the main olfactory bulb, and becomes slit-

like and “C shaped” moving caudally into the accessory olfactory bulb and the 

retrobulbar region. Reptilian brains exhibit a simple, laminated dorsal telencephalon 

with a 3-layered cortex, expected to be inherited from their amniote ancestry (Bruce, 

2007; Wise et al., 2009). Continuing caudally into the midtelencephalon, the ventricle 

becomes shaped like a “lowercase n” and then a “wishbone.” In the mid-caudal 

regions the septum becomes surrounded by the medial aspect of the ventricle. 

Further back it makes room for the pineal gland and the medial portion of the 

ventricle disappears with the septum. The diencephalon and telencephalon separate 

in the rostral most region as the lateral aspect of the ventricle continues to expand 

linearly and form a thin circular ependymal border. In this area the lateral ventricle 

separates the nucleus sphericus (NS) completely from the cortex. Due to the 

importance of pheromone perception, the NS is very well developed in snakes and 

occupies almost the entire caudal half of the subcortical telencephalon (Halpern, 

1980; Lanuza and Halpern, 1998; Schwenk, 1993). 
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Squamate olfactory system 

Generally, squamates are highly olfactory-dependent as evidenced by their 

well-developed main olfactory bulbs (Halpern, 1992; Mason, 1992). Predatory, 

mating, and courtship behaviors are all, in turn, dependent on hypothalamic input in 

response to these olfactory afferents (Friedman and Crews, 1985a; Friedman and 

Crews, 1985b). The olfactory system consists of the main olfactory bulb, responsible 

for capturing odors at the olfactory epthelium and transmitting them to the olfactory 

bulb, and the accessory olfactory bulb (AOB), responsible for processing 

pheromones responsible for chemical social communication. These project to the 

lateral cortex (LC) in reptiles, which is considered homologous to the mammalian 

olfactory cortex (Hoogland and Vermeulen-Vanderzee, 1995; Martinez-Garcia et al., 

1986). 
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Figure 2 (previous pages): Coronal sections from rostral to caudal through the 
telencephalon of P. regius highlighting regions determined by comparison of cresyl 
violet stained sections to Halpern (1980) and Smeets (1988). The telencephalon can 
be organized into: main olfactory bulb (OB), accessory olfactory bulb (AOB), 
retrobulbar region, cortical mantle (cortex; Medial Cortex, Dorsal Cortex, Lateral 
Cortex, Posterior Cortex), septum (S), dorsal ventricular ridge (DVR), the 
dorsolateral amygdala (DLA) and lateral amygdala (LA), the basal telencephalic 
structures which are mainly the nucleus accumbens (ACC) in the ventral-medial 
(VM) region and the striatum (STR) in the ventral-lateral (VL) region, and the nucleus 
sphericus (NS).  Also labeled are the diencephalon (D), pineal gland (P) and 
midbrain (MB). 

The Dorsal Ventricular Ridge 

The dorsal part of telencephalon, including both the cortex and DVR, is called 

the Pallium. Across Reptilia, the most prominent pallial structure is the DVR 

(Holmgren, 1922; Northcutt, 1981; Ulinski, 1983). Structurally, the DVR is considered 

the linkage between sources of sensory information and the brain structures that 

modulate behavior. The anterior portion (ADVR) is considered a polisensorial 

processing center. Discrete auditory, somatosensory, and visual thalamic pathways 

terminate in the ADVR, including the infrared pathway from the pit organ. (Bruce and 

Neary, 1995; Martínez-Garcıa et al., 2009; Striedter, 1997).  

Pit organs project to the ipsilateral medullary nucleus of the lateral 

descending trigeminal tract, which projects to the optic tectum (Kobayashi et al., 

1992; Molenaar, 1978b; Newman et al., 1980). Experiments using rattlesnakes have 

supported that both visual and infared information are then relayed through the 

nucleus rotundus of the thalamus to the ADVR (collothalamic pathway) (Berson and 

Hartline, 1988; Schroeder, 1981). Whether the pathway is conserved throughout 

snakes with pit organs is yet to be determined. 
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The PDVR on the other hand is an associative center for visual, auditory, 

somatosensory, and olfactory information. It receives convergent inputs from the 

thalamus, and direct input from the parabrachial region—most likely visceroceptive, 

nocioceptive, and/or gustatory signals, and lastly amygdaloid input from the DLA/LA 

(dorsolateral amygdala and lateral amygdala) (Lanuza et al., 1998; Martínez-Garcıa 

et al., 2009).  

There have been functional studies involving lesioning, stimulus and behavior 

in reptiles (Distel, 1978; Ivazov, 1983; Sugerman and Demski, 1978; Tarr, 1977), but 

these studies provide only scarce glimpses into the function of the DVR. Using green 

iguanas, Distel (1978) found stimulus of the DVR to be associated with only minimal 

physiological response: Locomotion, head movement, and tongue-flicking were 

associated with stimulation, however no response was found in approximately 40% 

of subjects stimulated with the high intensity stimulus, and an even greater 

proportion elicited no response when stimulated with low intensity. Ivazov (1983) 

found a decrease in conditioned response when the DVR was lesioned bilaterally in 

Pseudopus apodus (the European legless lizard). The conditioned response was 

most disturbed by lateral lesioning, which likely affected visual function. Sugerman 

and Demski (1978) found DVR stimulation elicited defensive responses in 

Crotaphytus collaris (western collared lizards), including defensive display, escape 

response, and gular extension display. So far there have not been any patterns 

linking general function of the DVR to stimulus or lesion, and the DVR may in fact be 
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more heterogeneous than expected in reptiles, so the lack of data at this point limits 

any structural-functional hypotheses. 

The dominant majority of functional studies of the DVR are in avian species 

and have shown that the DVR is involved in imprinting, song learning, avoidance 

learning, tool manufacture, tool use, flexible behaviors, high-order associations, and 

complex cognition (Rattenborg and Martinez-Gonzalez, 2011). Even these studies, 

which are considerably greater in number than reptile studies only provide early 

insights into DVR function. Moreover, functional homology between the avian and 

reptilian DVR is not clear-cut. While there are many structural similarities, the 

reptilian pallial thickening, which is outside the reptilian DVR, makes connections 

more comparable to those of the avian mesopallium than any region inside the DVR 

(Bruce, 2009).  

In studies of birds and reptiles the DVR has been compared to the pallial 

amygdala and claustrum/endopiriform/piriform amygdalar complexes of mammals 

(Aboitiz et al., 2003; Bruce and Neary, 1995; González-Granero et al., 2011; 

Holmgren, 1922; Martínez-Garcıa et al., 2009; Nomura et al., 2013b; Striedter, 

1997). This comparison is controversial, however, for some researchers have 

proposed it is homologous to the lateral (extrastriate and auditory) neocortex, 

instead (Jarvis et al., 2005; Karten, 1997). Lastly, Molnár and Butler (2002) propose 

that it is, instead, a combination of both. Molnár and Butler expect the sauropsid 

ADVR is structurally homologous to the lateral neocotex, basolateral amygdalar 

complex, and claustrum-endopiriform nucleus because they originate from the same 
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collopallial field. Ongoing research is attempting to resolve this discrepancy (Aboitiz, 

2011; Butler et al., 2011; Karten, 2013; Luzzati et al., 2009; Martínez-Garcıa et al., 

2009; Medina et al., 2013; Medina et al., 2011; Nomura et al., 2008).  

DLA and PDVR nomenclature 

The DLA and the PDVR have been distinguished in different ways in previous 

studies. Following Curwen (1939), snake studies labeled the region lateral to the 

caudalmost NS as “pDVR” (Halpern, 1980; Krohmer and Crews, 1987b; Ulinski and 

Rainey, 1980). Subsequently, Martinez-Garcia et al. (1991) labeled the region as 

DLA in lizards, and limited the PDVR to the caudal DVR region without this additional 

area (Martínez-García et al., 1993). This system has been implemented in many 

contemporary snake and squamate brain studies (Lanuza and Halpern, 1997b; 

Lanuza and Halpern, 1998; Martínez-García et al., 2007). Simultaneously, several 

snake brain studies have continued to use the previous system (Holding et al., 2012; 

Krohmer et al., 2010; Krohmer et al., 2011). A dialogue should occur between 

researchers to further consistency in future studies. I will use DLA/LA combined, 

separately from the PDVR, for labeling this region in its entirety. The medial 

amygdala was not labeled as a region for this study because it could not be 

discerned using cresyl violet stain. 

The amygdala 

In reptiles, the amygdala is a general term used to refer to amygdalo-

hypothalamic circuits that (a.) relay chemosensory input to the hypothalamus to 

influence chemically-guided behaviors (Martínez-Marcos et al., 1999) and (b.) 
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receive inputs from sensory and associative areas (Martínez-García et al., 2007). It 

is not a monolithic structure, but instead a collection of nuclei—a somewhat arbitrary 

assemblage that is “neither a structural nor functional unit” (Swanson and Petrovich, 

1998). The amygdala of the common garter snake, Thamnophis sirtalis, has been 

shown to be part of a complex system, in which the following amygdalo-

hypothalamic projections occur: (a) The olfactory amygdala receives input from the 

NS and then projects back to the NS, PDVR, and hypothalamus; (b) the NS projects 

directly to the hypothalamus; (c.) the medial amygdala receives input from the LC 

and NS and transmits to the hypothalamus; (d.) the PDVR receives afferents from 

the LC and amygdala and projects to the hypothalamus; (e.) the DLA receives inputs 

from the LC and NS to project to the hypothalamus (Martínez-Marcos et al., 1999); 

and (f.) the medial amygdaloid nucleus and the NS are efferents of the accessory 

olfactory bulb (Bruce and Dear, 1995a, 1995b).  

When making comparisons to the mammalian amygdala, the comparable 

reptilian structures are yet to be clarified. This occurs partly because the mammalian 

amygdala is still being characterized using developmental, neurochemical, and 

hodological (interconnection and pathway-based) approaches (Martínez-García et 

al., 2007). The reptilian LC may be homologous to the mammalian posterior lateral 

cortical amygdala, and the NS might be homologous to the posterior medial cortical 

amygdala (Eisthen and Polese, 2007; Martínez-Garcıa et al., 2009). As previously 

mentioned, the PDVR not included in the DLA has been considered a homolog of the 

mammalian pallial amygdala, but this comparison is still awaiting clarification.  
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The DLA is the main link between the striatum (STR) and the amygdalar 

pathways and is likely the reptilian homologue to the basal nuclei of the mammalian 

amygdala (Bruce, 2009; Martínez-Garcıa et al., 2009). The mammalian basal nuclei 

seem to have an essential function in the acquisition and expression of fear 

conditioning (Amano et al., 2011). While comparisons have been attempted in birds 

(Bruce, 2009), the lack of a vomeronasal system, and poorly developed olfactory 

system has considerably limited the accuracy of comparison (Moreno and González, 

2007). In anurans, three main amygdaloid subdivisions have been discovered, the 

lateral amygdala, medial amygdala, and central amygdala. Similar to the basal nuclei 

of mammals, the anuran lateral amygdala is responsible for association and labeling 

of chemical odors, pheromones and non-chemical visual, auditory, somatosensory, 

stimuli. It provides emotional labeling of stimuli, creating an “emotive memory,” 

allowing for conditioning of stimuli (Moreno and González, 2007). 

The dorsal and medial cortex 

The reptilian cortex is comprised of three-layered laminar structures that may 

have been acquired by early amniotes (Wise et al., 2009). The cortex consists of a 

cell-dense central layer surrounded by cell-sparse outer and inner plexiform layers 

(Ulinski, 1990). The ophidian cerebral cortex is divided into three primary regions, 

the medial, dorsal, lateral, and posterior cortices (MC, DC, LC), and a fourth sub-

region, the dorsomedial cortex. The dorsomedial cortex, located between the medial 

and dorsal cortex, was first described as a separate subregion as early as 1917, and 

was originally named “zona piramidial curvilinear” by Ramon y Cajal (1917); (1918). 
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It has only been found in squamates and it does not develop independently until 

after birth (Lopez-Garcia et al., 1984). For this study it was difficult to distinguish 

dorsomedial cortex from the medial cortex so only the three main regions are used. 

They all extend longitudinally from the anterior olfactory bulb (rostralmost) to a fifth 

region, the posterior cortex (PC; caudalmost) of the telencephalon. I have noted the 

PC as a separate part of the cortex because it is difficult to distinguish different cell 

layers in the hindmost portion of the cortex, and while it is most likely the caudal 

continuation of the MC, cells could also originate from the DC and LC layers. 

In mammals, the hippocampus is considered a center for spatial memory. The 

reptilian MC and DC are generally regarded as homologous to the mammalian and 

avian hippocampus (Bruce and Butler, 1984; Butler and Hodos, 2005; Rodriguez et 

al., 2002). In reptiles, spatial learning has been demonstrated in Elaphe guttata 

guttata (corn snakes) (Holtzman et al., 1999) and Tiliqua rugosa (blue tongued 

skinks) (Zuri and Bull, 2000). Also, lesioning the medial and dorsal cortices of turtles 

causes a reduction in maze navigation ability (Lopez et al., 2003; Rodriguez et al., 

2002) and produces deficits in a variety of non-spatial tasks such as discrimination 

and restraint habituation (Blau and Powers, 1989; Grisham and Powers, 1989; 

Moran et al., 1998). In squamate reptiles including snakes, the MC is also 

associated with navigation ability (Baird Day et al., 1999a; Baird Day et al., 1999b; 

Crews and Wilczynski, 2000; Holding et al., 2012; LaDage et al., 2009; Roth et al., 

2006).  
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Similarities also exist in the development and growth of the reptilian MC and 

mammalian hippocampus. Neuroblasts of the reptilian MC express PSA-NCAM 

during migration similarly to the neuroblasts of the mammalian hippocampus 

(Ramirez-Castillejo et al., 2002b; Seki and Arai, 1993). Also similar to the 

hippocampus in birds, the two neuronal types that make up the MC in lizards are 

small (type I) and large (type II) neurons (Kirn et al., 1999; Lopez-Garcia et al., 

1984). As lizards age the neurons in the MC convert from large to small, possibly 

due to the chromatin condensation process. This transformation either is species 

specific or has not been explored at enough time points in enough species to 

capture its universality (Pérez-Cañellas and García-Verdugo, 1996).  

Nevertheless, there is some question as to whether the MC is indeed 

homologous to the hippocampus. Baird Day et al. (2001) argued that perhaps only 

navigation, and not spatial memory are altered by lesioning. When challenging 

Cnemidophorus inornatus (little striped whiptail lizards) to locate a heated rock in a 

circular arena they found lesioning the DC and MC slowed the lizards’ ability to 

locate objects, and altered their search strategies. Still, none of the lizards in the 

cortex-lesioned or sham-lesioned groups adopted a spatial strategy for locating 

objects, indicating that lizards may not be utilizing true “spatial memory” per se. 

Instead the MC may be necessary for flexible navigational learning, and the DC may 

be involved in remembering unchanging external cues. This has been supported by 

Jacobs (2003) who expects lizards are orienting according to directional cues like 

magnetic fields, temperature, color, auditory or light cues, and not with true spatial 
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memory. Jacobs also gives two potential explanations for the discrepancies between 

turtles and lizards: (a) turtles are relying on a bearing map instead of a sketch map, 

or (b) turtles visual cognition is functionally and anatomically different from lizards  

(Bruce and Butler, 1984; Hall and Ebner, 1970).  This is actively a point of contention 

among researchers and is still undergoing investigation (LaDage et al., 2012). 

The retrobulbar regions 

Rostral to the cortices, the retrobulbar region is the region directly caudal to 

the AOB. It is where the dorsal and lateral pallium forms, and becomes semicircular 

on the dorsal surface posteriorly, forming the rostralmost cortex. The cortex is not 

yet distinguishable as three different cell layers (MC, DC, LC) and instead forms a 

single cell layer. The pallium rapidly enlarges caudally, laterally and dorsomedially, 

to comprise the majority of the dorsal telencephalon.  

The largest nucleus of the retrobulbar anterior ventral (AV) region is the 

olfactory tubercle (TUB). The TUB links directly to the olfactory bulb, to relay and 

processes olfactory signals. In reptiles there has been very little study of the TUB, 

other than some afferent and efferent tract tracing studies (Halpern, 1976; Lanuza 

and Halpern, 1997a; Lanuza and Halpern, 1998). Yet the TUB has been 

considerably studied in mammals, and these studies have uncovered that it receives 

afferents from multiple sensory, storage, neuroendocrine and limbic structures 

(Budinger et al., 2006; Fallon, 1983; Groenewegen et al., 1987; Mick et al., 1993; 

Scott et al., 1980; Ubeda-Bañon et al., 2008; Vertes and Hoover, 2008). This 
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aggregation of so many systems at the mammalian TUB indicates that it may 

actually be an integrator of multimodal information (Wesson and Wilson, 2010). 

Functional studies in humans have shown the TUB is essential to the 

discrimination of the source (type) of olfactory information (Zelano et al., 2007), and 

the direction of attention to smells (Zelano et al., 2005). In other mammal studies, 

the TUB also plays a role in behavior (Hitt et al., 1973). Bilateral lesioning has been 

found to reduce copulation in male rats (Hitt et al., 1973). Lesioning has also been 

found to cause hyperphagia and attenuates increases in locomotion associated with 

dextroamphetamine. (Koob et al., 1978). The most studied aspect of the TUB is its 

role in addiction and reward systems (Heimer, 2003; Ikemoto, 2007). Ikemoto (2003) 

found that when rats are able to self-administer intracerebral infusions of cocaine to 

several brain regions, the olfactory tubercle is more rewarding than the ACC, and 

successfully elicits conditioned place preference. It is likely the TUB plays an 

essential role in odor-motivated behavior, including approach/avoidance, 

conditioning, and learning. Given our lack of information on the function of the TUB 

in non-mammalian vertebrates, there is a whole area of comparison to non-

mammalian species open for discovery. 

The basal forebrain 

In the ventral side of the retrobulbar telencephalon, the striatum (STR) and 

olfactostriatum form (Durward, 1930). The nucleus accumbens (ACC) lies between 

the septum and paleostriatum (Warner, 1947), and may be considered part of the 

paleostriatum (Halpern, 1980). Compared to other reptiles, the python has a very 
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large ACC and a small STR (personal observation), however no researchers have 

investigated functional or evolutionary aspects of this distinction (Smeets, 1988). 

The ACC is the dominant structure of the VM portion of the P. regius 

telencephalon. In mammals, it has been implicated as responsible for motivation and 

reward-seeking behavior (Cador et al., 1989; Knutson et al., 2001), to the point 

where rats will self-administer amphetamine directly to the ACC in a feedback loop 

of addiction (Hoebel et al., 1983). Furthermore, the ACC is essential to the flexible 

facilitation of rewards and the avoidance of negative stimuli, and the construction of 

learned incentive structures (Ikemoto and Panksepp, 1999). The mammalian ACC is 

structurally, hodologicallly, neurochemically, and developmentally similar to the 

reptilian ACC (Gonzalez et al., 1990; Guirado et al., 1999; Russchen and Jonker, 

1988; Smeets and Medina, 1995; Smeets, 1988; Smeets et al., 1986; Smeets et al., 

1987). When male Eublepharis macularius (leopard geckos) hatch from eggs 

incubated at female-biased temperatures, they maintain higher dopamine (DA) 

levels in the ACC when encountering females, compared to those hatched at male-

biased temperatures (Dias et al., 2007). Since males hatched at female-biased 

temperatures are more sexually active (Flores et al., 1994; Sakata and Crews, 2003) 

and exhibit greater anticipatory behavior when exposed to females (Sakata and 

Crews, 2003), these findings may serve as a jumping-off point for studying the 

function of the ACC and its influence on behavior in reptiles. 

The STR embodies the majority of the VL region. In mammals, it is the key 

nucleus of the basal ganglia, involved in the selection of non-adverse (Darvas et al., 
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2011; Dombrowski et al., 2013) and pro-rewarding actions (Da Cunha et al., 2012; 

Kravitz et al., 2012; Yin et al., 2004). It is densely innervated with dopaminergic 

neurons from the midbrain nigrostriatal pathway, and its dysfunction is implicated as 

responsible for hypokinesia (e.g. Parkinson’s disease) (Li et al., 2009) or 

hyperkinesia (e.g. chorea, dystonia) (Mink, 2003). 

Currently, the mammalian, avian, and reptilian STR all appear to be 

hodologically, neurochemically, and developmentally similar (Gonzalez et al., 1990; 

Moreno et al., 2010; Russchen and Jonker, 1988; Smeets, 1988; Smeets et al., 

1986; Smeets et al., 1987). Lesioning the reptilian STR in male A. carolinensis 

causes a reduction in male-typical assertation display (Greenberg, 1977). 

Stimulation, on the other hand, elicits assertation display, challenge display, and 

locomotor responses in S. occidentalis (Tarr, 1982). 

The septum 

The septum is the region medial to the lateral ventricle. Carey (1967) 

determined that there are eight septal nuclei in Coluber constrictor constrictor 

(Blacksnakes). Crosby et al. (1967) determined that there are nine nuclei in C. 

constrictor constrictor. Some clarification has also been found in other reptiles (Font 

et al., 1995a; Font et al., 1998a; Font et al., 1998b; Font et al., 1997a). In 

comparative studies, there are three major divisions to the septum (lateral, medial, 

and caudal), which all tetrapod vertebrates share (Lanuza and Martínez-García, 

2009). Lanuza and Martínez-García (2009) argue the similarities of these divisions 

can serve as evidence of the essential and conserved functions of the septum. 
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Studies in reptiles confirm some homology with the mammalian septum, and have 

revealed: (a.) The lateral septal complex receives excitatory input from the 

hippocampal cortex and generates inhibitory efferents to the medial ventral pallidum 

and motor parts of the hypothalamus; (b.) the medial septal complex sends inhibitory 

signals to the hypothalamus; and (c.) the caudal division (triangular nucleus) projects 

mainly to the habenula (Font et al., 1998b; Swanson and Risold, 2000). 

Font et al. (1998b) posited that the lateral septum is involved in the 

expression of appetitive behaviors (e.g. food and water intake), aggressive/defensive 

behavior, and reproductive physiology in reptiles, and may be considered a 

“distributor of behaviors” (Distel, 1978; Krohmer and Crews, 1987a; Tarr, 1977). 

Concurring with functional rat studies, the septum may mediate social memory 

including olfactory cues, parental behavior, intraspecific aggression, dominant-

subordinate relationships, defensive/agonistic behaviors and territoriality; which is 

why it is considered key to the social behavior network (Dantzer et al., 1988; Lanuza 

and Martínez-García, 2009; Numan, 2000; Sheehan and Numan, 2000; Yang and 

Wilczynski, 2007). The main afferent to the lateral septum is a projection from the 

hippocampal formation, which provides spatial and non-spatial contextual 

information in mammals (Sheehan et al., 2004). Hence the lateral and medial 

septum are possibly responsible for initiating territorial behaviors in reptiles, like in 

mammals, in response to contextual cues (Newman, 1999). 
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6. History of adult neurogenesis research 

Over the past 50 years, the study of adult neurogenesis has developed from 

marginal origins to become an integral part of neuroscience research. For most of 

the 20th century, neurogenesis (the process of generating new neurons from 

progenitor cells) was assumed to occur only in prenatal and early developmental 

stages of organisms (Gross, 2000; Ramón y Cajal, 1928). The proliferation of 

neurons in adult mammals was first discovered by Altman (1962) but received little 

attention. It was the development of techniques like 5-bromo-2’deoxyuridine (BrdU) 

immunohistochemistry (IHC) and confocal microscopy in the 1980s and 1990s that 

convinced researchers that adult neurogenesis indeed occurs across a wide range 

of taxa. The discovery of neurogenesis in birds during the 1980s prompted 

researchers to look at mammals again (Goldman and Nottebohm, 1983). In 2000, 

Gross declared that the long-standing dogma that new neurons cannot be added to 

the adult brain had been substantially overturned. 

While the advent of biotechnology has generated considerable interest in 

neurogenesis, researchers have not yet elucidated the mechanisms of adult 

neurogenesis or how it impacts behavior, particularly in non-mammalian species. 

Several investigators have emphasized the importance of studying adult 

neurogenesis in a wide range of species, in both laboratory and natural 

environments (Font et al., 2001; Lindsey and Tropepe, 2006). Others have proposed 

that organisms need to be subjected to various experimental manipulations in order 

to discern what factors affect neurogenesis (Kaslin et al., 2008; Kempermann et al., 
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1997). In rats, for example, learning tasks, larger cages and novel objects reduce the 

death rate in newly born neurons (Gould et al., 1999; Kempermann et al., 1998). 

Further, in mammals, sleep and exercise both positively affect neurogenesis (Meerlo 

et al., 2009; Olson et al., 2006; van Praag et al., 1999) and stress negatively affects 

neurogenesis (Gould et al., 1997; Gould et al., 1998). Powers and Hanusch (2012) 

have begun to investigate the effect of enriched environments on neurogenesis in 

reptiles using painted turtles (Chrysemys picta).  

7. Use of markers to study neurogenesis 

Tritiated thymidine autoradiography is a technique used to study cell 

proliferation, migration and differentiation. The injected tritiated thymidine is 

incorporated into the DNA during S-phase of the cell cycle marking only new cells 

during their mitosis. After the organism is sacrificed and the tissue is fixed, sections 

are observed by autoradiography, which provides a snapshot of new cells 

undergoing dynamic processes of birth and development. While this method marks 

new cells very effectively for observation and quantification under microscopy, 

tritiated molecules emit beta radiation, and can be absorbed through the air or the 

skin, and remain in the body as a long-term carcinogen.  

In the 1980s BrdU was developed as a marker for proliferating cells 

(Gratzner, 1982; Miller and Nowakowski, 1988). BrdU has subsequently become the 

preferred neurogenesis marker in developing and adult brains because it utilizes 

immunohistochemistry (IHC) instead of autoradiography (Abrous et al., 2005; 

Christie and Cameron, 2006; Kuhn and Cooper-Kuhn, 2007; Wojtowicz and Kee, 
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2006). Like tritiated thymidine, BrdU is a thymidine analog that incorporates into 

DNA during S-phase. However instead of potentially dangerous radiolabelled 

molecules, BrdU uses brominated molecules. Anti-BrdU antibodies can then bind to 

the brominated region and be bound by biotinylated or fluorescent antibodies for 

observation.  

While early studies used 50mg/kg doses of BrdU, Cameron and Mckay (2001) 

and Gould and Gross (2002) determined that increasing the dose of BrdU injected in 

rats to 300mg/kg labeled significantly more new cells at the end of 24 hour and 4 

week periods. In contrast, Burns and Kuan (2005) double labeled with 

Iododeoxyuridine (IdU) and found that the standard doses of 50mg/kg-100mg/kg 

labeled only ~10% fewer cells than the 300mg/kg dose in mice. Hancock et al. 

(2009) also found significant differences between the BrdU doses of 40mg/kg and 

240mg/kg, but did not find differences between 240mg/kg and 480mg/kg doses, 

supporting Gould & Gross’s original finding and implying the optimum dose in rats 

may in fact be between 200mg/kg and 300mg/kg. So far all dosage studies have 

been performed in mammals and differences in the effect of dosage are yet to be 

determined in reptiles and birds. 

When administering BrdU, there is a distinct difference between embryonic 

and postnatal brains in regard to toxic effects. Bannigan (1985) found that BrdU-

labeling induced cell death in embryonic mouse brain cells. Cameron and Mckay 

(2001) found that adult rat brains, on the other hand, are not harmed. This result was 



 

 

37 

also supported by Hancock et al. (2009), who did not find damage to the rat 

hippocampus after BrdU administration.  

Inconsistency among previous BrdU-based adult neurogenesis experiments 

has prevented researchers from being able to make direct comparisons. 

Quantification practices are inconsistent among experiments due to differences in 

dosages and antibodies used for detection. For example, (Leuner et al., 2009) found 

that Dako, Roche, BD, and Accurate brand antibodies against BrdU labeled more rat 

hippocampal cells than those from Vector and Novocastra.   

In mammals, the number of cells labeled with a single injection of BrdU 

doubles between 2 hours and 24 hours after injection. This indicates that BrdU must 

be labeling only dividing cells. A concern has been whether or not BrdU is not just 

integrated into new cells, but also cells undergoing DNA repair. In studies of the 

normal mammalian brain, DNA repair is constant (Korr et al., 1989; Korr and 

Schultze, 1989; Schmitz et al., 1999). DNA repair has only been marked by BrdU in 

studies where cultured non-neuronal cells are damaged by genotoxic chemicals or 

UV exposure (Selden et al., 1994; Selden et al., 1993). Schmitz et al. (1999) found 

that no studies have identified BrdU labeling of DNA repair (in vivo) in mice. 

Molecularly, the anti-BrdU antibody clone commonly used (IU-4) requires divalent 

antigen binding, which is not likely to occur during in vivo repair (Selden et al., 1994).  

The use of subcutaneous injections may also influence the required dose of 

BrdU necessary for studying adult neurogenesis in snakes because of the 

permeability of the blood brain barrier to nucleosides. Previous studies of 
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neurogenesis in mammals support the likelihood that the blood-brain barrier restricts 

thymidine entry into the brain (Bradbury, 1979; Das and Altman, 1971; Kaplan, 

1982). BrdU is transported by active and facilitative nucleoside transport systems 

comparable to thymidine (Lynch et al., 1977). However, no studies have been 

performed comparing injections into the peritoneum (intraperitoneal; IP) or 

subcutaneous injections to direct injections in the cerebral ventricles 

(intracerebroventricular; ICV) in snakes or other reptiles. Thus the permeability of the 

blood-brain barrier to thymidine or BrdU and the density of nucleoside transporters 

are yet to be established.  

To determine whether 3H-Thymidine- or BrdU-marked cells are neurons, 

people have used a variety of techniques to demonstrate anatomically that these 

cells are neurons, such as electron microscopy to show the presence of dendrites 

and synapses (Lopez-Garcia et al., 1988) or light microscopy to identify the large 

nucleus and prominent nucleoli of neurons (Goldman and Nottebohm, 1983). 

Possibly the most accurate and convenient way to determine the phenotype of 

different brain cell types is to use antibody markers such as doublecortin (DCX), glial 

fibrillary acidic protein (GFAP), hexaribonucleotide binding protein-3 (Fox-3/NeuN), 

protein gene product 9.5 (PGP 9.5) and III- β tubulin (Tuj1). For neurogenesis 

studies, antibodies for these neuronal or glial markers can be paired with anti-BrdU 

antibodies to perform double- or triple-immunofluorescence. The cells can then be 

observed with fluorescence or confocal microscopy to determine whether new cells 

are neurons or glia. Generalized surveys quantifying adult neurogenesis using 
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confocal methods have been very limited in reptiles and no studies have used these 

techniques for surveys in snakes (Delgado-Gonzalez et al., 2011; Pérez-Cañellas 

and García-Verdugo, 1996; Sampedro et al., 2008; Shao et al., 2012).  

8. Comparative studies of adult neurogenesis; Adult neurogenesis in 

reptiles 

Adult neurogenesis is widespread and varies both among and within taxa 

(Barker et al., 2011). In order to make generalizations about the nature of adult 

neurogenesis, further studies of a wide range of taxa will allow for further clarification 

of the trait’s evolutionary development. Relying on a few models prevents the 

delineation of evolutionary trends (Lindsey and Tropepe, 2006). Further, comparison 

between several members of the same class allows for the determination of 

consistency of structure and function within the given class (Rakic, 2002). For 

example, adult neurogenesis has not been found in adult Sorex shrews (Bartkowska 

et al., 2008) or the hippocampus of some bat species (Amrein et al., 2007), yet it is 

present in the six other mammalian orders investigated thus far. Understanding 

which evolutionary pressures have distinguished some vertebrates as better or 

worse at adult neurogenesis might help clarify the functions and benefits of this 

physiological process. 

Neurogenesis is very limited in the adult mammalian brain. Reptiles, in 

contrast, are model examples of extensive adult neurogenesis in vertebrates. While 

birds are included in the monophyletic reptilian group, “reptiles,” for the purposes of 

this paper, I will refer to reptiles without including birds. All reptiles examined to this 
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point exhibit adult neurogenesis. Yet there are considerable differences in the rate 

and distribution of adult neurogenesis among species within this group (Font et al., 

2001).  

As early as the 1950s, researchers claimed that neurogenesis might occur in 

adult reptiles along the ependymal lining of the ventricles (Fleischhauer, 1957; 

Källen, 1951; Kirsche, 1967; Schultz, 1969). Subsequently it was assumed that 

these regions were merely embryonic remnants that persisted into adulthood. In the 

1980s and 1990s it was determined that new adult brain cells proliferate at the 

ventricular zone (VZ), the lining of the ventricles, and migrate away to their final 

destination in the parenchyma (Goffinet, 1983; Lopez-Garcia et al., 1988; Lopez-

Garcia et al., 1990; Pérez-Cañellas and García-Verdugo, 1996). 

Proliferation 

The production of new cells in birds and reptiles is restricted primarily to the 

ependymal VZ of the lateral ventricle (Alvarez-Buylla et al., 1990; Lopez-Garcia et 

al., 1988; Lopez-Garcia et al., 1990). Reptilian ependymal cells lining the ventricular 

wall proliferate continuously, generating new neurons that integrate into established 

circuits (Lopez-Garcia et al., 2002; Marchioro et al., 2005). The ependymal regions 

associated with highest proliferative capacity are referred to as the sulcus lateralis, 

sulcus septomedialis, sulcus ventralis, and sulcus terminalis located along the lateral 

ventricles (Kirsche, 1967; Schultz, 1969; Tineo et al., 1987; Yanes-Méndez et al., 

1988) The third, tectal and fourth ventricles may also be a source of new neurons 

and should be investigated further (personal observation; Margotta et al., 1999; 
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Saijo, 2007). In lizards, the neurogenic regions are composed of two main cell types. 

Most are radial glial cells while the rest are young migrating neurons (García-

Verdugo et al., 1981; Yanes et al., 1990; Yanes-Méndez et al., 1988; Yanes-Mendez 

et al., 1988). Radial glial cells in the VZ are likely the stem cells for adult 

neurogenesis in reptiles but evidence supporting this hypothesis in reptile studies is 

limited (Font et al., 1995b). 

Migration 

All vertebrates studied thus far have exhibited cells which migrate tangentially 

away from the ventricular wall of the telencephalon (Doetsch and Scharff, 

2001).While these new cells migrate throughout the telencephalon, the olfactory 

bulbs, and the AOB, there are differences in how they incorporate across species 

(Font et al., 2001). The morphology of migrating neurons in the Western Canaries 

lizard (Gallotia galloti) changes during migration in a way that indicates maturation 

en-route. Near the ependymal (VZ) layer the cell nucleus is 3-4 µm in diameter and 

elongated in shape with a visible centralized nucleolus and spongy chromatin. 

During migration, the chromatin becomes clumped and the nucleus increases in 

volume by up to 35% (Garcia-Verdugo et al., 1986).  New neurons in the MC mature 

and extend axons to their targets upon their arrival at their destination and are 

incorporated into pre-existing functional circuits (Lopez-Garcia et al., 1990; Ulinski, 

1990). 
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Survival 

Newly generated neurons appear to have long survival at their targets in the 

telencephalon of lizards (Pérez-Cañellas et al., 1997). While neurogenesis coincides 

with neuron death in birds (Barnea and Nottebohm, 1994; Barnea and Nottebohm, 

1996) and mammals (Hastings and Gould, 2003), no studies have directly linked 

naturally occurring neuronal degeneration or apoptosis to neurogenesis in reptiles 

(Barker et al., 2011; Lopez-Garcia et al., 1990).  

The MC is continuously neurogenic throughout the life of reptiles (Bruce and 

Butler, 1984; Butler and Hodos, 1996; Casini et al., 1986; Hoogland et al., 1987, 

1998; Lopez-Garcia et al., 1992, 2002), yet the rate of maturation appears to be age-

dependent. Molowny et al. (1995) observed more reactive neurogenesis in the MC of 

young adult Iberian wall lizards (Podarcis hispanica) compared to older counterparts. 

Furthermore, cell maturation in a 2-4 year old P. hispanica takes only 7 days (Lopez-

Garcia et al., 1990), but takes 90 days in 6-year-old Gallotia galloti (Delgado-

Gonzalez et al. 2011).  

General Comparisons 

Interspecific regional differences in neurogenesis are evident among reptiles. 

For example, the new neuron incorporation rate in P. hispanica is highest in the NS 

and lowest in the septum, which contrasts with T. mauritanica, in which incorporation 

is highest at the MC. This contrasts further with the turtle, T. s. elegans, wherein 

incorporation is highest in the STR and the lowest in the MC (Font et al., 2001). 
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Another discrepancy is that lizards have considerably higher cell recruitment into the 

telencephalon compared to turtles, which thus far has gone unexplained. 

The main and accessory OB undergo considerable neurogenesis relative to 

the rest of the brain in all reptiles studied thus far including snakes (personal 

observation; Font et al., 2001).  There has been limited evidence that cells born in 

the sulcus ventrails/terminals tangentially migrate from the rostral forebrain to the OB 

in T. mauritanica, Podarcis sicula, Psammodromus algirus (the large 

psammodromus), and turtles (Font et al., 2001; Margotta et al., 1999; Peñafiel et al., 

1996; Pérez-Cañellas and García-Verdugo, 1996). While this process is considered 

similar to the mammalian rostral migratory stream (RMS), the similarities still have 

only been investigated on a superficial level. Further study needs to be done to 

determine the mechanistic similarities between reptilian and mammalian RMS. For 

example, it has not been determined whether tubes of glial cells surround migrating 

neurons or whether there are guidance cues influencing or restricting migration in 

reptiles (Font et al., 2001). 

Kaslin et al. (2008) expect that the extensive post-embryonic brain 

neurogenesis in non-mammalian vertebrates can be attributed to the continued 

development of pathways involving sensory systems after birth. They hypothesized 

that neurogenesis in fish, amphibians, and reptiles is due to the demand for 

increased CNS processing power in response to increased primary sensory input. 

Goss (1992) gave another explanation in which neurogenesis is not an adaptive 

function, but instead an ontogenetic residue of embryonic development that has 
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simply persisted in these taxa since the Paleozoic era. Self-repair of mild brain 

injuries or diseases could potentially be selected for, however it would require brain 

damage to be frequent enough that it could potentially influence fitness and selection 

(Goss, 1992). Gross (2000) hypothesized that adult neurogenesis is essential to 

mammalian learning and memory formation. This system may also be applicable to 

reptiles and warrants further exploration. 

9. Plasticity and environment 

Bird and mammal studies have demonstrated that several environmental 

variables affect adult neurogenesis, yet environmental studies in reptiles are 

severely lacking (Gould et al., 1998; Kempermann and Gage, 1999; van Praag et al., 

1999). For example, seasonally breeding birds’ testosterone levels are influenced by 

photoperiod. Exposure to longer days in springtime increases testosterone, which is 

associated with reductions in cell mortality and increases in brain volume in specific 

regions (Tramontin and Brenowitz, 2000).  

Delgado-Gonzalez et al. (2011) investigated the role of season in proliferation 

and migration rates of new brain cells in G. galloti. They found that in autumn, winter, 

and especially spring, the quantity of BrdU labeled cells in the VZ were significantly 

greater after 30 days, implying they were not migrating to the parenchyma. However, 

in the summer, the ventricular zone lost considerable cells after the 30 day period 

due to migration. In P. hispanica, Ramirez et al. (1997) found that lizards maintained 

in long photoperiods had significant increases in proliferation. Short photoperiods, on 

the other hand, reduced the number of proliferating cells but did not affect migration. 



 

 

45 

Ramirez et al. (1997) also investigated effects of temperature in P. hispanica. 

They found cold temperatures led to a reduction in migration of the new cells, 

preventing cells from leaving the sulcus medialis and causing new cells to 

accumulate at the ependyma. Ramirez et al. also found 8h photoperiods reduced cell 

proliferation compared to 16h photoperiods. In P. algirus cold temperatures have 

been found to reduce proliferation 70-90% and reduce migration (Penafiel et al., 

2001). Radmilovich et al. (2003) demonstrated significant increases in proliferation 

for warm-acclimated Chrysemys d’orbigny (black-bellied slider)  turtles compared to 

cold-acclimated turtles. This contrasts with Marchioro et al. (2012) who found a 

reduction in migration rate but not proliferation due to cold temperatures in T. 

hispidus. In order to determine whether these phenomena can be generalized 

among all reptiles or how environmental variables like temperature and photoperiod 

impact neurogenesis, further studies investigating these variables should be 

conducted in snakes. Also, further studies must be done in the natural environment 

(Amrein et al., 2004)  to confirm laboratory findings and provide the behavioral and 

environmental variables to better understand the “dynamics” of neurogenesis 

(Lindsey and Tropepe, 2006). 

10. Regeneration in the adult telencephalon 

Neuronal regeneration is a rare occurrence in the vertebrate CNS. In adult 

lizards, neuron proliferation and migration in the medial cortex are increased after 

lesioning with the neurotoxin 3-acetlypyridine (3AP) (Font et al., 1995b; Font et al., 

1991; Kaslin et al., 2008). The damage from 3AP varies greatly among lizards of the 
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same species (for both P. hispanica and Anolis carolinensis) and between regions. 

For example, in P. hispanica 34% to 97% of neurons in the MC displayed pyknotic 

nuclei, but in other regions 3AP affected less than 50% of neuronal populations 

(Font et al., 1997b). Proliferation of microglia and radial glia increases in response to 

the damage so these cells can remove axonal and cellular debris (Font et al., 1995b; 

Lopez-Garcia et al., 1994; Nacher et al., 1999). Simultaneously, adult neurogenesis 

is upregulated and replacement cells begin to migrate from the VZ. After one to two 

weeks, neurons begin to enter and fill the void left by 3AP damage and completely 

replace the damaged area within a 6-8 week period (Font et al., 1991). Some 

replacement neurons establish synaptic contacts and join functional circuits 

(Molowny et al., 1995). By two months the previously damaged telencephalon is 

virtually indistinguishable from one that never received 3AP treatment (Font et al., 

1997b). However, comparative studies using 3AP are limited because preliminary 

3AP studies in snakes resulted in inconsistent distribution of damage (Font et al., 

2001). 

Minelli et al. (1977) found reactive proliferation in the cortical tissues of 

Lacerta viridis in response to surgical ablation, however the regeneration was not 

complete within 260 days. On the other hand, neuronal regeneration as a result of 

3AP exposure is probably the most successful case of forebrain neurotoxic damage 

and neuronal regeneration in any vertebrate to date. While there are some examples 

of fish, amphibians, songbirds, and mammals that undergo induced regeneration or 



 

 

47 

reactive neurogenesis, lizards are the only tetrapods that can regenerate entire 

cerebral cortex regions bilaterally into adulthood (Font et al., 2001).  

11. Future studies of adult neurogenesis in reptiles 

Currently, the paucity of neurogenesis research in reptiles hinders the 

discovery of the evolutionary nature of neurogenesis (Lindsey and Tropepe, 2006). 

The reptilia are very diverse, and the paucity of snake studies has prevented the 

move from a collection of isolated studies to a comparative data set that can be used 

to identify meaningful patterns in adult neurogenesis. Furthermore, only one reptilian 

study investigates regional differences in neurogenesis over the organism’s lifespan 

(Marchioro et al., 2005).  

I propose that future studies need to be performed in snakes in the laboratory 

to determine baseline regional and developmental differences in adult neurogenesis. 

Then field studies should be conducted to determine changes in response to 

environmental variables including, but not limited to: (a.) changes in metabolic rate 

including those in response to digestion of prey and environmental temperature 

changes; (b.) scent and pheromone exposure; (c.) age; (d.) light cycle; (e.) exposure 

to stressors; and (f.) while gravid.  The next chapter of this manuscript provides 

baseline laboratory data on neurogenesis in P. regius, to use as a comparative 

model species to study the evolutionary and physiological significance of adult 

neuroplasticity and neurogenesis. Additionally, the impact of neurogenesis on animal 

behavior must first be determined, so generalizations can be made and applied to 
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understanding the correlations between human neurogenesis and behavior 

(Boonstra et al., 2001). 
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Chapter 2. A BrdU study of proliferation, migration, and survival in the 

telencephalon of the ball python, Python regius. 

Introduction 

Adult neurogenesis is widespread throughout vertebrates and varies in 

presence and rate both among and within taxa (Barker et al., 2011). Over the past 

20 years considerable research has focused on elucidating both the mechanisms 

and functions of adult neurogenesis. However, the overwhelming majority of 

neurogenesis studies have investigated the process in the mammalian brain, in 

which adult neurogenesis is very limited. Quantitative studies of neurogenesis in 

reptiles have focused on only a few lizard and turtle species. The lack of reptilian 

studies is both unexpected and detrimental to research not only because reptiles 

undergo extensive adult neurogenesis, but also because they are exceptional neural 

regenerators. Comparative studies of this trait among vertebrates may better clarify 

its evolution and function (Font et al. 2001; González-Granero, Lezameta, and 

García-Verdugo 2011). Relying on only a few models prevents the delineation of 

evolutionary trends (Lindsey and Tropepe, 2006). Further, comparison among 

several members of the same class can support patterns of structure and function 

within the given class (Rakic, 2002). For example, adult neurogenesis is absent in 

adult shrews (Bartkowska et al., 2008) and in the hippocampus of some bat species 

(Amrein et al., 2007), yet it is present in the six other mammalian orders investigated 

thus far (Barker et al., 2011).  
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Brain morphology and neural networks have diverged greatly among 

vertebrate classes as they have been shaped by natural selection. Several species 

have developed very specialized brain anatomy and physiology in response to 

environmental pressures (Butler and Hodos, 2005; Nieuwenhuyis et al., 1998; ten 

Donkelaar, 1988) while others have retained ancestral traits, thus providing extant 

evidence for tracing the evolution of morphology (Nomura et al., 2013b). Determining 

why some species have undergone selection for or against adult neurogenesis will 

further evolutionary research. 

Reptilian brains exhibit a simple, laminated dorsal telencephalon with a 3-

layered cortex, thought to be inherited from their amniote ancestry (Bruce, 2007; 

Wise et al., 2009). When Platel (1974) conducted morphometric studies of the 

developed reptilian brain he found continued growth of brain volume from young to 

old lizards. Examining Podarcis hispanica (Iberian wall lizards), Lopez-Garcia et al. 

(1984) determined that the volumetric change throughout life was associated with 

continuous addition of newly generated neurons (Martínez-Guijarro and López-

García, 1994). It is yet to be determined whether the increase in brain volume in 

reptiles is also associated with increases in neuron size, quantity, or spacing. The 

primary function of adult neurogenesis in reptiles may be supplying the brain 

structures with new cells as the structures enlarge during development (Barker et al., 

2011). 

Snakes diverged from lizards approximately 92 million to 161 million years 

ago (Gorr et al., 1998). Among snakes, pythons are the most basal extant 
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macrostomatan species (Castoe et al. 2011; Slowinski and Lawson 2004). The basal 

origins of these snakes may provide insight into the evolutionary origins of adult 

neurogenesis and adult brain development. Pythons exhibit many unique traits that 

can further our understanding of adult neurogenesis from a comparative perspective. 

Most are constricting sit-and-wait predators that consume large prey relative to their 

body size, resulting in metabolic changes and plasticity of other physiological 

systems, including the digestive and cardiovascular systems (Andersen et al., 2005; 

Secor and Diamond, 1998). Some species of female pythons also maintain the 

temperature of their eggs by shivering thermogenesis when brooding. Shivering 

thermogenesis occurs when a series of muscular contractions of the whole body 

generates heat for incubating eggs (Harlow and Grigg, 1984; Stahlschmidt and 

DeNardo, 2008; 2009; 2010; Vinegar et al., 1970). Pythons experience vomeronasal 

chemical sensing and possess labial pits for infrared detection (Molenaar, 1978a; 

Molenaar, 1978b). 

Python regius (commonly known as “Ball Pythons” or “Royal Pythons”) are 

native to western Africa, but are commonly bred as exotic pets internationally. They 

are very docile and easy to handle without risk of injury to the handler or the snake. 

They do not require intricate laboratory housing and can be maintained by giving 

them access to water ad libitum, a heating device, and regular access to feeder 

mice. In fact, contrary what many researchers might expect, pythons are easier to 

handle and maintain than rats (Secor et al., 2001). 
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In two experiments the following were determined: (a) the dose of the cell 

birth marker, 5-bromo-2’-deoxyuridine (BrdU), that best marks proliferating cells in 

the P. regius telencephalon, (b) the brain regions in which telencephalic proliferation 

occurs, and (c) the rate of migration and survival of the newborn cells. In accordance 

with previous studies (Cameron & McKay, 2001; Hancock et al., 2009), higher doses 

of BrdU should mark more newborn cells than lower doses. Based on previous 

studies of squamates, I expected higher cell proliferation and migration at the 

anterior olfactory bulb (AOB), medial cortex (MC), dorsoventricular ridge (DVR), and 

nucleus sphericus (NS) than in other regions (Font et al., 2001; Pérez-Cañellas and 

García-Verdugo, 1996).  

Results of this study will provide groundwork for future studies investigating 

the evolutionary trends pertaining to environmental, hormonal, and age-related 

effects on adult neurogenesis. Future studies may provide evidence for whether 

properties unique to snake physiology affect neurogenesis, and determine the 

relationships among telencephalic proliferation, migration, and survival.  

Materials and Methods  

Experiment 1: 

Procurement and treatment 

The use and treatment of snakes was conducted with the approval of the 

California Polytechnic State University IACUC protocol No. 915. Fifteen male P. 

regius (𝑥 = 95.92g ± 43.03g) were purchased from Reptile Industries (Naples, FL) 
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and delivered on July 8, 2011. Snakes were acclimated in the laboratory for for 14 

days. During this period they were housed in 26 x 45 x 36 cm clear plastic containers 

(Monoflo) on a 12:12 light:dark cycle. Each container had a terra cotta water dish, an 

ABS pipe cut in half lengthwise to serve as a “shelter” and newspaper lining the 

bottom for absorption and cleaning.   

Each container was marked with the corresponding number and placed 

randomly on a cage rack. In order to maintain similar metabolic rates among all 

snakes during treatment, snakes were fed mice selected according to proportional 

weight on day 3 (𝑥 = 2.77%m/m ± 0.21%) except for snake #3, which refused to eat.  

Snakes were haphazardly placed into stratified groups to avoid a possible effect of 

mass on treatment (Table 1). On day 15 they were subcutaneously injected with 

BrdU dissolved in 0.9% NaCl at 20mg/mL. Volumes were injected according to the 

following 3 treatments: 50mg/kg, 100mg/kg, or 250mg/kg Bromodeoxyuridine (BrdU; 

Sigma Aldrich). 

 

Table 1: Stratified random placement of snakes by mass (g) into one of three 
treatment groups with different dosages of bromodeoxyuridine (50, 100, or 250 mg 
BrdU/kg body weight). 

50mg/kg 100mg/kg 250mg/kg 
Snake Mass (g) Snake Mass (g) Snake Mass (g) 

3 744.73 8 653.23 4 624.82 
2 888.78 1 721.41 5 656.74 

14 1006.16 13 996.19 11 878.97 
12 1038.05 10 1067.25 9 1003.04 

7 1089.52 6 1149.65 15 1232.29 
Mean 
SE 

953.45 
61.72 

 986.71 
86.84 

 879.17 
112.74 
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Sacrifice and perfusion 

Twenty-four hours after BrdU treatment, snakes were deeply anesthetized via 

isofluorane inhalation and were transcardially perfused with 0.9% NaCl, 0.1% 

NaNO2, 0.1M phosphate buffer (PB) wash followed by 4% paraformaldehyde in 0.1 

M PB, pH 7.2, with 0.1% NaNO2. Following perfusion, skulls containing brains were 

extracted and placed in 4% paraformaldehyde for at least 2 hours. Brains were then 

carefully removed from the skulls to postfix for 24 h in 4% paraformaldehyde 

followed by 24 h in 0.1 M PB solution. An example of a removed, fixed, complete 

brain is shown in figure 3. Brains were weighed and placed in gelatin overnight until 

the gelatin formed semisolid blocks around the tissue. Then the blocks were placed 

in 4% paraformaldehyde for 24 h and then 30% sucrose until they sank, frozen in dry 

ice, and stored at -80˚C until sectioning. 

 



 

 

55 

 

Figure 3: An extracted, perfused, complete P. regius brain. The dorsal side of the 
telencephalon (pallium) is shown. AOB: accessory olfactory bulb, OB: olfactory bulb, 
OT: optic tectum, P: pineal gland. 

Sectioning and histochemistry 

Four series of 40µm thick parallel coronal sections were obtained using a 

Bright OTF-5000 cryostat. One series (every fourth section) was directly mounted to 

slides, hydrated with mounting solution, allowed to dry, and stained with cresyl violet. 

Cresyl violet stained sections were photographed with a Leica EZ4 stereo 

microscope at 10x magnification and stored as digital images for measurement and 

identification of brain regions of interest (fig. 4).  

  

Telencephalon OB 

AOB 

P 

Brain stem 
OT 



 

 

56 

 
Figure 4: The stack of images taken from cresyl violet stained sections (every 16th 
section shown) of snake #7 used to create a 3D model and determine study regions 
for experiment 1. 
  

The other sections were stored in cryoprotectant at -20˚ until they were ready 

to be used.  Free-floating sections were immunostained for BrdU as follows: Every 

eighth section was washed with phosphate-buffered saline (PBS) 3 times for 5 

minutes prior to DNA denaturation in 4N HCl for 15 minutes. After denaturation, 

sections were rinsed for 5 min in PBS and neutralized in 3.8% sodium borate wash 
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(pH 8.5) for 10 min. Sections were rinsed 3 times for 10 minutes in PBS and 

immediately blocked in a solution of 5% normal horse serum (Vector Laboratories 

Inc), 1% bovine serum albumin, and 0.5% H2O2 in PBS + 0.3% Triton X-100 (PBST). 

Immediately following blocking, sections were placed in a 1:1,000 anti-BrdU (clone: 

Bu20a, isotype: IgG1, kappa, code: M0744, DakoCytomation, Glostrup, Denmark) 

dilution in PBST and left on a rotator table for 24 h at room temperature. Another 

series of three 5-min washes in PBST was followed by 1 h of incubation in 

biotinylated anti-mouse secondary antibody (1:100; Vector Laboratories), three 5-

minute washes in PBST, and a 1h incubation in avidin-biotin-peroxidase complex 

(PK-6100, Vector Laboratories). Finally, sections were washed 3 times for 5 minutes 

in PBST followed by detection of bound peroxidase complexes via 4-minute 

incubation in Vector SG Chromagen (Cat. No.SK-4700, Vector Laboratories). The 

reaction was stopped by two 5 min washes in PBS. Sections were then mounted 

onto slides and coverslipped. 

Measurement 

To define study regions, a digital 3-dimensional model was created from the 

captured images according to the following process: Images were masked using 

Photoshop CS6 13.0 and transformed to align with adjacent section images in a 

stack (supplemental movie 1: http://youtu.be/Lw8nD2V0FrI). The stack was migrated 

to ImageJ (NIH, USA) and converted to a 3D model using Java3D. The 3D model 

and 2D stack were used to determine locations where rostral-caudal morphological 
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changes occur and clearly define these regions so counting would be consistent 

between brain sections (fig. 5). 

 

 

Figure 5: Predetermined regions defined for P. regius telencephalon. Regions were 

divided according to rostro-caudal landmarks (1-5). AOB: Accessory olfactory bulb. 

Rostral-caudal regions defined according to morphological changes to determine 

areas where changes in cellular density occur. Then regions with similar and 

consistent cell densities were used for the study area. 
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Figure 6: Supraventricular ependymal surface area used for counting cell density for 
3 BrdU treatments. 
 

BrdU-immunoreactive (BrdU-ir) cells were observed under an Olympus CH 

series light microscope at 400X and counted along the left and right ventricle along 
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the ependymal lining from the sulcus septomedialis to the sulcus lateralis for each 

within each section (fig. 6). 

To determine how cell counts and line measurements would be performed to 

calculate cell density for statistical analysis, cells along the measured line were first 

counted in the 250mg/kg group. Regions 1-3 were chosen for statistical analysis 

because they had large enough cell counts to clearly reveal any potential differences 

among the three treatments (fig. 7; supplemental movie 2: 

http://youtu.be/Ka7VirggVPM). Regions 4-5 were excluded because their cell counts 

were too low to show differences, and because any differences would likely be due 

to differences in ependymal length measurement instead of cell quantity. The AoB 

was excluded because the cell counts were too inconsistent within the region and 

the counts were exceptionally high compared to the rest of the telencephalon.   

New cell density was determined for each region by measuring the length of 

the ependymal lining from the sulcus septomedialis to the sulcus lateralis and by 

counting anti-BrdU marked nuclei along the measured line (fig. 6). The ependymal 

layer was defined as the cell layer lining the ventricles and two-to-three cell body 

diameters from the ventricles. The cell counter was blind to treatments. 

Cell densities throughout each region were calculated as follows: 

𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙  𝑐𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑚𝑎𝑟𝑘𝑒𝑑  𝑐𝑒𝑙𝑙𝑠 𝑓𝑟𝑜𝑚  𝑎𝑙𝑙  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠  𝑖𝑛  𝑟𝑒𝑔𝑖𝑜𝑛
𝑙𝑖𝑛𝑒  𝑙𝑒𝑛𝑔𝑡ℎ   𝑓𝑟𝑜𝑚  𝑎𝑙𝑙  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠  𝑖𝑛  𝑟𝑒𝑔𝑖𝑜𝑛  

For determination of overall cell density across all three rostral-caudal 

regions, 1-3, the following calculation was used: 
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𝑜𝑣𝑒𝑟𝑎𝑙𝑙  𝑐𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑚𝑎𝑟𝑘𝑒𝑑  𝑐𝑒𝑙𝑙𝑠 𝑓𝑟𝑜𝑚  𝑎𝑙𝑙  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠  𝑖𝑛  𝑎𝑙𝑙  3  𝑟𝑒𝑔𝑖𝑜𝑛𝑠
𝑙𝑖𝑛𝑒  𝑙𝑒𝑛𝑔𝑡ℎ   𝑓𝑟𝑜𝑚  𝑎𝑙𝑙  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠  𝑖𝑛  𝑎𝑙𝑙  3  𝑟𝑒𝑔𝑖𝑜𝑛𝑠  

 
 
Figure 7: Count of new cells per hemisection (mean +/- SE) within each rostro-
caudal region, for the 250mg/kg treatment group. 
  

Statistical analysis 

An ANOVA was performed using JMP 10.0 (SAS, 2013) to determine the 

effect of dosage on cell marking along the selected ependymal surface. Data 

followed a normal distribution with equal variances and was left untransformed. 
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ANOVA was followed by a post-hoc Tukey-Kramer HSD. All differences were 

considered significant at α < 0.05.  

Experiment 2: 

Procurement and treatment 

Procurement and treatment were performed similarly to experiment 1 and in 

compliance with California Polytechnic State University IACUC protocol No. 915.  

Fifteen juvenile male P. regius  (𝑥  = 121.44 g ± 5.83 g) were delivered on February 

2, 2012.  During the 17-day acclimatization period snakes were fed mice on day 2 (𝑥 

= 11.28% m/m ± 0.21% m/m) and day 14.  After the acclimatization period, snakes 

were weighed and haphazardly placed in three treatment groups (2 month, 2 week, 

2 day) with to prevent a possible effect of mass on treatment (table 2). Snakes in the 

“2 month” group received 100mg/kg BrdU 2 months before sacrifice, snakes in the “2 

week” group received 100mg/kg BrdU 2 weeks before sacrifice, and snakes in the “2 

day” group received 100mg/kg BrdU 2 days before sacrifice (fig. 8). During the 2 

month treatment period were fed mice on day 13 (𝑥 = 10.03% m/m ± 0.19% m/m), 

day 27 (𝑥 = 11.32% m/m ± 0.32% m/m), and day 40 (𝑥 = 9.85% m/m ± 0.17 % m/m). 
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Figure 8: Timeline of Experiment 2. Snakes were sacrificed 2 months, 2 weeks, and 
2 days after BrdU injection. 
 
 
Table 2: Stratified placement of snakes into treatment groups at beginning of study. 

2 day 2 week 2 month 
Snake Mass (g) Snake Mass (g) Snake Mass (g) 

11 102.4 4 96.6 8 103.3 
10 117.6 15 98.3 1 108.6 
13 131.5 5 98.5 2 128.5 

7 140.8 14 142.7 3 131.8 
6 106.6  2 176.3 9 138.1 

Mean 119.78   122.48   122.06 
SE 7.28 16.02 6.81 
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Sacrifice and perfusion 

Upon completion of the 60-day treatment period, snakes were sacrificed, 

perfused, and whole brains were stored following the protocol described in 

experiment 1.  

Sectioning and histochemistry  

Four series of 36µm thick parallel coronal sections were obtained by cryostat. 

A cresyl violet series was mounted according to the methods stated in experiment 1. 

Cresyl violet stained sections were photographed at 10x with a Leica EZ4-D, and 

photos were digitally stored as “jpeg” images. Anti-BrdU fluorescence 

immunohistochemistry was performed on free-floating sections as follows: Every 

eighth section was washed in PBST three times for 10 min and placed in 4N HCl for 

15 min. Sections were rinsed in PBS for 5 min and neutralized for 10 min in 3.8% 

sodium borate wash (pH 8.5).  Then they were placed in 5x “animal free blocker” 

diluted at 1:5 in PBS (SP-5030, Vector Laboratories) for 1 hour. Blocking was 

followed by immediate placement of sections in a 1:1,000 dilution of mouse anti-

BrdU (clone: Bu20a, isotype: IgG1, kappa, code: M0744, DakoCytomation, Glostrup, 

Denmark) in PBST for 24 hours shaking on a rotator table.  Thereafter sections were 

washed three times in PBST for 10 min and placed in 1:200 FITC horse anti-mouse 

IgG antibody (FI-2000, Vector Laboratories) covered on a rotator table for 1 hour. 

Lastly sections were placed in 3, 10 minute PBST washes, mounted on slides, and 

coverslipped with Vectashield hard set mounting medium with DAPI (H-1500, Vector 

Laboratories). 
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Measurement 

To determine study regions, sections were compared to those in Halpern 

(1980) and Smeets (1988), and regions were determined by direct observation of 

cresyl violet stained cells under the microscope at 400x (fig. 9). Masked images 

were stacked in imageJ and Java 3D modeling was used to create a 3-dimensional 

model (fig. 11 and supplemental movie 3: http://youtu.be/l995WMN8mK8).  The 3D 

model was then used to determine and demarcate the study regions including the 

accessory olfactory bulb (AOB); anterior dorsal (AD) and anterior ventral (AV) 

regions (retrobulbar regions) including the anterior-most TUB and ACC in the AV 

region; ventral lateral (VL) and ventral medial (VM) regions containing the central 

and posterior TUB, ACC, and the  anterior commissure in the VM region, and the 

STR and accessory olfactory tract in the VL; dorsoventricular ridge (DVR); septum 

(S); anterior dorsal, lateral, and medial cortex (aDC, aLC, and aMC); posterior 

dorsal, lateral, and medial cortex (pDC, pLC,, pMC); anterior and posterior nucleus 

sphericus (aNS, pNS); and posterior cortex (PC).  
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Figure 9: Every 16th section taken from python number 11, marked with colors 
depicting cellular nuclei regions determined by observing cellular changes in cresyl 
violet stained tissues. ACC = nucleus accumbens, TUB = olfactory tubercle, Ccl = 
cortical cell layer of the retrobulbar region, MCcl = medial cortex cell layer, DCcl = 
dorsal cortex cell layer, LCcl = lateral cortex cell layer, PCcl = posterior cortex cell 
layer, STR = striatum, DVR = dorsal ventricular ridge, S = septum, lS = lateral septal 
nucleus, mS = medial septal nucleus, P = pineal gland, NScl = nucleus sphericus 
cell layer. 
 

The cresyl violet series was used to determine regional area (RA) for all 

sections. The area of each region on each section was measured with the freehand 

LCcl 
DCcl MCcl 

S 

DLA/
LA NScl 

P 

LCcl 
DCcl MCcl 

DLA/
LA NScl 

P 

LCcl 
DCcl MCcl 

DLA/
LA NScl 

P 

PCcl 
MCcl 

DLA/
LA NScl 

P 

PCcl 

NScl 

PCcl 



 

 

68 

tool in ImageJ. Anti-BrdU stained sections were observed under a fluorescence 

microscope and compared to corresponding cresyl violet sections. Cell counts were 

performed in the predetermined regions (fig. 11). Cells were categorized as 

ependymal if they were within 3 cells of a ventricle, or parenchymal if they were at 

least 3 cells away from a ventricle. Regional cell density was determined for each 

snake according to the following calculation: 

𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙  𝑒𝑝𝑒𝑛𝑑𝑦𝑚𝑎𝑙  𝑐𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦

=   
𝑒𝑝𝑒𝑛𝑑𝑦𝑚𝑎𝑙  𝑐𝑒𝑙𝑙𝑠  𝑎𝑐𝑟𝑜𝑠𝑠  𝑎𝑙𝑙  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛  𝑎  𝑔𝑖𝑣𝑒𝑛  𝑟𝑒𝑔𝑖𝑜𝑛

𝑅𝐴  𝑓𝑟𝑜𝑚  𝑎𝑙𝑙  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠  

or 

𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙  𝑝𝑎𝑟𝑒𝑛𝑐ℎ𝑦𝑚𝑎𝑙  𝑐𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦

=   
𝑝𝑎𝑟𝑒𝑛𝑐ℎ𝑦𝑚𝑎𝑙  𝑐𝑒𝑙𝑙𝑠  𝑎𝑐𝑟𝑜𝑠𝑠  𝑎𝑙𝑙  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛  𝑎  𝑔𝑖𝑣𝑒𝑛  𝑟𝑒𝑔𝑖𝑜𝑛

𝑅𝐴  𝑓𝑟𝑜𝑚  𝑎𝑙𝑙  𝑠𝑒𝑐𝑐𝑡𝑖𝑜𝑛𝑠  

 



 

 

69 

 
Figure 10: P. regius brain reassembled as a 3D image in ImageJ using Java3D for 
experiment 2. Colors only denote different regions and no other factors. 
 

Regional ependymal cell density was used as an indicator to determine 2-day 

proliferation rate. In order to make comparisons between regions and treatments, 

mean values and standard errors were calculated from regional density values in the 

same treatment groups. 
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Figure 11: Every 16th section taken from a representative python cresyl violet 
stained, photographed and labeled using Photoshop CS3. Study regions determined 
for cell counts are highlighted. Regions correspond with quantification data in figs. 
11, 12, and 13. 
 

To determine the percentage of the originally proliferating cells that migrate 

into the parenchyma and survive, mean cell densities were calculated from complete 

regional snake brain data for all three treatments. Then the following calculations 

were performed: 
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%𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛!  !""#$ =
𝑚𝑒𝑎𝑛  𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙  𝑝𝑎𝑟𝑒𝑛𝑐ℎ𝑦𝑚𝑎𝑙  𝑐𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦!  !""#$
𝑚𝑒𝑎𝑛  𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙  𝑒𝑝𝑒𝑛𝑑𝑦𝑚𝑎𝑙  𝑐𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦!  !"#$

 

%𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙!  !"#$!! =
𝑚𝑒𝑎𝑛  𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙  𝑝𝑎𝑟𝑒𝑛𝑐ℎ𝑦𝑚𝑎𝑙  𝑐𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦!  !"#$!!
𝑚𝑒𝑎𝑛  𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙  𝑒𝑝𝑒𝑛𝑑𝑦𝑚𝑎𝑙  𝑐𝑒𝑙𝑙  𝑑𝑒𝑛𝑠𝑖𝑡𝑦!  !"#$

 

In several regions, cells were marked in the parenchyma after only 2 days. 

These cells are likely of endothelial origin and they were not counted for the 2-day 

treatment.  Since ventricular endothelial cell turnover has been determined for adult 

rats and mice as approximately 20 hours (Schultze & Korr, 1981; Korr et al., 1975, 

respectively), it is likely that any endothelial cells potentially marked with BrdU in the 

parenchyma in the 2 week and 2 month treatments would no longer exist at the time 

of sacrifice. Thus, only ependymal, not parenchymal cells were counted at 2 days. 

But all parenchymal cells were subsequently counted throughout for the 2 week and 

2 month groups. 

Results 

Experiment 1 

.  
Treatment had a significant effect on ependymal nuclei marking (overall cell 

density) (F = 5.69, d.f. = 2, 9, p = 0.025; Fig. 12). A post-hoc Tukey-Kramer HSD 

confirmed a significant difference between the 50mg/kg treatment and 250mg/kg 

treatment (p = 0.026; fig. 12). There was no difference between the 50mg/kg 

treatment and the 100mg/kg treatment (p = 0.784) or the 100mg/kg treatment and 

the 250mg/kg treatment (p = 0.116).  
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Figure 12. Mean cell new cell density (cells/mm2; ±SE) in the supraventricular 
ependymal zone for snakes exposed to 50mg/kg, 100mg/kg, or 250mg/kg BrdU. 

Experiment 2 

Cell proliferation was highest in the retrobulbar regions (AD, AV), the AOB, 

DLA, DVR, pNS, S, and pNS (fig. 13A, B). After 2 weeks, cells migrated most to the 

parenchyma of the retrobulbar regions, the AOB, VL, DVR, and aNS (fig. 13A, C). 

After 2 months, the new cells survived most in the parenchyma of the AOB, AV, 

DLA, DVR, and AD (fig. 13A, D).  Regions with the highest migration 

(%migration2weeks) were the aNS, aMC, aLC, VL, DVR, VM, AD, and AOB (fig. 14). 

Regions with the highest survival (%survival2 months) were the aLC, AOB, aNS, aMC, 

DVR, aDC, VM, and pLC (fig. 15). Even after 2 months, new ependymal cells did not 

migrate and remained in the ventricular zone of several regions (fig. 16). The regions 
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with the greatest ependymal-cell-to-parenchymal-cell ratio after 2 months were the 

pDC, DLA/LA, aMC, and pLC.  
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Figure 13: Density of new cells (cells/mm3; mean ±SE) located in regions of the P. 
regius telencephalon denoted in fig. 10, A. 2 days, 2 weeks, and 2 months post-
injection. B. 2 days post-injection only. C. 2 weeks post-injection only. D. 2 months 
post-injection only. 
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Figure 14: Regional migration of new cells (%cells) determined from [(mean regional 
parenchymal cell density at 2 weeks)/(mean regional ependymal cell density at 2 
days)] in the P. regius telencephalon, 2 weeks post-injection. 
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Figure 15: Regional survival of new cells (%cells) determined from [(mean regional 
parenchymal cell density at 2 months)/(mean regional ependymal cell density at 2 
days)] in the P. regius telencephalon, 2 months post-injection. 
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Figure 16: Comparison of cell density in the ependymal zone versus parenchymal 
zone 2-months post-BrdU injection. 
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Table 3: Telencephalon regions organized by high or low proliferation combined 
with high or low migration, and survival. 

 Migration Survival 

High Low High Low 

Pr
ol

ife
ra

tio
n 

High AD, AV, DVR, 

aNS 

DLA/LA AOB, DVR, 

aNS 

AD, AV 

Low VL, VM, aLC, 

aMC, 

pLC aLC, aMC VL 
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Discussion 

Dosage of BrdU 

In accordance with previous studies of BrdU dose, we detected an effect of 

dose on ependymal cell marking. The highest tested dose (250mg/kg) marked a 

significantly higher density of cells than the lowest tested dose (50mg/kg). This 

finding supports previous studies of this relationship (Burns and Kuan, 2005; 

Cameron and Mckay, 2001; Hancock et al., 2009) and demonstrates that dose 

affects cell marking not only in mammalian species, but also in reptiles. In this 

experiment, the maximum BrdU dose was limited to 250mg/kg because BrdU 

precipitated from solutions containing more than 20mg/mL and injecting a large 

subcutaneous bolus (in excess of 21mL for a 1.2kg snake) is physically challenging, 

requiring multiple injection sites, which is potentially stressful to the animal. Since 

previous studies used much smaller animals (<300g), experimenters were able to 

inject BrdU doses higher than 250mg/kg and determine the optimal dose. I expect 

doses larger than 250mg/kg would mark significantly more cells than the 100mg/kg 

dose, yet administration of higher doses would require using a solvent able to 

provide higher miscibility for BrdU in addition to, or in lieu of, using smaller snakes. 

While higher doses in a different solution could potentially provide further marking, 

this may not be necessary, as the 100mg/kg dose yielded BrdU cell density that was 

not significantly different from the 250mg/kg dose. Larger subcutaneous doses are 

inadvisable because the buildup of a large bolus creates considerable pressure 

against the syringe, causing leakage through the injection site post injection. These 
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large pressures could damage the snakes’ tissues, cause BrdU to leak, potentially 

exposing the administrator to BrdU—a carcinogen—and expose snakes 

administered larger bolus volumes to less BrdU m/m relative to snakes administered 

smaller boluses.  

Proliferation, migration, and survival 

Two days after BrdU injection, cells were labeled throughout the telencephalon 

along the lateral ventricles, especially at the lateral sulci, indicating areas of 

proliferating cells. The greatest proliferation took place at the ventricles nearest the 

AOB, AD, AV, and DVR. Many of these newborn cells migrate to the parenchyma 

throughout the telencephalon and survive for at least 2 months. On the other hand, 

some of them continue to stay in the ependymal region and do not migrate even 

after 2 months. This system of reduced migration across the VZ parallels other 

squamate studies, and like in other squamate studies (P. hispanica, T. mauritanica), 

differs from turtles, which exhibit even slower migration of proliferating cells across 

the VZ (Font et al., 2001). The ratio of ependymal-cells-to-parenchymal-cells in the 

DLA/ LA region and DC at least one month post injection appears to be consistent 

among all squamates (Font et al., 2001).  

There appears to be a dichotomous relationship of neurogenic activity 

between brain regions involved with more short-term or long-term brain functions.  

Regions that relay regularly changing olfactory and vomeronasal stimuli as part of 

the amygdalar system (short-term functions) may require constant growth of new 

neurons and/or higher cell turnover.  The DLA/LA region, which is considered the 
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reptilian homologue to the basolateral amygdala, has high proliferation rates but 

does not seem to have as high of a survival rate. Additionally, in mammals, the 

regions involved in processing olfactory input (the rostral migratory stream; RMS) 

have relatively high neurogenic activity (Altman, 1969; Pencea et al., 2001). In 

reptiles, the homologs to the RMS are likely located in the retrobulbar regions (AD), 

the AV containing the TUB, and the AOB which relays vomeronasal and olfactory 

sensory information. These regions also seem to have high proliferation rates, but 

possibly lower survival.  

Conversely, regions known for long-term functions like spatial memory, 

exploratory behavior and species-specific behavior like territorial displays, exhibited 

lower proliferation rates, but less attrition and higher survival. Examples of these 

regions are the MC and DC associated with spatial memory (Baird Day, et al., 2001; 

Lopez et al., 2003; Holding et al., 2012), the VL containing the STR, associated with 

species-specific behavior and working memory (Greenberg, 1977; Packard and 

Knowlton, 2002; Tarr, 1982), and the VM containing the ACC responsible for 

exploratory behavior and behavioral reinforcement (Olds & Milner, 1954; Distel, 

1978; Greenberc et al., 1979; Parent, 1986).  

MC and DC: Hippocampal homologues 

The reptilian MC and DC are widely regarded as homologous to the 

mammalian and avian hippocampus (Bruce and Butler, 1984; Butler and Hodos, 

1996; Rodriguez et al., 2002, Holding et al., 2012). The small-celled portion of 

reptilian cortex is considered homologous to the dentate gyrus of the mammalian 
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hippocampus, and the large-cell portion is considered homologous to the CA fields 

of mammals (Treves et al., 2008). No CA-field subdivisions have been distinguished 

(Papp et al., 2007), although a system has been proposed for further investigation 

(Delgado-González et al., 2008). As in the dentate gyrus of the adult mammalian 

hippocampus (Kuhn et al., 1996; van Praag et al., 2002), the MC is associated with 

continuous neurogenesis during adulthood in reptiles (Bruce and Butler, 1984; Butler 

and Hodos, 1996; Casini et al., 1986; Hoogland et al., 1987, 1998; Lopez-Garcia et 

al., 1992, 2002). Integration of new granule cells is essential to hippocampal function 

in the mammalian dentate gyrus (Clelland et al., 2009; Dupret et al., 2008; Saxe et 

al., 2006; Shors et al., 2001). Recent studies have demonstrated that new granule 

cells allow for “pattern separation”—the formation of distinct memory representations 

originating from similar information (Sahay et al., 2011a). Pattern separation is the 

orthogonalization of input that prevents memories from interfering from one another 

(Sahay et al., 2011b). While there is no direct evidence for pattern separation in 

reptiles, the two systems are so functionally and structurally similar that a system 

similar to CA3 could potentially occur in reptiles and should be investigated. 

The basal regions: The striatum and the nucleus accumbens 

Very recently, it has become clear that adult neurogenesis takes place in the 

human STR, displacing the previous canon that it only takes place in the olfactory 

bulb and hippocampus (Kempermann, 2014). Using carbon-14 dating techniques, 

Ernst et al. (2014) found that striatal interneurons undergo turnover at a rate of 2.7% 

annually, and most impressively, that these neurons are depleted in Huntington’s 



 

 

87 

disease patients. Other mammalian studies have supported these findings 

(Arvidsson et al., 2002; Dayer et al., 2005; Luzzati et al., 2006; Yamashita et al., 

2006), but none of them until now showed complete cell proliferation, neurogenesis, 

and functional integration in an undamaged brain (Bonfanti and Peretto, 2011). 

For a couple decades, there has been limited evidence for adult neurogenesis 

in the STR of lizards (Penafiel et al., 2001; Pérez-Cañellas and García-Verdugo, 

1996) and turtles (Pérez-Cañellas et al., 1997). When Pérez-Cañellas and García-

Verdugo (1996) observed BrdU-labelled brain tissue from T. mauritanica, they saw 

very few cells in the STR and high variability among individual study animals. The 

cells did not concentrate in any specific area and instead were uniformly distributed. 

The new cells also appeared to move both radially and tangentially, instead of 

following the radial processes of radial glial cells indicating migration similar to the 

RMS system in mammals. In the current study, the high proliferation rate and low 2-

month survival within the STR may be indicating a similar migration. New cells may 

be proliferating at the ventricular ependymal layer, migrating out to the parenchyma, 

and then continuing to travel rostrally out of the STR to other brain regions. Sagittal 

sectioning could show whether cells are moving rostrally in the STR as well as other 

regions. 

There has been little literature about adult neurogenesis in the ACC, likely 

because evidence is lacking that it occurs there in mammals. In reptiles, migrating 

neurons have been found in ACC of P. hispanica, as evidenced by the neuronal 

marker PSA-NCAM (Ramirez-Castillejo et al., 2002a), but whether the cells were of 
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proliferative origin has not been confirmed.  In amphibians, Almli and Wilczynski 

(2007) found cell proliferation and survival after 30 days in the ACC of Hyla cinerea 

(American green tree frog). It has been further supported in Lithobates catesbeianus 

(American bullfrog) and Xenopus laevis (African clawed frog), but the final 

phenotype of these cells is yet to be determined (D'Amico et al., 2011; Simmons et 

al., 2008). In mammals, the ACC has been implicated as responsible for reward-

seeking behavior and motivation (Cador et al., 1989; Knutson et al., 2001), including 

addiction-based behavior (Hoebel et al., 1983). While it is likely that there is a link 

between adult neurogenesis in the ACC, sensory systems, and reinforcement based 

on what is perceived, there are so few data regarding adult neurogenesis in the ACC 

that it is too early to make any hypotheses as to what is taking place in this system. 

Amygdaloid regions 

The mammalian amygdala is a site where modulation and memory consolidation 

occurs in response to emotional stimuli such as fear (Martínez-Garcıa et al., 2009) or 

during reward processes (Stuber et al., 2011). However, the amygdala itself is not a 

memory storage site (Malin and McGaugh, 2006). It is also important in processing 

information about pheromones and other olfactory or vomeronasal input, causing it 

to directly influence the endocrine system (Halpern and Martínez-Marcos, 2003) and 

behavior during confrontations with conspecifics (agonistic behavior) (Meredith and 

Westberry, 2004). Support for mammalian amygdalar neurogenesis has been limited 

to studies indicating proliferation, cell genesis, and specification in Orictolagus 

cuniculus (New Zealand white rabbits) (Luzzati et al., 2006), Mus musculus 
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(laboratory mice) (Shapiro et al., 2009), and Saimiri sciureus (common squirrel 

monkeys) and Macaca fascicularis (crab-eating macaques) (Bernier et al., 2002). In 

the present study I have found the reptilian DLA/LA is a region of high proliferation, 

but low migration and survival, which coincides with its role, not in storage, but in 

encoding sensory memory. 

 Olfaction and the RMS 

The generalized AD as defined in this paper likely contains the rostral 

migratory stream (RMS). In mammals, the RMS is well known as a highly 

neurogenerative and neuromigratory region, and has been given the name, “Rostral 

Migratory Stream,” because it is where neuronal precursors migrate from the 

ependymal zone to the olfactory bulb. The findings of this study confirm studies in 

other reptiles (Peñafiel et al., 1996; Pérez-Cañellas et al., 1997), indicating the 

presence of a RMS similar to that of fish (Grandel et al., 2006) and mammals 

(Pencea et al., 2001). There is no evidence indicating an RMS in amphibians or 

humans, and limited evidence in birds (Kaslin et al., 2008). These anatomical 

differences are likely related to differences in the importance of olfaction and/or 

pheromone signaling in different taxa. 

The RMS system could also be responsible for what appears to be higher 

proliferation and lower parenchymal survival of cells in the retrobulbar regions 

compared to the more caudal telencephalon. Cells could be surviving at 2 weeks 

and 2 months and then migrate rostrally out of the study region and into the olfactory 

bulbs so they are not counted as surviving cells. For example, the RMS cells migrate 
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in mice at an average rate of 30µm/hr (Lois and Alvarez-Buylla, 1994). At that rate 

they could completely migrate out of the study area within 2 months. Further study 

using sagittal instead of transverse sections could clarify whether RMS migration or 

attrition is responsible for this result.  

DVR 

The most prominent pallial structure in reptiles is the DVR (Holmgren, 1925, 

Northucutt, 1981, Ulinski, 1983). It appears to exhibit not only high proliferation, but 

also high relative migration at 2 weeks and survival at 2 months. This is not 

surprising because the DVR has been implicated as a site for processing of sensory 

information, association, and output for modulation of behavior. A region essential to 

so many functions likely requires neurogeneration and long-term cellular turnover 

throughout adulthood in order to provide plasticity for behaviors in response to 

environmental changes. 

Several previous studies in reptiles have found evidence of DVR cell genesis 

(Delgado-Gonzalez et al., 2011; Font et al., 2001; Marchioro et al., 2005). The 

mammalian homologue to the reptilian DVR may be the neocortex, 

claustroamygdaloid regions, or a combination of both; however, the debate over this 

homology has elicited controversy in the field of evolutionary biology (Bruce and 

Neary, 1995; Karten, 1997; Molnár and Butler, 2002; Striedter, 1997). Adult 

neurogenesis in mammals does not occur in the neocortex (Bhardwaj et al., 2006), 

but there has been evidence of proliferation and cell specification (without identifying 

neurogenesis as such) in both the amygdala and piriform cortex of rodents and 
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primates (Bernier et al., 2002; Bonfanti and Peretto, 2011; Pencea et al., 2001; 

Shapiro et al., 2007). Thus, if the function of the amygdala and piriform cortex relies 

on neurogenesis in both mammals and reptiles, the fact that the DVR does exhibit 

adult neurogenesis may provide further support for a homology with the mammalian 

amygdala/piriform cortex. 

Comparing reptiles to birds, it is likely the nidopallium is the avian homolog to 

the reptilian DVR (Bruce, 2009). The nidopallium also receives new neurons during 

adulthood. The caudal nidopallium (nidopallium caudale, “NC”) stores song-specific 

characteristics for later recall, and has been found to be activated in canaries and 

zebra finches when they are exposed to songs of conspecifics (Bolhuis and Gahr, 

2006). Hormones also appear to influence neurogenesis in the nidopallium of 

songbirds. Testosterone triggers and modulates seasonal surges in neuro- and 

angiogenesis (Chen et al., 2013). Estrogen receptors and telencephalic aromatase 

are densely distributed in the NC and they, in conjunction, influence cell survival 

(Gahr et al., 1993; Shen et al., 1995). Whether or not similar systems exist in reptiles 

is yet to be determined. The scarcity of studies investigating the roles of hormones in 

adult neurogenesis in reptiles leaves room for further investigation. The DVR could 

also potentially be a site where seasonal changes in neurogenesis correspond with 

pheromones and other cues in reptiles instead of auditory cues as in birds. While 

studies have investigated the role of pheromones in neurogenesis in other regions 

(Font et al., 2012), or changes in neurogenesis in the DVR in response to 

temperature and season (Delgado-Gonzalez et al., 2011; Delgado-González et al., 
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2008; Penafiel et al., 2001), no studies thus far have investigated how seasonal 

pheromonal and hormonal changes affect DVR neurogenesis in adult reptiles. 

Olfactory and chemosensory processing 

In reptiles, olfactory information enters the brain through the main olfactory 

bulb (MOB) and is relayed to the lateral (pyriform) cortex (LC). Vomeronasal 

information, on the other hand, enters through the accessory olfactory bulb (AOB), 

which transmits to the nucleus sphericus (NS) (Lohman and Smeets, 1993; Lanuza 

and Halpern, 1997). Due to the importance of pheromone perception, the NS is very 

well developed in snakes and occupies almost the entire caudal half of the 

subcortical telencephalon (Schwenk, 1993; Halpern, 1980; Lanuza & Halpern, 1997). 

The aLC is most likely involved in the convergence of chemosensory and olfactory 

processing, with projections to the MC for spatial association and memory (Lanuza & 

Halpern, 1997). 

The vomeronasal-AOB pathway terminates at the NS in squamates, and the 

NS appears to control the vomeronasal system, so that NS neurogenesis should be 

directly related to neuronal turnover in the vomeronasal epithelium and may affect 

motor function in response to chemoreception (Lohman and Smeets, 1993; Lanuza 

and Halpern, 1997; Distel, 1978; Simon, 1983, Perez-Sanchez et al., 1989).  

The NS of reptiles in total is considered homologous to the posterior medial 

cortical nucleus of the amygdala in rodents—a secondary vomeronasal center that is 

part of the vomeronasal amygdala (Gutiérrez-Castellanos et al., 2014; Martinez-

García et al., 2002). The posterior cortical nucleus of the amygdala in female prairie 
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(Microtus ochrogaster) and meadow (M. pennsylvanicus) voles expresses adult 

neurogenesis colocalized with estrogen receptor-α (Fowler et al., 2005), and 

neurogenesis increases in response to exposure to conspecific males (Fowler et al., 

2002). It is likely that the neurogenesis in this region in mammals corresponds to 

pheromonal and olfactory input for two reasons: (a) the amygdala receives direct 

input from the olfactory bulb, and (b) there is some evidence that exposure to male 

bedding alone also elicits an effect (Fowler et al., 2008). In P. hispanica, the NS 

exhibits the highest rate of incorporation of new neurons (Font et al., 2001). There 

have been no studies of neurogenesis in the NS of reptiles in response to 

pheromonal input, but Delgado-González et al. (2008) found there to be seasonal 

plasticity, indicating pheromonal changes could potentially be associated with NS 

neurogenesis. 

The development of the NS is clearly related to chemosensory function and 

ecology (Halpern and Martínez-Marcos, 2003). Balaban (1978) studied P. s. 

elegans, which spend considerable time underwater and are thus not exposed to 

consistent olfactants. He found that they completely lack the NS region, which may 

be further emphasizing olfactary- versus non-olfactory-oriented evolutionary 

development. The NS may undergo neurogenesis to provide a new population of 

cells that can process new chemosensory signals as P. regius changes 

environments. These data indicate further experimentation is necessary to determine 

how pheromones and environmental changes affect NS neuroplasticity.  
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The septum 

Font et al. (1998b) posited that the lateral septum is involved in the 

expression of appetitive behaviors (e.g. food and water intake), aggressive/defensive 

behavior, and reproductive physiology in reptiles, and may be considered a 

“distributor of behaviors” (Distel, 1978; Krohmer and Crews, 1987a; Tarr, 1977). The 

septum may mediate social memory including relating olfactory cues to parental 

behavior, intraspecific aggression, dominant-subordinate relationships, or 

defensive/agonistic behaviors and territoriality; which is why it is considered key to 

the social behavior network (Dantzer et al., 1988; Lanuza and Martínez-García, 

2009; Numan, 2000; Sheehan and Numan, 2000; Yang and Wilczynski, 2007). In 

mammals, the main afferent to the lateral septum is a projection from the 

hippocampal formation (Sheehan et al., 2004), which provides spatial and non-

spatial contextual information. Hence the lateral and medial septum are likely 

responsible for territorial motivation—behaviors in response to contextual cues 

(Newman, 1999). In P. regius, the septum appears to undergo proliferation at rates 

consistent with the rest of the telencephalon, albeit lower than average. This 

proliferation rate differs from Trachemys scripta, Podarcis hispanica, and T. 

mauritanica, for which septal proliferation is either exceptionally low or nonexistent 

(Perez-Cañellas et al., 1997; Perez-Cañellas and Garcia-Verdugo, 1996; Font et al., 

1997).  
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Rostral-caudal effects 

Cell migration was also considerably lower in the caudalmost portions of the 

telencephalon (DLA/LA, PC, pMC, pDC, pLC)—a trend that is best illustrated by the 

contrast between the aNS and pNS. Almost 60% of cells in the aNS migrated to the 

parenchyma after two weeks, yet only ~ 21% of pNS cells entered the parenchyma 

over the same period, indicating the aNS has almost three times the migration rate 

of the pNS. This rostral to caudal gradient was also found by Holtzman and Halpern 

(1991) in embryonic Thamnophis spp. This might occur because the caudal portion 

has higher proximity to the rest of the telencephalon and thus plays a larger systemic 

role in olfaction and reinforcement with other systems. 

There was also a contrast between the aMC and pMC. Proportional migration 

after 2 weeks is approximately 2.5x higher in the aMC than the pMC, and 

proportional survival after 2 months is approximately 2x higher.  This rostral-caudal 

trend is also strong in the LC wherein the difference between caudal and rostral is 

largest after 2 weeks (approximately 2.4x rostral-caudal). This trend is weaker in the 

DC (approximately 1.5x rostral-caudal). This coincides with other reptile studies that 

have found caudal-rostral differences in the MC. Hoogland et al. (1994) argued that, 

in contrast to ground-dwelling geckos, Gekko gecko (tokay geckos) have a medial 

cortex that is hodologically divided into two separate regions, one rostral and one 

caudal, which better enables them to spatially navigate walls and ceilings in 3-

dimensional space. Since both climbing trees and burrowing underground in 3-

dimensions is part of the behavioral repertoire of P. regius, they too may require a 
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MC system that allows for two interconnected but structurally and functionally 

different MC systems (Hoogland and Vermeulen-Vanderzee, 1995). Regional 

variation in the MC of snakes is further supported by Roth et al. (2006), who found 

sex differences in cortex volume relative to telencephalon volume only in the caudal 

half of the medial cortex.  

Conclusions 

This study is intended to serve as a preliminary investigation of proliferation, 

migration, and survival of newly born cells in pythons. BrdU administration was 

dose-dependent as in mammals, and it was determined that the most appropriate 

dose for BrdU administration is 100mg/kg when it is dissolved in saline solution. 

When measuring the proliferation, migration, and survival of new cells in several 

telencephalic regions, some regions exhibited high proliferation, with low relative 

migration and survival (and for other regions the result was vice-versa). These 

trends may be due to differences in regional function. Regions involved in short-term 

or spontaneous functions like olfactory processing may require more neurogenesis 

in response to rapidly changing environments, while regions with long-term functions 

like spatial memory may require lower cell turnover as cellular perpetuity becomes a 

higher priority. 

Contrary to what was predicted based on trends among squamate taxa, there 

was relatively little proliferation in the MC. As predicted, however, there was 

relatively high proliferation in the AOB, DVR, and NS. Also as predicted, there was 

relatively high migration/survival in MC, AOB, DVR, and NS. This further clarifies the 
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regional differences in proliferation and survival of brain cells throughout squamate 

reptiles. 

Cell types were not distinguished using immunohistochemical markers, stains 

or other techniques. To date, no published studies have successfully used neuronal 

markers outside of the posterior DVR in adult snakes, and glial markers have limited 

reliability (Nomura et al., 2013; personal observation). Future studies should focus 

on determining the phenotype of BrdU marked cells (as neurons or glial cells), 

however it may require further steps in developing markers for use in adult snake 

brain tissue because antibodies for neuronal markers (DCX, Tuj1, NeuN) refined for 

use in mammals have been unsuccessful in labeling cells in snake brain tissue in 

pilot studies (personal observation).  

Additionally, determining which genes and proteins are responsible for 

developmental differences can reveal aspects of human evolution. For example, 

Aboitiz’s (2011) comparative investigation has suggested Wnt signaling has 

contributed to substantial elaboration of the dorsal pallium in mammals, while Pax6 

upregulation is responsible for the expansion of the ventral pallium in non-

mammalian amniotes. Further functional studies determining which proteins are 

responsible for the upregulation of neurogenesis and neuroregeneration are 

especially important because they could provide insight into possible therapies for 

neural diseases.  

Generalized regions were used for calculating cell density in this study, which 

provides less specific data for analysis. Regions like the VM that have smaller nuclei 
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(subregions) could potentially have very high density of new cells in some of these 

nuclei. But this density could potentially go undetected because only the entire 

region was investigated and not the subregions. Future studies should apply stains 

for distinguishing smaller brain nuclei and determine whether cells are migrating to 

those specific nuclei within the larger regions defined in this study. 

Finally, it is likely not coincidental that regions expected to be contributing to 

olfaction and basal-amygdalar function (ACC, STR, DLA/LA, and LC) have highest 

proximity to the sulci of the ventricles of snakes. I expect this occurs because cells 

tend to proliferate and migrate outward from “hot spots,” which allows organisms like 

P. regius that rely on discrimination of olfactory stimuli to have a continuous supply 

of neurons to aid in processing of odors and associating them with positive or 

negative stimuli in new environments. This hypothesis is contrary to the findings of 

Font et al. (2001) in other reptiles, and may be limited only to snakes. This 

proposition, along with many of the other hypotheses stated heretofore, may be 

further refuted or supported by additional studies in a wider range of snake species.  

Snakes exhibit several unique characteristics, including limbless body 

structures, infrared sensory systems, and specialized pheromonal sensory systems 

that can provide new insights into evolutionary physiology. It is of great benefit to 

neurophysiology that a wide range of snake species be further investigated to 

determine trends that can better uncover systems underlying neurogenesis and 

neuroplasticity in an evolutionary context.  
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Abbreviations 

ACC Nucleus Accumbens 
ACH Acetylcholine 
AD Anterior Dorsal Region 
ADVR Anterior Dorsal Ventricular Ridge 
aDC Anterior Dorsal Cortex 
aLC Anterior Lateral Cortex 
aMC Anterior Medial Cortex 
aNS Anterior Nucleus Sphericus 
AOB Acessory Olfactory Bulb 
AV Anterior Ventral Region 
BrdU 5-bromo-2'-deoxyuridine 
BrdU-ir BrdU-immunoreactive 
D Diencephalon 
DC Dorsal Cortex 

DLA/LA Dorsal Lateral Amygdala/Lateral Amygdala 
Region 

DVR Dorsal Ventricular Ridge 
GABA γ-Aminobutyric acid 
LC Lateral Cortex 
MB Midbrain 
MC Medial Cortex 
NS Nucleus Sphericus 
OB Olfactory Bulb 
OT Optic Tectum 
P Pineal Gland 
PC Posterior Cortex 
PDVR Posterior Dorsal Ventricular Ridge 
pDC Posterior Dorsal Cortex 
pLC Posterior Lateral Cortex 
pMC Posterior Medial Cortex 
pNS Posterior Nucleus Sphericus 
RMS Rostral Migratory Stream 
S Septum 
STR Striatum 
TUB Olfactory Tubercle 
VL Ventral Lateral Region 
VM Ventral Medial Region 
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Appendix 

 
 
Figure 17: Heat map representing proliferation (2 days) in the telencephalon of P. 
regius. Hot colors (yellow, orange, red) represent areas of high proliferation, while 
cold colors (purple, blue, light blue) represent areas of low proliferation. The rostral 
end and caudal end are topmost and bottommost, respectively. 3D video can be 
found at http://youtu.be/zMj8d42o3_4. 
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Figure 18: Heat map representing migration (2 weeks) in the telencephalon of P. 
regius. Hot colors (yellow, orange, red) represent areas of high migration, while cold 
colors (purple, blue, light blue) represent areas of low migration. The rostral end and 
caudal end are topmost and bottommost, respectively. 3D video can be found at 
http://youtu.be/QZXKkCTCHsM. 
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Figure 19: Heat map representing survival (2 months) in the telencephalon of P. 
regius. Hot colors (yellow, orange, red) represent areas of high proliferation, while 
cold colors (purple, blue, light blue) represent areas of low proliferation. The rostral 
end and caudal end are topmost and bottommost, respectively. 3D video can be 
found at http://youtu.be/usnQ5F0AQJk. 
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