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ABSTRACT 

Physiological Factors Affecting the Bactericidal Activity of the Western Fence Lizard 
(Sceloporus occidentalis) for the Lyme Disease Spirochete, Borrelia burgdorferi 

 

Kyle R. Weichert 

 

The Western Fence Lizard (Sceloporus occidentalis) is a major host of juvenile 
stages of the Western Black-legged Tick (Ixodes pacificus), which is the vector for the 
Lyme disease causative spirochete bacterium Borrelia burgdorferi in the western United 
States. Because S. occidentalis is reservoir incompetent and capable of eliminating 
spirochetes from infected ticks, it has been implicated as a major factor in the ecology of 
Lyme disease in the West. Although complement proteins in lizard blood have been 
established as the borreliacidal factor, no studies have examined intraspecific variability 
in host lizard borreliacidal capacity. In Chapter 1 of this thesis, we introduce the 
complexity of the Borrelia burgdorferi transmission cycle and it’s implications for 
transmission risk.  In Chapter 2 we tested the hypothesis that host lizard physiological 
condition impacts their borreliacidal capacity. Blood plasma of lizards in varying 
physiological conditions was challenged against cultured B. burgdorferi, and the 
complement-mediated inactivation of spirochetes was quantified. Adult lizards had 
higher bactericidal activity than first-year juveniles, suggesting that complement-
mediated inactivation develops with maturity and/or exposure to spirochete antigens. 
Also, bactericidal activity was positively associated with lizard tick load and body 
condition. Adult lizard sex did not significantly affect spirochete mortality. Lizards from 
an inland site with little exposure to ticks had higher bactericidal activity than lizards 
from a coastal population that is heavily parasitized by ticks. 
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PREFACE 

The impact of tick-borne diseases has changed dramatically in North America 

over the last several decades. Lyme disease, caused by the spirochete bacterium Borrelia 

burgdorferi, has become the most common of these diseases and the frequency of cases is 

increasing (CDC, 2008). In this thesis, the first of two chapters explores our current 

understanding of the ecology of the western black-legged tick, Ixodes pacificus, the 

primary vector of B. burgdorferi in the western United States. This chapter also reviews 

the ecology and ability of vertebrate hosts to carry Borrelia infections and the 

implications on the disease ecology of B. burgdorferi in the wild including the potential 

effects of climate change and habitat fragmentation on its distribution and range. 

The second chapter reports a series of experiments conducted on the western 

fence lizard, Sceloporus occidentalis, to examine a major deficiency in the understanding 

of the disease ecology of B. burgdorferi: how a host’s physiological state can affect its 

immunological response to Borrelia spirochetes. We studied the effects of these 

physiological factors by using an in vitro assay to quantify the spirochete killing potential 

of S. occidentalis plasma. To our knowledge this is the first study that investigates the 

intraspecific variation in complement immune function against Borrelia bacteria. 

Studying the factors that may affect a host’s ability to fight a spirochete infection gives 

insight into both the immunology and ecology of Lyme disease. 
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Chapter 1: Borrelia burgdorferi sensu stricto in the Western United States 

Lyme Disease Ecology 

Lyme disease has become the most common arthropod-borne human disease in 

North America (CDC, 2008). This disease, also known as Lyme borreliosis, occurs 

primarily in Europe and North America, and is caused by several species of spirochete 

bacteria belonging to the Borrelia burgdorferi sensu lato (s.l.) complex. These species 

(often referred to as “genospecies” within the B. burgdorferi s.l. complex) include B. 

afzelii, B. burgdorferi sensu stricto (s.s.), B. garinii, B. spielmanii, B. bavariensis, B. 

americana, B. carolinensis, B. californiensis, B. kurtenbachii, and, B. bissettii with several more 

species of uncertain pathogenicity (Kahl et al., 2002; Mannelli et al., 2011; Stanek and 

Reiter, 2011; Margos et al., 2014). Populations of these Borrelia spirochetes are maintained 

in the wild by a variety of vertebrate hosts and are spread from host to host mainly by 

ticks of the genus Ixodes. The eco-epidemiology of Lyme disease is very complex as 

each genospecies shows preference for particular hosts and is associated with different 

clinical symptoms in humans (Gern, 2008; Mannelli et al. 2011). Furthermore, many of 

the transmission and maintenance mechanisms have yet to be fully studied. The primary 

tick hosts responsible for the maintenance of B. burgdorferi s.l. are Ixodes persculcatus, 

I. scapularis, I. ricinus, and I. pacificus. Of these, I. pacificus, the western black-legged 

tick, has been implicated as a primary vector of Lyme disease in the western United 

States (Burgdorfer et al., 1985; Lane and Lavoie, 1988; Clover and Lane, 1995). Ixodes 

pacificus is responsible for infecting a variety of vertebrate hosts with B. burgdorferi s.s., 

including humans (Eisen and Lane 2002).  
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Vector-borne zoonotic diseases are often maintained in nature in complex 

transmission cycles with multiple vertebrate hosts and their vectors. Disease risk is 

therefore a function of the ecology of the vertebrate hosts, the vector, and the pathogen. 

Vertebrate hosts vary in their contributions to pathogen transmission cycles, ranging from 

reservoir hosts, to amplifying hosts or hosts that support vector populations but do not 

directly contribute to the spread of the pathogen (Mannelli et al., 2012). An in depth 

understanding of the roles of vectors and hosts within a community is of crucial 

importance to effectively control the spread of vector-borne diseases. 

The Vector: Ixodes pacificus  

As with other Ixodes ticks, I. pacificus goes through three developmental stages 

after hatching from an egg: larva, nymph, and adult. Each larva, nymph, and adult female 

consumes a single, large blood meal from a vertebrate host. After this blood meal, 

nymphs and larvae detach and molt to the next stage, and adult females begin laying eggs 

(Eisen and Lane, 2002). Adult males may or may not feed, as a blood meal is not required 

to fertilize eggs (Eisen and Lane, 2002). However, the males may remain on a host for 

weeks or months seeking females (Oliver, 1989). It typically takes I. pacificus about two 

to three years to complete the developmental cycle from larva to mating and egg-laying 

(Padgett and Lane, 2001; Eisen and Lane, 2002). 

Ixodes pacificus is typically found on the Pacific coast of North America in 

wooded or scrubby areas with relatively high rainfall. However, isolated populations can 

also be found in dry inland areas. Populations exist in the Hualapai Mountain County 

Park in Mojave County, Arizona where high altitude islands of vegetation provide 
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adequate habitat (Piesman, 2002; Olson et al., 1992) and also in an arid region of 

southwest Utah where they have observed in scant leaf litter (Piesman, 2002).  

Ixodes pacificus is a habitat generalist. Numerous adult and nymphal I. pacificus 

have been collected in habitat characterized as Douglas fir forest, northern coastal scrub, 

chaparral, and open grassland (Li et al., 2000). Nymphs, however, have been found 

particularly abundant in habitats where trees such as black oak (Quercus kelloggii), 

Douglas fir (Pseudotsuga menziesii), and Pacific madrone (Arbutus menziesii) are present 

with an understory of poison oak (Toxicodendron diversilobum) (Clover & Lane, 1995). 

Tälleklint-Eisen and Lane (1999a) found that areas with high nymphal I. pacificus 

prevalence near Hopland, California also contained redwood (Sequoia sempervirens), 

California bay (Umbellularia californica) and bigleaf maple (Acer macrophyllum).  

Different life stages of I. pacificus have varied preferences for questing sites (sites 

where they actively search for a host). Li et al. (2000) assessed the density and 

distribution of I. pacificus at two parks in northern coastal California in relation to year, 

different trails, and public use areas by sampling plots of each type of area. They found 

that adult ticks were typically observed along sun-exposed trails characterized by dense 

brush and uphill slopes, and nymphal ticks were mostly associated with leaf litter along 

shaded trails. Furthermore, they showed that adult and nymphal I. pacificus densities 

varied significantly among years and sites, including differences of up to 40 to 50 fold 

among different areas of the same trail during the same sampling period. Despite this 

variation, the prevalence of Borrelia burgdorferi in the ticks did not differ significantly 

among years, sites, and tick life stages. 
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The Hosts: Lizards, Birds, and Mammals 

Ixodes pacificus, along with other Ixodes ticks, employs an ambush strategy to 

find and contact hosts. These ticks rarely move more than a few meters while questing 

(Eisen and Lane, 2002). Hosts are detected by vibrations (from animal movements), 

odors, body heat, shadows, and carbon dioxide concentrations (Balashov, 1972; 

Soneshine, 1993; Gherman et al., 2012). They parasitize a wide range of vertebrates 

including lizards, birds, and mammals (Furman and Loomis, 1984). Rodent reservoirs for 

B. burgdorferi s.s., such as the dusky-footed woodrat (Neotoma fuscipes), the California 

kangaroo rat (Dipodomys californicus), and deer mice (Peromyscus spp.), are common 

hosts to larval I. pacificus (Lane and Brown, 1991; Brown and Lane, 1992; 1996; Peavey 

and Lane, 1995), but rarely to nymphs (Lane, 1990a; Lane and Loye, 1991, Wright et al., 

2000; Casher et al., 2002). Western fence lizards (Sceloporus occidentalis) and alligator 

lizards (Elgaria spp.) typically carry heavy loads of both larval and nymphal I. pacificus 

(Lane and Loye, 1989; Wright et al., 1998; Eisen et al., 2001, Casher et al., 2002).  

Eisen et al. (2004) examined the relative importance of lizard versus mammal 

hosts for the density of I. pacificus juveniles (larvae and nymphs) by comparing tick 

infestation rates in vertebrate hosts in northern coastal California. They found that lizards 

in oak and fir dominated forest accounted for 93-98 percent of larval tick blood meals 

and over 99 percent of the nymphal blood meals and lizards in forested areas dominated 

by redwood and tanoak, accounted for about 31-64 percent of the larval tick blood meals, 

and 94-100 percent of the nymphal blood meals. For deer mice captured within 10 meters 

of lizards, lizards carried 36 times more larvae and over 190 times more nymphs than 
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mice. Furthermore, larval and nymphal ticks were much more abundant on lizards, and in 

higher proportions in early spring than late spring and early summer.  

The role of birds as hosts to I. pacificus larvae and nymphs remains uncertain. 

Manweiler et al. (1990) observed only 5 I. pacificus in 138 birds surveyed in Yuba 

County, California, but Wright et al. (2000) found higher numbers of larval I. pacificus in 

nearby Placer County, with 0.25 larvae and 0.02 nymphs per bird in the 291 birds 

examined. Furthermore, Slowik and Lane (2001) found 0.06 larvae and 0.09 nymphs per 

bird in 234 birds in northern coastal California. In Europe, birds have been shown to 

contribute to the enzootic maintenance and spread of B. burgdorferi s.l. by hosting 

numbers of infected I. ricinus (Comstedt et al., 2006; Olsen et al., 1995; Poupon et al., 

2006).  

Adult I. pacificus ticks are closely associated with large mammals such as the 

Columbian black-tailed deer (Odocoileus hemionus columbianus), also known as the 

“mule deer” (Westrom et al., 1995). In general, I. pacificus is abundant in areas where 

mule deer are abundant (Piesman, 2002). Adults are found in high numbers on these deer, 

and larvae and nymphs may feed on deer as well, although smaller vertebrates are 

considered more important (Westrom et al., 1985). 

Maintenance of Borrelia Spirochetes in Ecosystems 

Borrelia spirochetes are maintained in nature by passing between tick vectors and 

competent vertebrate hosts through horizontal transmission; infections are passed from 

nymphs to the next cohort of larvae through a vertebrate host (Tsao, 2009). Larvae nearly 

always hatch from eggs free from infection and only become infected through a blood 
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meal from an infected vertebrate reservoir host. The infection is conserved in the midgut 

of the vector tick through each molt into the next life stage (Tsao, 2009). Vertebrate hosts 

become infected when an infected nymphal or adult tick feeds on them. For a competent 

host, the infection will likely go systemic, spreading to other tissues of the body. The 

Borrelia infection cycle is then completed when a naïve tick becomes infected by 

spirochetes when it feeds on a competent host. A vertebrate host is considered a reservoir 

if it is then able to pass spirochetes obtained from one generation of ticks to the next. It is 

likely that the majority of spirochete transmissions are from nymphal ticks to larvae via a 

reservoir host because adult ticks tend to feed on large bodied animals such as deer or 

ungulates that are poor reservoirs, and larvae are typically born free of infection, and are 

thereby not capable of transmitting it to an uninfected vertebrate host (Mannelli et al., 

2011).  

The typical route of infectivity of Borrelia spirochetes from reservoir hosts to 

vector ticks is a systemic infection in the vertebrate reservoir host followed by a 

relatively long period, up to many months in some cases (Gern et al. 1994), where ticks 

may be become infected if they bite the host. Under this system, transmission is most 

likely if infected Ixodes nymphs are active in spring to infect the reservoir host, and 

larvae active in the summer get infected by the newly infected reservoirs. Less 

commonly, spirochetes can be horizontally transferred to both competent and 

incompetent hosts (a host that does not carry a sustained spirochete infection) by naïve 

ticks feeding beside infected ones (Randolph et al., 1996). The close proximity between 

ticks allows for some spirochetes that enter the host from the infected tick to immediately 

be taken up by the neighboring tick. This phenomenon has been observed in Ixodes 
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ricinus with B. burgdorferi s.l. (Gern and Rais, 1996) and is likely to occur in I. pacificus 

(Wright et al. 2011). Transmission of spirochetes via co-feeding is likely of less 

ecological significance than systemic transmission, but may still have implications for the 

contribution to transmission by hosts considered incompetent reservoirs.  

Borrelia spirochetes are not usually transferred vertically from adult ticks to 

offspring, but transovarial transmission of spirochetes from female ticks to larvae has 

been documented as occurring rarely in Ixodes ricinus infected with B. burgdorferi s.l. 

(Bellet-Edimo et al., 2005). This may have implications that affect spirochete 

maintenance and transmission risk if even just a few infected adult ticks within the tick 

population are capable of transovarial transmission. 

Role of the Vertebrate Host in Transmission 

The relative importance of a vertebrate host species in the transmission of B. 

burgdorferi is determined by a combination of: (a) the host’s ability to carry a spirochete 

infection (competence) and subsequent ability to pass it to susceptible ticks (host 

infectivity), (b) the abundance of the host species, and (c) the population of susceptible 

ticks and host tick loads (Mather et al., 1989; Brunner and Ostfeld, 2008).  

(a) Host competency 

Host infectivity is the fraction of uninfected larvae that acquire the infection after 

feeding on that host species (Mannelli et al., 2011). The extent and duration of infectivity 

varies among host species, genospecies of B. burgdorferi s.l., the extent of the initial 

exposure of the host to the infected tick, and the overall tick parasite load (Gern et al., 

1994). Many species of small mammals are likely to contribute to the maintenance of 
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Borrelia burgdorferi in the western United States by acting as competent reservoirs. The 

primary reservoir hosts of B. burgdorferi in the West are the dusky-footed woodrat , 

western grey squirrel (Sciurus griseus), and California kangaroo rat (Brown and Lane, 

1992; Lane and Kierans, 1997; Lane et al., 2005; Salkeld and Lane, 2010). Deer mice, 

specifically Peromyscus truei and P. maniculatus, have also been implicated as playing a 

role in spirochete maintenance because they are usually abundant in brushy habitats 

where ticks are found, they are capable of harboring Borrelia spirochetes, and are fed 

upon by competent bridge vector I. pacificus. These Peromyscus mice have been shown 

to infect 7-40 percent of I. pacificus larvae fed on them (Peavey and Lane, 1995b; Brown 

and Lane, 1996). 

In contrast to the mammals listed above, the lizards S. occidentalis and Elgaria 

spp. are incompetent reservoirs (Lane, 1990a; Lane and Quistad, 1998) despite hosting 

substantial numbers of juvenile I. pacificus ticks (Lane and Loye, 1989; Manweiler et al., 

1992). Furthermore, S. occidentalis has been shown to cleanse infected ticks of their 

spirochetal infections (Lane and Quistad, 1998). This may have major implications for 

the prevalence of Lyme borreliosis in the West. Infected nymphal ticks are the primary 

stage responsible for infecting naïve reservoir hosts, but if these nymphs feed on S. 

occidentalis or Elgaria spp., not only is the lizard not a competent host to the spirochetes, 

but the potential for that tick to infect another host is removed from the system. 

Aside from host competency for spirochete infection, survival, successful feeding 

of a blood meal, and subsequent molting of the tick from one stage to another can be 

affected by the host’s immune response. Keesing et al. (2009) assessed the immune 

responses of various vertebrate hosts to I. scapularis in New York State. By exposing 



 10 

field-caught hosts to feeding by larval I. scapularis, they found that some host species 

that are abundantly parasitized in nature were capable of killing many ticks that 

attempted to attach and feed on them, while others allowed ticks to successfully feed. 

Squirrels and opossums were among the least competent, killing an average of 83 and 96 

percent of ticks that attempted to feed on them, respectively. 

The abundance and composition of vertebrate host species varies with location. 

Some species may be habitat generalists while others may be limited in their habitat 

preferences, making access to these hosts variable for vector ticks. Also adding to the 

complexity, host abundance may change over time. For example, the most competent 

reservoir species may be abundant one year and scarce the next, causing potential tick 

vectors to find other vertebrate hosts that may have a lower infectivity.  

A wide range of vertebrates host I. pacificus ticks, but these host species vary in 

their reservoir competence. As defined by Kahl et al. (2002), a vertebrate reservoir host 

must be able to: (i) host vector ticks, (ii) acquire B. burgdorferi from infected ticks, (iii) 

allow the bacteria to multiply and persist in its body, and (iv) transmit spirochetes back to 

feeding vector ticks. Non-reservoir hosts are ecological barriers to Borrelia spirochetes. 

However, these incompetent reservoirs are capable of hosting large numbers of ticks and 

thereby may contribute indirectly to the transmission of B. burgdorferi by augmenting 

and maintaining the vector population.  

(b) Population dynamics of the host species 

The ecological transmission system that likely applies to most populations of B 

burgdorferi s.s. in the western United States consists of several host species, including 

small and medium sized mammals, reptiles, and birds as reservoir hosts (Mannelli et al., 
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2011). In this system, small mammals such as mice and woodrats are the primary 

reservoir hosts. The dynamics of this system are complex and the effects of species 

composition and host populations on the intensity of B. burgdorferi s.s. transmission 

likely vary with ecological setting, but many studies have tried to characterize overall 

patterns affecting transmission risk. For example, field studies and subsequent 

mechanism models from the eastern United States proposed that the abundance of 

alternate hosts with relatively lower infectivities acts to “dilute” the transmission effects 

of a host with a high infectivity, termed the “dilution effect” (Schmidt and Ostfeld, 2001; 

Allan et al., 2003; LoGiudice et al., 2003). Mechanistically, the dilution occurs when a 

transmission that might have previously infected a susceptible tick from a competent 

reservoir instead results in no transmission because it occurs on a less competent 

reservoir (Ogden and Tsao, 2009). Keesing et al. (2006) proposed further “indirect” ways 

that increased biodiversity could negatively affect transmission, including the idea that 

reservoir hosts may then be subject to increased competition and predation, thereby 

lowering the overall population of reservoir hosts with higher infectivities. 

Ogden and Tsao (2009) disagree with the dilution effect hypothesis, and propose 

that increased biodiversity acts to amplify the transmission rather than dilute it. They 

suggest that the dilution effect is less likely to occur if a pathogen is dominated by 

density-dependent interactions, as is the case with B. burgdorferi s.s., rather than 

frequency-dependent interactions. Because each life stage is an obligate parasite, tick 

abundance is highly dependent on vertebrate host abundance (Wilson et al, 1984; 

Randolph and Steele, 1985; Daniels and Fish, 1995; Jones et al., 1998; Ostefeld et al., 

2001, 2006; Rand et al., 2003, Randolph, 2004), regardless of their role as reservoirs for 
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B. burgdorferi s.s. It is true that the dilution effect would theoretically lower the Lyme 

disease risk if it were measured as nymphal tick infection prevalence, the proportion of 

ticks that are infected. However, if infection risk were measured by the abundance of 

infected nymphs, an increase in host density would lead to a greater number of ticks and 

therefore a greater chance of transmission. For example, LoGiudice et al. (2003) found 

that in New York State, white-footed mice (Peromyscus leucopus) infect about 92 

percent of feeding I. scapularis larvae, and host an average of 28 larvae. Squirrels 

(Sciurus spp.), however, infect about 15 percent of larvae, but host an average of 142 

larvae, and therefore contribute to the local population of infected nymphs.  

Swei et al. (2011) tested the dilution effect hypothesis by attempting to reverse the 

dilution. They removed a total of 447 S. occidentalis from six 1 ha. plots in Mendocino 

County, California. They found that the nymphal infection prevalence did not change 

despite removing an incompetent reservoir from the habitat, but the density of infected 

nymphs dropped from about 5.5 to 1.2 ticks per plot, thereby lowering the transmission 

risk. 

Despite the density-dependent concept of transmission risk, there is likely a 

frequency-dependent component to transmission characterized by the effect of prevalence 

of infection on ticks and hosts alike (Mannelli et al., 2011). To further add to the 

complexity of this transmission system, the relative importance of each vertebrate host 

may vary with time. For example, wild fluctuations in population size have been 

observed in Peromyscus mice, and other species may serve to compensate and sustain the 

transmission cycle (Slajchert et al. 1997). The relationships between interacting host 

densities and tick loads are complex and easily affected by both host-specific and 
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ecologically driven factors (Brisson et al. 2008; Brunner and Ostfeld, 2008). For 

example, Keesing et al. (2009) found that if key hosts, such as opossums and squirrels 

that kill a high percentage of larval ticks that attempt to feed on them, were removed 

from their habitats, the risk of transmission would increase greatly due to an increase in 

vector density. Consequently, the dilution effect, if present, is location specific and the 

species composition would be critical in assessing disease risk.  

(c) Population of vector ticks and tick loads 

Tick loads and patterns of infestation can vary widely from host species to host 

species. Furthermore, there is variation in the distribution of ticks on the host’s body and 

the distribution of tick loads among individuals within a population (Mannelli et al., 

2011). Schall et al. (2000) monitored ectoparasite loads on S. occidentalis at two sites in 

California: a southern population in Los Angeles County and a northern population in 

Mendocino County. Lizards in the southern population had no ticks on them while the 

northern population had lizards that carried up to 78 ticks. Male lizards had a 

significantly higher number of ticks, on average. Furthermore, 90 percent of the ticks 

were found aggregated in the nuchal pouches, folds of skin found on the lizard’s neck. 

The prevalence of B. burgdorferi s.s. infection in questing I. pacificus can vary 

widely over relatively short distances. Tälleklint-Eisen and Lane (1999a) attempted to 

identify the biotic and abiotic factors that influence the abundance of infected nymphal I. 

pacificus in two regions of Mendocino County and found a 10-fold variation in infection 

prevalence and a 16-fold variation in infected nymphal density at sites only about 30 

kilometers apart. It is likely that the relative abundance of reservoir-competent hosts is an 

important factor affecting this variation, but the underlying mechanisms have yet to be 
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fully elucidated. A further factor to consider in the transmission of B. burgdorferi is the 

vector competence of tick species and populations. A study by Estrada-Peña et al. (1998) 

suggested that different populations of I. ricinus may vary in susceptibility to the 

genospecies B. afzelii. Borrelia spirochetes must evade the immune functions of the ticks 

that carry them, and variation in tick physiological state, innate immunity, the density of 

spirochetes ingested, and the susceptibility of the spirochetes could affect the competence 

of the tick vector to carry spirochetes. 

To add further complexity to the Borrelia burgdorferi system, the distribution of 

ticks on hosts is neither homogeneous nor random. In many host populations, most 

individuals carry relatively few ticks, and the majority of ticks are aggregated on a small 

fraction of individuals (Mannelli et al., 2011). It is likely that individuals contribute 

differently to the maintenance of infectious diseases spread by vectors, and a relatively 

small proportion of hosts is responsible for the majority of transmission events or feeding 

a large proportion of vectors (Woodhouse et al., 1997). Several factors may be 

responsible for this uneven distribution of ticks on hosts. Tick loads can be influenced by 

season, host age, immune function, sex, and hormonal state, and may further contribute to 

parasite loads by altering behavior such as movement, home range, and grooming habits 

(Pollock et al., 2012). Aggregations of ticks may also be affected by questing behavior of 

the ticks. 

The effect of aggregations of larvae and nymphs on the same host at the same 

time could be a factor in the non-systemic transmission of B. burgdorferi and may have 

implications in the western United States where the reservoir-incompetent S. occidentalis 

is thought to lower disease incidence (Wright et al. 2011). Multiple I. pacificus 
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individuals are commonly found accumulated in the nuchal pouches and around the 

lizards’ eyes (Arnold, 1986; Goldberg and Bursey, 1991; Dunlap and Mathies, 1993; 

Pollock et al., 2012). Harrison and Bennett (2012) used previously published tick data to 

parameterize a model to determine the importance of tick aggregations on small mammal 

hosts in the persistence of various tick-borne diseases. They found that higher levels of 

aggregation of ticks on hosts led to increased chances of pathogen establishment. In the 

case of B. burgdorferi infections, transmission from tick to a competent host is probable 

regardless of aggregation. However, even with incompetent reservoirs such as S. 

occidentalis, tick aggregations may still contribute to non-systemic transmission of 

spirochetes. The possibility of non-systemic transmission blurs the definition of a 

reservoir host and prompts the question of whether the concept of B. burgdorferi s.l. 

genospecies host specificity is ecologically relevant. Kurtenbach et al. (2002a) probed the 

question of the ecological relevance of B. burgdoerferi s.l. genospecies and provided 

evidence that B. burgdorferi s.l. is structured ecologically into clusters that are host 

specific and concluded that vertebrate hosts rather than tick species are the key to 

Borrelia spirochete diversity. 

Ixodes pacificus is the primary vector transmitting Lyme borreliosis to humans, 

but other sympatrically occurring tick species are capable of carrying B burgdorferi s.s. 

and transmitting it to other hosts. Ixodes spinipalpis has been shown to be an efficient 

maintenance vector of both B. burgdorferi s.s. and, more commonly, B. bissettii in 

Colorado (Maupin et al., 1994, Burkot et al. 2001) and California (Brown and Lane, 

1992; Peavey et al., 1997), by transmitting spirochetes between competent hosts. These 

ticks rarely feed on humans, but I. pacificus ticks that feed on these infected hosts may 
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subsequently infect a human. Peavey et al. (1997) assessed the role of small mammals 

other than woodrats in the prevalence of Borrelia burgdorferi spirochetes in north coastal 

California in relation to I. spinipalpis. They found that the prevalence of infection in mice 

(18 percent) was much lower than previous studies of infection in woodrats (68 percent) 

(Lane and Keirans, 1997). 

Borrelia Infection in the Vertebrate Host 

When an infected nymphal tick finds a host and begins to feed, an increase in 

spirochete replication occurs in the midgut, accompanied by shifts in regulation of 

various spirochete genes. Notable shifts include the down-regulation of surface protein 

ospA and the up-regulation of ospC (Marconi et al., 1993; Ohnishi et al., 2001; Schwan et 

al., 1995; Schwan and Piesman, 2000). OspA interacts with a protein in the tick gut to 

facilitate spirochete colonization in tick gut epithelium (Pal et al., 2004) and protects the 

spirochetes from host-derived bacteriacidal antibodies (Battisti et al., 2008). The up-

regulation of ospC reduces the effect of the host adaptive immune response to kill the 

spirochetes in the tick’s midgut while feeding, effectively evading the host’s immune 

system and aiding in dissemination; however, the precise mechanism is still unknown 

(Randolf and Caimano, 2008).  

Once Borrelia spirochetes gain access to a vertebrate host, they must survive long 

enough to be transmitted back to uninfected ticks. A crucial line of defense for vertebrate 

hosts is the complement pathway. Spirochete infections have been shown to activate the 

hosts’ classical and alternative complement pathways (CCP and ACP, respectively), but 

the efficacy of the complement complexes is host dependent (Kuo et al., 2000). To 
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combat this, B. burgdorferi spirochetes utilize complement regulator-acquiring surface 

proteins (CRASP) (Kraiczy et al., 2001) and Osp E/F-related proteins (Erp) (Alitalo et 

al., 2001) to inhibit complement-mediated activity by binding key complement factors. 

Spirochetes eventually down-regulate ospC and up-regulate an antigenic variation of a 

different outer membrane lipoprotein, variable major protein-like gene (vlsE) allowing 

the spirochetes to persist inside the vertebrate host and evade the immune system (Tsao, 

2009).  

Despite the abilities of B. burgdorferi to evade host immune responses, 

incompetent hosts such as lizards S. occidentalis and Elgaria spp. are able to fight off 

spirochete infections. Blood from these species has been shown to kill 95-98 percent of 

spirochetes after just 1 hour of in vitro exposure (Kuo et al., 2000). This complement-

mediated killing is achieved by a specialized protein factor that physically disrupts the 

membranes of the spirochetes (Kuo et al., 2000; Lane and Quistad, 1998). It is widely 

accepted that the host’s complement system is a major determinant of the host specificity 

exhibited in the natural communities of which the hosts are a part (see above) (Kuo et al., 

2000; Nelson et al., 2000; Kurtenbach et al., 2002b).  

Effect of Climate Change 

With predictions of 1.5-2.5 °C global temperature increases over the next few 

decades (Christensen et al., 2007), tick and host geographic ranges are expected to 

change accordingly. Gray et al. (2009) and Mannellii et al. (2011) summarized the 

potential effects of climate change on I. ricinus in Europe and Lyme borreliosis risk by 

proxy. They concluded that because the ticks spend the majority of their time in the 
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external environment, rather than on a host, climate changes are likely to affect tick 

survival, development, and reproduction. Furthermore, climate effects on their vertebrate 

hosts, such as abundance, migration patterns, and diversity, will impact tick abundance 

and distribution. It is probable that the incidence of Lyme disease will be affected by the 

climate-induced changes in the complex interactions of tick biology and that of tick hosts. 

Ixodes ticks along with B. burgdorferi are predicted to expand their geographic range 

through the effects of climate change (e.g. Jaenson and Lindgren, 2011; Mannelli et al., 

2011). Simon et al. (2014) used a modeling approach that took into account the future 

distribution of the P. leucopus and the I. pacificus with respect to climate change and 

habitat fragmentation to estimate a risk index of B. burgdorferi. They predicted a 

northward range expansion at a rate of 3.5-11 kilometers per year. 

A recent study on I. scapularis in the United States proposed that climate change 

may alter the relative proportions of B. burgdorferi s.s. strains in a region by influencing 

tick phenology (Gatewood et al., 2009). Borrelia burgdorferi s.s. strains vary in their 

survival time inside hosts, and some do not persist in reservoir hosts for more than a few 

weeks. Those short-lived strains would have a greater chance of being passed to receptive 

larvae if the larvae were feeding at the same time of year as the nymphs. Specifically, the 

magnitude of the difference between summer and winter daily temperature maxima was 

positively correlated with the amount of season synchrony between larval and nymphal I. 

scapularis. This may have implications for I. pacificus and B. burgdorferi s.s. prevalence 

in the western United States. Changes in I. pacificus stage phenology could cause larval 

and nymphal ticks to more commonly feed side-by-side, increasing transmission chances 

even within incompetent reservoirs such as S. occidentalis. 
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It is likely that global climate change is already affecting the lifecycles of ticks 

and their transmission of Borrelia spirochetes. However, the complexity of the 

interacting factors that determine the timing and intensity of tick activity and spirochete 

transmission makes it difficult to predict likely Lyme disease incidence in future climate 

change scenarios based on the current understanding of the system. Further studies on 

tick biology, host abundance, and Lyme borreliosis incidence, specifically in relation to 

climate change, are required to develop models that may accurately determine the climate 

conditions suitable for ticks and reservoir hosts. 

Conclusions 

In the western United States, many studies have been conducted on the ecology of 

I. pacificus and the related rates of transmission of Borrelia burgdorferi s.s. through field 

studies and subsequent laboratory analysis. Nevertheless, conclusions are difficult to 

draw on key ecological factors such as the role of host species, non-systemic 

transmission, the dilution effect and the role of non-reservoir hosts. Due to the 

complexity of this system, new techniques and modeling methods must be developed to 

untangle the roles of these factors to provide potential mechanisms for lowering the 

incidence of Lyme borreliosis or to make predictions of how the disease may spread. The 

elucidation of the effects of increased biodiversity and varying infectivity among hosts is 

particularly important to help guide land management decisions that will function to 

decrease Lyme disease risk. Furthermore, modeling the population dynamics of indicator 

host species in response to climate change would contribute greatly to the evaluation of 

future climate effects on ticks and tick-borne pathogens. 



 20 

The majority of studies conducted on the epidemiology and disease risk of Lyme 

disease has focused on the determining the behavior of tick vectors and the competency 

of vertebrate hosts. To fully understand how Borrelia burgdorferi persists in the wild, it 

is important to know how the hosts’ physiological state, such as hormone levels, body 

condition, and age, affects its ability to fight the spirochete infections. This information 

will help to model and make more accurate predictions for how infection risk and 

prevalence will change with respect to climate change and habitat fragmentation. In 

Chapter 2 we report a series of experiments that examine this major deficiency our 

understanding of Lyme disease ecology. 
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Chapter 2: Physiological Factors Affecting the Bactericidal Activity of the Western 

Fence Lizard (Sceloporus occidentalis) for the Lyme Disease Spirochete Borrelia 

burgdorferi 

Introduction 

Borrelia burgdorferi sensu stricto (s.s.)1 is the spirochete bacterium and causative 

agent of Lyme disease in both humans and wildlife (Stevenson et al., 2002). In the 

western United States, the Western Black-legged Tick, Ixodes pacificus, is the primary 

vector of Borrelia burgdorferi s.s. (Burgdorfer et al., 1985; Lane and Lavoie, 1988; 

Clover and Lane, 1995). While immature I. pacificus have been shown to infest, and 

subsequently infect, a variety of vertebrate hosts with B. burgdorferi s.s. (Bishopp and 

Trembley, 1945; Lane and Loye, 1991; Lane and Brown, 1991; Apperson et al., 1993; 

Peavey and Lane, 1995; Durden et al., 2002; Castro and Wright, 2007), not all hosts are 

competent reservoirs (i.e., host maintains a spirochetal infection and is able to infect other 

feeding ticks). The Western Fence Lizard, Sceloporus occidentalis, is reservoir-

incompetent for B. burgdorferi (Lane, 1990b; Lane and Quistad, 1998) despite being a 

major host for juvenile stages of I. pacificus (Lane and Loye, 1989; Manweiler et al., 

1992). The host-parasite relationship between S. occidentalis and I. pacificus has been 

                                                 

1 Borrelia burgdorferi sensu lato (s.l.) is a complex of genospecies, of which Borrelia 
burgdorferi s.s. is a member. The Borrelia burgdorferi s.l. complex contains six other spirochete 
genospecies found in North America: Borrelia andersonii B. americana, B. carolinensis, B. 
californiensis, B. kurtenbachii, and, B. bissettii (Stanek and Reiter, 2011; Margos et al., 2014) 
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well-studied, and many factors contribute to tick loads on lizards, including geographic 

location, host sex, habitat, and host body size, among other variables (Lane and Loye, 

1989; Tälleklint-Eisen and Eisen, 1999b; Schall et al., 2000; Eisen et al., 2001; Eisen et 

al., 2004; Lumbad et al., 2011; Pollock et al., 2012a). Furthermore, S. occidentalis has 

been shown to cleanse previously infected ticks of spirochetal infections (Lane and 

Quistad, 1998).  

Immunological studies have shown that a factor exists in the plasma of S. 

occidentalis that is capable of killing B. burgdorferi in less than one hour (Lane and 

Quistad, 1998; Kuo et al., 2000). The factor responsible for the killing of B. burgdorferi 

are the proteins comprising the alternative complement pathway (ACP), an antibody 

independent pathway that leads to lysis of Borrelia spirochetes when the C5b-9 

membrane attack complex (MAC) disrupts their outer membranes (Kochi et al., 1993; 

Lane and Quistad, 1998; Kuo et al., 2000). The complement-mediated killing of 

spirochetes was shown to be capable of killing spirochetes independent of antibody 

action when Cacciapouti et al. (1993) illustrated that bleb (an out-pocketing of cell 

contents due to membrane disruption) formation was visible on spirochetes even in the 

absence of antibodies. This type of innate immune function may be important in 

determining the survival of an animal when it is first exposed to a pathogen, and a 

successful innate reaction does not require a potentially costly specific response 

(Lochmiller and Deerenberg, 2000). 

While much is known about the importance of this host-parasite relationship in 

Lyme disease ecology, relatively little is known about the physiological factors that affect 

the borreliacidal potential of the lizards’ blood. Understanding how factors such as sex, 
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season, and body size affect the ability of S. occidentalis to kill B. burgdorferi can help in 

modeling the ecology of Lyme disease and improve the overall understanding of immune 

function in reptiles. Studying how S. occidentalis, a major host to the vector of Lyme 

borreliosis, responds to Borrelia infections can help elucidate the role of the lizard in the 

maintenance or control of the disease. No studies to date have examined individual 

variation in the borreliacidal capacity of S. occidentalis blood. Our objective in this study 

was to investigate how host physiological state affects the bactericidal activity of S. 

occidentalis plasma for B. burgdorferi. Our specific hypotheses were that borreliacidal 

capacity is affected by factors that can impact immune function in natural populations, 

including host sex, season, collection site, and age class. To test these hypotheses, we 

assessed the borreliacidal capacity of individual lizards via a borreliacidal assay. A 

culture of B. burgdorferi spirochetes was exposed to individual lizards’ blood plasma, 

and the resulting borreliacidal activity was quantified by counting dead spirochetes. 

Males and females from two different sites were compared across different seasons and 

age classes. The following paragraphs explain the background and expected effects of 

each of the independent variables: sex, season, site, and age class. 

(1) Host sex affects borreliacidal capacity 

Male vertebrates tend to have reduced immune function compared to females 

(Folstad and Karter, 1992; Schuurs and Verheul, 1990; Tschirren et al., 2003; Zuk and 

McKean, 1996), and numerous studies have shown that testosterone negatively affects 

immune function in males, both directly and indirectly (Klein, 2000; Mondal and Rai, 

1999, 2002; Pollock et al., 2012b). In lizards, males implanted with testosterone 

demonstrate immunosuppression, as evidenced by lower lymphocyte counts, testosterone 
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lymphocyte-mediated immunity, and increased parasite intensity (Cox and John-Alder, 

2007; Pollock et al., 2012a). In the wild, male S. occidentalis have also been shown to 

host greater tick loads than females or juveniles (Schall et al., 2000; Casher et al., 2002; 

Lumbad et al., 2011), and administration of exogenous testosterone increases tick load 

(Pollock et al., 2012a). Because of the immunosuppressive properties of testosterone, we 

predicted that female lizards will have higher borreliacidal capacities than males. 

(2) Borreliacidal capacity changes with respect to season 

Related to hormonal variation, seasonal changes in reproductive state may also 

result in changed immune function. In lizards, elevated testosterone concentrations during 

the mating season are responsible for increased energy expenditure and reduced energy 

acquisition, resulting in a negative energy balance (Cox et al., 2005). Testosterone 

stimulates males to allocate energy resources towards increased ornamentation to attract 

mates, increased time patrolling territories, courting activities, and fighting with other 

males, and away from foraging activities. Furthermore, Pollock et al. (2012b) found that 

I. pacificus exhibited reduced feeding duration when feeding on reproductive female S. 

occidentalis, suggesting that reproductive hosts may have reduced immune function. We 

predict that the borreliacidal capacity of S. occidentalis will be lower in Spring, when the 

lizards are reproductive. 

(3) Host collection site affects borreliacidal capacity 

Despite similar habitats, different sites may have drastically different rates of tick 

parasitism, chances of incurrence of Borrelia infection, and genetic diversity. Wetter, 

coastal sites tend have greater numbers of I. pacificus than drier inland sites, and lizards 

are commonly found with much greater tick loads near the coast (Furman and Loomis, 
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1984; this study). Our Poly Canyon field site is located near the central California coast 

and harbors ticks in high densities. Our second field site, Chimineas Ranch, is located 

about 40 miles inland of Poly Canyon and has not been observed to contain dense 

populations of ticks. Lizards at Poly Canyon have likely evolved with greater tick 

parasite pressure and may therefore exhibit stronger responses to tick-borne pathogens 

than lizards from the relatively tick-free Chimineas Ranch. Furthermore, Poly Canyon 

lizards may therefore have a greater chance of being exposed to B. burgdorferi sensu 

stricto or sensu lato (s.l.) in their lifetime and may exhibit an amplified immune response 

based on circulating antibodies for the pathogen or from genetic adaptation. Borrelia 

bissettii (a genospecies of B. burgdorferi s.l.) has been documented in rodents from Poly 

Canyon (Vredevoe et al., 2004; Baker-Branstetter thesis in progress) and lizards’ thus 

have the potential to be exposured to this pathogen is potential. Despite these potentially 

immune-strengthening effects of sympatric cohabitation with ticks, lizards with larger 

tick loads may actually be indicative of lowered immune function, and thus reduced 

borreliacidal capacity. No studies to date have investigated the changes in complement 

reactivity on subsequent pathogen infections. For these reasons, we predicted that lizards 

from Poly Canyon would have higher borreliacidal capacities than lizards from 

Chimineas Ranch. However, within site, during the same season, lizards with higher tick 

loads would have lower borreliacidal capacities. 

(4) Host age class affects borreliacidal capacity 

Complement-mediated immune function is innate, but juvenile lizards may not 

develop full complement-mediated immune function until later in life. Despite many 

studies done on lizard immune function, little is known about the development of the 
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ACP with age; however, human infants have been shown to develop ACP function after 

thirteen months of life (Ferriani et al., 1990). Furthermore, it remains unclear how the 

borreliacidal capacity of S. occidentalis, enacted primarily through the ACP, may be 

aided by the CCP utilizing antibodies from previous Borrelia exposure. Adult lizards 

have a greater chance of previous exposure to B. burgdorferi and may potentially, 

through assistance from acquired antibodies, exhibit greater borreliacidal capacities. 

Alternatively, studies have shown that transmission of passive immunity in the form of 

antibodies may occur from adult reptiles to their offspring, providing the potential for a 

robust immune reaction in both adults and juveniles (Grindstaff et al., 2003; Schumacher 

et al., 1999). We predict that adults will have higher borreliacidal capacities than 

juveniles. 

Materials and Methods 

Lizard Plasma Collection and Processing 

During Fall 2012 and Spring 2013, 58 adult S. occidentalis were captured at two 

field sites (Poly Canyon and Chimineas, see below) by hand-held noose or by hand, and 

blood samples were collected. Lizards were captured on each of 3 days in September 

2012 and 2 days in April 2013 (Table 2) to sample the lizard populations both during and 

outside of breeding season. At Poly Canyon, 4 males and 8 females were sampled in Fall 

2012, and 8 males and 9 females in Spring 2013. At Chimineas Ranch, 9 males and 5 

females were sampled in Fall 2012 and 5 males and 9 females in Spring 2013. An 

additional thirteen juvenile lizards were captured from Poly Canyon on the campus of 

California Polytechnic State University (Cal Poly) in San Luis Obispo, California, in late 
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summer 2013. Juveniles were collected in late summer because they are active and most 

abundant this time of year. Approximately 0.1 to 0.25 mL of blood was collected from 

each lizard via the retro orbital sinus with a heparinized capillary tube within 10 minutes 

of capture. Blood samples were stored in microfuge tubes on ice until processing in the 

lab (usually about 3-5 hours). For each captured lizard, the following data were recorded: 

sex, snout-to-vent length (SVL), mass, and number of visible ectoparasites, before 

returning each lizard to the site of capture. Ectoparasites were quantified by counting the 

number of visible ticks and mites on each lizard. These parasites were typically 

aggregated around the nuchal pouches and the anterior and posterior armpits. Female 

lizards were assessed for reproductive condition by palpating for the presence of eggs. 

For each lizard, body condition, a measure of lizard mass per unit length, was calculated 

by taking the residuals of the ordinary least squares regression of the SVL and mass, both 

ln-transformed. Each lizard was released at the site of capture after being marked on the 

back with white paint to avoid recapture. Each lizard was handled as quickly as possible 

to prevent stress responses, typically less than five minutes each. 

Directly following each field capture session, the samples were taken to the 

laboratory where they were processed. Each sample was centrifuged at 10,000 RPM for 

three minutes. The supernatant plasma was then carefully extracted with a Hamilton 

syringe and placed in a clean microfuge tube and stored at -80°C until assayed. The pellet 

was discarded. 
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Field Sites  

 Poly Canyon – Located on the Cal Poly campus, Poly Canyon is located in San 

Luis Obispo County in the southwestern foothills of the Santa Lucia mountain range of 

California. This coastal site is 12 miles from the Pacific Ocean and has an elevation of 

150m. The primary habitat consists of rolling hills of annual grassland with interspersed 

coast live oak woodland and a riparian corridor. Additionally, some areas of dense 

chaparral occur on the south-facing slopes of some of the higher hills. In Poly Canyon, I. 

pacificus ticks are common and S. occidentalis are often heavily infested in spring 

(Lumbad et al. 2011). 

 Chimineas Ranch – This site is located 40 miles due east of San Luis Obispo, 

California, on the western border of the Carrizo Plain. This inland site mostly consists of 

rolling hills of blue oak woodland and California annual grassland. Vast stands of 

chaparral are also found near the tops of the rolling hills. To the east are hills of annual 

grassland with multiple large rocky outcrops. This site was chosen for this study because 

it has a dense population of lizards that are rarely observed to harbor I. pacificus (based 

on previous years of study), perhaps due to low humidity and the scarcity of appropriate 

dense woodland habitats that would support larval and nymphal stages that feed on 

lizards (Eisen et al., 2006). 

Bacterial Strain and Culture Conditions 

A B31 isolate of B. burgdorferi (s.s.), (ATCC 35210) was grown in BSK-H 

medium (Sigma-Aldrich Co. LLC, St. Louis, MO) at 35°C in 4 mL snap-cap vials. The 

stock culture was thawed from frozen stock January 2012 and two cultures from the same 
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isolate were maintained separately for the entirety of the experiment. Each was kept for 

about 100 passes. Each culture’s condition was visibly assessed under darkfield 

microscopy every 1-2 weeks. After each assessment, cultures were passed by transferring 

50 uL to a new 4 mL vial of medium. 

Borreliacidal Assay 

To determine the borreliacidal capacity of each lizard plasma sample, a biological 

assay was performed to measure its bactericidal activity. The procedure used in this study 

was based on the methods of Kuo et al. (2000) in which an assay was performed to assess 

interspecific borreliacidal capacity. Kuo et al. introduced reptile or mammal plasma to a 

culture of B. burgdorferi and the resulting spirochetal survivability was quantified under 

dark-field microscopy. For this study, the assay methods were modified in order to 

discern differences among individual lizards; i.e., to detect intraspecific variation in 

bactericidal activity. Specifically, we compared individual S. occidentalis’ bactericidal 

activity across sex, seasons, geographic locations, and age classes. 

To perform the borreliacidal assay, 25 μL aliquots of B. burgdorferi stock culture 

were suspended in 110 μL phosphate buffered saline (PBS; pH 7.2, room temperature), 

an isotonic and biologically neutral medium, in a multi-well assay plate to dilute the 

culture to a concentration that facilitated counting. The stock culture was between one 

and two weeks from the last pass when assayed. Directly following, 15 μL samples of 

thawed and vortexed S. occidentalis plasma were mixed with the suspension to give a 

final volume of 150 μL in each experimental well. The plates were then covered and 

incubated at room temperature for 30 minutes. After incubation, a 20 μL sample of each 
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assay well was placed on a clean microscope slide with a coverslip and bactericidal 

activity was assessed by dark-field microscopy. As a negative control, 25 μL aliquots of 

spirochetes were cultured in 125 μL PBS to give an identical final concentration. 

Counting Spirochetal Density and Determining Borreliacidal Capacity 

To assess the borreliacidal capacity of each lizard, both live and dead B. 

burgdorferi spirochetes were counted under 400X total magnification under darkfield 

microscopy using an Olympus BX51-P microscope to measure bactericidal activity. 

Spirochetes were considered dead upon the observation of blebs (an outpocketing of cell 

contents), complete cell lysis, or immotility (no movement for 5 seconds or more). These 

three criteria are considered essential indicators of Borrelia mortality (van Dam et al., 

1997) and were considered synonymous with borreliacidal capacity during this study. For 

each assay sample, spirochete cell counts were recorded in each of nine randomly chosen 

fields of view. Once the spirochetes observed in these nine fields of view were counted, 

the ratio of dead spirochetes to the total number of spirochetes counted was calculated to 

give a “percent mortality” for each sample. 

The background percent mortality, or the quantity of dead spirochetes in the 

Borrelia stock culture alone, was calculated each day of data collection. This background 

percent mortality was determined by performing the assay with no lizard plasma sample 

at the same Borrelia concentration as the samples containing lizard plasma. In a multi-

well assay plate, 25 μL of the B. burgdorferi culture was suspended in 125 μL PBS, 

giving the same concentration of culture used in the experimental assay. After a 30-
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minute incubation, spirochetes from this assay were counted exactly as with the assay 

samples containing the lizard plasma. This value functioned as a negative control. 

As a positive control, the assay was performed with a pooled lizard plasma 

sample. This pooled plasma sample was created by combining the plasma of 12 lizards 

collected in Fall 2012 from Poly Canyon, then aliquotting this mixture into individual 

sampling tubes for use each day of data collection; none of these lizards were used 

individually in this study. 

Pooled lizard plasma aliquots were stored at -80°C until assayed and used 

immediately after thawing for each assay. This positive control was designed to correct 

for possible daily variation in the susceptibility of the B. burgdorferi culture. Day to day, 

the response of the B. burgdorferi stock culture to the pooled plasma varied with respect 

to the culture condition, age, and growth cycle and therefore needed to be standardized.  

Using the negative and positive controls to correct for the background percent 

mortality and variability in culture susceptibility, the borreliacidal capacity of each 

plasma sample was calculated using the following novel metric: 

 

Where the KC (corrected borreliacidal capacity) is determined by subtracting Kb 

(background percent mortality) from KS (percent mortality counted in each experimental 

assay sample). This figure is then divided by Kb minus Kp (percent death in the pooled 

plasma positive control).  
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Assay Optimization 

The borreliacidal assay was optimized by making serial dilutions of lizard plasma 

in B. burgdorferi stock culture. Each dilution was assessed and compared by counting the 

spirochetal mortality and comparing across dilutions. The methods used in this study 

were the results of the dilution that maximized concentration while still sensitive enough 

to detect intraspecific variation between individual lizards. For plasma concentrations 

that are too low, samples may contain too many spirochetes to detect any effect of the 

plasma, or spirochetes may be too numerous to count. Conversely, excessively high 

plasma concentrations would result in killing nearly all spirochetes in the sample, making 

intraspecific variation impossible to detect. Plasma samples from ten additional lizards of 

both sexes from Poly Canyon (not used in this study) were used individually for assay 

optimization.  

Statistical Analysis 

All statistical analyses were done with JMP Pro statistical software v. 9.0.2 & 

11.2, SAS Institute Inc., Cary, NC, 1989-2007. Generalized Linear Models (GLM) were 

used to determine the factors that significantly predicted KC. The first model, consisting 

of adult lizards only, included site (Poly Canyon or Chimineas Ranch), season (Fall or 

Spring), visible tick load, body condition (ordinary least squares residuals), and sex (male 

or female) on KC (log transformed). The KC data from all adult lizards did not Fall within 

a normal distribution, so a logarithmic transformation was used to normalize data. A 

Tukey-Kramer HSD post-hoc test was run to determine if each experimental group was 

significantly different from any others. A second Tukey-Kramer HSD post-hoc test was 
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run to determine if body condition was significantly different between experimental 

groups. A second GLM was used to determine the effects of interactions between sex, 

site, and season on KC. Another GLM was used to determine the effects of sex, season, 

and site on tick load.  

A fourth GLM consisted of both juvenile and adult lizards and included lizard 

mass (g) and age class (adult or juvenile). Mass was used in this model instead of body 

condition because body condition indices may differ according to age, making it not an 

accurate comparison of lizard nutrition. Mass can differ greatly between adult and 

juvenile lizards. The corrected borreliacidal capacity of all lizards, including the 

juveniles, was not normally distributed. Also, because some of the juvenile lizards had 

fewer dead spirochetes than the negative control, their KC values were negative. To be 

able to use a log transformation on these data, all figures had to be positive, so 0.1 was 

added to each number before transformation. A T-test was used to compare the 

borreliacidal capacity of male and female juveniles.  

Results 

Site was a significant factor after accounting for the effects of all other factors (t = 

2.81, p = 0.01) with Chimineas averaging higher overall borreliacidal capacities (Figure 

1). Mean borreliacidal capacities are shown in Table 3. Tick load was also significantly 

and positively associated with borreliacidal capacity after accounting for effects of the 

other factors (t = 2.22, p = 0.03). Non-significant factors included sex (t = 1.48, p = 0.14), 

season (t = 0.27, p = 0.79), and body condition (t = 0.33, p = 0.74). Interactions between 

sex, site, and season were modeled using an alternate GLM, and no interaction between 
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the three factors were significant: all three factors (t = 0.37, p = 0.71), interaction 

between sex and site (t = 0.12, p = 0.91), interaction between sex and season (t = -1.32, 

p = 0.19), interaction between site and season (t = 1.28, p = 0.21). The Tukey-Kramer 

post hoc test showed that no experimental group borreliacidal capacities differed 

significantly from any other (Table 5). 

The females from Poly Canyon in fall had significantly lower body condition than 

females from Chimineas in spring (p < 0.001) and males from Chimineas in fall (p = 

0.05). Females from Chimineas in spring also had significantly higher body condition 

than males from Poly Canyon in fall (p = 0.04) and females from Poly Canyon in spring 

(p = 0.035). All comparison results are shown in Table 6. 

There were significantly more ticks parasitizing lizards at Poly Canyon than at 

Chimineas Ranch after accounting for season and sex (t = 3.75, p < 0.001). There were 

also significantly higher tick loads on lizards in Spring vs. Fall after accounting for 

season and site (t = 3.41, p = 0.001). Sex did not affect tick load after accounting for site 

and season (t = 0.35, p = 0.72). 

Juveniles had significantly lower borreliacidal capacities than adults after 

accounting for differences in lizard mass (t = 2.69, p = 0.01). Lizards with higher mass 

within age class had significantly higher borreliacidal capacities (t = 2.22, p = 0.03). 

Borreliacidal capacities of male and female juveniles did not differ significantly (t = -

1.05, p = 0.31).  
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Discussion 

Our results show that the borreliacidal action of S. occidentalis varies based on 

host population (site) and age, but not sex or season. Several studies have characterized 

active complement-mediated immunological responses within reptile species 

(Koppenheffer, 1987; Sunyer and Lambris, 1998; Sunyer et al., 1998), including 

alligators (Merchant et al. 2005a,b) and cobras (Vogel and Muller-Eberhand, 1985a,b). 

However, few studies have evaluated variation among species (Kuo et al., 2000; 

Merchant et al., 2006), and to date, no studies have compared complement reactivity 

intraspecifically. The physiological factors affecting the lizards’ ability to kill B. 

burgdorferi spirochetes appear to have both environmental and innate components, 

varying among individuals and with lizard physiological state. Lizard age class had a 

significant effect on borreliacidal capacity, an effect that is likely independent of 

environmental conditions. Furthermore, field site location and the number of externally 

visible ticks each lizard was carrying had significant effects on borreliacidal capacity, 

indicating environmentally dynamic factors may also affect this ability. 

Lizard age-class strongly and significantly affected borreliacidal capacity. First-

year juvenile fence lizard plasma showed little to no ability to kill Borrelia burgdorferi 

spirochetes, indicating that either the alternative complement pathway develops sometime 

before or at the time of maturity, or the CCP plays a larger role in cleansing spirochete 

infections than previously thought. Juveniles are less likely to have acquired antibodies 

from previous exposure that would allow the CCP to act in killing B. burgdorferi. In fact, 

many of the assay results for individual juvenile lizards showed a negative borreliacidal 

capacity. Spirochetes mixed with PBS and the plasma from select juveniles actually 
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survived better than in the control treatment of PBS alone. This phenomenon leads us to 

believe that complement mediated immune function develops later in life. Age-related 

microbial resistance has been shown to occur in vertebrates (Harp et al., 1990), and 

human neonates have been shown to have lower levels of complement components than 

normal adults for the first six months of life (Davis et al., 1979). Ferriani et al. (1990) 

found that the CCP and ACP had differing maturation patterns in humans, with the CCP 

maturing at one and three months, and the ACP around the thirteen months. Relatively 

few studies have been done on reptile immune function, and have primarily focused on 

seasonality of immune function (e.g., Hussein et al., 1979) and immune function related 

to social interactions, reproduction, temperature, and parasite burdens (Svensson et al., 

2001; Uller et al. 2006, Ujavari and Madsen 2006; Madsen et al., 2007; Freedberg et al., 

2008; French and Moore, 2008-). More focused studies have been conducted on the 

immune function of American alligator (Merchant et al., 2005(a); 2005(b); 2006), yet, to 

our knowledge, no studies to date have shown how reptile complement changes as an 

individual matures. Furthermore, juvenile S. occidentalis are much smaller than adults, 

and as such, host fewer ticks. They, therefore, face a reduced chance of exposure to B. 

burgdorferi. Juvenile lizards used in the study were not found with any visible 

ectoparasites. This may suggest that there is a greater contribution of the CCP in fighting 

Borrelia infections than was previously thought. If the ACP of juveniles is functional 

early in life, potential borreliacidal activity via the CCP would be less likely because 

previous exposure in juveniles is less likely. The CCP may play a role in the complement 

mediated killing of B. burgdorferi. It is unlikely that all the adults sampled in this study 

had been previously exposed to the bacterium and this potential difference may account 
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for the relatively large error in each of the experimental groups. Future studies should try 

to determine the role that previous exposure plays in the killing of B. burgdorferi by 

testing each plasma sample for anti-spirochete antibodies. The negative borreliacidal 

capacities observed in many juvenile lizards was unexpected. The spirochetes incubated 

in the juvenile lizard plasma had fewer dead spirochetes than those incubated in just PBS. 

It is possible the juvenile plasma was able to nourish the spirochetes during incubation 

and the biologically neutral PBS allowed for some slight bacterial senescence outside 

their preferred medium.  

Field site had a significant effect on adult lizard borreliacidal capacity. Adult 

lizards at Chimineas had significantly higher borreliacidal capacities than Poly Canyon 

lizards. This result was surprising and other factors such as sex and season may still play 

roles in the differing immune function observed between sites. Male and females had 

relatively similar borreliacidal activities across both seasons at Chimineas, while Poly 

Canyon lizards varied both between sexes and season. Whereas some of this variation 

may also be due to an observed difference in breeding season length, some may be 

attributed to the effect of tick loads. Perhaps the Poly Canyon lizards have a higher 

exposure to other pathogens, suppressing their immune systems more than Chimineas 

lizards. Furthermore, the climate differs greatly between the sites and environmental 

factors such as available water or mean temperature may explain some of this variation in 

lizard immune function between sites.  

Counter to our prediction, tick load was significantly correlated with higher 

borreliacidal activity in comparable lizards. Increased tick loads are generally considered 

indicative of reduced immune function and in males, possibly due to higher testosterone 
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concentrations (Pollock et al., 2012b). Studies have shown increased ectoparasites loads 

in male free-ranging lizards with experimentally elevated testosterone (Cox and John-

Alder, 2007; Klukowski and Nelson, 2001; Olsson et al., 2000; Saino et al., 1995; 

Salvador et al., 1996), including S. occidentalis (Pollock et al., 2012a). However, it 

remains unclear whether increased parasite loads are due to a testosterone-mediated drop 

in immune function or behavioral changes. Testosterone stimulates male territorial 

behavior (Klukowski and Nelson, 1998; Marler and Moore, 1989; Moore, 1986; Sinervo 

et al., 2000) and movement (Cox et al., 2005; John-Alder et al., 2009; Sinervo et al., 

2000) and may cause increased exposure of male lizards to questing ectoparasites. 

However, the number of ticks feeding on an individual may not be an accurate indication 

of immune function. This method may lead to results that are inaccurate and misleading 

because the number of ticks that feed to repletion is difficult to estimate. Many ticks may 

attach to a lizard, but not all will feed to repletion. The immune systems of tick hosts may 

actively reject the parasites or cause the host to increase grooming habitat that remove the 

ticks (Keesing et al., 2009). Because of this, using tick loads to indicate the immune 

status of the host requires data on the proportion of ticks that feed to repletion.  

These results suggest that an increased tick load may indicate a higher 

borreliacidal capacity in S. occidentalis, despite a potentially high level of testosterone. 

Because testosterone has been shown to reduce complement effectiveness in vertebrates 

(Grieves et al., 2006; Nissen et al., 1988; Packard and Weiler, 1983), the positive effect 

of tick load on borreliacidal capacity may indicate study lizards have been previously 

exposed to B. burgdorferi. Previously exposed lizards would have developed specific 

antibodies to help combat a spirochete infection via the classical complement pathway 
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(CCP; Kochi et al., 1993). Furthermore, lizards that carry higher tick loads have a greater 

chance of being exposed to the infection by chance alone. In vivo, a greater tick load may 

serve to initiate a more robust immune response by greater stimulation. Additionally, 

many spirochetes may be killed inside the ticks from the influx of blood before they are 

released into the lizards’ bodies. 

Lizards showing higher tick counts have a greater chance of exposure to B. 

burgdorferi and it is possible complement-mediated bacteriolysis of infectious agents 

involves at least two immunological mechanisms. The CCP utilizes antibodies to start a 

cascade of activation events that ultimately leads to the activation of the protease C4b2a, 

further leading to the activation of the complement C5b-9 membrane attack complex 

(MAC) that induces lysis of invading bacteria by puncturing their outer membranes 

(Kochi et al., 1993). The alternative complement pathway (ACP) is antibody-independent 

and uses the protease C3bBb to start a cascade of activation events that ultimately leads 

to the activation of the MAC (Whaley and North, 1997). Borrelia burgdorferi is capable 

of eliciting an immune response by activating both the CCP and the ACP (Kochi and 

Johnson, 1988) but the effectiveness of each pathway is host specific. Kuo et al. (2000) 

showed that in S. occidentalis, complement-mediated killing of B. burgdorferi was 

accomplished primarily via the ACP. However, it is possible that antibodies acquired 

from prior exposure to the pathogen may act along with ACP, via the CCP, to cleanse the 

body of spirochetes more effectively. This possibility is supported by our data showing 

an increase in borreliacidal activity with increased tick load. However, it is possible that 

no lizards in this study had been previously exposed. The status of I. pacificus tick 

infections with B. burgdorferi in San Luis Obispo County is unresolved. Several rodent 
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hosts for these ticks routinely harbor B. bissettii and B. burgdorferi, but field collections 

of adult I. pacificus at various sites have largely yielded negative results for infection 

(Vredevoe et al, 2004, Baker-Branstetter (thesis in progress). This does not preclude the 

idea that Borrelia may be present in tick populations but infection levels are kept at a low 

rate by feedings on S. occidentalis as primary hosts for this tick. In vivo, both antibodies 

and C3bBb are opsonins and promote phagocytosis of antigens. This in vitro assay did 

not account for the phagocytic killing of Borrelia that may occur in the bodies of S. 

occidentalis. 

Further studies could be done to distinguish the contribution of antibodies to the 

killing of Borrelia by S. occidentalis. By heat-treating lizard plasma samples, 

complement protein would be destroyed and the heat-labile antibodies would remain. If 

the heat-treated plasma was added to the heat-treated plasma of a confirmed non-exposed 

lizard, antibody mediated lysis would occur in the combined sample, but not in the non-

exposed plasma sample alone. 

Lizard tick loads not only correlated with higher borreliacidal capacities, but were 

also significantly different between sites, across both seasons. Poly Canyon lizards had 

substantially more ticks, on average, than Chimineas lizards in both Fall and Spring. This 

was expected based on previous knowledge of the field sites. Spring tick loads were 

much greater than in Fall at Poly Canyon, and only slightly higher than Fall at 

Chimineas. Seasonal variations in parasite loads have been observed in a wide range of 

animal taxa such as insects (Zuk, 1987), fish (Mitchell, 1989), birds (Teel et al., 1989), 

sheep (Theodoropoulos et al., 1998), and lizards (Eisen and Eisen, 1999; Schall et al., 

2000; Eisen et al., 2001; Lumbad et al., 2011, Pollock et al., 2012a). Host sex did not 
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significantly affect lizard tick load, despite many studies showing that male animals 

across diverse taxa typically exhibit higher parasite loads than females (Poulin, 1996; 

Zuk and McKean, 1996; Anthony et al., 1994; Aubret et al., 2005; Klukowski and 

Nelson, 2001; Moore and Wilson, 2002; Morand et al., 2004; Folstad et al., 1989; Zuk, 

1990; Tschirren et al., 2003), including lizards (Salkeld and Schwarzkopf, 2005; Schall 

and Marghoob, 1995; Schall et al., 2000). Testosterone is believed to be the primary 

reason for this increase in parasite loads in males; it has been shown that male lizards 

with experimentally elevated testosterone have higher parasite loads than control males 

(Cox and Alder, 2007; Hughes and Randolph, 2001; Klukowski and Nelson, 2001; 

Olsson et al., 2000; Roberts et al., 2004; Saino et al., 1995; Salvador et al., 1996), 

however the mechanism by which this happens is unknown. 

Tick loads on lizards significantly predicted higher borreliacidal capacities, 

however further studies need to be conducted to determine the mechanism behind this 

phenomenon. Besides being major hosts to I. pacificus, S. occidentalis can also host 

substantial numbers of mites of the genera Eutrombicula and Geckobiella (Allred and 

Beck, 1962; Klukowski, 2004; Schall et al., 2000; Schall and Smith, 2006). These 

ectoparasites commonly congregate in the lizards’ nuchal pouch, a fold of skin near the 

tympanum, but will also attach to other areas of exposed skin such as around the eyes and 

between scales (Arnold, 1986; Goldberg and Bursey, 1991; Dunlap and Mathies, 1993; 

Pollock et al., 2012a). Because tick loads in this study were determined by counting 

visible ticks only, it is possible that more ectoparasites were hosted by study lizards 

without our knowledge in obscured places such as between scales. This may have led to 

an underestimation of tick loads on the lizards in this study and may have skewed the 
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results. Additionally, life stage of ticks observed on lizards was not determined and may 

have implications to an individual lizard’s borreliacidal capacity. Transmission of 

spirochetes to vertebrate hosts is primarily accomplished by nymphal ticks (Mannelli et 

al. 2011). Larvae are typically born free of spirochetes and adults tend to host on large-

bodied vertebrates that make poor reservoirs. To fully elucidate the effect of tick load on 

borreliacidal capacity, future studies should accurately quantify the number of 

ectoparasites on each lizard (not just visible individuals), determine the life stage of each 

parasite, and determine what proportion of ectoparasites feed until repletion. 

We hypothesized that host sex would affect borreliacidal capacity and predicted 

female lizards would have higher borreliacidal capacities than males. Females generally 

have better immune function than males, often due to the inhibitory effects of 

testosterone (Folstad and Karter, 1992; Klein, 2000; Mondal and Rai, 1999, 2002; 

Pollock et al., 2012(b); Tschirren et al., 2003; Zuk and McKean, 1996). Testosterone has 

been implicated as being immunosuppressive in many vertebrates (Klein, 2000; Mondal 

and Rai, 1999, 2002) including S. occidentalis (Pollock et al., 2012(a), Pollock et al., 

2012b). For example, Grossman (1985) showed that the mass of organs involved with 

immune function increased in male rats after castration, and furthermore, 

immunoglobulin production was overall higher in females. In this study, male and female 

lizards did not have significantly different borreliacidal capacities, causing us to reject the 

hypothesis that host sex affects borreliacidal capacity in S. occidentalis. The effect of sex 

on lizard borreliacidal capacity did, however, change with season at both sites, although 

not significantly. Borreliacidal capacity differed only slightly between the sexes and 

seasons at Chimineas, with both sexes maintaining a relatively high borreliacidal capacity 
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over Fall and Spring. Conversely, at Poly Canyon, males and females had lower capacity 

in Fall and higher in Spring. On average, sampled populations of females from Poly 

Canyon, which showed low borreliacidal capacities in the Fall, had relatively elevated 

capacities in Spring. Male lizards maintained slightly higher borreliacidal capacities than 

females in the Fall, decreasing slightly in Spring and averaging much lower than females. 

This observed decrease in borreliacidal capacity in males from Fall to Spring is likely due 

to the immunosuppressive effects of testosterone. In S. occidentalis, natural fluctuations 

in testosterone occur throughout the year, with peak levels in males occurring during the 

breeding season, typically spring (Taylor et al., unpublished data). Because of this 

seasonality in testosterone levels and its known immunosuppressive effects, we predicted 

male and female lizards would show greater immunosuppression, and thus, lower 

borreliacidal capacities in Spring. Many studies have illustrated changes in immune 

function in correlation with breeding season (Saad and Elridi, 1984; Kortet et al., 2003; 

Lozano and Lank, 2003). 

Sampling season did not, however, significantly predict lizard borreliacidal 

capacity. Male and female lizards from Chimineas showed only a slight decrease in 

borreliacidal capacity from Fall to Spring, and Poly Canyon males and females showed 

an unexpected increase. A site-related difference observed in breeding condition may be 

responsible for the unexpected and differing seasonal effects between sites. In Fall of 

2012, two of the eight Poly Canyon females were palpably gravid at the time of capture 

whereas no females were observed reproductive at Chimineas. This extremely late 

breeding pulse is not typically observed in Sceloporus species. Numerous studies have 

shown that increased reproductive effort leads to decreased immune function (Nordling et 
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al., 1998; Cichon et al., 2001; Ardia, 2005) including in female tree lizards (French et al., 

2007(a), 2007b). It is possible that female lizards have an energetic cost due to offspring 

investment that negatively influences immune function. This would lead to a decrease in 

body condition. The late season breeding pulse we observed was accompanied by a 

diminished body condition in Poly Canyon lizards in fall. Both males and females from 

Poly Canyon in the fall had lower average body conditions than lizards sampled in spring 

and Chimineas in fall, significantly in some cases (see Table 6). The potentially 

prolonged breeding season observed at Poly Canyon may have been responsible, in part, 

for the relatively low borreliacidal capacities observed in both female and male lizards 

during Fall 2012 by lowering body condition.  

Successive and late season reproductive bouts from 2012 may represent increased 

reproductive effort for this breeding season, and may be responsible for decreased 

immune function in late season breeders. The higher borreliacidal capacities observed in 

Spring 2013 Poly Canyon lizards were recorded near the beginning of the breeding 

season when their immune system may not have been as depressed as at the end of the 

breeding season after potentially laying many clutches, each increasing the overall 

reproductive effort. Males from Chimineas did show a decrease, on average, in 

borreliacidal capacity from Fall to Spring, but not significantly. The gravid females from 

Poly Canyon in Fall 2012 did not show reduced borreliacidal capacities compared to the 

other females. However, palpating for gravidity may not always detect a female in 

reproductive condition. Other females may have been gravid without being detected. 

Future studies could conduct a radioimmunoassay to determine level of reproductive 
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hormones to determine if reproductive condition affects borreliacidal capacity in S. 

occidentalis.  

Individual lizard body condition, as measured by the ordinary least squares 

residual (OLSR) method, did not have a significant effect on borreliacidal capacity. We 

expected lizards with higher body condition to have stronger immune responses because 

body condition is closely related to an animal’s health and vigor and may be an indication 

of an individual’s fitness (Peig and Green, 2009). Immune function has been shown to 

decrease as body condition decreases across many taxa (eg. Chandra and Newberne, 

1977;), including pythons (Ujvari and Madsen, 2005), snapping turtles (Borysenko and 

Lewis, 1979), and birds (Navarro et al., 2003). Nutrition is important for immune 

function and malnutrition causes lowered function of neutrophils, macrophages, and 

natural killer cells (Stephenson, 2001). Theoretically, lizards that are able to obtain more 

food and nutrients have a correspondingly higher mass per unit length. In this study, 

variation in lizard body condition was relatively low and may not show much of the 

range of body condition in S. occidentalis. With a larger sample size, we could have 

sampled lizards of much lower and higher body conditions, and possibly clarify the role 

of body condition in borreliacidal capacity. Recently, calculating body condition 

accurately in vertebrates has come into debate with many methods being described 

(Stevenson and Woods, 2006; Murphy et al., 1991; LeCren, 1951; Schulte-Hostedde et 

al., 2001, Garcia-Berthou, 2001). Peig and Green (2010) reviewed and provided critical 

comments on these methods, suggesting the use of a scaled mass index method because it 

accounts for the changing relationship between mass and length as body size changes and 

growth occurs. However, Schulte-Hostedde et al. (2005) investigated the OLSR method 
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in relation to the fat content and lean dry mass of small mammals and found the OLSR 

method to be an accurate metric of body condition. We chose to use the OSLR method 

because it is simple and has been shown to accurately estimate body condition. 

Furthermore, S. occidentalis is a relatively small vertebrate and using a scaled mass index 

to account for body size changes during growth would have little effect on body 

condition calculations. 

The assay used in this study to measure the borreliacidal capacity of each lizard 

was similar to the methods used by Kuo et al. (2000), but was modified to be sensitive 

enough to compare individuals of the same species. This technique was difficult to 

optimize and may be prone to some variability. For example, the Borrelia stock culture 

had varying results to the same lizard’s plasma when assayed at different times. Much of 

this variation may be attributed to the growth cycles of Borrelia bacteria en vitro. 

Because of this variation, negative and positive controls were used as standards, and 

measured each assay session. The possibility of variation in the stock culture and 

optimization of the assay may be part of the reason for variation in borreliacidal capacity 

within experimental groups and may partially explain the relatively large standard errors. 

Our results suggest that both developmental traits (age-class) and environmental 

variability (field site and tick load) affect borreliacidal capacity in S. occidentalis. 

However, each lizard was sampled only once and not tracked through the different 

seasons of the study. These results give no indication of how the borreliacidal capacity of 

each individual lizard varies over time, seasonally or over its lifetime. A mark-recapture 

or controlled laboratory study should be conducted to elucidate the effects of 



 47 

environmentally variable factors versus variation in the borreliacidal capacity of 

individual S. occidentalis. 

Due to their capability of complement-mediated killing of B. burgdorferi, and the 

cleansing of infected I. pacificus that feed on them, S. occidentalis is generally thought to 

be a factor in controlling Lyme disease prevalence in the western United States (Eisen et 

al., 2004; Salkeld and Lane, 2010). In the western United States, B. burgdorferi is 

transmitted by I. pacificus (Burgdorfer et al., 1985) and is maintained by reservoir hosts 

including the dusky-footed woodrat (Neotoma fuscipes), western grey squirrel (Sciurus 

griseus), California kangaroo rat (Dipodomys californicus), and deer mouse (Peromyscus 

maniculatus) (Lane and Brown, 1991; Brown and Lane, 1992; Lane et al., 2005; Salkeld 

and Lane, 2010). Despite the many mammalian reservoir hosts, lizards host the largest 

proportion of larval and nymphal I. pacificus, around 90 percent (Casher et al., 2002). 

Additionally, the blood of western fence lizard and southern alligator lizard (Elgaria 

multicarinata) actively kills the Borrelia spirochetes (Kuo et al., 2000). However, the 

lizards’ role in the risk of human transmission is not fully understood. Swei et al. (2011) 

observed that when lizards were removed from a field site, the density of infected ticks 

was reduced because of a lack of hosts for larval and nymphal stages, and thereby 

reducing the risk of Borrelia exposure to humans. Although the lizards are incompetent 

reservoirs, they amplify the tick populations leading to potentially greater exposure to 

competent reservoir hosts as well as humans. Further investigation is necessary to 

elucidate the western fence lizard’s role in Lyme disease transmission risk. 

Understanding the physiological factors that affect the borreliacidal capacity of S. 

occidentalis can help efforts to map the spread of Lyme disease, understand its disease 
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ecology, and predict how regimes may change with climate change and habitat 

fragmentation.  

In this study we found that lizard host age class, field site, and visible tick load 

significantly affect their ability to kill Borrelia burgdorferi. However, the reasons for 

these observed effects are not fully understood. Future studies should work to determine 

the mechanisms by which these observed effects create this effect. Lizard mass, field site, 

and tick load may vary along with one another and teasing apart the effects of each may 

be difficult. Greater sample sizes, accurate ectoparasite counts, and modeling techniques 

may help elucidate the effects of these factors. 
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APPENDICES 

Appendix A: Tables 

Table 1: The known vertebrate hosts of Ixodes pacificus adults (A), nymphs (N), and larvae (L) (compiled from Castro and Wright, 
2007. Hosts marked with an asterisk (*) are compiled from Newman et al. 2015 with no stage data available. Each hosts’ competency 
to Borrelia burgdorferi sensu stricto is noted if known. Competency to Borrelia burgdorferi sensu lato (BSSL) if known and the 
source of which is provided. 

 
Host Scientific Name Host Common Name Tick Stage Borrelia Competency Source 
Class Reptilia     
Aspidoscelis tigris Western whiptail N, L   

Elgaria caerulea Northern alligator lizard N, L   

Elgaria multicarinata Southern alligator lizard N, L   

Elgaria sp. Alligator lizard A, N, L Competent Kuo et al. 2000 

Eumeces gilberti Gilbert’s skink N, L Possibly Competent Levin et al. 1996 

Eumeces skiltonianus Western skink N, L Possibly Competent Levin et al. 1996 

Sceloporus graciosus Sagebrush lizard N, L Incompetent  

Sceloporus occidentalis Western fence lizard N, L Incompetent Kuo et al. 2000 

Uta stansburiana Common side-blotched lizard N, L   

Class Aves     
Agelaius phoeniceus Red-winged blackbird *   

Aimophila ruficeps Rufous-crowned sparrow N, L   

Aphelocoma californica Western scrub jay N, L   

Baeolophus inornatus Oak titmouse N, L Competent Newman et al. 2015 

Callipepla californica California quail N, L   

Carduelis psaltria Lesser goldfinch L Competent Newman et al. 2015 
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Host-Scientific Name Host Common Name Tick Stage Borrelia Competency Source 
Carpodacus mexicanus House finch L   

Carpodacus purpureus Purple finch N, L   

Catharus ustulatus Swainson’s thrush N, L   

Certhia americana Brown creeper N, L   

Chamaea fasciata Wrentit L   

Chondestes grammacus Lark sparrow N, L   

Colaptes auratus Northern flicker N, L   

Contopus sordidulus Western wood-pewee *   

Corvus brachyrhynchos American crow N, L   

Cyanocitta stelleri Steller’s jay N, L   

Dendroica nigrescens Black-throated gray warbler L Competent Newman et al. 2015 

Empidonax difficilis Pacific-slope flycatcher *   

Euphagus cyanocephalus Brewer’s blackbird L   

Icterus bullockii Bullock’s oriole N, L   

Junco hyemalis Dark-eyed junco A, N, L Competent Newman et al. 2015 

Melanerpes formicivorus Acorn woodpecker N, L   

Meleagris gallopavo Wild turkey N   

Melospiza melodia Song sparrow N, L   

Myiarchus cinerascens Ash-throated flycatcher L   

Otus kennicottii Western screech owl N, L   

Passerella iliaca Fox sparrow N, L   

Passerina amoena Lazuli bunting N, L   

Pheucticus melanocephalus Black-headed grosbeak N, L Competent Newman et al. 2015 

Picoides nuttallii Nuttall’s woodpeckers L   

Pipilo crissalis California towhee N, L   

Pipilo maculatus Spotted towhee N, L   
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Host-Scientific Name Host Common Name Tick Stage Borrelia Competency Source 
Piranga ludoviciana Western tanager *   

Psaltriparus minimus Bushtit L   

Sialia mexicana Western bluebird N Competent Newman et al. 2015 

Sitta carolinensis White-breasted nuthatch N, L   

Spizella passerina Chipping sparrow N, L   

Sturnus vulgaris European starling N, L   

Thryomanes bewickii Bewick’s wren A, N, L Competent Newman et al. 2015 

Toxostoma redivivum California thrasher N, L   

Troglodytes aedon House wren N, L   

Troglodytes troglodytes Winter wren N   

Turdus migratorius American robin N, L   

Vermivora celata Orange-crowned warbler L Competent Newman et al. 2015 

Vermivora ruficapilla Nashville warbler L   

Vireo cassinii Cassin’s vireo N Competent Newman et al. 2015 

Vireo gilvus Warbling vireo N, L   

Vireo huttonii Hutton’s vireo N, L   

Wilsonia pusilla Wilson’s warbler N   

Zonotrichia atricapilla Golden-crowned sparrow N, L Competent Newman et al. 2015 

Zonotrichia leucophrys White-crowned sparrow N, L   

Class Mammalia     

Axis axis Axis deer A   

Bos taurus Cow A BBSL Anderson, 1988 

Canis familiaris Dog A, N BBSL Anderson, 1988 

Canis latrans Coyote A   

Capra hircus Goat A   

Cervus elapus nannodes Tule elk A   
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Host-Scientific Name Host Common Name Tick Stage Borrelia Competency Source 
Chaetodipus californicus California pocket mouse A, N, L   

Chaetodipus fallax San Diego pocket mouse L   

Chaetodipus penicillatus Desert pocket mouse N   

Chaetodipus spinatus Spiny pocket mouse L   

Dama dama Fallow deer A   

Didelphis virginiana Virginia opossum N, L BBSL Anderson, 1988 

Dipodomys agilis Pacific kangaroo rat L   

Dipodomys californicus California kangaroo rat N, L   

Dipodomys deserti Desert kangaroo rat A, N   

Dipodomys venustus Narrow-faced kangaroo rat N   

Equus caballus Horse A BBSL Anderson, 1988 

Equus hybrid Mule A   

Felis catus Cat A, N BBSL Anderson, 1988 

Glaucomys sabrinus Northern flying squirrel L   

Homo sapiens Human A, N, L   

Lepus californicus Black-tailed jackrabbit A, N, L   

Lynx rufus Bobcat A   

Microtus californicus California vole A, N, L   

Microtus townsendii Townsend’s vole L   

Mus musculus House mouse L   

Mustela frenata Long-tailed weasel A   

Neotoma fuscipes Dusky-footed woodrat A, N, L   

Neotoma lepida Desert woodrat A, N, L   

Odocoileus virginianus White-tailed deer  BBSL Anderson, 1988 

Odocoileus h. columbianus Columbian black-tailed deer A, N, L   

Peromyscus boylii Brush mouse N, L   
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Host-Scientific Name Host Common Name Tick Stage Borrelia Competency Source 
Peromyscus californicus California mouse N, L   

Peromyscus eremicus Cactus mouse N, L   

Peromyscus maniculatus Deer mouse N, L   

Peromyscus truei Pinyon mouse N, L   

Procyon lotor Raccoon A, N BBSL Anderson, 1988 

Puma concolor Mountain lion A, N   

Rattus rattus Black rat N, L   

Reithrodontomys megalotis Western harvest mouse A, N, L   

Scapanus latimanus Broad-footed mole L   

Sciurus griseus Western gray squirrel N, L   

Sorex vagrans Vagrant shrew L   

Spermophilus beecheyi California ground squirrel A, N, L   

Sus scrofa Wild pig A   

Sylivagus audubonii Audubon’s cottontail A   

Sylivagus bachmani Brush rabbit N, L   

Tamias quadrimaculatus Long-eared chipmunk N   

Tamias senex/ochrogenys Allen’s/Yellow-cheeked 

 

N, L   

Tamias sonomae Sonoma chipmunk N, L   

Taxidea taxus American badger A   

Urocyon cinereoargenteus Gray fox A   

Urocyon littoralis Island gray fox A, N   

Ursus americanus Black bear A   

Peromyscus leucopus White-footed mouse  BBSL Anderson, 1988 

Tamias striatus Eastern chipmunk  BBSL Anderson, 1988 

Ammotragus lervia Wild sheep  BBSL Anderson, 1988 

Sciurus carolinensis Gray squirrel  BBSL Anderson, 1988 
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Table 2: Collection dates, locations, sample sizes, and age class of Sceloporus 
occidentalis from which blood samples were taken. A subset of these lizards was used for 
the borreliacidal assay. 

Date Site # of Males # of Females 

Adults 
9/15/2012 Poly 

 

17 24 
9/16/2012 Poly 

 

6 2 
9/22/2012 Chimineas 30 20 
4/13/2013 Poly 

 

34 19 
4/20/2013 Chimineas 20 24 

Juveniles 
8/15/2013 Poly 

 

1 1 
8/19/2013 Poly 

 

8 3 
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Table 3: Sample sizes and mean corrected percent mortality (KC) ± 1 SEM of adult 
Sceloporus occidentalis across both sites and seasons. KC is a metric for the borreliacidal 
capacity of S. occidentalis. 

  Fall 2012 Spring 2013 

Site Sex n KC ± SE n KC ± SE 

Poly Canyon 
Male 4 24.7 ± 12.3 8 39.3 ± 11.4 

Female 8 19.5 ± 4.5 9 60.6 ± 14.4 

Chimineas 
Male 9 61.8 ± 15.2 5 40.4 ± 19.0 

Female 5 62.3 ± 15.7 9 56.0 ± 11.7 
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Table 4: Sample sizes and mean corrected percent mortality (KC) ± 1 SEM of all juvenile 
Sceloporus occidentalis from Poly Canyon in Fall 2013.  

Sex n KC ± 1 SEM 

Males 9 3.4 ± 3.7 

Females 4 -1.8 ± 2.4 
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Table 5: Statistical values from the Tukey-Kramer HSD post-hoc test on the borreliacidal 
capacity of adult Sceloporus occidentalis experimental groups.  

^MPF = Males from Poly Canyon in Fall 2012; FPF = Females from Poly Canyon in Fall 2012, 
MCF = Males from Chimineas in Fall 2012; FCF = Females from Chimineas in Fall 2012; MPS = Males 
from Poly Canyon in Spring 2013; FPS = Females from Poly Canyon in Spring 2013; MCS = Males from 
Chimineas in Spring 2013; FCS = Female from Chimineas in Spring 2014. 

Comparison To Difference Std Err 
Dif 

Lower CL Upper CL p-Value 

FCF FPF 1.188632 0.5079409 -0.42067 2.797938 0.2941 
FPS FPF 1.137353 0.4329420 -0.23433 2.509040 0.1716 
FCS FPF 1.075559 0.4329420 -0.29613 2.447246 0.2268 
FCF MPF 1.064834 0.5976924 -0.82883 2.958499 0.6351 
FPS MPF 1.013556 0.5354167 -0.68280 2.709913 0.5622 
MCF FPF 1.012695 0.4329420 -0.35899 2.384382 0.2946 
FCF MPS 0.961375 0.5217087 -0.69155 2.614301 0.5952 
FCS MPF 0.951762 0.5354167 -0.74460 2.648119 0.6376 
FPS MPS 0.910096 0.4490154 -0.51252 2.332708 0.4754 
MCF MPF 0.888897 0.5354167 -0.80746 2.585254 0.7118 
FCS MPS 0.848302 0.4490154 -0.57431 2.270914 0.5647 
MCF MPS 0.785438 0.4490154 -0.63717 2.208050 0.6559 
FCF MCS 0.692608 0.5635098 -1.09276 2.477972 0.9191 
FPS MCS 0.641330 0.4969690 -0.93321 2.215873 0.8979 
FCS MCS 0.579535 0.4969690 -0.99501 2.154079 0.9376 
MCF MCS 0.516671 0.4969690 -1.05787 2.091214 0.9657 
MCS FPF 0.496024 0.5079409 -1.11328 2.105329 0.9757 
MCS MPF 0.372226 0.5976924 -1.52144 2.265891 0.9984 
MCS MPS 0.268767 0.5217087 -1.38416 1.921693 0.9995 
MPS FPF 0.227257 0.4611297 -1.23374 1.688251 0.9996 
FCF MCF 0.175937 0.4969690 -1.39861 1.750480 1.0000 
FPS MCF 0.124658 0.4200154 -1.20607 1.455390 1.0000 
MPF FPF 0.123798 0.5456161 -1.60487 1.852469 1.0000 
FCF FCS 0.113073 0.4969690 -1.46147 1.687616 1.0000 
MPS MPF 0.103460 0.5584558 -1.66589 1.872811 1.0000 
FCS MCF 0.062864 0.4200154 -1.26787 1.393596 1.0000 
FPS FCS 0.061794 0.4200154 -1.26894 1.392526 1.0000 
FCF FPS 0.051279 0.4969690 -1.52326 1.625822 1.0000 
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Table 6: Statistical values from the Tukey-Kramer HSD post-hoc test on the body 
condition of adult Sceloporus occidentalis experimental groups.  

^MPF = Males from Poly Canyon in Fall 2012; FPF = Females from Poly Canyon in Fall 2012, 
MCF = Males from Chimineas in Fall 2012; FCF = Females from Chimineas in Fall 2012; MPS = Males 
from Poly Canyon in Spring 2013; FPS = Females from Poly Canyon in Spring 2013; MCS = Males from 
Chimineas in Spring 2013; FCS = Female from Chimineas in Spring 2014. 

Comparison To Difference Std Err 
Dif 

Lower CL Upper CL p-Value 

FCS FPF 3.556289 0.6988112 1.34225 5.770328 0.0002* 
FCS MPF 2.805385 0.8642155 0.06730 5.543473 0.0410* 
MPS FPF 2.299135 0.7443089 -0.05905 4.657323 0.0608 
MCF FPF 2.243119 0.6988112 0.02908 4.457158 0.0450* 
FCS FPS 2.242677 0.6779464 0.09474 4.390610 0.0350* 
MCS FPF 1.944106 0.8198668 -0.65347 4.541684 0.2786 
FCF FPF 1.812966 0.8198668 -0.78461 4.410544 0.3635 
FCS FCF 1.743323 0.8021570 -0.79814 4.284792 0.3855 
FCS MCS 1.612184 0.8021570 -0.92928 4.153652 0.4863 
MPS MPF 1.548230 0.9014029 -1.30768 4.404139 0.6761 
MCF MPF 1.492215 0.8642155 -1.24587 4.230302 0.6703 
FPS FPF 1.313612 0.6988112 -0.90043 3.527651 0.5709 
FCS MCF 1.313170 0.6779464 -0.83476 3.461103 0.5334 
FCS MPS 1.257155 0.7247552 -1.03908 3.553392 0.6653 
MCS MPF 1.193201 0.9647347 -1.86336 4.249763 0.9166 
FCF MPF 1.062061 0.9647347 -1.99450 4.118623 0.9535 
MPS FPS 0.985522 0.7247552 -1.31071 3.281759 0.8705 
MCF FPS 0.929507 0.6779464 -1.21843 3.077440 0.8656 
MPF FPF 0.750904 0.8806782 -2.03934 3.541151 0.9888 
MCS FPS 0.630494 0.8021570 -1.91097 3.171962 0.9931 
FPS MPF 0.562708 0.8642155 -2.17538 3.300796 0.9978 
FCF FPS 0.499354 0.8021570 -2.04211 3.040822 0.9984 
MPS FCF 0.486169 0.8420894 -2.18182 3.154155 0.9990 
MCF FCF 0.430153 0.8021570 -2.11132 2.971622 0.9994 
MPS MCS 0.355029 0.8420894 -2.31296 3.023015 0.9999 
MCF MCS 0.299013 0.8021570 -2.24246 2.840482 0.9999 
MCS FCF 0.131140 0.9095606 -2.75061 3.012894 1.0000 
MPS MCF 0.056016 0.7247552 -2.24022 2.352252 1.0000 
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Appendix B: Figures 

 

Figure 1: Mean borreliacidal capacity (KC) for male (M) and female (F) Sceloporus 
occidentalis from Poly Canyon and Chimineas for Fall 2012 and Spring 2013 showed a 
significant effect of site, but non-significant effects of season and sex.  Numbers within 
the bars represent sample size (N). Data backtransformed to original values. Error bars 
represent 1 SEM. 
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Figure 2: Adult S. occidentalis had a significantly higher mean tick loads at Poly Canyon 
than at Chimineas Ranch in spring but remained low at both sites in fall. Tick load 
represents the mean number of subadult ticks on individual lizards. Numbers within or 
above the bars represent sample size (N). Error bars represent 1 SEM. 
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Figure 3: Adult S. occidentalis had significantly higher mean borreliaciadal capacity 
(KC) than juveniles. Numbers within or above the bars represent sample size (N). Error 
bars represent 1 SEM. 
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