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ABSTRACT 

Effect of Surfactant Architecture on Conformational Transitions of Conjugated 

Polyelectrolytes 

Gregory Braggin 

Water soluble conjugated polyelectrolytes (CPEs), which fall under the category 

of conductive polymers, possess numerous advantages over other conductive materials 

for the fabrication of electronic devices. Namely, the processing of water soluble 

conjugated polyelectrolytes into thin film electronic devices is much less costly as 

compared to the processing of inorganic materials. Moreover, the handling of conjugated 

polyelectrolytes can be performed in a much more environmentally friendly manner than 

in the processing of other conjugated polymers because conjugated polyelectrolytes are 

water soluble, whereas other polymers will only dissolve in toxic organic solvents. The 

processing of electronic devices containing inorganic constituents such as copper indium 

gallium selenide (CIGS), is much more expensive and poses much greater environmental 

risks because toxic metals may be released into landfills or waterways upon cell 

disposal.75 Because conjugated polyelectrolytes enjoy an assortment of advantages over 

other materials for the manufacturing of thin film electronic devices, there is globally 

vested interest in the researching of their properties. Despite the fact that CPEs can serve 

as efficient electron transport mediums, devices such as organic solar cells cannot realize 

their highest efficiencies unless the morphology of CPEs is precisely controlled. Charged 

surfactants can electrostatically and ionically interact with CPEs, and when introduced in 
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specific concentrations, molar ratios, and temperature ranges, will aid in a ‘coil to rod’ 

transition of the CPE, wherein polymer chains undergo intramolecular transitions to 

obtain rigid-rod morphologies. The kinetics and thermodynamics of the ‘coil to rod’ 

transition are heavily dependent upon the type(s) of charged surfactant complexed with 

the CPE (i.e. on the surfactant architecture). By performing UV/Vis Spectroscopy and 

Fluorometry on dilute polymer/surfactant solutions, Polarized Optical Microscopy 

(POM) and Small Angle X-Ray Scattering (SAXS) on high concentration 

polymer/surfactant solutions, and Differential Scanning Calorimetry (DSC) and X-Ray 

Diffraction (XRD) on solid-state polymer/surfactant samples, the role of various 

surfactant architectures on the kinetics and thermodynamics of the ‘coil to rod’ transition 

was studied. The liquid crystalline physical properties and the extent of solid state 

crystallinity were also investigated. Through an analysis of the data obtained from these 

various techniques, it was found that the ‘coil to rod’ transition is progressively favored 

when the alkyl chain length of a single tailed surfactant is sequentially increased, and that 

as the concentration of double-tailed surfactant increases, the ‘coil to rod’ transition is 

negated.  
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1. Introduction 

1.1 History of Conducting Polymers 

For decades, many in the field of Chemistry had doubted the possibility of 

synthesizing long chain macromolecules and had queried the existence of conducting 

organic molecules. In 1920, a letter was written to Hermann Staudinger refuting his belief 

that a macromolecule could exist, as Staudinger had made a prior claim that rubbers, 

starches, and cellulosic entities were long chains of short repeating molecular units 

connected by covalent bonds.1 Many were skeptical of the findings within the field of 

polymer science during the mid-20th century and could not fathom how organic long 

chain molecules could conduct electricity. In the 1970s, however, conducting organic 

molecular crystals were discovered when planar molecules with delocalized systems of π-

electrons yielded noticeable conductivity. TTF-TCNQ (tetrathiofulvalene-7, 7, 8, 8-

tetracyano-p-quinodimethane) was one of the first organic materials to have recognizable 

conductivity, due to its electron deficiency and the ease with which it could form an 

anion radical. A charge transfer complex formed when TTF (a donor) was bonded to 

TCNQ (an acceptor); TTF-TCNQ was also found to crystallize into independent stacks, 

wherein a three dimensional charge transfer network could be created.2 An even larger 

breakthrough in the discovery of conducting organic molecules came in the late 1970s 

when Hideki Shirakawa et. al. found that polyacetylene could become highly conductive 

upon incorporation of electron donating or accepting molecules.3 

Shirakawa and coworkers Alan G. MacDiarmid and Alan J. Heeger worked to 

better understand how a polymer could deliver marked increases in conductivity upon the 
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introduction of dopants. After further study, it was found that the alternation between 

single and double bonds led to a delocalization of electron density in between adjacent p-

orbitals, commonly referred to as a π-bond. A dopant is analogous to a charge carrier in 

that mobile electrons or holes are created when a dopant is injected into a material. A 

‘hole’ is simply a formalism describing a site that has an absence of an electron. When an 

electron from a neighboring position moves to fill a hole, a new hole is simultaneously 

created and charge thus migrates automatically across long distances3—this effect caused 

by doping caught the attention of many researchers. MacDiarmid decided to investigate 

in detail the effects of doping on conductive properties and found that by adding small 

amounts of iodine to polyacetylene, conductivity could be enhanced up to sevenfold. By 

tailoring the ratio of cis/trans bonds, better orientations of the polymer chains could be 

realized and even greater conductivities attained. By the early 1980s, other polymers such 

as polypyrrole, polythiophene and associated derivatives, polyphenylenevinylene, and 

polyaniline were discovered and proved to have noteworthy conductivities. 

Polythiophene and polypyrrole differ from polyacetylene in that their conductivities are 

not quite as high as polyacetylene, yet they are still viable for producing flexible organic 

electronic devices.3 

In the present day, thin film electronics and biosensors are a few amongst a 

plethora of different applications for conjugated polymers. Further research has led to the 

optimization of the mechanical flexibility and thermal stability of conductive polymers, 

and as such, they have been successfully implemented into devices such as light emitting 

diodes (LEDs) and supercapacitors.4 Large area films of conductive polymers are 

routinely synthesized during the modern era via electrochemical or other synthetic 
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techniques such as Kumada catalyst transfer polymerization or Grignard metathesis 

polymerization.5 Continuous flow synthetic methods of conductive polymers are 

becoming increasingly favored over regular batch methods, as rapid synthesis has been 

achieved in industrial settings through Suzuki-Miyaura and Stille coupling reactions 

wherein molecular weight and regioregularity can be tightly controlled. Due to the facile 

large scale synthesis methods that have been developed, the scaling up of devices 

containing conductive polymers has occurred at unprecedented rates and production costs 

have dwindled.5 In large measure, the development of low cost methods for synthesizing 

conductive organic macromolecules has led to the advent of organic-based electronic 

devices that are beginning to rival both the cost and durability of inorganic analogues.81  

Polymer incorporation into organic electronic devices is considered to be a 

necessary step in the device integration process; in modern day dye-sensitized solar cells 

(DSSCs), conductive polymers are employed as electron transfer mediators or as 

photoreceptors to enhance device efficiency.6 The heavy weight, high cost, and lack of 

flexibility associated with silicon or other inorganic based solar cells have compelled 

researchers to investigate the properties of several conductive polymers currently 

employed in solar cells, biosensors, biofuel cells, LEDs, and a variety of other electronic 

devices. Poly 5, 2’: 5’, 2”-terthiophene-3’-carboxylic acid (poly-TTCA), poly 3’-cyano-

5,2’: 5’,2”-terthiophene (poly-CTT), and poly 3’,4-diamino-2,2’: 5’,2”-terthiophene 

(poly-DATT) are a few of many polymeric samples to have demonstrated 

photosensitizing capabilities superior to inorganic materials such as ruthenium. 

Furthermore, polymer structures may be modified through synthesis techniques to reduce 

steric hindrance and to establish greater effective conjugation lengths, ultimately leading 
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to the enhancement of electron transferring capabilities.6 In Figure 1.1, a [2,2’: 5’, 2”-

terthiophene-3’(p-benzoic acid)]  (pTTBA) conductive polymer dye is illustrated as being 

incorporated into a dye sensitized solar cell device, wherein it is in contact with an I3
-/I- 

electrolyte, which may serve as a dopant.  

 

Figure 1.1: pTTBA dye incorporated into a dye sensitized solar cell device, 

followed by an illustration of the molecular structures of the respective HOMO 

and LUMO levels.23 

 

1.2 The Mechanisms of Conductivity in Conjugated Polymers 

One must understand that the electron delocalization along adjacent p-orbitals is 

only one of several factors governing the conductivity of polymers. Regardless of charge 

delocalization due to the network of π-bonds along a polymeric backbone, charge 

transport will not be facile unless specific morphologies are attained. The ease of charge 
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transport is also dictated by variables such as doping levels; the effects of even a minor 

amount of doping are substantial, as conductivity can increase from 10-10 S/cm to greater 

than 0.1S/cm at less than a 1wt.% doping concentration.7 The energy level difference 

between the ground and excited state within a macromolecule such as a polymer is 

referred to as a bandgap between the valence band (lower energy state) and conduction 

band (higher energy state), whereas in a single molecule the lower energy state is the 

highest occupied molecular orbital (HOMO) and the higher energy state is the lowest 

unoccupied molecular orbital (LUMO). The bandgap of a polymer is substantially 

reduced upon doping in that electrons are removed from p-orbitals upon oxidation, and as 

such, electrons from adjacent p-orbitals will travel to fill in the vacancies, leading to a 

‘one-dimensional electronic band.’ In the ‘one-dimensional electronic band,’ charge 

mobility increases as vacancies are created. When the polymeric bandgap is lowered, the 

length of the rigid backbone referred to as an effective conjugation length (ECL) 

increases, wherein charge mobility is not impeded by kinks or traps. In Figure 1.2, the 

wide range of conductivities which a polymer may assume are listed.  

 

Figure 1.2: Conjugated polymers may exhibit electrical performance as 

insulators or as very strong conductors like transition metals.8 
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The conductivity of a conjugated polymer depends heavily on the doping level, as 

well as on the chemical identity of introduced dopants. Different dopants have dissimilar 

oxidation potentials, and when a certain chemical potential is applied, ‘electron hopping’ 

can easily occur along a polymeric backbone, leading to enhanced conductivity and 

optoelectronic performance. In an insulator, there is a very large bandgap between the 

valence and conduction bands, and in polymers with poor conductivity, the bandgap may 

be as high as 7.0 eV.9 The binding energy of electrons is much higher in insulators than 

in conductors, as valence electrons tend to possess much more attraction towards the 

nucleus as compared to traditional metal conductors, where valence electrons in the d-

orbitals are well removed from the atomic center. As is implied in Figure 2, conjugated 

polymers which are insulating may be made conductive through chemical doping, but the 

charge transport will not be continuous across three dimensions as it is for inorganic 

conductors. Instead, charge transport will only occur across one dimension for a 

conjugated polymer. Despite this limitation, charge transport can be as much as 100 times 

greater along the backbone of chains versus transport in between adjacent chains. 

Because charge transport is a one dimensional process in conjugated polymers, it is 

imperative to attain chain morphologies which are as straight as possible to mitigate 

charge trapping and annihilation effects. In Figures 1.3, 1.4, and 1.5, the molecular 

arrangements of the orbitals responsible for charge transport are depicted for conjugated 

polymers and inorganic conductors, respectively, as are the corresponding charge 

transport mechanisms.  
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Figure 1.3: Charge transport mechanism and energy band structure for a 

conjugated polymer (polypyrrole). Oxidation occurs upon doping, leading to the 

production of a polaron or a bipolaron. Upon heavy doping, continuous bipolaron bands 

may be formed, and over time, a merging of the upper and lower bipolaron bands may 

occur with the valence and conduction bands, leading to partially filled bands and 

metallic like conductivity.10 

As will be discussed in the latter portions of this report, π-π stacking contributes 

to strong electrostatic interactions between adjacent polymer chains, as well as to 

noteworthy aggregation behavior. Depending on the molecular structure of the polymer 
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and the surrounding environment (i.e. the solvent), π-π stacking may result in 

morphologies which do not favor charge transport, and as a consequence, several 

strategies are typically employed to tailor the polymer chain morphology to optimize 

charge transport. By applying electric or magnetic fields, mechanical shear force, or by 

introducing surfactant, the aggregation behavior due to the electrostatic π-π interactions 

can be mitigated and chains may more easily assume orientations with greater effective 

conjugation lengths (ECLs). In inorganic conductors, there is less of a necessity to 

precisely tune the morphology of one dimensional moieties such as polymer chains, as 

the three dimensional crystal structure typically allows for robust charge mobility. In 

Figure 1.5, a unit cell crystal structure of SrYCoO2 is depicted to demonstrate a three 

dimensional inorganic conductive network possessing a high degree of crystallinity.  

 

Figure 1.4: An illustration of the stacking between adjacent conjugated polymer 

chains. This stacking may allow for an aligned network to form (under certain 

circumstances), thus contributing to morphologies which favor charge transport.11 

 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://onlinelibrary.wiley.com/doi/10.1002/polb.v50.19/issuetoc&ei=7FQoVdiIFZHyoATr4IGYCw&bvm=bv.90491159,d.cGU&psig=AFQjCNEmNMADobiBleB8737uppgukDuqBQ&ust=1428792930576578
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Figure 1.5: A SrYCoO2 crystal structure. In inorganic conductors, a three-dimensional 

crystal network exists, leading to charge transport capabilities in all directions.12 

Nearly all conjugated polymers can be oxidized (p-type doping) or reduced (n-

type doping) via the introduction of electron acceptors or donors. Introducing an 

oxidizing agent such as iodine to a conjugated polymer like polyacetylene may lead to an 

increase in conductivity of about 10-5 to 10-2 S/cm.14 The doping mechanism is depicted 

in Figure 1.6. 
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Figure 1.6: The doping of polyacetylene. An electron-hole pair is created upon doping 

with I3
- (indicated by the dotted lines, wherein electron hopping is most likely to occur).13 

In Figure 1.6, one can notice the delocalization of the double bonds induced by iodine 

doping. The creation of an electron-hole pair or ‘polaron’ has led to increased charge 

mobility based on the rational of empty electron orbitals being continuously filled via the 

‘charge hopping’ mechanism discussed previously. Analogously, conductive polymers 

may be doped with electron donors to improve their charge transport capabilities. In 

Figure 1.7, poly(anthraquinonyl sulfide) (PAQS) is doped with Na+ ions from a Na based 

electrolyte. In modern applications, PAQS serves as a polymeric cathode or anode, and 

due to the ease with which it can be doped with Na+ electrochemically, low cost organic 

batteries are evolving within the marketplace.9 Charge storage capacities and charge 

transfer reaction capabilities have improved as a result of the PAQS n-type doping 

scheme.  
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Figure 1.7: poly(anthraquinonyl sulfide) (PAQS) being doped with a reducing agent 

(Na+), leading to polyelectrolyte formation and charge transport capabilities.9 

 Conjugated polymers may also be easily oxidized or reduced via other means 

such as electrochemical doping—by applying a DC power source between a positive 

electrode coated with conjugated polymer and a standard negative electrode such as 

graphite, doping can easily occur. It is necessary to fully immerse the positive and 

negative electrodes in an electrolyte solution that favors charge transport, such as LiClO4. 

A downside to electrochemical doping is that counter ions must be present in the solution 

in order to mitigate charge buildup; these counterions may cause distortions along the 

polymer backbone and may impede conductivity.9 In addition to doping polymers 

electrochemically, other methods such as photodoping may be employed. Electrons may 

be promoted from the valence band into the conduction band when a photon of sufficient 

energy is incident upon the polymer. Moreover, a potential difference may be applied 

during the irradiation to effectively separate electrons from holes, thus enhancing 

conductivity.9 One advantage of photodoping is that counter ions need not be introduced, 

and as a result, little distortion of the polymeric backbone or of the overall morphology 

occurs. Lastly, ‘non-redox’ doping may be employed as a means to enhance the 

conductivity of a conjugated polymer. In ‘non-redox’ doping, the bandgap of the polymer 

is the only parameter altered; there are no changes with respect to the number of electrons 

http://www.nature.com/srep/2013/130916/srep02671/fig_tab/srep02671_F3.html
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present along the polymer backbone. Polyaniline emraldine base (PANI-EB) may be 

protonated with aqueous protonic acids such as (C6H5)SO3H or HCl to produce 

conducting radical cations.14 Figure 1.8 provides an example of a polyaniline emraldine 

base being protonated with HCl, leading to the subsequent production of a conjugated 

polyelectrolyte of enhanced conductivity.  

 

 

Figure 1.8: The doping of polyaniline emraldine base with HCl to produce a 

polymeric radical cation. This ‘non-redox’ doping strategy is a very popular means to 

enhance backbone charge transport.21 

1.3 Tailoring the Morphology of Conjugated Polymers 

As mentioned earlier, the performance of polymeric electronic devices relies 

primarily upon the ability for the backbone morphology to assume a rigid and aligned 

conformation. Past research has confirmed certain factors governing the morphological 

behaviors of conjugated polymers, such solvent type, environment, and packing density. 

In a ‘good’ solvent, conjugated polymer chains will have an affinity to associate with the 

solvent chiefly due to similarities in polarity. Polymer chains will expand in a ‘good’ 

solvent due to the favorable thermodynamic interactions between the polymer and 

solvent; as such, the intermolecular interactions between individual polymer chains will 

be reduced and the chains will expand into a ‘coiled’ morphology. The choice of solvent 

N N N N 

H H 

n 

N N N N 

H H 

n 

2 n HCl 

Cl Cl 

(2.5) 



 

13 
 

will also play a crucial role in influencing the performance of organic photovoltaic 

devices, as the morphologies and thermal stabilities of the polymeric entities depend 

heavily upon the type of solvent utilized. Solvents such as o-dichlorobenzene (ODCB) or 

chlorobenzene (CB) have been observed to induce diffusion of phenyl-C61-butyric acid 

methyl ester (PCBM) nanodomains with poly(3-hexylthiophene-2,5-diyl) (P3HT) to 

enhance device efficiency, where PCBM and P3HT are electron acceptors and donors, 

respectively.22 Because ODCB is a relatively non-polar solvent, it will only partially 

dissolve conjugated polyelectrolytes such as poly[3-(potassium-6-hexanoate)thiophene-

2,5-diyl] (P3KHT), and as such, it is deemed a ‘poor’ solvent. Thermodynamically, it is 

more favorable for the P3KHT chains to adopt a rod-like morphology in a ‘poor’ solvent 

as compared to an expanded coiled morphology; past studies have demonstrated that 

higher fractions of microcrystals with ordered conformations are promoted in poorer 

solvents.76 In essence, the intermolecular interactions between individual P3KHT chains 

are more favorable energetically than are the interactions between P3KHT and the ‘poor’ 

solvent. In the solution based processing of organic photovoltaic devices, the choice of 

solvents can dictate overall device performance, and ‘poor’ solvents can aid in the 

formation of self-assembled rod-like morphologies of polymer chains. In reality, 

however, only a few solvents are feasible for usage in device fabrication because factors 

such as toxicity and cost rule out the use of most solvents.  

Water can be classified as a usable solvent for solution based processing of 

organic photovoltaic devices. Water is both polar and readily available, and under normal 

conditions, it is deemed as a ‘good’ solvent for P3KHT. Due to the widespread 

availability and low toxicity of water, large area thin film solar cells can be fabricated via 
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liquid based processing—spin coating, doctor blading, ink jet printing, screen printing, 

and reel-to-reel processing are a few of the many device assembly techniques possible 

with water as a solvent.23 Time and again, water has demonstrated to be a viable solvent 

for the solution based processing of organic photovoltaic devices. In a study by Qiao et. 

al., the water soluble polymer PTEBS and anatase TiO2 nanocrystals were blended 

together and spin coated onto a fluorine doped tin oxide (FTO) substrate, serving as the 

cathode. A gold contact was evaporated on top of the PTEBS/TiO2 layer to serve as the 

anode and a voltage was applied between the anode and cathode. The study found that the 

efficiency of the device based on water processing rivaled the efficiencies of devices that 

had been processed from organic solvents. In Table 1, device efficiencies are listed for 

cells that were processed from different solvents, and in Figure 1.9, a schematic is 

provided of the PTEBS/TiO2 based solar cell.  

Table 1: Photovoltaic Device Efficiencies for TiO2/Polymer Solar Cells Processed 

from Various Solvents.24 

 

 

 

Polymer JSC (mA/cm2) VOC (V) FF η (%) Ref. 

P3UBT 

(Solvent-based) 

0.45 0.67 0.29 0.10 (69) 

MEH-PPV 

(Solvent-based) 

0.40 1.1 0.42 0.18 (70) 

TPD(4M)-

MEH-M3EH-

PPV 

(Solvent- 

Based) 

0.96 0.86 0.50 0.41 (71) 

P3HT 

(Solvent-based) 

2.76 0.44 0.36 0.42 (72) 

PTEBS (Water-

based) 

0.17 1.0 0.8 0.17 (73) 
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Figure 1.9: A photovoltaic device based on a TiO2 (acceptor) and PTEBS (donor) 

heterojunction. The device was processed from a water based solution.63 

 

When P3KHT is first dissolved in water, the anionic carboxylate moieties of 

P3KHT interact electrostatically with the dipole moment of water, and the P3KHT chains 

exist in the coiled form. The P3KHT chains are also aggregated with respect to one 

another based on π-π stacking interactions. This aggregation behavior is evidenced by the 

lack of measurable fluorescent intensity, as intermolecular charge transfer yields non-

radiative responses to excitation.24,25 Because water is a ‘good’ solvent for conjugated 

polyelectrolytes such as P3KHT, rod-like morphologies necessary for optimum 

photovoltaic device performance will not be attained unless various methods are utilized 

to modify the morphology. The use of charged surfactants can aid drastically in tuning 

the morphology of the coiled polymer chains in water, and hence water can remain a 

feasible and cost effective solvent for device processing. Surfactants in effect serve as 

‘morphology modifiers’ because conformational transitions of the polymer chains may 

occur in their presence. The so called ‘coil to rod’ transition upon surfactant addition is a 

phenomenon that has garnered the attention of polymer scientists for many years in that 

the formation of microphases and gels can occur, accompanied by a modification of 
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rheological and optoelectronic properties.27 The transition of individual polymer chains 

from coiled to rod form does not occur above certain concentrations, as excessive 

electrostatic repulsions prevent a continuous network of aligned chains. Moreover, the 

rod-like morphology will not occur above a certain temperature, treating all other 

variables as fixed, because the increased entropy disrupts the intermolecular interactions 

between chains. Based on the Gibbs free energy relationship of ΔG = ΔH – TΔS, the 

increase in entropy upon solution heating outweighs the enthalpic cost of disrupting the 

aligned rod network, and the coiled morphology is thermodynamically favored. Lastly, 

the architecture of the surfactant plays a crucial role in dictating the assumed morphology 

of the polymer chains. In general, single chain cationic surfactants with a longer alkyl 

backbone chain length will favor the formation of rod-like morphology. When a single 

tail cationic surfactant such as cetyltrimethylammonium bromide (CTAB) is combined 

with a double-tail cationic surfactant such as dihexadecyldimethylammonium bromide 

(DHAB), rod-like morphology is only favored for very high molar ratios of CTAB: 

DHAB.51 

In addition to using surfactant for tuning the morphology of conjugated polymers 

for electronic applications, electric or magnetic fields may also be applied. Through 

molecular rotation, the dipole moments of individual molecules tend to align with the 

externally applied field. In Figure 1.10, a rod-like molecule is seen to align with an 

externally applied magnetic field—this occurrence is termed diamagnetic susceptibility.  
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Figure 1.10: The magnetically induced alignment of a polymeric entity. Depending 

on the strength of the magnetic field, precise degrees of chain alignment may occur.28 

 

The morphology of semiconducting polymers within composite films can be tuned by 

magnetic-field directed assembly, as many research groups have aligned Co-doped ZnO 

nanowires with negative paramagnetic anisotropy.29 The semiconducting polymer chains, 

aligned with the ZnO nanowires, adopt the magnetically induced aligned morphology. 

However, upon sample rotation, degeneracy is broken and well-aligned mesophases with 

hexagonal structure are obtained; as a result, routes for the fabrication of nanoporous 

membranes that can be utilized for sensing and template syntheses have become more 

robust.29 Electric fields have also been routinely used to alter polymer chain morphology. 

In a study by Lucas et. al., the charge transport properties and hence the alignment of 

nanocomposite films were altered via an applied electric field. In addition to having 

enhanced charge mobilities due to the addition of carbon nanotubes (CNTs), P3HT films 

can realize their optimal charge transport mobilities upon an applied electric field; as 

such, organic field effect transistors are becoming increasingly viable.30 More studies 

accentuate using an electric field to establish a control of morphology—a macroscopic 

alignment of polymer nanofibers parallel to the fiber axis was also induced by an electric 
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field in one study.31 The mechanical and conductive properties of polymers can be greatly 

enhanced through the increase in anisotropy induced by an applied electric field, and the 

fabrication of devices utilizing expansive networks of conductive polymers such as 

biomedical sensors, electrochromic devices, semiconductors, MEMS, and optical devices 

has become increasingly routine as a result of applied electric field methods. In Figure 

1.11, the deformation of a spherical drop of water is observed upon the application of an 

electric field of increasing magnitude.  

 

Figure 1.11: Electric Field and Orientation. a) A spherical drop of water deposited on 

top of a conjugated dielectric polymer layer deforms as the magnitude of an externally 

applied electric field is increased. b) For most circumstances, there is a memory effect 

after the removal of an electric field (i.e. the drop cannot deform into its original shape). 

c) Contours representative of electric field magnitude surround the drop; specific colors 

denote the intensity of the electric field, as seen in the scale bar to the far right.77 
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UV/Vis spectrophotometry is the primary characterization technique for 

elucidating the morphology of conjugated polymers in solution because it provides 

indirect evidence of conformational state based on the wavelengths of light absorbed. 

Information relevant to electronic transitions within atoms can be obtained because upon 

the absorption of suitable energy from an incident light source, electrons will become 

excited from a lower energy state to a higher excited state.32 The extension of conjugation 

length in a conjugated polymer leads to an enhancement (in terms of absorption 

intensity), and to a red-shift of the absorption spectrum.32 Various methods can be 

employed to increase the effective conjugation length or intermolecular packing of 

polymers such as regio-regular P3HT; annealing has been performed reliably to tune 

chain alignment. In one study, Kang et. al. controlled the orientation of conjugated 

polymers in the active layer of organic thin-film transistors (OTFTs) by annealing the 

film at its melting temperature in a vertically aligned multiwalled carbon nanotube (VA-

CNT) template.33 Annealing can effectively enhance the crystallinity of a conjugated 

polymer network, as can the addition of multi-walled carbon nanotubes. In nearly all of 

these methods utilized to alter the effective conjugation lengths of polymer, UV/Vis 

spectroscopy is exploited for proof of a change in electronic bandgap magnitude. The 

‘coil to rod’ transition of P3KHT can be probed over time using UV/Vis spectroscopy 

because the wavelength of maximum absorption of the complex increases as a function of 

time into the ‘red-shifted’ region of approximately 600nm. Before devices are assembled 

or manufactured on large scale levels, UV/Vis spectroscopy is routinely performed to 

assess the optoelectronic properties of solution cast thin films, and the morphology is 

appropriately adjusted based on UV/Vis spectrophotometric results.33 
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1.4 Applications of Conductive Polymers 

As mentioned previously, the discovery of conductive polymers by Heeger et. al. 

transformed the world of renewable energy and materials science in that cheaper 

alternative materials for photovoltaic device manufacturing became obtainable. Instead of 

having to utilize inorganic materials which are typically expensive, environmentally 

unfriendly, and oftentimes toxic, scientists could rely upon the fact that cheaper organic 

materials (i.e. conductive polymers) could be employed as electron transport media in 

photovoltaic devices. Much progress has been made since the initial discovery of 

conductive polymers by Heeger et. al., as organic photovoltaic devices are being 

researched around the world by scientists who are striving to engineer the efficiency of 

the devices to match that of current inorganic solar cells, based on materials such as 

copper indium gallium selenide (CIGS), or crystalline Silicon. The maximum attainable 

device efficiency of modern day organic solar cells is inhibited by a series of challenges, 

one of which is the control of polymeric morphology. If discoveries are made so as to 

create fully aligned networks of conductive polymers, device efficiencies would likely 

climb sharply. Herein, specific applications of conductive polymers will be presented, 

including, but not limited to: organic photovoltaic devices (OPVs), light emitting diodes 

(LEDs), chemical sensors, and organic field effect transistors (OFETs).  

 Conductive polymers are perhaps most popularly used for the photoactive layers 

in organic photovoltaic devices (OPVs). The rapidity of processing OPVs via roll-to-roll 

or solution based methods is a significant advantage, as more advanced, costly, and time 

consuming processing steps such as chemical vapor deposition (CVD) are involved in the 

fabrication of other devices.34 In nearly all polymer solar cells, the photoactive layer 
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consists of an electron donor and acceptor, wherein conjugated polymers such as 

polythiophene or polyphenylene serve as typical donor materials. Electron acceptor 

materials are usually fullerene (C60) derivatives and generally possess a lowest 

unoccupied molecular orbital (LUMO) energy of 0.3-0.4 eV lower than that of the 

donor.36 While the combination of P3HT and the C60 derivative of [6,6]-phenyl-C61-

butyric acid methyl ester (PCBM) has led to the fabrication of devices with efficiencies 

beyond 5%, there are other factors that govern the overall device efficiency, such as 

molecular weights, polydispersity, regiochemistry, extent of heat treatment, application 

of electric field, type(s) of solvent added, and the presence of additional additives such as 

oleic acid.36 The molecular structures of either the donor or acceptor may be altered to 

tune device performance; in one study, instead of simply employing P3HT as a donor, a 

copolymer consisting of alternating thiophene and cyanovinylene 4-nitrophenyl side 

segments was employed to enhance the power conversion efficiency (PCE). An increase 

of 3.7% in photovoltaic device efficiency was realized upon the introduction of this 

copolymer as a donor material.36 Other details related to molecular structure alter device 

performance, as an increase in the length of conjugated side chains along the donor 

material was observed to cause a red-shift of the UV/Vis absorption spectrum.36 As 

changes in the molecular structure of either the donor or acceptor materials can enhance 

charge transport ability, more research is being conducted to find the optimal blend ratios 

and molecular structures of both donors and acceptors. Solar cell efficiency and device 

lifetime are currently the two most significant inhibitors towards mass production, so one 

of the most popular areas of modern research is in finding improved donor and acceptor 

materials.  
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 Because solar cells must exist for years if they are to become profitable for 

manufacturing, safeguarding the devices against oxidation degradation is essential. Of 

recent, semiconductor oxides have emerged as replacement materials for PCBM and 

typically have lower costs—hybrid solar cells with SnO2 instead of PCBM as an electron 

acceptor have been created. Additionally, electron transfer from MEH-PPV to SnO2 was 

seen to be energetically favorable, occurring on the order of microseconds.  A photo 

induction of charge transfer between MEH-PPV and SnO2 can also occur, thus enabling 

oxides to rival PCBM as alternatives for acceptor materials.38 In Figure 1.12, the 

architecture of a typical polymer solar cell based on bulk heterojunction (BHJ) 

morphology is depicted. 

 

 

 

 

 

Figure 1.12: Structure of a polymer solar cell with bulk heterojunction (BHJ) 

morphology. Sunlight impinges upon the indium tin oxide (ITO) glass anode, electrons 

are excited from the valence band to the conduction band of the P3HT, excitons are 

created, and charge transfer occurs across the blended P3HT/PCBM nanodomains. MEH-

PPV serves as an electron donating material, and once charge is transferred to a metal 

cathode (typically Ca, Al, or Ag), an electric circuit is completed.64 
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Not all organic photovoltaic devices possess bulk heterojunction (BHJ) 

morphology, as different domain sizes can be obtained through the formation of ordered 

heterojunction morphologies. In an ordered heterojunction morphology, aligned 

nanodomains exist and the diffusion length between donor and acceptor is lengthened, 

thus lessening the possibility that excitons will become annihilated. A downside to an 

ordered heterojunction morphology is that it is more time consuming and challenging to 

fabricate; only through the aid of annealing processes or alignment induced processes 

(i.e. addition of surfactant, nanotubes, or application of a magnetic field) can this optimal 

morphology be realized. A much larger donor to acceptor interface is created and 

pathways for charge transfer are much shorter for ordered heterojunction morphologies; 

as such, attempting to devise this morphology is typically worth the time and resources. 

An idealized ordered heterojunction morphology should be ‘like that of two interlocked 

combs,’ and a competition exists between domain purity and size, as smaller domains 

generally have greater purity. Through polymer self-assembly techniques, methods have 

been developed to better control the domain size in photovoltaic devices.39 

In essence, excitons govern the efficiency of a polymer/organic photovoltaic cell, 

and in order for a device to be successful, excitons must quickly reach the interfaces of 

donor and acceptor domains before recombination occurs.40 Excitons split into free 

electrons and holes at the donor and acceptor interfaces and must possess lifetimes long 

enough to be able to reach the device electrodes. Whether or not bulk heterojunction 

morphologies more easily aid in the generation of electron and hole pairs is still under 

debate, as Collins and co-workers found that excitons need access to pure aggregates for 

efficient conversion into charges. Smaller aggregates are deemed better, wherein donor 
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and acceptor interfaces exist throughout a larger interfacial area.40 Despite the ambiguity 

in the relationship between donor/acceptor blending methods and device performance, 

bulk heterojunction solar cells continue to be fabricated regularly in research laboratories. 

In Figure 1.13, the mechanism behind the generation of an electron/hole pair is depicted.  

 

Figure 1.13: Interface between donor and acceptor domains. Red dots 

represent the acceptor material (organic fullerene molecules), whereas blue lines 

represent the donor material (conjugated polymer chains). Yellow dots represent 

excitons, which need to reach the fullerene aggregates to be separated into electrons 

(purple dots) and holes (green dots).41 

 

 

 

 



 

25 
 

1.5 Liquid Crystalline Polymers and Their Applications 

While conductive polymers in dilute solution can be utilized for the mass 

production of organic photovoltaic devices, thin film transistors, and light emitting diodes 

through drop-casting methods, a wide variety of other devices with different capabilities 

may be invented through the use of liquid crystalline polymers. When in the liquid 

crystalline state, polymers exhibit behavior in between that of a solid and liquid; they are 

considered to be in a fourth state of matter. In polymer/surfactant complexes, the 

architecture of the surfactant plays a crucial role in determining the onset of liquid 

crystalline behavior, as the critical concentration, c*, above which the complex behaves 

as a liquid crystal, varies with surfactant type and concentration. Nearly all materials 

displaying a liquid crystalline nature obey Onsager’s rigid rod theory, which states that 

for sufficiently high concentrations, the alignment of anisotropic particles is favored, 

despite a decrease in orientational entropy.56 For concentrations below c*, anisotropic 

particles can freely rotate within solution, assuming a variety of orientations. For most 

systems, there is no immediate transition from the isotropic (disordered) phase to the 

liquid crystalline phase, as a transitional or ‘biphasic’ phase exists, consisting of rods in 

both the isotropic and liquid crystal phase. Above a certain volume concentration Φ1, the 

amount of packing entropy increases and the biphasic phase is formed to minimize 

excluded volume and to maximize free volume. In theory, this phase transition, Φ1, is 

equal to 3.34(D/L), where D is the diameter of a rod particle and L is the length. Thus, for 

values greater than 3.34(D/L), the biphasic phase will exist. Similarly, there exists 

another critical concentration Φ2, above which the liquid crystalline phase occurs. This 

secondary critical concentration, Φ2, is equal to 4.49(D/L), where D is the diameter of the 
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rod and L is the length. At concentrations above Φ2, the polymer chains will align in 

parallel with the director n and the sample will display birefringence when rotated with 

respect to a polarized light source. The birefringence is due to the sample’s dual 

refractive indices, as light will scatter from the anisotropic particles in one particular 

direction and intensity when parallel to the director, but will scatter with both different 

directions and intensities when illuminated at an angle which is not parallel to the 

director. The sample contrast observed at one angle relative to the light source is typically 

inverted when the sample is rotated by 45° relative to this initial angle; regions that 

originally appeared as red become black, and vice versa. In Figures 1.14 and 1.15, an 

illustration is provided of the changes in polymer orientation upon phase transitions, as is 

a pictorial example of birefringence.  

 

Figure 1.14: Illustration of conjugated polymer conformational changes upon 

an increase in concentration. An increase in translational entropy outweighs a decrease 

in rotational entropy upon an increase in concentration and a parallel alignment of the 

polymer chains eventually occurs to minimize excluded volume and to maximize free 

volume, in agreement with Onsager’s rigid rod theory.56 
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Figure 1.15: Sample birefringence. Dark regions of the sample on the left hand side (0°) 

become bright upon rotation by 45°, characteristic of anisotropic rigid rods displaying 

birefringence.80 

 The term ‘liquid crystalline’ polymer is vague at first glance because many 

different phases of liquid crystalline polymers may exist. Common liquid crystals consist 

of a rigid element incorporated into the backbone of normally flexible polymers.44 

Generally, the rigid element (termed a mesogen) consists of an aromatic group, while the 

flexible spacer units are of alkyl groups. The aspect ratio, or ratio of length to width or 

diameter of the rigid element, is a crucial parameter in determining the physical 

properties of the polymer, as well as which phase(s) the material assumes. Due to a 

decrease in aspect ratio, the introduction of non-linear cyclic groups on a mesogenic 

group will lower the temperature at which the material transitions into the isotropic 

phase.74 The different phases which liquid crystalline polymers may form are termed 

‘mesophases,’ and the simplest of these phases is the nematic phase. The nematic phase 

possesses the lowest ordering of all mesophases, wherein the axes of the mesogens are 
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aligned in parallel, but may nevertheless move with respect to one another like in the 

liquid phase. All movements are achieved on the same plane in the nematic phase and 

there is no common direction as a whole. Individual planes of liquid crystals that are 

vertically stacked along an imaginary axis orthogonal to the director will likely not exist 

in the nematic phase.45 A liquid crystalline phase harder to obtain is the smectic phase, 

which is more representative of the solid phase. The long axes of the mesogens align 

parallel with each other in that individual layers are stacked in unison. The polymer rods 

orientate in the same general direction and exhibit a much higher degree of order as 

compared to the nematic phase; the smectic phase is the last mesophase to occur before 

the polymer reaches the solid phase.46 In Figure 1.16, the transitions of liquid crystal 

mesophases are shown with respect to increasing temperature.  

 

Figure 1.16: Phase sequence of liquid crystalline polymers for increasing 

temperature. There are critical temperatures associated with the formation of each 

phase, labeled along the temperature axis. It should be noted that the liquid crystals 

depicted above are thermotropic in that they change phases with respect to temperature. 

Lyotropic liquid crystals change phase with respect to concentration.65 
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 Now that the general properties and principles governing liquid crystal ordering 

have been discussed, it is necessary to comment on some of the most frequent 

applications of liquid crystalline polymers. Of recent, the prices of liquid crystalline 

polymers have fallen substantially, and as such, the market has been able to benefit 

considerably. Because liquid crystalline polymers are mechanically robust and offer heat 

resistance, they can oftentimes replace metals for automotive, electronic, and space 

technology applications.48 Liquid crystalline polymers are contained in specialized 

clothing for sports, firefighting, or chemical protection; in Table 2, the most common 

applications of liquid crystalline polymers are mentioned. One should note the many high 

strength applications—because liquid crystalline polymers are oftentimes organically 

based, they can be prepared via low cost methods and offer much cheaper alternatives to 

high strength materials or apparel based on metals or various alloys.  

Table 2: Various Applications of Liquid Crystalline Polymers.44 

End Use End Use Systems Key Attributes 

Composites  Fabrics for aircraft 

and containers, 

pressure vessels, 

ship building, 

sporting goods, 

plastics additives, 

structures for civil 

engineering. 

 Light weight. 

 High strength. 

 High modulus. 

 Good impact 

strength. 

 Wear resistance. 

 

 

 

 



 

30 
 

Table 2, Continued 

Protective Apparels  Heat resistance and 

work wear, fire 

blankets, flame 

retardant textiles, 

cut protective 

gloves, cut 

protective seat 

cover layers. 

 Heat resistance. 

 Flame retardation. 

 Cut resistance. 

Tires  Truck and aircraft 

tires, high speed 

tires, motorcycle 

tires, bicycle tires. 

 Low density. 

 Weight saving. 

 Low shrinkage. 

Mechanical Rubber Goods  Conveyor belts, 

transmission belts, 

hoses for 

automotive, 

hydraulic hoses, 

hoses in off-shore 

umbilical.  

 High strength. 

 Dimensional 

stability.  

 Thermal resistance.  

 Chemical 

resistance.  

Friction Products and 

Gaskets 
 Brake linings, 

clutch facings, 

gaskets, thixotropic 

additives, industrial 

paper. 

 Heat resistance. 

 Chemical 

resistance. 

 Low flammability.  

 Mechanical 

performance.  

Ropes and Cables  Aerial optical fiber 

cable, traditional 

optical fiber cable, 

electrocable. 

 High strength. 

 High modulus.  

 Dimensional 

stability. 

 

Life Protection  Bullet proof vests, 

helmets, property 

protection panels, 

vehicle protection, 

strategic equipment 

shielding.  

 High tenacity.  

 High energy 

dissipation. 

 Low density and 

weight reduction.  

 Comfort. 

 

Liquid crystal polymers can be mechanically enhanced by adding different fibers 

to create a composite structure. Protective clothing listed in Table 2, such as bullet proof 
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vests or heat resistant clothing, is manufactured by combining aligned liquid crystalline 

polymers with high strength fibers. The heat resistant pants and jackets which firefighters 

wear are composed of poly-m-phenyleneisophthalamide, or Nomex, an aramid fiber with 

excellent thermal stabilities.44 In addition to the ability of liquid crystalline polymers to 

mechanically enhance products such as tires, fabrics for aircraft, brake linings, or optical 

fiber cables, the manufacturing of printed circuit boards and other electronic devices has 

escalated as a result of liquid crystalline polymer versatility. In a study by Farrell et. al., 

liquid crystal polymers were seen to offer numerous advantages in advanced printed 

wiring board and packaging applications. Due to their low permeability, high temperature 

durability, low dielectric constant, low moisture absorption, and smooth surfaces, liquid 

crystal polymers have served as excellent surface mounts for printed wiring boards and 

optoelectronic applications.46 The extraordinary barrier properties that liquid crystals 

offer make them suitable for integration into high powered circuits, where impermeability 

to moisture and various gases is critical to ensure optimal performance. Liquid crystals 

were found to have satisfied all of the requirements for a base laminate in a thin film 

circuit, such as resistance to wet etch chemistries and strong adhesion to electrodeposited 

copper layers.47 A finish metallization such as tin or lead solder must be applied to a 

printed circuit in order to protect an electrodeposited copper conductive layer from 

corrosion; these metallization processes generally require extremely high temperatures 

and can contaminate underlying layers. Liquid crystal polymer protective substrates were 

seen to be as robust as more expensive inorganic or transition metal protective substrates 

in protecting the underlying circuit from contamination, etc. Based on the findings of 

Farrell et. al., it is without a doubt that near-hermetic cavity packages for printed circuits 
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and MEMS devices can be made successfully and at low costs via the use of liquid 

crystalline polymeric substrates. The aforementioned applications of liquid crystalline 

polymers are only a few of many continually emerging uses.  

Liquid crystalline polymers cannot realize their full potential as charge transport 

mediums, components in waveguides, or as high strength materials unless a satisfactory 

alignment is obtained of the liquid crystals. The most common techniques available to 

align liquid crystals are the application of electric and or magnetic fields, and the 

application mechanical force (i.e. shear flow). In many studies, a constant shear rate is 

used in a temperature range around the isotropic to nematic transition temperature. The 

molecular weight of the polymer also plays a role in how easy it may be to align liquid 

crystals via shear force, as higher molecular weight samples exhibited alignment only at 

lower flow alignment angles.78 The application of unidirectional shear forces has been 

observed to induce alignment of conjugated polymer chains upon solvent evaporation.79 

Moreover, upon the application of force, alignment of the chains parallel to the shear 

direction occurred two out of three times and alignment perpendicular to the shear 

direction occurred one out of three times based on a study by Bae et. al.79 Analysis of 

absorbance and photoluminescence spectra is commonly conducted in order to verify the 

morphological changes believed to occur following the application of shear flow.  
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2. Experimental Methods 

2.1 Material Preparation 

 An assortment of surfactants were used in conjunction with a conjugated 

polyelectrolyte to facilitate production of hydrogel complexes. Regioregular (82-90% 

head-to-tail) poly[3-(potassium-6-hexanoate)thiophene-2,5-diyl] (P3KHT, weight 

average molecular weight Mw = 60kg/mol, Rieke Metals, Inc.), cetyl trimethylammonium 

bromide (CTAB ‘C16,’ Sigma Aldrich), Myristyltrimethylammonium bromide (‘C14,’ 

Sigma Aldrich), Dodecyltrimethylammonium bromide (‘C12,’ Sigma Aldrich), 

Decyltrimethylammonium bromide (‘C10,’ Sigma Aldrich), and dihexadecyl dimethyl 

ammonium bromide (DHAB, Sigma Aldrich) were used as received in order to prepare 

the supramolecular complexes. The P3KHT varied in terms of both appearance and 

behavior from batch to batch; some consignments consisted of a finely ground black 

powder, whereas others consisted of hard chunks of P3KHT that did not dissolve 

immediately in water. The time dependent chromism was affected by the physical 

properties of the P3KHT because the variation in molecular weight distribution from 

batch to batch influenced the kinetics of the dynamic chain unfolding process. All 

surfactants appeared as white powders; CTAB as a moderately ground power, ‘C14’ as 

an extremely finely ground powder, ‘C12’ as a powder with salt-like particulates, and 

‘C10’ as a moderately ground powder. DHAB appeared as a thick and sticky powder 

which was hard to extract from the chemical bottle—a fine spatula had to be used for its 

removal. The molecular structures of CTAB, DHAB, and P3KHT are displayed in Figure 

2.1: 
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(a)                                                                                              (b) 

 

                                                   (c) 

Figure 2.1: Molecular Structures. (a) P3KHT, (b) CTAB, and (c) 

DHAB. 

In order to prepare hydrogels, specific amounts of polymer and surfactant were 

added so as to yield a complex of 0.10M concentration. Firstly, P3KHT (0.0234g, 

0.0001mol) was dissolved in 0.5mL of 18M·Ω Milli-Q Nanopure water in a single plastic 

vial. Various weights of surfactant were added to another vial separately to produce a 

0.20M solution in 0.5mL of 18M·Ω Milli-Q Nanopure water; these solutions were 

subsequently oven heated at 50°C for at least 30 minutes to aid in the dissolving of the 

surfactant. For all pure surfactant solutions, 0.0001mol of a specific surfactant was added 

to 0.5mL water, corresponding to 0.028029g ‘C10,’ 0.030834g ‘C12,’ 0.033639g ‘C14,’ 

and 0.036445g CTAB ‘C16,’ respectively. The amount of DHAB added never exceeded 

30% of the total molar surfactant concentration—for instance, a 30% DHAB solution was 
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prepared by weighing 0.30(0.0001mol) = 0.00003mol DHAB (0.01724g) and 

0.70(0.0001) = 0.00007mol CTAB (0.0255g), followed by dissolving these amounts in 

0.5mL of nanopure water. DHAB took a considerably long time to fully dissolve in 

water, and as such, DHAB containing solutions were oven heated for at least 90 minutes 

at a temperature greater than 50°C. Once the polymers and surfactants were fully 

dissolved in their respective solutions, surfactant was added to the polymer solution 

dropwise via a micropipette. After all surfactant was added to the polymer solution 

(thereby rendering a 0.10M solution in 1mL of total water), the vial was centrifuged at 

10,000rpm (18-Centrifuge Biotechnical Services, Inc.) for at least 30 minutes to create a 

separation between solid phases and supernatant. Over time, the viscosity of the hydrogel 

increased substantially, wherein a thick gel resulted. Viscosity increased in direct 

proportion to DHAB content and distinct phase separation of the surfactant from the 

supernatant was observed for solutions containing 20 or 30% DHAB after centrifugation.  

 All dilute complex solutions used for either UV/Vis spectroscopy or fluorescence 

were obtained by extracting a small amount of the supernatant phase with a micropipette 

and adding this amount dropwise to more nanopure water. Solutions of high 

concentration utilized for nematic liquid crystal studies were prepared by completely 

evaporating the water from a hydrogel solution and then recording the total solid weight 

of a hydrogel (i.e. the total weight of polymer and surfactant content). A designated 

amount of water was then added to the dried complex in order to yield a solution of the 

desired weight percent concentration. For instance, if the combined dry weight of 

polymer and surfactant was 2g, approximately 0.8571g (0.8571mL) of nanopure water 

was added to render the concentration 70wt.% [(2g solid)/(2g solid + 0.8571g H2O)] = 
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0.70 = 70%. All high concentration solutions had to be oven heated for at least two hours 

at 50°C or above to aid in homogenization. It was imperative to obtain homogeneous 

solutions, as any inhomogeneity would be likely to induce erroneous results in 

experimentation due to discrepancies in concentration, and hence in the identity of the 

phases. The accuracy of the solution concentrations was tested via a ‘drop/dry’ test, 

wherein the weight of a weigh boat and small glass cover slide was recorded. A small 

drop of the solution to be assessed was deposited onto the glass cover slide and the 

weight of the weigh boat, cover slide, and drop was recorded. The drop was allowed to 

dry overnight in an oven, and the weight of the weigh boat, cover slide, and dried drop 

was recorded. The experimentally determined concentration of the solution in question 

was thus determined via equation 1:  

Concentration (Wt. %) = (Wdried drop (g) - µ (g))/ (Wwet drop (g) - µ (g))  (1) 

where µ refers to the combined weight in grams of the weigh boat and glass cover slide, 

Wdried drop is the weight of the dried drop in grams, and Wwet drop is the weight of the wet 

drop in grams.  

 The solid state complexes were prepared by depositing a small amount of stock 

hydrogel on a glass slide and smoothing out the gel by pressing down with a cover slide. 

The glass slide with the deposited gel was oven heated for at least six hours so that a 

completely dry film was obtained. Although no quantitative tests were conducted to 

prove that the resulting film was dry, intuition led to the determination of dryness; if the 

film was capable of being ‘chipped’ with a razor blade, it was deemed dry.  
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2.2 Instrumental Methods of Analysis 

2.2.1 UV/Vis Spectrophotometry  

 A Jasco V-550 spectrophotometer was utilized for obtaining UV/Vis absorbance 

data. Standard plastic stirring cuvettes were employed for the analysis and complete 

homogenization of the diluted solutions was verified by stirring the contents of a cuvette 

with a pipette tip. The cuvette to be analyzed was placed in the first slot of the 

spectrophotometer and the top cover of the instrument was closed to protect the sample 

from the ambient atmosphere. A ‘blank’ sample was first recorded by running a UV/Vis 

spectrum on a cuvette containing nanopure water. The spectrum obtained from this 

‘blank’ solution was recorded and referenced as a baseline for subsequent measurements. 

To enhance the validity of time dependent data (i.e. absorbance corresponding to a 

specific time after dilution), a predetermined amount of stock hydrogel was added to a 

cuvette already containing nanopure water. ‘t = 0’ was defined as the moment in which 

the stock hydrogel was added to the cuvette via a micropipette. It should be noted that all 

solution concentrations for UV/Vis spectroscopy were 0.133mM; in order to prepare this 

concentration, 50µL of the top phase supernatant was added to 833µL H2O to render a 

6mM solution concentration. This ‘precursor’ solution was made so that a reasonably 

large volume of solution could be extracted during the final dilution to mitigate 

uncertainty in volume. Subsequently, 40µL was extracted from the 6mM solution and 

dissolved in 1.8mL H2O to render a final concentration of 0.133mM.  
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2.2.2 Fluorometry 

 A Jasco FP-6500 spectrofluorometer was utilized for all fluorometry studies; the 

excitation wavelength was set to 430nm and the emission wavelengths were dependent 

on the solution composition (i.e. surfactant architecture). An expected emission 

wavelength of 550nm was entered into the Jasco software. Specialized cuvettes which 

were transparent on all four sides were used for fluorescence and both shutters were 

opened for operation to allow for the light source to fully illuminate the sample. The 

cover of the instrument was fully closed prior to performing experiments to protect the 

sample from the surrounding environment as well as from additional light sources. All 

cuvettes were cleaned thoroughly with Liquinox detergent solution and Deionized water 

on a regular basis to eliminate the buildup of contaminants.  

2.2.3 Dynamic Light Scattering (DLS) 

 A Wyatt Technologies DynaPro Nanostar Dynamic Light Scattering (DLS) 

instrument was utilized to acquire information related to the average particle size within a 

polymer/surfactant complex. The wavelength of the DLS instrument was fixed at 633nm 

and a He-Ne laser source produced the incident light. All samples to be analyzed were 

first diluted to the desired concentration of 13.3µM and were introduced into a small 

plastic cuvette, which was subsequently placed inside of the instrument. Upon closing the 

shutter to the instrument, a spectrum was acquired wherein the average particle size of 

the solution was determined, along with the standard deviation. All averages were based 

on ten (10) acquired data points and the instrument was set to ‘Random Coil’ mode. 

Cuvettes were thoroughly cleaned in between sample measurements with Liquinox 

detergent and deionized water.  
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 The DLS instrument translates the intensity of scattered light into information 

regarding macromolecular size distributions. After light bombards the molecules in the 

sample, the light is diffracted and either interferes constructively or destructively; the 

scattered light enters a photomultiplier and an image is projected onto a phosphor screen. 

Typically, a ‘speckle’ pattern is produced and the intensity of light spots is analyzed over 

time. The intensity and position of the light spots on the phosphor screen are related to 

both the Brownian motion of the particles as well as to their size distribution profile. The 

mean effective diameter of particles determined from DLS is dependent upon the particle 

core size, surface geometry, particle concentration, and type of ions in the medium.68 

2.2.4 Polarized Optical Microscopy (POM) 

 A Leica DM2500P Polarized Optical Microscope was utilized for observing the 

liquid crystal characteristics of high concentration complexes. Through a contrast 

enhancing technique (the blocking of one component of the transmitted light via a 

polarizer oriented at 90 degrees to the illumination source), a polarized light source can 

interact strongly with a sample to provide information related to a sample’s optical path 

boundaries. Different indices of refraction within a particular sample will lead to the 

occurrence of birefringence, wherein varying levels of color contrast will occur in direct 

proportion to refractive index dissimilarities. The variations in refractive index across the 

sample occur due to anisotropic features which block certain polarization angles of light. 

Thus, POM is a viable technique for elucidating information specific to a sample’s 

structure and composition. In POM, the sample is fixed to a 360 degree rotating specimen 

stage and is observed through a conventional microscope eyepiece. Light from the 

bottom of the microscope stage becomes polarized after passing through a grating and is 
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directed towards the sample—unless the sample is birefringent, the light source will not 

be repolarized to the angle which it assumed prior to entering the grating. There will be 

no transmission of light if the sample is not birefringent (i.e. isotropic), and thus one can 

deduce structural information of the sample by correlating well-ordered and anisotropic 

polymer orientations to birefringence, and disordered orientations to an isotropic phase. 

On the Leica DM 2500P, the available magnification levels are 5X, 10X, 20X, 

30X, and 40X, respectively. Once a particular magnification was selected, the image was 

focused and the sample was rotated by 90 degrees. Images were taken of all samples at 

orientations of 0, 45, and 90 degrees, respectively, and the levels of birefringence were 

analyzed. In general, birefringence was denoted by areas of inverse contrast (i.e. black 

areas turning red or vice versa) upon rotation of the sample by 45 degrees. All samples 

were prepared by depositing a concentrated solution of the desired complex onto a glass 

slide and by spreading the solution through applying pressure to a small glass cover slide 

above the sample until a non-transparent and homogeneous thin film was observed. It 

should be noted that the accepted errors were considered to be ±2wt.% for all sample 

concentrations studied under POM. The justification for this level of error stems from the 

fact that the concentrations determined experimentally from the ‘drop/dry’ test were on 

average within ±2wt.% of the theoretically predicted concentrations. No errors are 

reported with respect to the molar percent of DHAB within a complex, as any errors in 

the CTAB: DHAB ratio were considered negligible.  

 

 



 

41 
 

2.2.5 Differential Scanning Calorimetry (DSC) 

 The melting behaviors and crystalline natures of solid state complexes were 

assessed via differential scanning calorimetry. Regular stock hydrogel solutions of 0.10M 

concentration were deposited onto glass slides and dried overnight in an oven at a 

temperature greater than or equal to 50°C to produce thin solid films. Small chunks of the 

dried films were used as samples for DSC; a spatula was used to chip off the chunks and 

the chunks were subsequently weighed along with a standard DSC pan and lid. Enough 

of the solid sample was added to exceed 5mg of total weight, as 5mg is the minimum 

permissible sample weight for DSC. After recording the respective weights of the sample, 

pan, and lid, the sample was sealed into the pan by pressing and sealing the pan against 

the lid through use of a ‘crimper.’ Samples were loaded into a TA Instruments DSC 

Q1000 and were heated at 5°C/Min. from 50°C to 120°C. Three temperature sweeps were 

performed: a preliminary heating cycle, a cooling cycle, and a final heating cycle. The 

pertinent thermal information was determined from the final heating cycle. All phase 

transitions (i.e. Tg, Tc, and Tm) were determined by noticing either first or second order 

thermal transitions. TA Instruments software was utilized to interpolate the thermal 

transitions via approximations of local maxima. The enthalpy of fusion was found by 

integrating the heat flow curve from the onset and offset of the respective transition.  

2.2.6 X-Ray Diffraction (XRD) 

 X-Ray Diffraction was used to gain a better understanding of the atomic and 

molecular structure within the sample(s) of interest. The instrument used was a reflection 

geometry Siemens D5000 with a 1.54Å Cu Kα radiation source; all spectra were obtained 
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via a source current of 5mA and an accelerating voltage of 40kV. A scan rate of one 

degree two-theta (2θ) per minute was applied across an angular range of 3°-40° 2θ and 

spectra were saved in text format to be analyzed via Excel software. Powder samples 

were compressed in a specialized powder sample holder with a flat aluminum tray, and 

the sample holder was loaded into the instrument by securing it with three prongs to a flat 

substrate. Thin film (non-powder) samples were ensured for homogeneity and were dried 

onto a glass cover slide overnight at a temperature greater than 50°C. The cover slide was 

then inserted into the X-Ray diffractometer and was secured to a flat substrate via a three 

prong attachment. Background subtraction was not performed in any of the obtained 

XRD spectra because it was assumed that the glass or plastic substrate did not exhibit any 

diffraction peaks in the angular region of interest. If there was any diffraction resulting 

from the background substrate, it would have resulted in peaks of extremely low intensity 

due to the homogeneity of the thin film sample. The deposited and dried samples 

rendered the glass substrate opaque in appearance (i.e. no part of the glass substrate was 

visible or exposed to the X-Ray source), justifying the assumption that no background 

spectra would appear.  

2.2.7 Small Angle X-Ray Scattering (SAXS) 

 Attempts were made to perform Small Angle X-Ray Scattering (SAXS) to 

elucidate polymer conformation in high concentration (liquid crystalline) solutions. A 

pin-hole collimated Rigaku instrument (SMAX 3000) with a 1.54Å Cu Kα radiation 

source was used on all samples. The SAXS instrument was located in the lab of Dr. 

Chinedum Osuji, a Professor of Chemical Engineering at Yale University in New Haven, 

CT. SAXS is a technique almost entirely specialized for polymer analysis. Detailed 
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studies of polymer morphology, orientation, and structure are acquired through SAXS, 

and it is currently the most favorable technique for obtaining high resolution structural 

information of chain entanglements and orientation, etc.82 The general theory behind the 

operation of SAXS is that a high power X-Ray source (i.e. Cu Kα) is placed through a 

monochromator, mirror apertures, and a shutter under ultra-high vacuum conditions. 

After the beam is monochromated, it is less capable of inducing damage, as the beam 

energy is reduced along with the spot size. Upon interacting with the polymer sample, the 

X-Ray beam scatters in a specific pattern characteristic of the material; the scattering of 

the X-Ray beam is recorded on a photographic plate located a few millimeters behind the 

sample. Certain polymer morphologies exhibit differing scattering patterns. Highly 

crystalline samples yield nearly circular patterns, whereas amorphous samples (i.e. quartz 

polymer) tend to yield broad and less sharp scattering patterns.83 In Figure 2.2, an 

assortment of scattering patterns are presented that correspond to sample characteristics.  

 

Figure 2.2: SAXS patterns. Sample A: Amorphous material. Sample B: 

Polycrystalline material. C. Oriented Polycrystalline and Amorphous material.48 

The most conventional method of interpreting SAXS data is through an intensity 

versus scattering vector plot or through a Guinier Plot. A traditional plot records the 
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intensity of scattered X-Rays on the y-axis and the scattering vector q on the x axis. The 

scattering vector q is related to the elastic interaction between the X-Ray beam and the 

sample and is defined: 

q = 4πsin(θ)/λ          (2) 

         

where θ is the scattering angle in degrees and λ is the X-Ray wavelength in nm. The 

scattered X-Ray intensity, I(q), is related to the electron density function R(r). Thus, 

regions with greater electron density will scatter X-Rays to a larger extent, and through a 

Fourier Transform of the electron density correlation function g(r), X-Ray scattering 

patterns will reveal the spatial correlations in a sample.48 As seen in Figure 2.3, a 

conventional SAXS setup consists of an X-Ray source, a monochromator, a sample 

holder, and a background detector: 

 

Figure 2.3: A conventional SAXS instrumental setup.48 

From the previously discussed plot of scattered intensity I(q) versus scattering 

vector q, the most valuable piece of information that a polymer scientist can determine is 

the Radius of Gyration, Rg. As seen in Figure 2.4, the slope of a graph of ln(I(q)) versus 

q2 can be linearly approximated and set equal to Rg. This type of plot is referred to as a 

http://iramis.cea.fr/Images/astImg/1065_1.gif
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Guinier Plot after the French physicist Andre Guinier who discovered the relationship of 

particle size to scattered X-Ray intensity.  

 

Figure 2.4: Determination of Radius of Gyration of polymer particles from SAXS 

data.48 

The Radius of Gyration is directly related to the size and conformation that a 

polymer assumes when in a variety of states (i.e. solid, liquid), and the rapid 

determination of its value is part of what makes SAXS a very valuable technique. The 

derivation of the Radius of Gyration is summarized per Guinier’s Equation: 

ln[I(q)] = ln(I0) – [(q2Rg
2)/3]        (3) 

      

where I(q) is the scattered intensity, I0 is the incident X-Ray intensity, q is the scattering 

vector, and Rg is the Radius of Gyration in nm.  
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 Prior to sending samples to Yale, the liquid crystalline nature was validated via 

observation of birefringence in polarized optical microscopy. Once all complexes were 

determined to be birefringent, small chunks of sample approximately 2mm in diameter 

were carefully loaded with a plastic pipette tip into a glass SAXS capillary tube. Once the 

capillary tubes were loaded, they were carefully wrapped in cotton to protect the exterior 

surfaces from hitting against the plastic walls of a centrifuge tube in which the capillaries 

were placed. In general, the centrifuge tubes were spun at a rate of 3,000-4,000 

revolutions per minute (rpm) in order to spread the sample uniformly across the interior 

of the capillary tube. Once it was decided that the samples had been spread uniformly 

along the interiors of the capillary tubes, the capillaries were sealed with glue, 

individually packaged, and sent out for SAXS analysis.  
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3. Results and Discussion 

3.1 Dilute Solution Spectroscopy 

After centrifugation, observable phase separation occurred within the polymer and 

surfactant complexes such that solid polymer chunks were observed at the bottom of the 

vials. The supernatant, or liquid lying above the solid residue after centrifugation, was 

utilized for dilute solution spectroscopy studies. The viscosity and appearance of the 

complex hydrogel solution depended heavily upon the type of surfactant combined with 

P3KHT and the viscosity of the hydrogel increased in direct proportion to the amount of 

DHAB loaded into the system. Moreover, the appearance (namely the colors) of the 

solutions differed with respect to which surfactants were added. While a dilute solution of 

a C10 surfactant and P3KHT appeared orange, a dilute solution of a C14 surfactant and 

P3KHT was purple; such a trend reinforces that surfactants have a direct influence on the 

optical properties of the solution. As will be verified via UV/Visible and Fluorescence 

Spectroscopy, the electronic bandgap of the P3KHT/surfactant complex is dependent 

upon which type(s) of surfactant has been added. When surfactants with certain 

architectures, such as single tailed entities with long alkyl chains, are combined with 

P3KHT, red-shifted spectra with peak maxima greater than 600nm are observed; these 

spectra suggest the presence of polymer chains which have transitioned into a rod-like 

morphology. Longer wavelengths of light (i.e. wavelengths of lower energy) are absorbed 

and fluoresced when the polymers assume rod-like conformations. In these 

conformations, the energy gap between the valence and conduction bands is reduced in 



 

48 
 

comparison to systems of coiled morphology, since not as much photon energy is 

necessary to promote an electron to the conduction band.  

A plethora of studies have been conducted to elucidate the effects of polymer 

conformation on the bandgap of a system. In one study, it was found that coplanarity of 

adjacent polymer chains works to minimize steric repulsions between the chains so that 

the effective π-conjugation length is maximized.49 Based on the data acquired from 

experimentation, it is desirable to learn more about the so called ‘structure property’ 

relationships between the physical arrangement of polymer chains and the system’s 

electronic bandgap. The energy gap between the valence and conduction bands is most 

easily calculated from analyzing the optical absorption edge of the system, which is 

directly related to the energy difference between the ground and excited states as 

electromagnetic radiation is absorbed.50 Conventionally, the most widespread method of 

calculating bandgap from an optical absorption spectrum is to take the wavelength value 

at the onset of absorption, and then convert it to energy via Planck’s equation (4) and 

equation 5: 

E(J) = hc/λ(m)          (4) 

E(eV) = (1239.84187 eV·nm)/(λ(nm))      (5) 

where h is Planck’s constant in m2·kg/s, c is the speed of light in m/s, and λ is wavelength 

in nm. The wavelength value at the onset of absorption can be found from the intersection 

of the extrapolations of the linear part of the spectrum.50 In Figure 3.1, the onset of 

absorbance is illustrated, wherein two tangential lines intersect at roughly 455nm; as 

such, this wavelength value is assigned to be the onset of absorbance.  
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Figure 3.1: A conventional absorbance spectra. The wavelengths near roughly 455nm 

represent the onset of absorption.50 

It is worthwhile mentioning that another simplistic method to determine bandgap 

is via cyclic voltammetry or differential pulse voltammetry. In cyclic voltammetry, a 

voltage is cycled from pre-defined minimum and maximum potentials, or vice versa. 

Oxidation (removal of electron from HOMO level) and reduction (addition of electron to 

LUMO level) are observed at two specific voltages, Vox and Vred. The bandgap of the 

system can be found by computing the difference between the HOMO and LUMO levels, 

represented by Vox and Vred, and multiplying by the charge of an electron:  

E(eV) = e(Vred – Vox)          (6) 

A blue shift in the UV/Vis spectra occurred whenever the amount of DHAB surfactant 

was increased with respect to CTAB or when the alkyl chain length of a single tailed 
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surfactant was shortened. The UV/Vis spectra thus provide indirect evidence of the 

polymer chains adopting a more coiled morphology with a decreased effective 

conjugation length and an increased bandgap. We commence our investigation of 

surfactant architecture’s influence on polymer chain conformation in dilute solution by 

analyzing the behavior of a dilute solution of P3KHT combined with 100% CTAB, as 

seen in Figure 3.2. The phenomenon of ‘time dependent chromism,’ or a change in the 

spectral and optical properties of the solution with respect to time, is seen to occur under 

certain conditions for this particular system. 

 

Figure 3.2: Absorbance vs. wavelength (nm) and time dependent chromism of a 

P3KHT/C16 (CTAB) complex. ‘t’ refers to time in minutes and the solution 

concentration is 0.133mM. 
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When CTAB (16 carbons in alkyl chain) is used as the surfactant for 

complexation, steric repulsions are more likely to occur between adjacent CTAB 

molecules as compared to surfactants of shorter alkyl chain lengths. CTAB chains occupy 

more unit volume than shorter surfactant chains, and thus mutual cationic charges repel 

one another more readily due to their increased steric crowding. Because it is not 

thermodynamically favorable to have molecules of the same charge in such close 

proximity, the CTAB chains tend to maximize their mutual separation to lower the 

system’s free energy. The intercalation of the CTAB chains between the P3KHT chains, 

combined with increased separation between CTAB chains, contributes not to a compact 

coiled conformation of polymer/surfactant aggregates, but rather to an extended and 

ordered rod-like morphology. The thermodynamically based transition of the polymer 

chains from the coiled to the rod-like state occurs as a function of time, and it was found 

that the rate of this transition is inversely proportional to solution concentration.66 Based 

on the argument that the degree of steric repulsion increases as a function of surfactant 

alkyl chain length, it is easy to understand why the addition of CTAB induces a transition 

in which coiled chains assume rod-like structures. A compacted coil-like state simply 

cannot exist favorably with the higher levels of steric repulsion seen in a system with 

surfactants of long alkyl chain length, as increased steric repulsions between surfactants 

induce a greater degree of separation and long-range order between polymer chains.  

In Figure 3.2, the initial absorption maximum (t = 0) occurs at approximately 

440nm, but after roughly 30 minutes, the absorption maximum is seen to occur at 550nm. 

Such a spectral transition indicates that a system with a short conjugation length (i.e. of 

coiled morphology) is not sustainable for a long time due to the thermodynamically 
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unfavorable interactions between CTAB chains in close proximity to one another. In 

order for the system to attain a lower free energy, the polymer chains adopt extended 

structures wherein the CTAB molecules become progressively more separated. The 

polymer chains become increasingly rod-like with longer effective conjugation lengths 

over the course of 90 minutes, as indicated by the successive increase in absorbance as a 

function of time in the red-shifted region of 550nm. If one were to illustrate the 

conformations which polymers assume over the course of time, the result would likely be 

of the following: 

 

 

  

 

 

Legend:                    = surfactant                            = polymer chain.  

Figure 3.3: Hypothetical polymer/surfactant conformations as a function of time. 

Although more advanced characterization techniques such as SAXS should be 

performed to best elucidate polymer chain conformation upon surfactant complexation, 

the spectral changes seen in the UV/Vis spectrum as a function of time are very 

meaningful in that the system’s bandgap progressively decreases with time per Figure 

3.2. As was previously discussed, a reduction in energy bandgap is directly proportional 

to an increased effective conjugation length in the polymer (i.e. polymers that are more 

Morphology at t = 0 Morphology at t = 30 Morphology at t = 90 
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rigid in character have smaller bandgaps). The approximate values for polymer bandgap 

as a function of time are displayed in Table 3; all bandgap values are calculated from 

Planck’s Equation. The wavelengths substituted into the equation stem from the values at 

which the onset of absorption was deemed to occur per Figure 3.1.  

Table 3: Approximate Bandgaps in eV of a P3KHT/CTAB Complex at Various 

Times (Minutes) from Figure 3.2. 

 

Time (min) Approximate λonset (nm) Bandgap Eg (eV) 

0 510 2.431 

10 540 2.296 

20 560 2.214 

30 570 2.175 

40 600 2.066 

60 610 2.033 

90 625 1.984 

 

It should be noted that the wavelengths representative of an absorption onset are 

approximate and are therefore subject to a certain degree of uncertainty. Nevertheless, 

efforts were made to optimize the accuracy of the onset wavelengths by utilizing tangent 

approximations in Excel software. Based on Table 2, there is a progressive decrease in 

approximate bandgap for the P3KHT/CTAB complex as a function of time. Levels of 

uncertainty in bandgap values are the same for all reported times, and thus the ratio of 
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one bandgap with respect to the other will remain unchanged regardless of the level of 

uncertainty. As can be inferred from Table 2, there is an 18.5% reduction in bandgap for 

the P3KHT/CTAB system after 90 minutes at 25°C and 0.133mM concentration. Within 

the first 30 minutes after dilution, the bandgap has decreased by roughly 0.26eV and the 

maximum absorbance is within the red-shifted region of 550nm. For a solution of this 

particular concentration, 30 minutes is the estimated time period necessary for the 

polymer chain conformations to be predominately of the rod form.  

  Our attention will now be focused towards assessing the effects of increased 

DHAB loading on the ‘coil to rod’ transition. In Figure 3.4, it can be seen that a complete 

conformational change from coil to rod does occur, despite the fact that 5% of the 

surfactant (by mols) is comprised of DHAB. The transition from coil to rod (i.e. from the 

low to high wavelength regions) actually occurs faster than was seen in Figure 3.2 for the 

pure CTAB system; one can justify this anomaly based on the fact that the solution 

concentration of 0.133mM might have been inaccurate. For instance, the concentration 

might have been as low as 0.07mM in actuality, thereby allowing for a much faster coil to 

rod transition to have occurred based on the principle of an inverse first order relationship 

between concentration and transition rate.51 The postulated value of 0.07mM is based on 

the belief that in some instances, half of the pipette’s contents might have remained 

aggregated to its walls following an ejection. Inaccuracies in solution concentration may 

be attributed to incomplete ejections of the hydrogel from the pipette into the water 

solution (i.e. if injecting 50µL of the hydrogel into the water was desired, perhaps only 

40-45µL was actually delivered). Attempts were made to mitigate incomplete ejections 

by lowering the viscosity of the hydrogels through serial dilutions, since higher viscosity 
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gels easily aggregated to the walls of pipette tips.  A complete transition to a rod-like 

state does occur for a 5% DHAB system, as the wavelength at maximum absorbance 

(550nm) is the same as the wavelength of maximum absorbance for the CTAB system 

after approximately 30 minutes.  

 

 

Figure 3.4: Time dependent chromism of a P3KHT/5% DHAB Complex. ‘t’ is time 

in minutes. 

  As the amount of DHAB is increased beyond 5%, a stark difference is seen in the 

UV/Vis spectra. Time dependent chromism does not occur, since the wavelength of 

maximum absorbance remains at or below 510nm even after several days. The lack of 

0

0.2

0.4

0.6

0.8

1

1.2

350 400 450 500 550 600 650 700

A
b

so
rb

an
ce

Wavelength (nm)

t = 10

t = 20

t = 30

t = 40

t = 50

t = 60

t = 70

t = 80

t = 90

t = 0



 

56 
 

time dependent chromism indicates that increasing the abundance of DHAB, a double-

tailed surfactant, impedes the formation of polymer rods. Double tailed surfactants have 

been utilized for aggregate formation of nanorods, nanoparticles, and other systems at the 

nanoscale. Different aggregate structures with an assortment of packing geometries may 

result when double-tail surfactants are employed.52 Cylindrical, disk, spherical, or 

vesicular polymer structures are only a few of many various polymer aggregate 

architectures that can result from the addition of a double-tailed surfactant.52 In another 

study, the addition of DHAB to a polymer solution of poly(ethylenimine) led to an 

exceptionally compacted polymer conformation wherein flexibility of the polymer 

backbone was substantially increased. Aggregated hydrophobic moieties with small radii 

of gyration were formed and the hydrocarbon to water interfacial area was minimized 

upon DHAB addition.53 The UV/Vis spectra acquired for increased DHAB loadings, 

presented in the Figures to follow, is suggestive of the theory that compact and 

aggregated moieties form, since the spectra are significantly blue-shifted. If one were to 

perform SAXS on the DHAB containing complexes, data representative of compacted 

and coiled polymer architectures with a small radius of gyration (Rg) should arise. 
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Figure 3.5: UV/Vis spectra of a P3KHT/10% DHAB solution. There is no change in 

chromic properties with respect to time. 

  In Figure 3.5, it is apparent that only an infinitesimal amount of red-shifting 

occurs after 90 minutes; moreover, this solution exhibited the same UV/Vis profile after 

several days. In contrast with the time dependent chromism seen for the P3KHT/5% 

DHAB solution, there must exist a critical concentration of DHAB at which a coiled 

polymer morphology becomes more favorable thermodynamically. Greater amounts of 

DHAB are likely to cause drastic increases in the hydrophobicity of the system such that 

nanodomains of compacted polymer aggregates form. Since the P3KHT chains are bound 

to the DHAB via ionic interactions, any changes in conformational structure of DHAB 

aggregates are imparted to the polymer chains. Thus, because adding more DHAB 
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increases hydrophobicity and hence compactness, the P3KHT chains invariably adopt 

disordered and condensed ‘coiled’ orientations. In Figure 3.6, the UV/Vis profiles of 

P3KHT/20% DHAB and P3KHT/30% DHAB solutions are represented. Only one 

spectrum was obtained for each complex because it was determined that absolutely no 

degree of time dependent chromism occurred (i.e. the wavelength of maximum 

absorbance will be in the same location even after several days).  

 

Figure 3.6: UV/Vis spectra of 10, 20, and 30% DHAB complexes. No time dependent 

chromism occurs for this level of DHAB loading. 

  The trends in the UV/Vis spectra for complexes of varying DHAB loading were 
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the emission wavelengths is seen for all complexes which displayed time dependent 

chromism. Moreover, in the non-normalized emission plots, a progressive quenching of 

emission intensity is seen, which can be attributed to an aggregation of the 

polymer/surfactant network. The lower photoluminescent intensity might also be 

attributed to the fact that that excitation wavelength was not adjusted for complexes that 

had more blue-shifted spectra. As such, the lower molar absorptivities recorded for these 

complexes might well be attributed to the lower observed emission intensities. Although 

quenching is seen with respect to time for polymer/surfactant complexes, complete 

quenching is only observed for pure P3KHT solutions—it is believed that the strong π-π 

interactions between adjacent polymer backbones negate all fluorescence, as inter-

molecular charge transfer due to aggregation causes a non-radiative response to 

excitation.24,25 In Figure 3.7, the emission intensity for a P3KHT/5% DHAB solution is 

red-shifted to 620nm, indirectly supporting the datum that this complex has a smaller 

energy gap between the valence and conduction bands and that the polymer chains self-

assemble into rod-like conformations. The emission of longer (i.e. lower energy 

wavelengths) directly translates into a smaller bandgap via equation 4. 
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Figure 3.7: Emission spectra for a P3KHT/5% DHAB solution. All emission 

wavelengths are above 600nm and quenching increases with respect to time. 

  The wavelengths of maximum absorbance seen in Figure 3.7 should be compared 

to those displayed in Figure 3.8, which represent the normalized emission profiles for 10, 

20, and 30% DHAB/P3KHT solutions, respectively. In Figure 3.8, the greatest 

wavelength in which emission was seen to occur was at 590nm. One should note that the 

emission wavelength for a P3KHT/10% DHAB solution occurred at 570nm, which is a 

shorter emission wavelength than for 20 and 30% DHAB solutions. This result is 

counterintuitive, as lower amounts of DHAB should contribute to a smaller bandgap and 

longer emission wavelengths in theory. However, one must realize that there is an 

inherent uncertainty with regard to each solution’s concentration and molar ratio of 
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DHAB: CTAB, along with measurement uncertainties stemming from the fluorimeter 

used to obtain the spectra. The difference in emission wavelengths (590nm vs. 570nm) 

between the 20 and 30% DHAB solutions and the 10% DHAB solution thus might not be 

due to conclusive differences in chain conformation, but to inherent uncertainties of the 

instrument or of the solution concentrations.  

Figure 3.8: Normalized Emission spectra for 10, 20, and 30% DHAB/P3KHT 

solutions. 

  As the optical and emissive properties of the P3KHT/surfactant complexes have 

been discussed when the surfactant is either comprised of pure CTAB or of a 

combination of CTAB and DHAB, it is now necessary to evaluate and discuss the 
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UV/Visible and Emissive data obtained from complexes with a single tailed surfactant of 

varying alkyl chain length. When a surfactant is complexed with polymer, a variation of 

the surfactant alkyl chain length can lead to differences in the dispersive, thermal, and 

dynamic mechanical properties of the network, in addition to other changes. In a study by 

Musking et. al., increasing the alkyl chain length of a sodium dodecyl sulfate surfactant 

in combination with an LDPE/LDH polymer composite led to a successive increase in the 

d-spacing between the <003>, <006>, and <009> families of crystallographic planes.54 

Moreover, the study by Musking et. al. also found that intercalated structures formed 

between the polymer and surfactant whenever the surfactant alkyl chain length was equal 

to or greater than 12 carbons. Conversely, shorter surfactant alkyl chains contributed to 

larger aggregate structures with enhanced mobility between polymer chains—this trend is 

consistent with the theory that shorter alkyl chains present less steric hindrance and 

electrostatic repulsion, allowing for the polymer/surfactant network to have less rigidity 

as a whole and to thus form a coiled morphology. Crystallite size, decomposition 

temperature, and crystallization temperature were all observed to increase as a function of 

surfactant alkyl chain length. Moreover, SEM micrographs depict more strongly 

connected fibrillary networks for systems of longer alkyl chain length.54 As will be 

discussed shortly, increasing the alkyl chain length of a surfactant combined with P3KHT 

will have a similar effect to that observed in the studies of Musking, et. al., as more rigid 

and fibrillary morphologies are attained.  

  The results of dilute solution spectroscopy for C10, C12, C14, and C16 (CTAB) 

combined with P3KHT suggest that longer alkyl chains contribute towards greater red-

shifting and hence smaller electronic bandgaps. An interesting phenomenon occurred in 
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the experiment in that the C14 complex exhibited a red-shifted absorption peak at 

approximately 540nm at t = 0. This result suggests that there was no time dependent 

chromism for the C14 complex, as the chromic transition was instantaneous. There may 

be considerable differences in the aggregation and de-aggregation behaviors between the 

polymer chains and surfactant moieties as a function of surfactant alkyl chain length—the 

data for the C14 complex suggests that little to no deaggregation of the P3KHT chains 

occur upon C14 addition, while significant deaggregation (blue-shifting) occurs upon the 

addition of C16 (CTAB). A discussion of the factors relating surfactant architecture to 

polymer aggregation mechanisms is beyond the scope of this report, as the causes for the 

differing behaviors have only been postulated. In Figure 3.9, it is intuitive that the 

maximum absorbance wavelengths become increasingly red-shifted as surfactant alkyl 

chain length increases. One should also notice that the curve representative of the C16 

complex was obtained after 90 minutes; the C16 curve at t = 0 exhibited an absorbance 

maximum at roughly 480nm. Thus, CTAB was the only surfactant seen to induce time 

dependent chromism. The long length of the CTAB alkyl chain (16 carbons) likely 

induces a significant degree of steric and electrostatic repulsions, thereby prohibiting the 

formation of compacted and or coiled domains; as such, the polymer chains transition 

from a coiled to rod state as a function of time. This transition is thermodynamically 

driven, as the exothermic reduction in enthalpy outweighs the decrease in entropy so as to 

minimize free energy.  
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Figure 3.9: Normalized Absorbance spectra for P3KHT/C10, C12, C14, and C16 

solutions. 

The data in Figure 3.9 provide indirect evidence for increased effective conjugation 

lengths (ECLs) for systems of surfactants with longer alkyl chains. As the alkyl chain of a 

cationic surfactant increases, the morphology of the resulting complex is greatly 

affected—polymer pillars or honeycombs have been observed for systems where the 

surfactant length is greater than or equal to 12 carbons and the adsorption efficiency of 

these systems is significantly greater due to greater separation between polymer chains 

and hence larger pore volumes.55 Polymer pillars refer to uniformly aligned polymer 
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chains that are orthogonal to the substrate onto which they are grafted, and honeycomb 

structures result when the polymers align into hexagonal packing geometries.  

  The variation of surfactant alkyl chain length directly influences the 

P3KHT/surfactant emissive properties. As seen in Figure 3.10, the emission profile is 

consistent with the absorbance profile in Figure 3.9 in that there is a progressive red-shift 

in the spectra with respect to surfactant alkyl chain length. The differences between 

wavelengths of maximum emission intensity are more subtle in Figure 3.10 as compared 

to the differences between wavelengths of maximum absorption intensity in Figure 3.9; 

this trend is most likely due to the fact that each complex has a unique Stokes’ shift. 

Despite each complex having dissimilar Stokes’ shifts, it is evident in Figure 3.10 that as 

the alkyl chain length of a single chain surfactant is increased, the emission wavelength 

progressively increases, indicating the presence of both lower energy photons and a 

smaller energy gap between the valence and conduction bands.  
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Figure 3.10: Normalized Emission Intensity for P3KHT/C10, C12, C14, and C16 

solutions. 

3.2 Dynamic Light Scattering (DLS) Studies 

  Attempts were made to deduce mean particle or aggregate sizes for various 

polymer/surfactant complexes via performing Dynamic Light Scattering (DLS). While 

some notable trends exist in the data (i.e. particle size increasing as a function of DHAB 

loading until 20% DHAB), anomalies exist which do not make theoretical sense. For 

instance, the mean particle size decreases as the alkyl chain length of surfactant increases 

from 14 to 16 carbons, or as the percent DHAB loading increases from 20% to 30%. 

Because the laser wavelength for the DLS instrument is fixed at 633nm (i.e. within the 
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absorbance range of a conductive polymer), not all light incident upon the sample is 

scattered and a certain percentage is absorbed. The fact that the conductive polymer 

samples absorb a portion of the light from the lasing source means that the validity of the 

DLS data is easily compromised, since a reduction in the sample’s light scattering cannot 

be solely attributed to particle size effects. Despite these difficulties encountered in DLS, 

the acquired data is displayed in Table 4.  

Table 4: Mean Particle Size and Standard Deviation for 13.3µM Solutions of Various 

Complexes as Determined via Dynamic Light Scattering (DLS). 

Identity of 

Polymer/Surfactant 

Complex 

Mean Particle Size (nm) Standard Deviation (nm) 

P3KHT/C10 55.08 7.763 

P3KHT/C12 245.514 60.834 

P3KHT/C14 631.15 519.959 

P3KHT/C16 (CTAB) 87.107 18.377 

Pure P3KHT 

 (No Surfactant) 

105.226 21.492 

P3KHT/5% DHAB 80.008 8.92 

P3KHT/10% DHAB 158.231 10.855 

P3KHT/20% DHAB 161.105 11.056 

P3KHT/30% DHAB 105.857 10.945 
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The standard deviation observed for the C14 complex is much larger than the deviation 

seen for the other complexes; although the measurements were repeated for C14 multiple 

times and different concentrations were also tested, a very large standard deviation in the 

mean particle size still resulted. A possible explanation for the large deviation might be 

due to the colloidal nature of the C14 solution—in many cases, complete solubility of the 

complex did not occur. When there are concentrated regions of large macromolecules 

(i.e. colloidal assemblies) interspersed throughout a solution that is otherwise free of 

large molecules, there is a high probability that the average light scattering intensity 

across the entire solution will vary significantly.  

 

Figure 3.11: Mean particle size vs. alkyl chain length. There is a reduction in 

particle size for chains greater than 14 carbons.  

  In Figure 3.11, one can notice the abnormally large standard deviation in mean 

particle size for the C14 complex, as well as the reduction in particle size for alkyl chains 

longer than 14 carbons. The progressive increase in particle size with respect to alkyl 
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chains 10 to 14 carbons long agrees well with theory because increased steric and 

electrostatic repulsions occur as the alkyl chain is increased, thus favoring a greater 

separation between chains. This principle contributes to an increase in mean particle size, 

although the particle size shrinks for alkyl chains longer than 14 carbons—the source of 

this effect is beyond the scope of this discussion and it is merely mentioned as an 

unexpected trend. In Figure 3.12, the mean particle size increases drastically from 5 to 

10% DHAB content, levels off between 10 and 20% DHAB, and decreases gradually 

from 20 to 30% DHAB. The standard deviations in particle size are very similar for all 

DHAB loading ratios and the absolute difference in particle size (maximum observed – 

minimum observed) is a mere 85nm, as compared to an absolute difference of nearly 

550nm in Figure 3.11. If this data could be confirmed through reproduction, it is evident 

that changing the surfactant alkyl chain length has a much more profound effect on 

altering the mean particle size as compared to changing the DHAB loading ratio.  

 

Figure 3.12: Mean particle size vs. percent DHAB surfactant in system.  
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3.3 Properties of Concentrated Solutions  

  In addition to tailoring the morphology of conjugated polyelectrolytes in the 

dilute state, significant efforts have been made to control morphology and the degree of 

crystallinity in more concentrated solutions. The so called ‘lyotropic ordering’ of 

polymers can occur based on the formation of micelles of surfactant in solution. Since the 

conjugated polyelectrolytes are ionically bound to the surfactants, any changes in 

surfactant structure or ordering will be imparted to the CPEs. Above a specific 

concentration termed the critical micelle concentration, or CMC, micelle formation 

becomes thermodynamically favorable in that the entropic penalty of assembling the 

surfactant molecules is less than the entropic penalty of exposing the hydrophobic 

portions of surfactant monomers with water. Micelles may assume different architectures 

depending on the surfactant packing parameter, which is directly influenced by the 

concentration of surfactant. As the cross sectional area of the hydrophilic core of the 

surfactant aggregate decreases with added surfactant, the packing parameter increases, 

and as a result, bilayers of polymer/surfactant complexes with lamellar morphology may 

form at sufficiently high solution concentrations. Although a lyotropic liquid crystalline 

polymer phase may form as a result of many different variables at sufficiently high 

concentrations, a very important variable is surfactant architecture. In Figure 3.13, the 

phase behavior is depicted as a function of both concentration and DHAB loading ratio. 

For instance, ‘90% CTAB’ refers to a system with a 9:1 molar ratio of CTAB to DHAB, 

while ‘70% CTAB’ refers to a system with a 7:3 molar ratio of CTAB to DHAB. For any 

given DHAB loading ratio, it is intuitive that higher concentrations favor the formation of 

the nematic lyotropic liquid crystalline phase—this trend is in direct agreement with 
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Onsager’s theory for rigid rod formation. In Onsager’s theory, a decrease in excluded 

volume between chains leads to an increase in packing entropy; this increased packing 

entropy outweighs the decrease in orientational entropy.56 

 

Figure 3.13: Phase behavior of P3KHT/Surfactant solutions as a function of 

concentration.66 

  It should be noted that the morphology of the complex does not instantaneously 

change from a disordered isotropic state to a highly ordered and nematic liquid crystalline 

phase, for there exists a small ‘biphasic’ regime. The biphasic region is simply a blend of 

the isotropic and nematic liquid crystalline phases; birefringence occurs, but only within 

small nanodomains interspersed throughout the area being analyzed. In the nematic 
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phase, complete birefringence occurs. In the schemes and figures to follow, illustrations 

are presented of the isotropic, biphasic, and nematic liquid crystalline phases. It can be 

readily observed that birefringence does not occur upon rotation of the polarized light for 

the isotropic phase, and that birefringence only partially occurs for the biphasic phase. A 

very strong birefringence occurs for a sample in the nematic liquid crystal phase upon 

rotation of cross polarized light. In Figure 3.17, c* can be substituted for y into the 

equation for the line of best fit and can be approximated for any surfactant loading ratio x 

per the equation c* = 0.1767x + 49.203. In Figures 3.14, 3.15, and 3.16, an assortment of 

images are displayed which represent the isotropic, biphasic, and nematic liquid crystal 

phases for various polymer/surfactant complexes. Interesting textures of the nematic 

liquid crystal phase formed via mechanical shearing will also be introduced.  
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Figure 3.14: Illustration of the Nematic, Biphasic, and Liquid Crystal Phases before 

and after rotation of polarized light. a) Isotropic Phase; C10 complex at 52wt. % 

concentration, 0 degrees rotation. b) Isotropic Phase; C10 complex at 52wt.% 

concentration, 45 degrees rotation. c) Biphasic Phase; C10 complex at 56wt.% 

concentration, 0 degrees rotation. d) Biphasic Phase; C10 complex at 56wt.% 

concentration, 45 degrees rotation. Only slight birefringence occurs with respect to 

rotation of polarized light. e) Liquid Crystal Phase; C10 complex at 62wt.%, 0 degrees 

rotation. f) Liquid Crystal Phase; C10 complex at 62wt.%, 45 degrees rotation. 
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Figure 3.15: Other illustrations of the Biphasic Phase. a) Biphasic Phase; 

mechanically sheared C16 complex at 52wt.% concentration. b) Biphasic Phase; C16 

complex at 53wt.% concentration. c) Biphasic Phase; poly(3-butylthiophene-2, 5-diyl): 

CTAB complex at approximately 55wt.% concentration. 
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Figure 3.16: Depiction of other attainable liquid crystalline and solid film textures. 

a) Nematic Liquid Crystal Phase; banded texture obtained via an applied shear force. b) 

Nematic Liquid Crystal Phase; 60wt.% C16 complex with banded texture obtained via 

shearing. c) Nematic Liquid Crystal Phase; Schlieren texture obtained as a result of 

defects forming, wherein brushes meet at a common defect point. d) Solid film of a C16 

complex at 60wt.% concentration with spherulites present in the right side of the image.  

  As a general rule, as the percentage of DHAB in the complex decreases, the 

degree of birefringence, and hence of the nematic liquid crystalline phase, increases. The 

differences in the extent of birefringence seen from polarized optical microscope images 

introduce a considerable amount of subjectivity, as birefringence can only be demarcated 
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by the extent of contrast between black and red. In reality, the birefringence and length 

are not constant across an entire sample in a typical liquid crystal.67 There will invariably 

exist regions of differing director orientation and length, and as such, some samples 

might display the Schlieren texture where dark regions referred to as brushes represent 

alignment parallel or perpendicular to the director.67 The data gathered for the phase 

transition graph of Figure 3.13 was obtained in 2012 as part of a different study. 

Nevertheless, new data was acquired which roughly agrees with the trends of Figure 3.13. 

In Figure 3.17, the experimentally determined phase transition from the isotropic to 

nematic liquid crystalline phase is depicted via a line of best fit. No biphasic phases were 

observed for this particular study and it was assumed that there was an uncertainty of 

roughly 4wt.% for all concentrations of the complex. Based on the trend seen in Figure 

3.17, increasing the concentration of a solution will favor the formation of the nematic 

liquid crystalline phase, irrespective of the CTAB: DHAB surfactant composition. This 

tendency agrees with Onsager’s Rigid Rod Theory in that the decrease in the 

orientational entropy of the polymer/surfactant entities varies directly with the 

concentration of the polymer/surfactant mixture. In simpler terms, greater crowding leads 

to less chain mobility, and in order to attain a lower Gibbs free energy, the chains self-

assemble into a more ordered or liquid crystalline morphology, which raises packing 

entropy. Packing entropy is the result of increased disorder within the surrounding 

solvent when the polymer chains become increasingly ordered. The total entropy of the 

system (i.e. of polymer and solvent) increases despite the lowering of orientational 

entropy when the chains are aligned in the liquid crystalline phase.  
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Figure 3.17: Experimentally determined phase transitions for P3KHT complexes of 

varying DHAB loading ratios. 

  The experimentally determined weight percent concentrations at which phase 

transitions occur for complexes with single tailed surfactants also agree with Onsager’s 

Rigid Rod Theory. As the alkyl chain length of the single tailed surfactant increases, 

there is less total volume for the polymer chains to move. Increased steric repulsions 

result between adjacent surfactant units, since the longer alkyl chains occupy more space 

and inevitably become closer to each other in a system wherein the volume is fixed. As a 

consequence, the polymer chains must undergo a transition from the isotropic to liquid 

crystalline state so as to maximize positional entropy and to attain the most stable 

thermodynamic state. In essence, for a fixed concentration, a complex possessing longer 

single tailed surfactants will more heavily favor the liquid crystalline phase over the 

isotropic phase. In Figure 3.18, one can observe the effect of increasing surfactant alkyl 
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chain length on the phase behavior of concentrated hydrogel solutions. No biphasic phase 

was observed, and an uncertainty of roughly 4wt.% exists for all concentrations. The 

experimentally determined trend in Figure 3.18 is in direct agreement with Onsager’s 

Rigid Rod Theory because as surfactant alkyl chain length is increased for a particular 

concentration, the liquid crystal nematic phase becomes more favorable.  

 

Figure 3.18: Experimentally determined phase transitions for P3KHT complexes of 

varying surfactant alkyl chain length. 
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3.4 Properties of Solid State Complexes 

  Explicit trends demonstrating the relationship between crystallinity and surfactant 

architecture were observed in Differential Scanning Calorimetry (DSC) and X-Ray 

Diffraction (XRD) studies. In theory, increasing the DHAB loading ratio with respect to 

CTAB or decreasing the alkyl chain length of a single chain surfactant will hamper the 

formation of perfect crystallites, and will instead increase the proportion of imperfect 

crystallites. Many studies have demonstrated the influence of surfactant architecture on 

the solid state properties of conjugated polyelectrolyte complexes—in a study by 

Thunemann and coworkers, substantial increases in crystallinity were observed for 

systems containing more than eight or nine methylene groups. Systems with lower 

numbers of methylene groups (i.e. surfactants of shorter alkyl chain length) have lower 

melting enthalpies per mol of surfactant and yield more flexible polymer chains; as a 

result, flexible films with reversible elongation of approximately 28% may be obtained.59 

X-Ray Diffraction data and DSC data can be utilized to indirectly deduce the extent of 

molecular ordering; X-Ray scattering intensity increased in direct proportion to charge 

density facilitated by long, single chain surfactants.58 Additionally, peak broadening 

indicative of greater amorphicity was observed to occur for systems with smaller 

diffracting domain sizes—greater crystal lattice distortions and micro-strains were 

induced when certain surfactant architectures contributed to more compacted and less 

ordered morphologies.60 Thus, if one neglects all instrumental contributions to peak 

broadening within an X-Ray diffractogram, the full-width at half maximum (FWHM) 

should be directly proportional to the degree of amorphicity, and hence to the degree of 

coiled morphology.  
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  In Figure 3.19, it is evident that as the amount of DHAB with respect to CTAB is 

reduced, the extent of rod-like morphology is reduced, as is the crystallinity. The 

scattering peak seen at approximately 2.5 Å-1 rises in intensity significantly from a 90% 

CTAB complex to a 100% CTAB complex—this trend agrees with the UV/Vis data seen 

in Figures 3.2 and 3.4 in that rod-like morphology is not favored for a 90% CTAB 

complex (no red-shifting occurs). Moreover, a secondary diffraction peak is observed at 

approximately 5 Å-1, which can be attributed to the formation of a secondary crystallite 

along the (200) orientation. The 100% CTAB complex is polycrystalline in nature based 

on XRD data.  

 

Figure 3.19: X-Ray Diffractogram of a P3KHT/Surfactant complex of varying 

DHAB concentrations.66 
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  Data obtained via DSC reinforce the fact that crystallinity increases as a function 

of total CTAB content or as a function of surfactant alkyl chain length. In Figures 3.20 

and 3.21, the melting temperature of the complexes progressively increases with respect 

to the aforementioned variables; moreover, the endothermic integrated peak area also 

increases. In simplistic terms, more energy must be supplied to a system with greater 

crystallinity in order to break apart the rigid, intercalated networks as compared to a 

system with a coiled morphology, wherein the enthalpic cost of bond breaking is 

substantially less.  

 

Figure 3.20: DSC spectra of P3KHT/Surfactant complexes of varying alkyl chain 

length. 
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Figure 3.21: DSC spectra of P3KHT/Surfactant complexes of varying DHAB 

loading ratios.66 
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with CTAB content and hence with percent crystallinity. These developments allow for 

the DSC data to provide indirect evidence of an increase in the rod-like character of the 

P3KHT chains as DHAB is removed.  

  The extent of crystallinity of samples in the solid state may also be studied by 

means of optical and scanning electron microscopy. In the optical images to follow in 

Figure 3.22, one can notice the varied orientations of crystal fibers, which in some 

instances may aggregate to form spherulites. Spherulites are semicrystalline regions 

inside non-branched linear polymers; upon crystallizing from the melt, spherical domains 

can form if there are sufficient nucleation sites. The amount of nucleation sites may be 

controlled by intentionally adding crystallization promoters or seeds, which are typically 

plasticizers, fillers, dyes, salts, or acids. The sizes of the resulting spherulites are 

inversely proportional to the number of nucleation sites, as crowding between adjacent 

nucleating centers limits the size to which a spherulite may grow.  
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Figure 3.22:  Polarized Optical Microscope (POM) Images of Dried 

Polymer/Surfactant Films. a) A dried C16 complex. The orientation of the various 

crystallites varies throughout the film. b) A dried C16 complex. Large spherulites appear 

in the middle of the image. c) A zoomed in image of a dried C16 complex; one can notice 

the radial growth pattern of the crystals defining the spherulites. d) A dried C16 complex. 

Individual crystallites (lower half of image) and spherulites (upper half of image) define 

the texture of the dried film.  
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4. Future Work and Research Outlook 

  Because an exhaustive list of suggested future experiments may be devised for 

investigating the role of surfactant architecture on P3KHT morphology, only a few 

feasible experiments will be herein discussed. While the UV/Vis, Fluorescence, XRD, 

and DSC data have provided indirect evidence of relating surfactant architecture to 

crystallinity and chain morphology, more direct evidence would be especially valuable to 

enhance the scientific validity of the research findings. Microscopic techniques will be 

imperative for providing visual evidence of the polymer and surfactant mixtures. The use 

of scanning electron microscopy (SEM) will not likely provide adequate resolution of the 

individual polymer chains intermixed with surfactant; it will therefore be recommended 

to use transmission electron microscopy (TEM) best elucidate chain morphology from a 

microscopy standpoint. While a conventional TEM can provide nanometer to sub-

nanometer resolution, there is a significant risk of damaging a polymeric sample from a 

highly energetic electron beam. Moreover, sample preparation can prove troublesome and 

expensive, as samples must be less than or equal to 100nm. Nevertheless, under the 

correct instrumental conditions and with a carefully prepared sample, heavily desired 

images displaying fine detail of the polymer’s interaction with the surfactant and the 

overall polymer morphology may be obtained. Diffraction mode may also be used on a 

TEM, wherein resulting diffraction spots or disk patterns directly represent the crystal 

structure of the sample. One can ascertain the degree of crystallinity from observing a 

diffraction pattern in that amorphous samples will scatter an electron beam to form a 

broad halo, whereas a highly crystalline specimen will scatter the beam into well-defined 

spots. Lastly, one may index a corresponding diffraction pattern to determine which 
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crystallographic planes diffract, interatomic layer spacing, and the lattice parameter 

associated with a material.  

  More characterization methods also exist which can further enhance one’s 

understanding of how surfactant architecture affects polymer chain morphology. The 

scanning tunneling microscope (STM) can provide atomic resolution images of surfaces. 

All samples must be conductive for STM use and much practice is needed in order to 

acquire high quality images, but once suitable images are obtained, precise surface 

structure and atomic arrangement may be determined. If operated under the correct 

conditions, STM can create a surface map of electron density wherein the cationic 

moieties (i.e. CTAB or DHAB) can be differentiated from the anionic moieties (P3KHT), 

thereby producing a colored map related to polymer and surfactant orientation. Advanced 

X-Ray scattering techniques such as SAXS would also be beneficial in elucidating 

polymer conformation in either dilute or concentrated solutions. The intensity of the 

scattering with respect to the scattering vector q will reveal information related to 

polymer persistence length, radius of gyration, and overall morphology. While sample 

preparation may be tedious and while experiments may take several hours or more, 

SAXS can render invaluable data to the polymer scientist regarding how individual 

structures pack together in solid, liquid, or film samples.61 SAXS is considered by many 

to be an ideal accompaniment to electron microscopy in that while electron microscopy 

provides localized nanostructural information, SAXS delivers an average of this 

information across an entire sample.61 If SAXS were to be performed on all of the 

P3KHT/surfactant complexes mentioned in the previous sections, the validity of the 
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UV/Vis data with respect to polymer bandgap and morphology could be more concretely 

assessed.  

  Another area worthy of study for this research endeavor is anisotropic 

fluorescence spectroscopy. In anisotropic fluorescence spectroscopy, the anisotropy of a 

particular fluorophore is related to the ratio of an unpolarized light component to total 

incident light intensity; emitted light from a polarized light source will become 

unpolarized after interacting with a fluorophore for a certain time period. The time 

necessary for the transition from polarized to unpolarized fluorescence is dependent upon 

the rotational diffusion, macromolecular size, and overall anisotropy of the fluorophore.62 

Anisotropic fluorescence studies can thus be meaningful in that changes in the molecular 

size of polymers and other macromolecules can be monitored, as can fluorophore 

lifetimes.62 The decay rate of fluorescence anisotropy can be described mathematically 

per equation 7 

r(t) = r0exp(-t/θ)         (7) 

where r0 is the anisotropy at t = 0, t is time in seconds, and θ is the rotational correlation 

time. Factors such as resonance energy transfer between molecules and enhanced 

rotational motions will shorten the anisotropic lifetimes of the fluorophores. As the 

rotational correlation time θ is reduced, molecules are likely smaller, can rotate more 

readily, and are less strongly bound to other entities. As a result, the anisotropy of the 

system decreases in a smaller time period r(t)—one can therefore directly correlate the 

fluorescence anisotropy decay time r(t) to macromolecular conformation, size, and 

aggregation behavior.  
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  It should lastly be mentioned that a publication is pending related to the work of 

this thesis report. Upon acquiring satisfactory SAXS data for the liquid crystalline 

complexes of C16, C14, C12, C10, and 5, 10, 20, 30% DHAB, enough proof will have 

been made to justify the influences of surfactant architecture on conformational changes 

of CPEs in the dilute, high concentration, and solid state regimes. The characterization 

data for complexes in the dilute and solid state regimes is reproducible, accurate, and 

trustworthy; the only challenge remaining is to successfully prepare SAXS samples and 

to acquire informative SAXS data to gain a better understanding of the complexes’ 

conformations in the liquid crystalline (high concentration) state. Upon preparing the 

previous batch of SAXS samples, the liquid crystalline solutions unexpectedly dried upon 

shipment, and therefore were not in a useful form for acquiring meaningful SAXS data. 

By devising a new way to ship the SAXS samples and with collaboration with the 

researchers at Yale, strong hopes have been made to gather the desired data so that the 

paper in progress may become submitted and published.   
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5. Conclusions 

  Demand has increased immensely for organic electronic devices, primarily 

because of their cheaper processing routes. Organic solar cells, light emitting diodes, and 

thin film transistors are a few of the many popular polymer electronic devices whose 

efficiencies rely heavily upon a control of the polymer chain morphology. In this work, 

the architecture of various cationic surfactants was analyzed, as was the effect of this 

architecture on tailoring polymer chain morphology. Through ionic interactions between 

the cationic moieties of the surfactant and the anionic moieties of the conjugated 

polyelectrolyte, it is possible for the polymer chains to undergo a transition in 

morphology from ‘coil to rod’ under the correct conditions of temperature, concentration, 

and ratio of surfactants, etc. In the dilute regime, it was found that the formation of rod-

like structures is impeded by increasing the proportion of DHAB with respect to CTAB 

or by decreasing the alkyl chain length of a single tailed surfactant. When the 

polymer/surfactant complexes are of higher concentrations, the nematic liquid crystalline 

phase becomes more favored than the isotropic phase as the alkyl chain length of a single 

tailed surfactant increases. Conversely, when the proportion of DHAB increases with 

respect to CTAB, more compacted structures form and the isotropic phase becomes 

favored over the nematic liquid crystalline phase. The critical concentration, c*, at which 

a phase transition occurs varies with respect to the surfactant architecture of the complex. 

Lastly, solid state films of the polymer/surfactant complexes were characterized via DSC 

and XRD, wherein a complexes’ melting temperature and percent crystallinity were 

observed to increase in direct proportion to surfactant alkyl chain length or to higher 

CTAB: DHAB ratios. A fundamental work has herein been presented that will prove vital 
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for bettering the understanding of how one may use surfactant(s) to adjust the 

morphology of conjugated polyelectrolytes. By tuning the morphology of the conjugated 

polyelectrolytes, the efficiency and manufacturability of organic electronic devices may 

be enhanced considerably.  
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