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ABSTRACT 

 

Laser Speckle Imaging: A Quantitative Tool for Flow Analysis 

Taylor Andrew Hinsdale 

  

 Laser speckle imaging, often referred to as laser speckle contrast analysis 

(LASCA), has been sought after as a quasi-real-time, full-field, flow visualization method. 

It has been proven to be a valid and reliable qualitative method, but there has yet to be any 

definitive consensus on its ability to be used as a quantitative tool. The biggest impediment 

to the process of quantifying speckle measurements is the introduction of additional non 

dynamic speckle patterns from the surroundings. The dynamic speckle pattern under 

investigation is often obscured by noise caused by background static speckle patterns. One 

proposed solution to this problem is known as dynamic laser speckle imaging (dLSI). dLSI 

attempts to isolate the dynamic speckle signal from the previously mentioned background 

and provide a consistent dynamic measurement. This paper will investigate the use of this 

method over a range of experimental and simulated conditions. While it is believable that 

dLSI could be used quantitatively, there were inconsistencies that arose during analysis. 

Simulated data showed that if the mixed dynamic and static speckle patterns were modeled 

as the sum of two independent speckle patterns, increasing static contributions led to 

decreasing dynamic contrast contributions, something not expected by theory. 

Experimentation also showed that there were scenarios where scattering from the dynamic 

media obscured scattering from the static medium, resulting in poor estimates of the 

velocities causing the dynamic scattering. In light of these observations, steps were 

proposed and outlined to further investigate into this method. With more research it should 

be possible to create a set of conditions where dLSI is known be accurate and quantitative. 
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Chapter 1: Introduction 

1.1 Laser Speckle Imaging Overview 

The desire for non-invasive, real time, and accurate fluid velocity measurement in 

medical research and diagnostics has driven the research in laser based methods. One 

current technique being employed is laser Doppler flowmetry, which is based on the 

interference caused by light scattering objects that are under motion. Problems arose with 

this method when measurements could only be made at a single point in space, requiring 

mechanical scanning for full field imaging. This undesirable quality led to the 

development of a technique known as laser speckle contrast analysis (LASCA). Real time 

velocity measurements and blood perfusion measurements could now be made over a 

larger field of view. Many researchers have applied this; with some demonstrating the 

effectiveness of LASCA, also known as laser speckle imaging, for characterizing real 

time blood perfusion in patients who underwent treatment for port wine stain. [1] Others 

have applied the method in areas such as microvasculature flow assessment and 

atherosclerotic plaque characterization, but up until recently most efforts have been 

qualitative rather than quantitative in nature. [3][4][5][17]  

 

1.2 Fundamentals of LASCA  

The laser speckle phenomenon arises from coherent light incident upon a 

scattering medium. The easiest way to represent a scattering medium is an uneven planar 

surface. Figure 1 below shows in a diagram how the interference occurs and gives an 

example of a typical speckle pattern.  
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Light incident upon this surface will reflect; however, since the light has now traveled 

different path lengths due to the uneven plane heights, it will interfere. The observer will 

see the summation of many scattered light waves and their interference pattern. Because 

the unevenness of the plane is essentially random, the interference pattern of the light is 

random and will create a distribution of light and dark spots.  

The laser speckle phenomena can be used to extract information from the 

illuminated surface that produces the pattern. The standard measure of a speckle pattern 

is known as the contrast, which is shown below in Equation 1. 

 

(1)    K =   
σs

<I>
 

 

The contrast is a measure of the variation in the intensity of the speckle pattern and, as 

seen in Equation 1, is defined as the ratio of spatial standard deviation, σs, to the mean 

intensity, <I>, of the speckle pattern. If the speckle pattern is formed from light scattering 

Figure 1 – Speckle formation example. (Left) Illumination of uneven surface by 

coherent light source producing a speckle pattern at the imaging plane. (Right) 

Characteristic speckle pattern that arises from the process on the left. [24][14] 



 3 

off a dynamic medium, the variable of contrast can be utilized to infer information about 

velocity of the dynamic medium. 

A paper published by Fercher and Briers in 1981 derived a relationship that could 

be used to relate moving speckle patterns to velocities using single exposure 

photography. [11] Advances in technology have changed the way speckle images are 

captured, but the principles they laid out still apply and act as the foundation of laser 

speckle contrast analysis. For the purposes of blood flow analysis, LASCA analyzes the 

temporal and spatial fluctuations in a speckle pattern. It assumes that regions of speckle 

caused by a static background will remain static and regions caused by a dynamic 

background will change over time. The simplest formulation of LASCA relates the 

spatial standard deviation of the speckle intensity, σs, divided by the mean speckle 

intensity, <I>, to speckle field autocorrelation function, 𝑔1(𝜏). The decorrelation time, τc, 

and camera exposure time, T, are parameters of the autocorrelation function. [11]  

 

(2)   
σs

<I>
=

1

𝑇
∫ |𝑔1

2(𝜏
𝑇

0
)|𝑑𝜏 =  [(

τc

2T
){1 − exp (

−2T

τc
) }]1/2 

 

Relating this to what is physically observed, the spatial standard deviation is a 

measure of the blur caused by speckles under motion. This occurs due to a finite exposure 

time, which creates a temporal averaging effect when speckles are in motion.  

The left hand side of Equation 2 are the measured variables in LASCA. The right hand 

side is the information we wish to infer. The middle is time integral of the speckle 

autocorrelation function, which will be discussed shortly. The measured values for 

Equation 1 are the raw image intensity. The raw intensity information is then processed 
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to display the spatial standard deviation divided by the mean intensity of the image. The 

quantity used to represent the standard deviation of the speckle intensity by the mean 

intensity is the contrast, K, as shown in Equation 1. [11]  

Equations 2 is a statistical approach to characterizing dynamic speckle behavior. 

The contrast in Equation 2 is bounded by the values zero and one. A value of zero occurs 

when the standard deviation of the speckle intensity pattern is zero. This physically 

makes sense when imaging on a camera with a finite exposure time; fast enough speckles 

will cause a blurring effect and homogenize the resulting image causing a contrast of zero 

as the standard deviation of the intensity approaches zero. A value of one occurs when 

the standard deviation of the speckle intensity pattern is equal to the mean intensity of the 

speckle pattern. Both of these are fundamental features speckle and are the resultant of 

the mathematical upper and lower bounds for contrast.   

A key concept to keep in mind is that the spatial variance of a speckle pattern is 

related to the time averaged autocorrelation of the speckle pattern as seen in Equation 2. 

[13] The autocorrelation function represents a function’s, or pattern’s, self-similarity. In 

our case we are considering the time evolution of a signal. The autocorrelation procedure 

takes the time evolving signal at one point in time and compares it with a time evolved 

version of itself. This procedure produces what is known as the autocorrelation function. 

The autocorrelation function starts with a value of one on the y-axis and decays as it 

moves along the x-axis, which is in units of time, in the positive direction. How fast this 

function decays to zero is a measure of how dissimilar the time varying signal has 

become. This decay time is known as the decorrelation time and translates to how fast the 

signal is time evolving. For laser speckle, two speckle patterns that are identical are 
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perfectly correlated, while two speckle patterns that are statistically independent are 

completely uncorrelated. [13] The autocorrelation function measures how fast the 

transition between these two states is occurring in a dynamic speckle pattern. Since the 

autocorrelation function cannot be measured instantaneously with current methods, it 

must be time averaged. The time average of this autocorrelation function can be related to 

the spatial statistical properties of the dynamic speckle pattern, and this is what is shown 

in Equation 2. [13] This translates physically to the signal that a CCD camera acquires 

with a set exposure time. Measuring the contrast of a dynamic pattern as seen by the 

CCD then allows for the interpolation of the ratio 
τc

T
 through Equation 2. Knowing the 

exposure time of the system then allows for an estimate of the decorrelation time. Using 

this basic approach one can make a qualitative assessment of flow rates in a system. If a 

quantitative analysis of the system flow is desired, modifications need to be made to the 

LASCA algorithm.  

  

1.3 Quantitative Dynamic (dLSI) Method 

An approach known as dynamic laser speckle imaging has been used to conduct 

quantitative laser speckle flow analysis in the presence of background scatterers, with 

background scatters being defined as a static component that contributes unvarying 

speckle to the dynamic pattern. [27] An example of background scatters in blood flow 

imaging is the vessel wall and background tissue surrounding the flowing blood. These 

components scatter light that interferes with the dynamic speckle pattern formed by the 

blood. This method falls largely from the work of Zhakarov et al. [27]  In this model static 

scattering components of the speckle image are assumed mixed with the dynamic 
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scattering parts. [27] The fluctuations in a coherently scattered field, 𝑔1(𝜏), as shown in 

Equation 3, can be described by the autocorrelation function of the speckle field which is 

approximated by a negative exponential as discussed earlier. [27] 

 

(3)   𝑔1(𝜏) = exp (−δ𝜏𝑛) 

 

 δ and n depend on the exact model being used to describe the scattering light. 

Reference Zhakarov et al. [27] for more information regarding the model of diffusing wave 

spectroscopy (DWS) that they used and the resulting δ and n. In order to relate this to a 

measurable value, the Siegert relation is employed, shown in Equation 4. It relates the 

electric field autocorrelation function 𝑔1(𝜏) to the intensity field autocorrelation function 

𝑔2(𝜏).[27] Note that the following relationship is only true if the field obeys Gaussian 

random statistics.  

 

(4)   𝑔2(𝜏) =  1 +  𝛽|𝑔1(𝜏)|2 

 

β is coherence factor that describes the amount of contributing speckles being recorded 

by a given camera pixel. [27] Now that the static and dynamic contributions are being 

accounted for, 𝑔1(𝜏) is modified with the value 𝑔1𝑑(𝜏) and 𝜌. 𝑔1𝑑(𝜏) is the measured 

static and dynamic contributions; 𝜌 is used to represent just the static contribution to the 

function. [27]  

 

(5)   𝑔1(𝜏) = (1 − 𝜌)|𝑔1𝑑(𝜏)| +  𝜌  
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Combining Equations 4 and 5 produces the intensity autocorrelation function of a 

statically and dynamically mixed intensity signal (Equation 6). 

 

(6)   𝑔2(𝜏) =  1 +  𝛽[|(1 − 𝜌)𝑔1𝑑(𝜏)| +  𝜌 ]2 

 

Substituting Equation 6 into the modified version of Equation 1 yields Equation 7. 𝐾1𝑑 

represents the mixed contrast of the electric field and 𝐾2𝑑 the mixed contrast of the 

intensity. [27] 

 

(7)   𝐾𝑚
2 = (

2β

𝑇
) ∫ [(1 − 𝜌)|𝑔1𝑑(𝜏)|

𝑇

0
+  ρ]2(1 −  

𝜏

𝑇
) 𝑑𝜏 

 

         𝐾𝑚
2 −  𝛽𝜌2 =  𝐾12𝑑

2 =  (1 − 𝜌)2𝐾2𝑑
2 + 2𝜌(1 − 𝜌)𝐾1𝑑

2  

 

Ideally, 𝜌 is equal to zero and 𝐾𝑚 reduces to 𝐾2𝑑; however 𝜌 is usually greater 

than 0. Evaluating the expression in Equation 7 is difficult and impractical. [27] The 

method suggested for circumventing this problem is to estimate the static contribution to 

the intensity by cross correlating two images that were taken of the same flow pattern. [27] 

However, certain assumptions need to be made to make use of this method. It is 

necessary to assume that there is no correlation between the dynamic speckle patterns 

within successive frames during multiple exposures, i.e. multiple images. [27] For this to 

be true, the relation Δ𝑡 > 𝑇 ≫  𝜏𝑐, where Δ𝑡 is the time between frames, T is the 

exposure time, and 𝜏𝑐 is the intensity decorrelation time. [27] The following expression 

(Equation 8) for the static component exists if we take from the assumptions above that 
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𝑔1𝑑(𝜏), which is the dynamic autocorrelation function, equals zero on a time scale of Δ𝑡. 

[27]  

 

(8)   𝜌2 = [𝑔2(Δ𝑡) − 1]/𝛽   

 

What this says is that if subsequent images are cross correlated under the assumption that 

the cross correlation between the dynamic patterns is zero, the only contribution to the 

cross correlation will be from the static pattern. See Appendix A for a flowchart 

describing the process.  

Relating the decorrelation times calculated using the equations above to velocity 

has proven to be rather difficult. Some propose the decorrelation velocity 𝑣𝑐 is related to 

the wavelength, 𝜆, and the decorrelation time, 𝜏𝑐, shown in Equation 9 below. [8] 

 

(9)   𝑣𝑐 =  
𝜆

2𝜋𝜏𝑐
 

 

This equation is largely an educated guess and other theories will be explored in the 

discussion section of this paper.  

 

1.4 Speckle Simulation 

Speckle can be thought to exist in two modes, objective and subjective. [8] An 

objective speckle pattern exists in an observation plane as a result of scattered light from 

a surface. It is unaltered by imaging optics with the size being linearly related to the 

diameter of the illuminating coherent source, the wavelength of that source, and the 
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distance that the observation plane is away. [8] The speckles grow as the observation 

plane retreats from the source. [8] Each speckle behaves much like an airy pattern seen in 

circular diffraction, spreading out over space.  

The objective speckle field can be modeled by populating an array with randomly 

distributed complex numbers of magnitude unity. [8] Magnitude unity ensures equal 

contribution from all frequency components. Randomizing the phases simulates the 

random phase shifts that coherent light undergoes after scattering off a rough surface. 

Creating a circular mask, which represent the diameter of the coherent source, in the 

array and Fourier transforming the elements inside the mask with those outside equal to 

zero yields a fully developed speckle pattern. [8] This is due to relation between spatial 

frequency and space in Fourier analysis. The spread of features in the spatial dimension is 

inversely proportional to the spread of features in the spatial frequency realm. Controlling 

the ratio of the diameter of the mask to the length of the array controls the speckle size. [8] 

When the diameter is half the length of the length of the array, the minimum speckle size 

is 2 pixels, and will satisfying the Nyquist criterion for spatial speckle sampling. [8] 

 Understanding objective speckle is required to build a strong foundation regarding 

speckle simulation; however, a much more realistic scenario is the case of subjective 

speckle. Subjective speckle is the observed speckle pattern created by scattering off of a 

surface as it appears in the imaging plane of an imaging system. [8] The idea of the 

circular mask must be now be reinterpreted; the aperture is now physically considered to 

be the emitting source of light. Instead of representing the diameter of the coherent 

source, the circular mask now represents the diameter of the aperture of the imaging 

system. [8]  
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Simulating movement requires that the phase pattern is translated through the 

pupil, which is simulated by translating the mask through the complex array. [8] This 

creates a speckle pattern that transforms into another and becomes completely 

uncorrelated when the mask has shifted the length of its diameter in the array. A lack of 

translational movement in the imaging plane will occur and is a result geometric optics. 

[8] This phenomenon is known as speckle boiling and is illustrated in Figure 2 below. [8] 

 

 

Speckle in front of the image plane tracks with the speckle in the object plane while 

speckle behind the image plane tracks in the opposite direction. The transition in these 

directions occurs at the focus and is a result of geometric optics. [8] In reality, imaged 

speckle is never entirely at the focus. Some out of focus speckle will contribute to the 

image. This would call the for superposition of translational as well as boiling speckle in 

simulation, but for this experiment boiling will be sufficient for preliminary investigation.

Figure 2 – Simulated speckle illustration. (Left) Illustration of the movement showing the circular 

aperture moving through the complex plane. (Right) Object motion represent in the focal plane. The 

image moves with the object motion in front of the image and opposite the motion behind it, with the 

boiling phenomena occurring precisely at the image plane. [8] 
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Chapter 2: Methods and Materials 

2.1 Methods Overview 

The LASCA experimental procedure consists of a few basic elements. The 

necessary essentials are a coherent light source, i.e. laser, the imaged object, and a CCD 

camera used to capture the images as shown in Figure 3. 

Figure 3 – Laser speckle contrast analysis experimental imaging construct. (Top) A 

coherent beam is steered onto the tissue phantom, which is then imaged by a CCD 

camera with a 10X macro zoom lens. The image acquired is approximately 8x8 mm2. 

(Bottom) Experimental Setup: (1) Coherent Cube laser (2) ThorLabs beam expander (3) 

Retiga CCD (4) Tissue phantom (5) Harvard Apparatus syringe pump (6) Turning 

mirror (7) Image acquisition computer 
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As well as providing a diagram of a typical LASCA setup, Figure 3 also shows the 

specific configuration that was used in image acquisition for this project. One of the 

primary benefits of LASCA is noted in the simplicity of its set up. The configuration used 

for this experiment consisted of a coherent light source, beam expanding optics, a 

steering mirror to direct the light where it is needed, a tissue phantom and accompanying 

syringe pump to create fluid flow over it, and a CCD camera with imaging optics. 

Standard software, such as QCapture Image Suite, is used to capture images of the 

dynamic speckle pattern. An algorithm is then used to compute the contrast values and 

decorrelation times of the speckle images captured by the CCD camera. The following 

sections provide a more detailed look at the equipment used and the methods 

implemented.  

 

2.2 CCD Camera 

A Retiga 2000R (Retiga-2000R Fast 1394 Mono Cooled Model: RET-2000R-F-

M-12-C) CCD camera was used for image acquisition. A 10X Computar macro zoom 

lens (MLH-10X 1/2" 13 to 130mm 10x Close-up Manual Zoom/Iris Lens C-Mount) was 

attached to the CCD camera in order to obtain the appropriate field of view. An extension 

tube kit (Computar VM100) was also used in conjunction with the macro zoom lens in 

order to bring working distance of the camera closer to the lens, allowing the CCD to 

focus closer to the micro capillary tissue phantom. 

 

 

 



 13 

2.3 Laser and Optical Components 

A Coherent Cube (CUBE 640-40C) 640 nm 40 mW laser diode served as the 

coherent source for this experiment. A ThorLabs 10X beam expander (BE10M-A) was 

used in conjunction with a ThorLabs NBK-7 30mm focal length lens (LA1289-A) to 

create a roughly 10mm diameter beam size. A silvered mirror attached to an adjustable 

mount was used to guide the beam to its final destination.  

 

2.4 Tissue Phantom and Flow Apparatus 

The primary goal of the tissue phantom was to replicate the background scattering 

of biological tissue; this was done by using a polymeric material (PDMS) that was 

infused with scattering agents until it was optically similar to biological tissue. [15] The 

tissue phantom was also designed to stably hold capillary tubes superficially with fluid 

flow in order to simulate blood flow over a biological medium. In order to create 

geometry suitable for both of these purposes, a mold was made in SolidWorks. The mold 

created a phantom that was flat on top, providing a surface for the capillary tube to rest 

upon. Figure 4 below shows a typical tissue phantom used in this project and the mold 

used to create them.  
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Additionally, there were small protrusions on the top of the phantom, which would hold 

the press-fitted capillary tube in place. The mold was made using a stereolithography 3D 

printer with tolerances of 4 microns.  

 184 Sylgard PDMS gel (Dow Corning, Midland, MI) was selected as the phantom 

material due to its optical properties, as it exhibits a similar index of refraction (approx. 

1.4) to that of human tissue. [15] Additionally, titanium dioxide nano-particles (677469, 

Sigma Aldrich, St. Louis, MO), scattering agents, were mixed in with the uncured PDMS 

gel at concentrations of 0 mg/ml, 0.5 mg/ml, 1 mg/ml, and 2 mg/ml. The mixture was 

then subjected to sonication to evenly disperse them throughout the mixture. The mixture 

was then poured into the mold and run through a vacuum chamber to reduce the 

formation of air bubbles. While in the vacuum chamber the pressure was reduced to 

allow air bubbles in the PDMS to rise to the top of the mold. Once the surface of the 

PDMS was populated with bubbles, the pressure was returned to atmospheric, thus 

Figure 4– Tissue phantom and mold example. The tissue phantom on 

the left contains of a concentration of 1 mg/mL of TiO2/PDMS. The mold 

on the right is a negative of the features. 
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popping the bubbles. This process was repeated until the formation of air bubbles ceased. 

The phantom was then allowed to cure for 48 hours before removing it from the mold.  

A capillary tube (282 μm, Drummond Microcap, P1799 Sigma Aldrich, St. Louis, 

MO) was then press fit into place, resting atop the phantom and in direct contact with the 

surface. Tygon tubing was connected to the capillary tube and a syringe pump (Harvard 

Apparatus, Holliston, MA). Full fat vitamin D milk (Crystal Milk, Modesto, CA) was 

pumped through at constant rates of 5, 10, 15, 20, and 25 μL/min, simulating the range of 

blood flows found in vasculature. Milk was chosen as a substitute for blood due to it 

being a blood derivative and easily obtainable. Fats and proteins in the milk exhibit 

similar scattering properties to those found in blood.  

 

2.5 dLSI: Simulated Speckle 

To test this method under ideal conditions, a simulated dynamic speckle pattern 

was constructed. As stated before, the contrast of a laser speckle image, which was 

defined in equation 1 and 2, is the ratio of the spatial standard deviation to the average 

intensity of the laser speckle image. In practice, LASCA is a simplistic method for 

analyzing qualitative changes in flow, but this paper attempts to investigate quantitative 

methods. To do this dynamic laser speckle imaging was utilized. This involves assuming 

that the acquired signal is mix of static and dynamic speckle patterns. The static part is 

estimated using a time series correlation technique and subtracted from the mixed signal. 

The resultant is the purely dynamic part of the signal.  

Using the translational aperture method, the data acquisition of a dynamic speckle 

pattern by a CCD camera could be mimicked. The dynamic contrast is related to a 
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function of 𝜏𝑐/T. Knowing that the decorrelation time 𝜏𝑐 is reached when the aperture has 

translated one full diameter allows for the creation of time averaged images for varying 

ratios of 𝜏𝑐/T. For example, in this experiment the aperture is 252 pixels in diameter, with 

a full decorrelation taking 253 frames while translating at 1 pixel per shift. For a ratio of 

𝜏𝑐/T = 1 all 253 frames must be averaged together. To get a ratio of 𝜏𝑐/T < 1 the series 

needs to be averaged over more than 253 frames. It is important to note that when 

extending the frames a new statistically independent speckle pattern should be generated 

and concatenated to preserve the assumptions of the dLSI method.  

An acquisition series of 30 “exposures” is then created to simulate the multiple 

exposure averaging used in the dLSI method; once again it is important to have 

statistically independent speckle patterns. A set of 30 images was chosen to ensure that 

the maximal contrast of the condition being imaged was obtained through a temporal 

averaging technique which dLSI utilizes. [7] This is critical between “exposures” so that 

the correct static contribution can be estimated. Using fewer images may underestimate 

the contrast. [7] The static contribution was introduced by imposing an unvarying pattern 

on all images in the series. Its intensity relative to the dynamic pattern was varied to 

simulate varying contributions from static scattering. This was accomplished by creating 

a static pattern with the same average intensity as the dynamic pattern and multiplying it 

by a scalar to either make it more intense or less intense relative to the dynamic pattern. 

Once the series images were constructed, the data set is analyzed using the dLSI 

method. This provided estimations of the static contribution to the pattern, the dynamic 

contribution, and the decorrelation time. This was done for the ratios 𝜏𝑐/𝑇:  0.02, 0.06, 
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0.08, 0.1, 0.2, 0.5, 0.8, and 1. Each ratio contained a series of 30 images with independent 

dynamic speckle patterns.  

 

2.6 dLSI: Experimental Data 

Milk was pumped at a rate of 250 μL/min through the flow apparatus until the 

tubing was filled solely with milk. Once again milk was chosen due to it having 

distribution of colloidal particles between 0.1 – 1 um, approximately similar to blood, and 

its availability. [16] While blood cells typically range on a size scale of ~6 um in diameter, 

it was decided that milk would suffice and the difference in colloidal particle size would 

be negligible. The syringe pump was then stopped, allowing the fluid to come to rest.  

Then the fluid could be pumped through a series the desired flow rates (1, 3, 5, 10, 15, 

20, or 25 μL/min).  Once a constant flow was established for a given flow rate, a series of 

images of the capillary was taken (30 images, 5ms exposure time on the CCD camera, 

with a 5ms or greater interval between captures to satisfy the criteria for the static 

estimation).  In order to clean the apparatus for the next sample, the tubing setup was 

initially flushed with 5 mL of distilled water and then with air.  The syringe was also 

flushed repeatedly with distilled water to prevent contamination between samples.  The 

data sets were then immediately ready for processing with the dynamic speckle 

algorithms.  
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Chapter 3: Results 

3.1 Results Overview 

After implementing the dLSI method on both the simulated speckle images and 

experimental speckle images, the results needed to be examined to determine if a 

consistent relationship between the static contribution and the dynamic contrast could be 

established and whether or not dLSI could accurately predict velocities during 

experimentation. The simulated data provided insight into the behavior of the function 

relating contrast to decorrelation times, while the experimental data showed that there are 

physical limitations of the method. 

 Different models of the autocorrelation function can be used to relate the 

dynamic contrast to the decorrelation time in the dLSI method. The form of the 

autocorrelation function primarily depends on the characteristics of the flow pattern being 

investigated. Initially only the diffusing wave spectroscopy (DWS) model of the 

autocorrelation function was to be implemented; this was the original model that the 

originators of the dLSI method proposed. It was soon realized that there were deviations 

between the measured data from the simulation and the theoretical values that were 

predicted by the DWS model. In order to account for this, the DWS autocorrelation 

model for relating decorrelation time to contrast was reformulated into its most basic 

form, the Lorentzian flow model of the speckle field autocorrelation function. [2] An 

empirical adjustment function was then introduced to the Lorentzian flow model to force 

it to behave like the simulated data. To clarify, the dLSI method for estimating the 

dynamic contrast and decorrelation times was implemented using two different models of 

the autocorrelation function, DWS and empirical. 
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 The four different aspects investigated were: the dSLI analysis of the dynamic 

laser speckle simulation using the diffusing wave spectroscopy (DWS) model, the dLSI 

analysis of the experimental data using the DWS model, the dLSI analysis of the dynamic 

laser speckle simulation using the empirical model, the dLSI analysis of the experimental 

data using the empirical model, and the statistical scattering distributions of the 

experimental data.  

 

3.2 Simulation Results 

Simulation was undertaken in order to better understand the behavior of the dLSI 

method because simulated parameters are much easier to control than experimental 

parameters.  

 

Figure 5– Representative simulated speckle patterns. (Top Left) Static speckle 

pattern (Top Right) Dynamic speckle pattern without added static pattern (Bottom 

Left) Dynamic and static speckle superposition of equal intensity (Bottom Right) 

Dynamic and static speckle superposition with static intensity 2X. All dynamic 

patterns were generated with a 𝜏𝑐/𝑇 = 0.08. 
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Simplifying the dynamic and static speckle superposition to ideal conditions 

allowed for the analysis of the dLSI method without external sources of error. Figure 5 is 

representative of typical speckle patterns generated during simulation. Each pattern in 

Figure 5 is considering only a 𝜏𝑐/𝑇 = 0.08, see the appendix for more examples. As 

expected, the pattern with no static contribution is very uniform but is overcome by the 

static pattern as its relative intensity is increased. 

 

3.2.1 DWS Simulation 

An interesting phenomenon emerged from the simulated experiment that needs to 

be addressed. When calculating the theoretical decorrelation time, given a calculated 

dynamic contrast and static contribution to the pattern, there appears to be a significant  

Figure 6 – Ratio of decorrelation time divided by exposure time graphed against dynamic 

contrast using the DWS scattering model. Legend contains the estimated static contrast 

contribution. Plotted points are the simulated data and the plotted lines are the theoretical values. 
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divergence between theory and simulated experiment. Figure 6 shows that given a 

dynamic contrast, not only are the decorrelation values over estimated by theory, but they 

also exhibit the opposite trend suggested by simulation. The trend is referring to the 

simulation giving a decreasing dynamic contrast as the static contribution increases for a 

given decorrelation time. The data represented by the points in Figure 6 are the calculated 

dynamic contrast for the simulated speckle images. The lines represent the theoretical 

relationship between dynamic contrast and the decorrelation time for the DWS 

autocorrelation model. The color code in the legend represents differing values of static 

contrast contribution.  

Table 1 shows the percent errors between the simulated data and the values 

predicted by theory. The rows correspond to different values of estimated static scattering 

and the columns refer to varying ratios of 𝜏𝑐/𝑇. Table 1 helps gives a numerical 

representation of the differences between the simulated data and the theoretical 

predictions of the DWS autocorrelation model.  

 

Table 1: Percent error between simulated experiment and theory for DWS model 

 Percent Error (Exp – Theory)/Exp*100 

 τc/T 

𝝆 0.02 0.06 0.08 0.1 0.2 0.5 0.8 1 

0.0329 75.91 44.269 38.222 34.552 26.187 15.105 11.576 5.0744 

0.117 22.386 13.42 11.497 10.665 9.1365 4.6804 3.7728 -1.3678 

0.1498 30.943 18.358 15.726 14.429 11.757 6.4679 5.0856 0.19284 

0.2084 62.58 36.394 31.454 28.423 21.457 12.78 9.7582 5.0896 

0.332 40.031 23.415 20.865 18.289 14.158 7.8962 6.3092 2.6171 

0.4106 -271.7 -142.3 -122.3 -110.3 -76.30 -49.14 -36.17 -37.155 
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3.2.2 Lorentzian Flow Analysis of the Simulation 

The DWS autocorrelation model in Figure 6 is set up to account for the specific 

scattering characteristics of blood and similar biological media. However, the simulation 

was run under the assumption that the particles are not in Brownian but are undergoing 

linear flow, essentially operating under the Lorentzian flow assumptions; this means 

differences between the simulated data and the theoretical predictions for the DWS model 

were to be expected. Noting the large percent differences in Table 1, a rederivation of the 

autocorrelation function in Equation 3 was made. To simplify the problem, δ was made 

equal to 1/ τc, where τc is the characteristic decorrelation time, and n was set equal to 1.  

This creates a function that assumes a Lorentzian flow distribution, i.e a single scattering 

non-diffusion driven case, which is what Equation 2 was formulated under the 

assumption of. A plot of this was made and is shown in Figure 7. The simulated data 

points are the same as the simulated data points in Figure 6. The only difference is that 

the relationship between the dynamic contrast and the decorrelation time has changed. 

This can be seen in the shifting of the theoretical lines upward. Table 2 shows the 

resultant error with this new simplified model. It contains the same information as Table 

1 but draws from data obtained from Figure 7. 
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Table 2: Percent error between simulated experiment and theory for standard Lorenztian 

distribution 

 Percent Error (Exp – Theory)/Exp*100 

 τc/T 

𝝆 0.02 0.06 0.08 0.1 0.2 0.5 0.8 1 

0.0329 227.07 140.43 120.34 104.71 68.635 30.618 19.978 9.9104 

0.117 374.6 209.85 178.62 157.44 103.55 50.087 33.175 22.122 

0.1498 406.87 228.19 194.34 171.39 112.74 55.056 36.559 25.174 

0.2084 457.42 256.79 218.81 193.02 127.15 62.882 41.904 30.031 

0.332 542.14 304.66 260.02 229.49 151.54 76.493 51.323 38.756 

0.4106 581.4 327.23 280.15 246.77 163.38 82.946 56.128 43.287 

 

 

Figure 7 – Ratio of decorrelation time divided by exposure time graphed against dynamic 

contrast using the Lorentzian scattering model. Legend contains the estimated static contrast 

contribution. Plotted points are the simulated data and the plotted lines are the theoretical values. 
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Not only did the error grow from the original DWS model as shown in Table 2, 

but the unexpected trend of a decreasing dynamic contrast with an increasing static 

contribution for the simulated data still existed (see Figure 7). Because of this, the 

behavior of the dLSI method was investigated under all possible cases of static 

contribution with a varying 𝜌.  

 

3.2.3 Investigating the Dynamic Contrast Behavior 

The formula relating the dynamic contrast to the mixed contrast and static 

contributions (Equation 7) was analyzed under a new range of 𝜌 from 0 to 1. Figure 8 is a 

graphical representation of behavior of Equation 7 with a varying static contribution. 

Each graph in Figure 8 represents either a component of the dynamic contrast equation or 

the sum of its parts. Figure 8 (Top Left) is a representation of the intensity field 

autocorrelation function with a varying static contribution. Figure 8 (Top Right) is a 

representation of the electric field autocorrelation function as a function of varying static 

contribution. It should be noted that the (Top Left) and (Top Right) just described are the 

respective autocorrelation functions just mentioned multiplied by their 𝜌 modifying terms 

(See Equation 7). Figure 8 (Bottom Left) is the sum of the intensity and field 

autocorrelation functions for a Lorentzian flow distribution. The (Bottom Right) is the 

same sum but with the DWS model applied. 
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The representation of Equation 7 as a function of 𝜌 clearly demonstrates that, according 

to theory, the dynamic contrast increases in value initially then begins to decrease as the 

static contribution reaches approximately 0.4. These graphs were replicated for the 

extremes of this theory (𝜏𝑐/𝑇 between 0 and 1) and it was found that the behavior seen in 

Figure 8 is representative of the whole.  

 To compare this observation more closely to the observed behavior, the measured 

contrast and the dynamic contrast was compared as the static contribution was varied. 

Figure 9 shows the measured contrast is increasing with increasing static contribution 

while the dynamic contrast is always decreasing. Figure 9 displays this relationship for 

various ratios of 𝜏𝑐/𝑇. 

Figure 8 – Constituents of the dynamic contrast function. (Top Left) Intensity correlation 

function multiplied by (1 − 𝜌)2. (Top Right) Field correlation function multiplied by 

2𝜌(1 − 𝜌). These are the constituents of Equation 7. (Bottom Left) Dynamic contrast as a 

function of 𝜌 for 𝜏𝑐/𝑇 = 0.5 considering a Lorenztian distribution. (Bottom Right) Dynamic 

contrast as a function of 𝜌 for 𝜏𝑐/𝑇 = 0.5 considering the DWS model. 
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As seen above in Figure 9, the measured contrast is increasing with an increasing static 

contribution. To simulate this, the value 𝛽𝜌2, where 𝛽 is the maximal contrast obtainable 

by the system and 𝜌 is the estimated static contribution, is added to Equation 7. This sum 

now represents the measured contrast that would be seen by a standard LASCA 

measurement. The observed departure from theory for the dynamic contrast could be due 

to the validity of the simulation algorithm. To verify that the simulation is behaving 

appropriately, the theory of summed independent speckle patterns needs to be addressed. 

This can be used to verify if the measured contrast is behaving appropriately and by 

association the simulation. 

Figure 9 – Comparison of the measured and dynamic contrast from the dLSI algorithm. (Left) 

Dynamic contrast calculated by dLSI method. (Right) Measured contrast calculated by standard 

LASCA method. The legend lists the different ratios of 𝜏𝑐/𝑇 for which the contrast as a function of 𝜌 

was estimated. It applies to both the measured and dynamic values.  
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The sum of two independent speckle patterns produces a changing contrast profile 

if the ratio of the intensities is varied. [12] Figure 10 depicts the contrast of the two 

independent summed patterns just described. 

 

If we let 𝑟 =  
𝐼2

𝐼1
, where r is the ratio of the speckle pattern intensities, then the contrast of 

the super-positioned speckle pattern behaves according to the plot in Figure 10. It can be 

seen that as r goes from 0 to approximately 2 the contrast decreases. [13] After this, I2 

begins to dominate the speckle pattern and the contrast begins to rise again and 

asymptotes to a contrast of 1. [13] This is seen in theory in Figure 10 and in simulation in 

the measured contrast plot in Figure 9. Although not entirely applicable due to one 

Figure 10 – Contrast behavior of the sum of two independent speckle patterns. The x-axis 

describes the ratios of the intensities of the speckle pattern. Equivalent intensities lead to a decrease 

in speckle contrast. When one pattern dominates the other the contrast begins to rise again. The y-

axis is the observed contrast of the speckle sum. 
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pattern being dynamic, the theory should hold as the dynamic pattern becomes static for 

increasing values of τc/T. In Figure 9, when τc/T is equal to 1, this is readily apparent. 

The smaller the ratio of τc/T the more uniform the contrast; the addition of a secondary 

speckle pattern to this will start to only have an effect increasing effect on contrast. This 

is due to the dynamic pattern becoming a homogenous intensity without independent 

statistics to contribute to the speckle distribution. This phenomenon is also seen in Figure 

9. 

 

3.2.4 Formulation of an Empirically Fitted Algorithm 

Now that the measured contrast behavior is justified, the dynamic contrast 

behavior needs to be reconciled, preferably while maintaining the dLSI algorithm 

procedures for the sake of consistency in calculation. The dynamic contrast is seen to be 

always decreasing with an increasing static contribution and is unvarying in this 

behavior. Rather than alter the algorithm to recalculate the static and dynamic contrasts, 

due to both time constrains and being outside the scope of this project, the consistent 

behavior of the dynamic contrast estimation was taken advantage of. To do this, two 

empirical modifying terms were introduced to influence the 𝜌 terms that are modifying 

the intensity and field autocorrelation functions in Equation 7. Their effect is intended to 

force the dynamic contrast function into a solely inverse relationship with 𝜌.  

The two modifying terms were obtained by performing and empirical fit using 

data from the simulations. Two scaling functions of the form 𝑓 (
1

ρ 
) =  B(1) (

1

ρ 
)

B(2)

+

(
1

ρ 
)B(3), where B(1,2,&3) are scalars, were introduced in a proper manner to avoid an ill 

conditioned system when fitting. The modifying terms are functions of 
1

𝜌 
 for three 
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reasons: the relation between the decorrelation time and the dynamic contrast is heavily 

modified by 𝜌, it created a more stable system for fitting, and it helped reconcile the 

underestimation of the static contribution. To briefly touch upon the 𝜌 underestimation, 

in Equations 5-7, 𝜌 was defined as the ratio: 
𝐼𝑠

𝐼𝐷+𝐼𝑠
. During simulation for the data 

presented in Figure 9 the specified 𝜌’s were: 0, 0.2, 0.33, 0.5, 0.67, 0.80, 0.86, 0.89, 0.94, 

and 0.97. The calculated 𝜌’s were: 0.0637, 0.13, 0.22, 0.34, 0.47, 0.58, 0.63, 0.66, 0.72, 

and 0.74.  

This method was able to modify the theory for the observed trend to produce 

single digit percent errors. Figure 11 shows the graph of the ratio of decorrelation time 

divided by exposure time against the dynamic contrast using the new empirical model. 

This graph can be referenced against Figure 7 to see the changes made. Table 3 lists the 

percent error between the new empirical relationship and simulation. Again, the rows 

correspond to different values of estimated static scattering and the columns refer to 

varying ratios of 𝜏𝑐/𝑇. One can see that the error is two orders of magnitude less than it 

previously was. 
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Table 3: Percent error between simulated experiment and theory for standard negative 

exponential autocorrelation model with power correction terms 

 Percent Error (Exp – Theory)/Exp*100 

 τc/T 

𝝆 0.02 0.06 0.08 0.1 0.2 0.5 0.8 1 

0.0329 -29.34 -2.056 -0.6472 -1.3485 1.2874 -0.8151 0.0478 -6.035 

0.117 2.3859 1.7551 1.3737 1.5648 2.7865 0.62043 0.7502 -4.217 

0.1498 -3.057 -1.305 -1.2711 -0.7705 1.0073 -0.3721 -0.01038 -4.617 

0.2084 -8.419 -4.432 -4.0403 -3.2773 -0.8434 -1.3801 -0.79592 -4.860 

0.332 -4.968 -2.747 -2.5068 -2.0113 -0.2420 -0.7837 -0.42297 -3.662 

0.4106 3.549 2.2574 2.5004 1.8251 2.3976 0.51764 0.7619 -2.154 

 

 

 

Figure 11 – Ratio of decorrelation time divided by exposure time graphed against dynamic 

contrast using the new empirically fit model. Legend contains the estimated static contrast 

contribution. Plotted points are the simulated data and the plotted lines are the theoretical values. 

Note the higher level of agreement between the theoretical lines and the simulation data for τ/T < 1. 
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3.3 Experimental Results 

Both the DWS model of the autocorrelation function and the empirically adjusted 

model were used in the dLSI method to analyze the data gathered during 

experimentation. Figure 12 contains representative raw speckle images that were used in 

this analysis. They each contain a capillary tube with flowing milk on top of a static 

background tissue phantom. It can be seen that the areas of no flow have easily 

recognizable static speckle patterns while areas of flow are composed of homogenous 

intensities patterns. 

 

    

 

 

Some of the capillary tubes appear in different locations; this was accounted for by 

properly aligning the illuminating beam to be centered on the tube for each trial. 

Additionally, only the middle third of each image was used in analysis to help maximize 

the uniformity of the illuminating intensity. 

 

 

 

 

Figure 12 – Raw speckle images of milk with velocity 15 mm/s with varying background scattering. 
(Left) 0 mg/mL concentration of TiO2 in PDMS (Middle Left) 0.5 mg/mL (Middle Right) 1 mg/mL 

(Right) 2 mg/mL 
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3.3.1 Velocity to Decorrelation Time Relation 

Figure 13 plots the programmed velocity on the x-axis and 1/𝜏𝑐 on the y-axis, 

with 𝜏𝑐 being the calculated decorrelation time that was extracted from the experimental 

images when using the DWS autocorrelation model. At low velocities (~1 – 15 mm/s) 

this should yield a linear relationship. 

 

The analysis was then repeated using the empirically adjusted model. The results 

obtained are shown in Figure 14. Both Figures 13 and 14 show the low velocity linear 

response assumption to be valid. 

 

Figure 13 – Velocity to inverse correlation time comparison using the DWS 

scattering model. As expected lower velocities are related linearly and begin to become 

nonlinear at higher velocities.  
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In both cases of experimental analysis, DWS and empirical, there were noticeable 

deviations between the slopes of the velocity-inverse tau curves when comparing 

backgrounds with different static scattering characteristics. Table 4 gives the percent 

differences between the 2 mg/ml scattering data points and the 1 mg/ml, 0.5 mg/ml, and 0 

mg/ml for the DWS autocorrelation model analysis. Table 5 gives the same data for the 

empirical model analysis. Both Tables 4 and 5 shows that there was significant deviation 

between the 4 samples of scattering blocks. In both the DWS and the empirical fit the 0.5 

mg/mL and the 1 mg/mL produces very similar values. However, when looking between 

the extremes of the 2 mg/mL and the 0 mg/mL blocks, there was on average ~50 % 
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Figure 14 – Velocity to inverse correlation time comparison using the empirically 

fitted scattering model. As expected lower velocities are related linearly and begin to 

become nonlinear at higher velocities.  
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difference. Perhaps the most notable feature is that both models share similar percent 

differences for the vast majority of comparisons.  

 

Table 4: Percent difference between high scattering medium data points and its analogs 

for velocity ranges 1-25 mm/s using the DWS model 

 Velocity (mm/s) 

Concentrations 1 3 5 10 15 20 25 

2mg/ml-1mg/ml -12.57 -2.27 11.29 18.94 23.85 21.39 19.934 

2mg/ml-0.5mg/ml -21.34 5.8857 21.20 25.56 24.90 21.80 23.43 

2mg/ml-0mg/ml 55.14 52.74 37.39 31.92 40.85 40.45 44.37 

 

Table 5: Percent difference between high scattering medium data points and its analogs 

for velocity ranges 1-25 mm/s using the empirical model 

 Velocity (mm/s) 

Concentrations 1 3 5 10 15 20 25 

2mg/ml-1mg/ml -6.96 -12.87 5.60 12.33 15.44 9.15 9.76 

2mg/ml-0.5mg/ml -169.02 -11.36 13.65 17.52 15.91 10.32 13.47 

2mg/ml-0mg/ml 53.65 47.83 36.57 32.51 38.40 40.44 43.87 

 

 

3.3.2 Probability Density Function Analysis of Background Scattering Phantoms 

The speckle patterns caused by the background of each scattering block were 

analyzed based on their probability density functions (PDFs) as functions of normalized 

intensity. This was done to ensure that the scattering properties of the blocks did not 

exhibit any obscure behavior, i.e a normal distribution or a uniform distribution with even 

intensity across all values. It can be seen in Figure 15 that the blocks are exhibiting 

Rayleigh distributed intensity patterns, which is the result of multiple scatterings of 

photons in the material. The effects of the Rayleigh distribution are noted by its influence 
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of the contrast value’s maximum asymptote, effectively lowering the maximum 

attainable contrast. [13]  

 

 

When the PDFs are normalized by their mean intensities, as shown in Figure 15, 

they display similar distributions. Variations do exist in the distribution, altering the 

contrast, which is expected due to the varying concentrations of scattering agent 

dissolved in the PDMS blocks. The simulation serves to compare what an intensity PDF 

would look like in a single scattering case. Recognizing that the distributions were 

similarly shaped led to an assurance that each block had appropriate scattering 

characteristics. The simulated data distribution in Figure 15, which is represented by the 

Figure 15– Intensity PDFs representative of the behavior of the various scattering 

blocks used in this experiment. The legend lists the concentrations of scattering agent 

in the PDMS blocks causing the speckle PDF and the simulation with a negative 

exponential intensity distribution. 
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cyan points, is a negative exponential distribution. This means it is considering a single 

scattering case and is expected to differ from the multiply scattering blocks. 
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Chapter 4: Discussion 

4.1 Discussion Overview 

The results exhibited behavior that was atypical of the hypothesis presupposed by 

the dLSI method. Both the DWS and the empirical model were not able to accurately 

resolve decorrelation times over different backgrounds, and showed increasing error as 

the background’s average intensity dropped.  The following discussion will outline what 

the possible causes for this disagreement are and possible avenues of investigation for 

correction.  

 

4.2 Simulation and Experimentation 

Simulation provided the insight necessary to evaluate what was observed in the 

experimental model. It led to a greater understanding of the relationship between the 

dLSI method’s calculations of decorrelation times with a varying static contribution. The 

DWS model for calculating decorrelation times and the empirical model employed both 

produced very similar results when used to analyze experimental data. The slopes of the 

velocity to inverse decorrelation times, although numerically different, shared similar 

percent differences between the 2 mg/mL scattering background and all other 

backgrounds when analyzed within their respective methods. It can be seen that at higher 

velocities the empirical model provided noticeably lower percent differences when 

compared to the DWS model, but this is irrelevant when the larger issues are considered. 

A possible explanation for the similar percent differences is that the static contribution to 

the contrast did not vary to a large degree. Further analysis of the data shows this to be 

true, with a minimum of 0.039 and a maximum of 0.054. The variation in the curve 
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relating contrast to decorrelation time produced by the range of static contributions 

observed is miniscule between those two values. An explanation for this behavior will 

follow in section 4.5. 

 

4.3 Multiple Scattering Events 

The case of the multiple scatterings affecting the estimation of the contrast, and 

thus the correlation times, is proven and cannot be ignored. The empirical model relies on 

a negative exponential distribution of scattering intensities. This formulation is 

satisfactory when imaging media that exhibit single scattering phenomena, however, 

biological media often produce multiple scatterings. [13] It is necessary to recognize that 

the contrast is no longer bounded between 0 and 1 for a completely Rayleigh distributed 

pattern but between 0 and 1/√2. [13] The new bound is due to a Rayleigh distribution, 

which is the superposition of two independent equal intensity speckle patterns. The upper 

bound is effectively made lower because the speckle pattern begins to overlap and create 

a more homogenous intensity pattern. [11] There does not seem to be any accounting for 

the emergence of a static Rayleigh distribution in the static contrast estimation of dLSI, 

only single scattering static contribution. It is possible this lowers or somehow alters the 

estimated static contribution, something that was observed, which would have effects on 

the dynamic estimation. 

The temporal response, which arises from the time series averaging of contrast 

images, is also altered by the occurrence of Rayleigh distributed scatterers and requires 

more frames to achieve maximum contrast. [13] This effect on the temporal contrast is 

shown in Figure 16.   
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Notice in Figure 16 that the temporal contrast for a Rayleigh pattern, the bottom curve, 

asymptotes to a smaller value and takes longer achieve its asymptote. The x-axis in 

Figure 16 represents the number of frames averaged together, while the y-axis represents 

the contrast produced by this averaging. It is important to consider this because the dLSI 

method makes use of a similar temporal averaging scheme. 

 A simple solution can be offered to the multiple scattering dilemmas. It can be 

shown that the PDFs of speckle functions are Fourier transformations of their 

autocorrelation functions. [9] Convolving their PDFs gives a joint PDF that represents 

both patterns. The resulting autocorrelation function of the joint PDF is a simple product 

of the independent autocorrelation functions. [9] This can be used to model a mixture of 

Brownian and ordered flow processes as well as correct for multiple scattering events. [9] 

It should be remembered that the DWS formulation accounts for multiple scattering 

Figure 16 – Temporal contrast accounting for Rayleigh scattering. The top curve is 

using a negative exponential intensity distribution and the bottom is using a Rayleigh 

intensity distribution. The x-axis is in arbitrary time shift units and the y-axis is the 

temporal contrast. [13] 
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events; however, in the form used, it only considers the case of Brownian motion and is 

not fully suitable for the analysis done in this experiment.  

 

4.4 Physical Relationship between Decorrelation and Velocity 

To relate back to an earlier discussion about the physical relationship between 

decorrelation time and particle velocity, up until recently largely speculative models were 

being imposed. Equation 9 demonstrates one such relationship. A phase screen model has 

been proposed that demonstrates the speckle correlation autocoefficient can be modeled 

as a simple airy function. [8] A brief formulation of this model is described in Equation 

10. 

 

 

(10)                    
𝐶𝑖(𝜏)

𝜇𝑖
2 = (

2𝐽1(
𝜋𝐷𝑉𝜏

𝜆𝑑𝑜
)

𝜋𝐷𝑉𝜏

𝜆𝑑𝑜

)2 = (
2𝐽1(

𝜏

𝜏𝑟
)

𝜋
𝜏

𝜏𝑟

)2 

 

                                                𝜏𝑟 =
𝑃𝑆𝐹

𝑉
      𝑃𝑆𝐹 ~ 

𝜆𝑑𝑜

𝐷
 

 

V describes the velocity of the object plane and D is the pupil diameter, in a subjective 

case the imaging aperture, do is the distance from the pupil to the image plane, 𝜇𝑖
2 is the 

square of the average intensity, 𝜏𝑟 is the characteristic decorrelation time, 𝜏 is the 

correlation time variable, and 𝜆 is the wavelength of the coherent light. Using a ratio of 
𝑑𝑜

𝐷
 

~ 10, which is an f-stop of 10 and characteristic of the imaging system used, and a 

wavelength equal to 640 nm we find that the PSF ~ 6.64e-6 m. After accounting for 
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magnification of the lens, the slope relating 1/𝜏𝑟 to V is ~15000. This is a value that is not 

observed in this experiment. Deviation is expected because Equation 10 is formulated for 

single dynamic surface scattering speckle patterns, not the multiple scattering patterns 

being investigated. 

 

4.5 Causes of Inconsistency 

After investigating the possible causes for the inconsistencies, the choices have 

been narrowed to a few. It is believed that the cause for the similar percent differences 

between the DWS and the empirical model is due to little variation in the estimation of 

the static contrast contribution. This is likely attributed to the high scattering properties of 

the dynamic medium, cow’s whole milk. Another factor is that while other researchers 

implanted their dynamic media into a statically scattering environment, the dynamic 

media was superficial in this experiment and obscured static scattering from behind.  

To lend credibility to this claim, when the simulation was run with no static 

component dLSI estimated a static contrast of 0.0329. This confirmed that the 

experimental trial is also predicting little to no static component. Figure 9 shows that the 

intensity distributions are of the same form but have different variances, meaning that 

their static contribution is unlikely to be the same and small. The last variable in the 

system is the overall intensity of the background speckle and the intensity of the dynamic 

media. As the mean intensity of the background scattering elevated, the mean intensity of 

the dynamic scattering component rose as well. This all occurs with little to no change in 

the static contrast contribution.  
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Two things contributed to lack of change in the static component estimation: milk 

is a host of variable size particles that exhibit greater Brownian motion than this method 

was intended for, and the possible effects of refractive glass between the static scattering 

and dynamic media. By using laser diffraction, milk is reported to have a distribution of 

colloidal particles on the order of a 1/10th to 1/6th the size of red blood cells. [16] This 

would raise the diffusion coefficient of the dynamic media meaning the constituent 

particles would undergo random motion at a greater speed. This would have the effect of 

randomizing, to a larger degree, the scattering directions of photons from the background 

over time due to changing spatial relations between the scattering colloidal particles. The 

capillary tube may also have been acting as a cylindrical lens refracting scattered light in 

close proximity to the capillary tube into the milk. Explaining the rise in scattering 

intensity without a rise in static scattering contribution to the contrast is now possible. 

The higher than anticipated levels of Brownian motion could have caused background-

scattered light to become decorrelated from the background and essentially dynamic. The 

extra static scattering not only appeared dynamic but caused the dynamic pattern to 

become brighter (as observed) due to the additional light. Recalling from Equation 2, 

contrast is inversely proportional to intensity and directly proportional to the variance of 

the speckle intensity. The apparent increase in intensity in conjunction with an either 

stationary or lowered variance, assuming both patterns are dynamic on relatively equal 

orders, created the observed lowering of the contrast.   
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Chapter 5: Conclusion 

The dynamic method has been investigated in its simplest form through both 

simulation and experimentation. Completely Lorentzian flow was not able to be resolved 

in simulation so the implementation of an empirical equation was made. After reducing 

error to a minimum, both the DWS and empirical model were applied to the experimental 

data. The results showed that little to no change in the static contribution was 

accompanied by a decrease in dynamic contrast as concentration of the scattering agent 

was increased.  Under the conditions of 1 mg/ml and 0.5 mg/ml the measured 

decorrelation times agreed with little error, but the decorrelation times could not be 

resolved over the span from 0 to 2 mg/ml. A theory was offered as an explanation 

regarding this but requires further investigation to validate it. This paper will hopefully 

extend to other researchers the application of this method under various extremes of 

conditions.  

 

5.1 Future Work 

 This work provided a basis for investigating the extent to which dLSI can resolve 

dynamic speckle contrast when obscured by static speckle patterns. Although useful 

insights have been made here, there are still many aspects of this project that can be 

further investigated. Characterization of the dLSI method over a wider range of 

background scattering components would be necessary to provide more expansive 

experimental results. Designing background scattering surfaces that range between 0 and 

1 for their static scattering contrasts would be ideal, allowing for a full range analysis. 

Creating a sub-surface dynamic scattering medium as well as performing the experiment 
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with a dynamic medium that has more similar scattering characteristics to the background 

would also be of great importance. As discussed earlier, the milk was so highly scattering 

it obscured the speckle pattern from the background. Bringing the scattering properties of 

the dynamic and static medium into closer alignment would help eliminate this. The sub-

surface dynamic scattering would also help alleviate the masking of the static pattern by 

ensuring that the static scattering agent is always directly visible. It should be 

remembered that the masking of the static scattering was an issue in this experiment 

because the backgrounds were still contributing intensity to the dynamic medium, but 

they appeared to be themselves dynamic due to the high scattering of the milk. 

The speckle simulation could also be investigated in greater detail. It is still 

possible the simulation was improper even though it satisfied the independent speckle 

sum criteria. This is a concern because the dLSI theory should be predicting dynamic 

contrast in accordance with Figure 8, which for small static contributions does not greatly 

vary. It instead predicted what appeared to be the relative percentage of dynamic contrast 

to static contrast in the image. It is possible that in the process of simulating the mixed 

speckle images some higher order statistical properties of the image were degraded. A 

more sophisticated algorithm for generating joint speckle patterns with varying 

decorrelation times could be used if this is the case. One method that exists for this is 

known as the copula, which takes advantage of joint speckle distribution theory proposed 

in the discussion, and may be of particular interest in furthering this project. [8]  

To summarize the steps necessary to continue: the design of experimental 

background scatters must be expanded, the dynamic media must be made to have 

scattering properties more closely aligned with the background, the dynamic scatters 
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should be deep to the static scattering components, and the speckle simulation algorithm 

must be revisited in greater detail and perhaps use a more complex simulation technique. 

These steps outline what is necessary to further research into quantitative laser speckle 

imaging using the dLSI static scattering estimation algorithms. This method has shown 

promise in the ability to create repeatable trends in simulated data, continuing this work 

should prove its effectiveness in experimentation over a greater range of conditions. 
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Appendix A:  dLSI Algorithm Demonstration 

The following excerpt describes how the dLSI method is implemented. It first 

calculates the standard measured contrast, it then estimates the static contribution from a 

series of images, and then using the static contrast knowledge estimates the dynamic 

contrast. [27]  

1. Calculate the measure contrast: 𝐾𝑚 = [
<𝐼2>

<𝐼>2
− 1]1/2, where <…> denotes 

the spatial averaging over a selected area containing N pixels:  

< 𝐼 > =  
1

𝑁
∑ 𝐼(𝑥𝑖)

𝑁
𝑖=1  and < 𝐼2 > =  

1

𝑁
∑ 𝐼2(𝑥𝑖)

𝑁
𝑖=1 . We have denoted this 

measured contrast with an index m (Km = K) 

 

2. Estimate the static contribution from the two sequential images 𝐼1(𝑥𝑖) and 

𝐼2(𝑥𝑖) with 𝑖 = 1 … 𝑁 defining the same set of pixels as used in step 1: 

𝜌 =
1

𝛽1/2 [
<𝐼1𝐼2>

<𝐼1><𝐼2>
− 1]1/2, where < 𝐼1 >< 𝐼2 > =  

1

𝑁
∑ 𝐼1(𝑥𝑖)𝐼2(𝑥𝑖)

𝑁
𝑖=1 . 

The β-factor used in this calculation has to be obtained separately. It can 

be calibrated using a solid white medium such as a block of Teflon or a 

sheet of paper with 𝜌 = 1.  

 

3. With knowledge of 𝜌 the mixed dynamic contrast 𝐾 can be obtained with 

the following relationship 𝐾2 =  𝐾𝑚
2 −  𝛽𝜌2. Using the appropriate 

relation for the correlation function of the electric field, the correlation 

time can be extracted.”  
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Appendix B: Simulated Speckle Images 

 The following section contains all images needed to be representative of the set of 

speckle images generated and used for calculation in this experiment. Each figure contains 

a set of images for the given ratios of 𝜏𝑐/𝑇: 0.02, 0.06, 0.08, 0.1, 0.2, 0.5, 0.8, and 1. The 

static contribution in each figure varies from 0 to 32 times the intensity of the dynamic 

contribution. Each figure also contains a pure static speckle image for reference. 
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Figure 17 – Simulated speckle patterns with varying static contribution for the decorrelation time 

to exposure time ratio 𝝉𝒄/𝑻 = 0.02.  A) Static pattern no dynamic speckle B) Dynamic pattern no 

static speckle C) Dynamic + ¼*Static Pattern D) Dynamic + ½*Static Pattern E) Dynamic + 1*Static 

Pattern F) Dynamic + 2*Static Pattern G) Dynamic + 4*Static Pattern H) Dynamic + 6*Static Pattern 

I) Dynamic + 8*Static Pattern J) Dynamic + 16*Static Pattern K) Dynamic + 32*Static Pattern 
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Figure 18 – Simulated speckle patterns with varying static contribution for the decorrelation time 

to exposure time ratio 𝝉𝒄/𝑻 = 0.06.  A) Static pattern no dynamic speckle B) Dynamic pattern no 

static speckle C) Dynamic + ¼*Static Pattern D) Dynamic + ½*Static Pattern E) Dynamic + 1*Static 

Pattern F) Dynamic + 2*Static Pattern G) Dynamic + 4*Static Pattern H) Dynamic + 6*Static Pattern 

I) Dynamic + 8*Static Pattern J) Dynamic + 16*Static Pattern K) Dynamic + 32*Static Pattern 
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Figure 19 – Simulated speckle patterns with varying static contribution for the decorrelation time 

to exposure time ratio 𝝉𝒄/𝑻 = 0.08.  A) Static pattern no dynamic speckle B) Dynamic pattern no 

static speckle C) Dynamic + ¼*Static Pattern D) Dynamic + ½*Static Pattern E) Dynamic + 1*Static 

Pattern F) Dynamic + 2*Static Pattern G) Dynamic + 4*Static Pattern H) Dynamic + 6*Static Pattern 

I) Dynamic + 8*Static Pattern J) Dynamic + 16*Static Pattern K) Dynamic + 32*Static Pattern 
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Figure 20 – Simulated speckle patterns with varying static contribution for the decorrelation time 

to exposure time ratio 𝝉𝒄/𝑻 = 0.1.  A) Static pattern no dynamic speckle B) Dynamic pattern no static 

speckle C) Dynamic + ¼*Static Pattern D) Dynamic + ½*Static Pattern E) Dynamic + 1*Static Pattern 

F) Dynamic + 2*Static Pattern G) Dynamic + 4*Static Pattern H) Dynamic + 6*Static Pattern 

I) Dynamic + 8*Static Pattern J) Dynamic + 16*Static Pattern K) Dynamic + 32*Static Pattern 
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Figure 21 – Simulated speckle patterns with varying static contribution for the decorrelation time 

to exposure time ratio 𝝉𝒄/𝑻 = 0.2.  A) Static pattern no dynamic speckle B) Dynamic pattern no static 

speckle C) Dynamic + ¼*Static Pattern D) Dynamic + ½*Static Pattern E) Dynamic + 1*Static Pattern 

F) Dynamic + 2*Static Pattern G) Dynamic + 4*Static Pattern H) Dynamic + 6*Static Pattern 

I) Dynamic + 8*Static Pattern J) Dynamic + 16*Static Pattern K) Dynamic + 32*Static Pattern 
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Figure 22 – Simulated speckle patterns with varying static contribution for the decorrelation time 

to exposure time ratio 𝝉𝒄/𝑻 = 0.5.  A) Static pattern no dynamic speckle B) Dynamic pattern no static 

speckle C) Dynamic + ¼*Static Pattern D) Dynamic + ½*Static Pattern E) Dynamic + 1*Static Pattern 

F) Dynamic + 2*Static Pattern G) Dynamic + 4*Static Pattern H) Dynamic + 6*Static Pattern 

I) Dynamic + 8*Static Pattern J) Dynamic + 16*Static Pattern K) Dynamic + 32*Static Pattern 
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Figure 23 – Simulated speckle patterns with varying static contribution for the decorrelation time 

to exposure time ratio 𝝉𝒄/𝑻 = 0.8.  A) Static pattern no dynamic speckle B) Dynamic pattern no static 

speckle C) Dynamic + ¼*Static Pattern D) Dynamic + ½*Static Pattern E) Dynamic + 1*Static Pattern 

F) Dynamic + 2*Static Pattern G) Dynamic + 4*Static Pattern H) Dynamic + 6*Static Pattern 

I) Dynamic + 8*Static Pattern J) Dynamic + 16*Static Pattern K) Dynamic + 32*Static Pattern 
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Figure 24 – Simulated speckle patterns with varying static contribution for the decorrelation time 

to exposure time ratio 𝝉𝒄/𝑻 = 1.  A) Static pattern no dynamic speckle B) Dynamic pattern no static 

speckle C) Dynamic + ¼*Static Pattern D) Dynamic + ½*Static Pattern E) Dynamic + 1*Static Pattern 

F) Dynamic + 2*Static Pattern G) Dynamic + 4*Static Pattern H) Dynamic + 6*Static Pattern 

I) Dynamic + 8*Static Pattern J) Dynamic + 16*Static Pattern K) Dynamic + 32*Static Pattern 
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Appendix C: Raw Speckle Images 

 
 The following section contains sets of raw speckle images that are representative 

of the images acquired and used for analysis in this experiment for the scattering blocks 

of 0 mg/ mL, 0.5 mg/mL, 1 mg/mL, and 2 mg/mL for flow rates of 1 mm/s, 3 mm/s, 5 

mm/s, 10 mm/s, 15 mm/s, 20 mm/s, and 25 mm/s. The area in each image is 

approximately 64 mm2 under a 10X magnification. 
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Figure 25 – Raw speckle images acquired by CCD camera for 0 mg/mL TiO2 to PDMS 

background scattering.  A) 1 mm/s flow B) 3 mm/s flow C) 5 mm/s flow D) 10 mm/s flow E) 15 

mm/s flow F) 20mm/s flow G) 25 mm/s flow  
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Figure 26 – Raw speckle images acquired by CCD camera for 0.5 mg/mL TiO2 to PDMS 

background scattering.  A) 1 mm/s flow B) 3 mm/s flow C) 5 mm/s flow D) 10 mm/s flow E) 15 

mm/s flow F) 20mm/s flow G) 25 mm/s flow  
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Figure 27 – Raw speckle images acquired by CCD camera for 1.0 mg/mL TiO2 to PDMS 

background scattering.  A) 1 mm/s flow B) 3 mm/s flow C) 5 mm/s flow D) 10 mm/s flow E) 15 

mm/s flow F) 20mm/s flow G) 25 mm/s flow  

 



 63 

A) 

 

B) 

 

C) 

 

D) 

 

E) 

 

F) 

 

G) 

 

 

  

 
 
 
 
 
 
 
 
 

Figure 28 – Raw speckle images acquired by CCD camera for 2.0 mg/mL TiO2 to PDMS 

background scattering.  A) 1 mm/s flow B) 3 mm/s flow C) 5 mm/s flow D) 10 mm/s flow E) 15 

mm/s flow F) 20mm/s flow G) 25 mm/s flow  

 



 64 

Appendix D: Experimental Dynamic and Static Intensities 

 
 The following table contain the intensities measured from the dynamic medium 

and the accompanying static medium adjacent to it. This was done for all four 

experimental samples. As was discussed earlier, the dynamic intensity increased as the 

static background intensity increased. This fact is shown below in Table 6.  

 

Table 6: Experimental Dynamic and Static Intensities 

 TiO2 Concentrations mg/mL 

Intensity 0.0 0.5 1.0 2.0 

Static 2126 3637 4616 8225 

Dynamic 4651 6893 8803 9859 
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Appendix E: Simulation Code 

 

 The following appendix section contains the code that was used to simulate 

speckle in this paper. If more information is desired regarding the function for speckle 

simulation please contact Dr. Duncan or Dr. Kirkpatrick. [8] 

 

Dynamic Speckle Simulation 

%creates expanded speckle patterns and averages them together to 

simulate 
%varying values of the ratio of decorrelation time to exposure time 

  
[ogfram,~,~] = focal_plane_boil(252,4,1); 
%frames = [25 76 127 151 202 253 756 1260 2520]; 
%frames = [12650 4216 3162 2530 1265 506 316 253]; 
frames = [4216 3162 2530 1264 508 316 252]; 
seed = 2; 

  
for n = 1:30 
 n    
seed = seed + 1; 

  
[cube,~,~] = focal_plane_boil(252,4,seed); 
%cubenew(:,:,:,n) = cube(:,:,:); 
    %for i = 1:50 
    for i = 1:17 
        i 
        seed = seed + 1; 

     
        [tempcube,~,~] = focal_plane_boil(252,4,seed); 

     
        cube= cat(3,cube,tempcube); 

         
    end 
    %comp = bsxfun(@plus,cube,ogfram(:,:,1)/3); 
    %cubestore(:,:,:,n) = comp(:,:,:); 

  
    for g = 1:7 
        tempmeancomp(:,:,n,g) = mean(comp(:,:,1:frames(g)),3); 
%      
    end 

     
%  for z = 1:3   
%  result = lasca(mean(cube(:,:,1:frames(z)),3),7); 
%  means(z,n) = mean(result(:)); 
%  end 
    %comp(:,:, = bsxfun(@plus,cube,ogfram(:,:,1)); 
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end 

  
% for g = 1:3 
%     for b = 1:8 
%         tempmean = cubestore(:,:,1:frames(z),g); 
%         tempcube = mean(tempmean,3); 
%         final(:,:,g,b) = tempcube; 
%     end 
% end 
%  
%  
%  for d = 1:8 
%  meow = final(:,:,:,d); 
%  [dyn_trace, contrast_trace, ~,~] = dlsi_proc(meow, 7, 0); 
%  means(d) = mean(dyn_trace(:)); 
%  end 

  
%  
%  for z = 1:8 
%  [dyn_trace, contrast_trace, ~,~] = 

dlsi_proc(mean(comp(:,:,1:frames(z),:),4), 7, 0); 
%  means(z,n) = mean(dyn_trace(:)) 
%  end 

 

 

Introducing the Static Contribution to the Dynamic Simulation 

%Add a static speckle pattern the inputed dynamic patterns with varying 
%intensities of the static pattern  

  
c = [0 1/4 1/2 1 2 4 6 8 16 32]; 
ratio = c./(c+1); 
for m = 1:10   
for n = 1:30 

  
    for g = 1:7 

         
        tempcomp(:,:,n,g) = 

bsxfun(@plus,tempmean(:,:,n,g),(c(m))*ogfram(:,:,1)); 

  
    end 
end 

  
for z = 1:7 

     
   tem = tempcomp(:,:,:,z); 
   [dyn_trace, contrast_trace, rho_trace,~] = dlsi_proc(tem, 7, 0); 
   meansdyn(z,m) = mean(dyn_trace(:)); 
   meansstatic(z,m) = mean(rho_trace(:)); 
   meansmes(z,m) = mean(contrast_trace(:)); 
   kmav = sqrt(contrast_trace.^2 - beta*(rho_trace.^2)); 
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   km(z,m) = abs(mean(kmav(:))); 

    

   
end 

  
%km = sqrt(meansmes.^2 - beta.*(meansstatic.^2)); %sqrt(meansmes.^2 - 

0.988*meansstatic.^2); 
end 

  
dynavg = mean(meansdyn,1); 
mesavg = mean(meansmes,1); 
statavg = mean(meansstatic,1); 
%end 

  
%x = fliplr(253./[25 76 127 206 253 756 1260 2520]); 

  
% figure(1) 
%  
%  semilogx(x,flipud(means),'ro') 
%  
%  
% axis([10^-2 20 0 1]) 

  
figure(1) 
subplot(1,3,1) 
scatter(meansstatic(1,:),meansdyn(1,:),'k+') 
hold on 
scatter(meansstatic(2,:),meansdyn(2,:),'ko') 
scatter(meansstatic(3,:),meansdyn(3,:),'k*') 
scatter(meansstatic(4,:),meansdyn(4,:),'ks') 
scatter(meansstatic(5,:),meansdyn(5,:),'kx') 
scatter(meansstatic(6,:),meansdyn(6,:),'k^') 
xlabel('rho estimation') 
ylabel('K Dynamic') 
set(gca,'fontsize',20) 
set(findall(figure(1),'type','text'),'fontSize',20,'fontWeight','bold') 
subplot(1,3,2) 
scatter(meansstatic(1,:),km(1,:),'k+') 
hold on 
scatter(meansstatic(2,:),km(2,:),'ko') 
scatter(meansstatic(3,:),km(3,:),'k*') 
scatter(meansstatic(4,:),km(4,:),'ks') 
scatter(meansstatic(5,:),km(5,:),'kx') 
scatter(meansstatic(6,:),km(6,:),'k^') 
xlabel('rho estimation') 
ylabel('K12 Alternate') 
set(gca,'fontsize',15) 
subplot(1,3,3) 
scatter(meansstatic(1,:),meansmes(1,:),'k+') 
hold on 
scatter(meansstatic(2,:),meansmes(2,:),'ko') 
scatter(meansstatic(3,:),meansmes(3,:),'k*') 
scatter(meansstatic(4,:),meansmes(4,:),'ks') 
scatter(meansstatic(5,:),meansmes(5,:),'kx') 
scatter(meansstatic(6,:),meansmes(6,:),'k^') 
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xlabel('rho estimation') 
ylabel('K Measured') 
legend('Tau/T = 0.08','Tau/T = 0.1','Tau/T = 0.2','Tau/T = 0.5','Tau/T 

= 0.8','Tau/T = 1') 
set(gca,'fontsize',20) 
set(findall(figure(1),'type','text'),'fontSize',20,'fontWeight','bold') 

 


