
Flight Testing Small UAVs for Aerodynamic Parameter Estimation

A Thesis

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Aerospace Engineering

by

Adam T. Chase

February 2014

c○ 2014

Adam T. Chase

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Flight Testing Small UAVs for Aerodynamic Parameter

Estimation

AUTHOR: Adam T. Chase

DATE SUBMITTED: February 2014

COMMITTEE CHAIR: Robert McDonald, Ph.D.

Associate Professsor, Aerospace Engineering

COMMITTEE MEMBER: Eric Mehiel, Ph.D.

Associate Professor, Aerospace Engineering

COMMITTEE MEMBER: Russell Westphal, Ph.D.

Professor, Mechanical Engineering

COMMITTEE MEMBER: Kurt Colvin, Ph.D.

Professor, Industrial and Manufacturing Engineering

iii

ABSTRACT

Flight Testing Small UAVs for Aerodynamic Parameter Estimation

Adam T. Chase

A flight data acquisition system was developed to aid unmanned vehicle designers in verifying

the vehicle’s design performance. The system is reconfigurable and allows the designer to

choose the correct combination of complexity, risk, and cost for a given flight test. The

designer can also reconfigure the system to meet packaging and integration requirements.

System functionality, repeatbility, and accuracy was validated by collecting data during

multiple flights of a radio-controlled aircraft. Future work includes sensor fusion, thrust

prediction methods, stability and control derivative estimation, and growing Cal Poly’s

small-scale component aerodynamic database.

iv

ACKNOWLEDGMENTS

I’d first like to thank my friends and fellow Flight Lab people. Each of you brought something

good to my time at Poly. B2 and Cory, you guys were awesome roommates and made the

Stafford house fun. Alex, Brian, Christian, Trevor, Mike, and the rest of the DBF/Flight Lab

crew, you guys made that window-less lab bearable, and occasionally downright enjoyable.

#W9W

I’d also like to thank my committee. Throughout my Cal Poly career every member of

the committee has helped me immensely. Dr. Colvin, hosting Akaflieg barbecues at your

hangar introduced my to a side of aviation I hadn’t seen, and gave me passion for aircraft

and flight. Dr. Mehiel, you’ve provided countless guidance throughout school, ranging from

classes and scheduling to Lyapunov stability and Kalman filters. Dr. Westphal, the Edward’s

project was a great experience for me, and you’ve been incredibly supportive with anything

and everything I’ve needed help with since. And Dr. McDonald, you’ve given me countless

opportunities, including DBF, Edwards, LENR, Senior Design, R/MAX, this thesis, ... For

five and a half years, you’ve guided me through challenging problems, taught me to think

like an engineer, and ignored DBF t-shirts and team names. Thank you, it’s been a pleasure.

Finally, my family. The entire family (aunts, uncles, grandparents, etc.) have supported

me the whole way through, and I’m very grateful for that. I can’t put into words the

opportunities and support my parents and sister have given me. Mom, Dad, Jackie: Thank

you. You guys are awesome.

v

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

Nomenclature xv

1 Introduction 1

2 Method 3

2.1 Reference Frames . 3

2.1.1 North-East-Down (NED) Axes (𝑥𝑛𝑒𝑑, 𝑦𝑛𝑒𝑑, 𝑧𝑛𝑒𝑑) 3

2.1.2 Body Axes (𝑥𝑏, 𝑦𝑏, 𝑧𝑏) . 4

2.1.3 Stability Axes (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) . 5

2.1.4 Wind Axes (𝑥𝑤, 𝑦𝑤, 𝑧𝑤) . 6

2.2 Equations of Motion . 6

2.3 Kalman Filter Usage . 8

2.3.1 Linear Kalman Filter . 8

2.3.2 Extended Kalman Filter . 10

3 Drag Meta-Modeling 12

3.1 Regression Model - Least Squares Fit . 15

3.2 Regression Model - Kalman Filter . 16

4 Error Analysis 18

4.1 Random Error . 18

4.2 Least Squares Regression Error . 20

4.3 Kalman Filter Regression Error . 21

5 Simulation 23

5.1 Simulation Environment . 23

5.2 Simulation Inputs . 23

5.3 Simulation Results . 24

vi

6 Hardware 28

6.1 Flight Computer . 28

6.2 Accelerometer . 29

6.3 Vehicle Mass . 31

6.4 Magnetometers . 31

6.5 Gyroscope . 34

6.6 Air Data System . 35

6.7 GPS Receiver . 37

6.8 Data Acquisition System Integration . 38

7 Results 39

7.1 Drag Polar . 39

7.1.1 𝐶2 Coefficient . 40

7.1.2 Drag Break . 41

7.1.3 Error Estimation . 41

7.2 Lift Curve . 42

7.2.1 𝐶𝐿𝑀𝐴𝑋
and Stall . 43

7.2.2 Lift Curve Slope . 44

7.2.3 Zero Lift Angle of Attack . 45

7.3 System Repeatability . 45

7.4 System Accuracy . 52

8 Summary 58

Bibliography 59

A Data Acquisition System Usage 62

A.1 Integration . 62

A.2 Pre-flight Procedure . 65

A.3 Flight test plan . 66

A.4 Post-Flight . 66

A.5 Embedded Software Protocol . 67

B Lessons Learned 69

C Wiring Schematics 72

vii

D Flight Test Procedure 75

D.1 Pre-Flight Preparation . 75

D.1.1 Day Before Test . 75

D.1.2 Day Of Test . 76

D.2 Flying Field Procedure . 77

D.3 Post-Flight . 78

E Sample System Ouput 79

E.1 Sample System Ouput - Raw Data . 79

E.2 Sample System Ouput - Units Data . 94

E.3 Sample System Ouput - State Data . 106

viii

LIST OF TABLES

5.1 Nonlinear Model Results . 25

5.2 Monte Carlo Results . 27

7.1 Clean Drag Polar Repeatability Testing : 𝐶𝐷0 Regression Coefficient 47

7.2 Clean Drag Polar Repeatability Testing : 𝐶1 Regression Coefficient 47

7.3 Clean Drag Polar Repeatability Testing : 𝐶2 Regression Coefficient 47

7.4 Lift Curve Model . 50

7.5 Ellipticity Value with 𝐶1 From Flight and XFOIL 51

7.6 Lift Curve Slope with 𝐶1 From Flight and XFOIL 52

7.7 Dirty Drag Polar Repeatability Testing : 𝐶𝐷0 Regression Coefficient 55

7.8 Dirty Drag Polar Repeatability Testing : 𝐶1 Regression Coefficient 55

7.9 Dirty Drag Polar Repeatability Testing : 𝐶2 Regression Coefficient 55

A.1 Air Data System Setup . 62

A.2 Air Data System Setup . 63

A.3 Available Commands for mainScript.ino 68

A.4 Available Commands for calibration.ino 68

ix

LIST OF FIGURES

2.1 NED Frame of Reference
[1]

. 4

2.2 Body Axes Definition
[2]

. 5

2.3 Stability Axes Definition . 5

2.4 Wind Axes Definition . 6

3.1 Drag Contribution Types . 12

3.2 NACA 4412 Lift Curve . 13

3.3 NACA 4412 Drag Polar . 13

3.4 NACA 4412 𝐾1 Estimation . 13

3.5 Downwash Caused By Wingtip Vortices
[3]

. 14

3.6 Induced Drag Free Body Diagram . 14

4.1 Heteroskedastic Error from Simulated Flight 20

5.1 Data Analysis Verification (No Noise) . 24

5.2 Drag Polar Prediction of Simulated Test Flight 25

5.3 𝐶𝐷0 Monte Carlo Simulation . 26

5.4 𝐶1 Monte Carlo Simulation . 26

5.5 𝐶2 Monte Carlo Simulation . 27

6.1 Arduino Due Flight Computer . 28

6.2 Logic Level Converter Circuit . 29

6.3 ADXL-362 Schematic . 29

6.4 Calibration Results of ADXL-362 Accelerometer 30

6.5 Honeywell HMR-2300 3-D Magnetometer 31

6.6 HMR-2300 Logic Level Circuit . 32

6.7 HMC-5883L Schematic . 33

6.8 Soft- and Hard-iron Calibration for HMC-5883L 33

6.9 ITG-3200 Eagle Schematic . 34

x

6.10 Five-Hole Probe Adapter . 35

6.11 All Sensors 5-INCH-D-DO Pressure Sensor 36

6.12 Dallas Semiconductors’ DS18B20 Digital Temperature Sensors 37

6.13 CGS Shop Board for uBlox LEA-6T . 37

7.1 System Integration into 0.60-size R/C Piper Cub 39

7.2 Drag Polar from Flight Test . 40

7.3 Drag Polar Residuals from Flight Test . 42

7.4 Lift Curve from Flight Test . 43

7.5 Angle of Attack History from Flight Test . 44

7.6 Drag Polar Repeatability Testing . 46

7.7 Correlation of Regression Model and Flight Data 48

7.8 Residuals of Regression Model and Flight Data 49

7.9 Lift Curve Repeatability Testing . 50

7.10 XFOIL-based 𝐶1 Estimation . 51

7.11 Parasite Drag Cone Integration . 53

7.12 Cone Drag as a Function of Half Angle
[4]

. 53

7.13 Clean vs. Dirty Drag Polar . 56

7.14 Clean vs. Dirty Lift Curve . 57

A.1 Port Description for Pressure Sensors . 64

C.1 Arduino Due Flight Data Recorder v3.20BOB Schematic 72

C.2 Arduino Due Flight Data Recorder v3.20BOB Layout 73

C.3 Pressure Board v2.20 Schematic . 73

C.4 Pressure Board v2.20 Layout . 74

E.1 accelX vs. Time . 79

E.2 accelY vs. Time . 79

E.3 accelZ vs. Time . 80

E.4 gyroX vs. Time . 80

E.5 gyroY vs. Time . 81

E.6 gyroZ vs. Time . 81

E.7 magX vs. Time . 82

xi

E.8 magY vs. Time . 83

E.9 magZ vs. Time . 83

E.10 hmcX vs. Time . 84

E.11 hmcZ vs. Time . 84

E.12 hmcY vs. Time . 85

E.13 press0 vs. Time . 85

E.14 press1 vs. Time . 85

E.15 press2 vs. Time . 86

E.16 press3 vs. Time . 86

E.17 gpsLat vs. Time . 87

E.18 gpsLong vs. Time . 87

E.19 gpsSpd vs. Time . 88

E.20 gpsCrs vs. Time . 88

E.21 date vs. Time . 89

E.22 CS vs. Time . 89

E.23 temperature vs. Time . 90

E.24 pwm0 vs. Time . 90

E.25 pwm1 vs. Time . 91

E.26 pwm2 vs. Time . 91

E.27 pwm3 vs. Time . 92

E.28 pwm4 vs. Time . 92

E.29 pwm5 vs. Time . 92

E.30 pwm6 vs. Time . 93

E.31 pwm7 vs. Time . 93

E.32 deltaT vs. Time . 94

E.33 accelX vs. Time . 94

E.34 accelY vs. Time . 95

E.35 accelZ vs. Time . 95

E.36 gyroX vs. Time . 95

E.37 gyroY vs. Time . 96

E.38 gyroZ vs. Time . 96

E.39 magX vs. Time . 96

xii

E.40 magY vs. Time . 97

E.41 magZ vs. Time . 97

E.42 hmcX vs. Time . 97

E.43 hmcZ vs. Time . 98

E.44 hmcY vs. Time . 98

E.45 press0 vs. Time . 98

E.46 press1 vs. Time . 99

E.47 press2 vs. Time . 99

E.48 press3 vs. Time . 99

E.49 gpsLat vs. Time . 100

E.50 gpsLong vs. Time . 100

E.51 gpsSpd vs. Time . 100

E.52 gpsCrs vs. Time . 101

E.53 date vs. Time . 101

E.54 CS vs. Time . 102

E.55 temperature vs. Time . 102

E.56 pwm0 vs. Time . 102

E.57 pwm1 vs. Time . 103

E.58 pwm2 vs. Time . 103

E.59 pwm3 vs. Time . 103

E.60 pwm4 vs. Time . 104

E.61 pwm5 vs. Time . 104

E.62 pwm6 vs. Time . 104

E.63 pwm7 vs. Time . 105

E.64 deltaT vs. Time . 105

E.65 qbar vs. Time . 106

E.66 rho vs. Time . 106

E.67 vinf vs. Time . 107

E.68 alphaP vs. Time . 107

E.69 betaP vs. Time . 107

E.70 rollRate vs. Time . 108

E.71 pitchRate vs. Time . 108

xiii

E.72 yawRate vs. Time . 108

E.73 accelX vs. Time . 109

E.74 accelY vs. Time . 109

E.75 accelZ vs. Time . 109

E.76 CD vs. Time . 110

E.77 CY vs. Time . 110

E.78 CL vs. Time . 110

E.79 D vs. Time . 111

E.80 Y vs. Time . 111

E.81 L vs. Time . 111

xiv

Nomenclature

Acronyms

𝑅̄𝑚
𝑛 Rotation matrix from m to n

𝜎 Standard deviation

𝐹𝐴 Aerodynamic forces

𝐹𝐺 Gravitational forces

𝐴𝑅 Aspect ratio

𝐶2 Drag polar coefficient for 𝐶2
𝐿 terms

𝐶𝐷 Drag coefficient

𝐶𝐿 Lift coefficient

𝐶𝐷0 Parasite drag coefficient

𝑃𝑆 Static pressure

BEC Battery elimination circuit

CFD Computational fluid dynamics

CG Center of gravity

DOF Degree of freedom

e Aircraft Lift Distribution’s Ellipticity

e Wing lift distribution

EFR Education Flight Range

EKF Extended Kalman filter

ESC Electronic speed controller

FSO Full scale output

G Gravity

GUI Graphical user interface

I2C Inter-integrated circuit

I/O Input-output

IC Integrated circuit

INS Inertial navigation system

LCC Leadless chip carrier

LGA Land grid array

LiPo Lithium polymer

NED North east down frame

OLS Ordinary least squares

PCB Printed circuit board

PWM Pulse width modulation

xv

QFN Quad-flats no-leads

R/C Radio-controlled

RMS Root mean squared

RPM Rotations per minute

SPI Serial peripheral interface

UAS Unmanned aerial system

𝛼 Angle of attack

xvi

1.0 Introduction

Aircraft designers often use model fits and “rules of thumb” to successfully complete

designs, with many of these guidelines available in various design textbooks. [5],[6],[7] These

models and practices have been established based on years of data analysis and validation

that the designs perform as expected. However, the scope of these empirical design techniques

is limited to the input of the regression model: an intelligent designer will not use a general

aviation weight model for a transport category aircraft. To this end, there is a significant

lack of small UAV-class guidelines for designing an aircraft.

Accurate estimations of a small-scale vehicle’s lift and drag characteristics are extremely

critical to the aircraft designer, and affect both point performance (turn rates, climb rates,

stall speeds, etc.) and mission performance (range and endurance). Many of the prediction

tools available in the classic lift and drag textbooks from Hoerner[4],[8] only apply to larger

scale structures. In addition, drag prediction is extremely difficult on small vehicles, as some

sources of drag are not easily modeled. For instance, actuator control horns and protruding

screw heads are not typically included in the CFD analysis of aircraft. However, for small

vehicles, these sources of “crud” drag can be a significant portion of the total vehicle’s drag

value.

One advantage of small UAVs is that they are fairly inexpensive, which makes building

multiple fully-functioning prototypes a viable option. The author chose to take advantage of

this fact and develop a flight data acquisition system with a primary goal of measuring the

lift and drag characteristics of a small UAV. This would enable vehicle designers to build a

conceptual-design-level prototype, and both develop and validate predictive, regression-based

models. The system would also allow designers to conduct quantitative trade studies, such

as the trade between drag reduction technologies (wheel pants, retractable landing gear,

winglets, etc.) and the weight associated with them.

1

The author also desired additional sensors to aid designers with more than just lift and

drag characteristics. Some areas of interest are estimating stability and control derivatives,

as well as possible control algorithm testing, in-flight thrust measurement, and payload

integration capabilities. To accomplish these goals, sensors not directly necessary to lift and

drag estimation were included in the overall system. The system was also designed in a

manner that made it reconfigurable. This allows future designers to decide what combination

of accuracy, risk, and sensing capabilities they need on a given flight test, and to then package

the sensors in a manner that meets vehicle integration requirements.

For this paper, the author chose to integrate the necessary sensors to estimate lift and

drag forces, as well as those necessary for a basic INS, ambient temperature measurement, and

servo and motor signals. The system will be validated by measuring the as-built drag polar

of an R/C aircraft, as well as all other available states the system is capable of measuring.

2

2.0 Method

Some basic assumptions will apply throughout the modeling of dynamics in this paper.

They are as follows:

1. The vehicle is a fixed mass.

2. Coriolis effects are negligible.

3. Thrust will be assumed to be 0.

Note that a stationary atmosphere is not assumed. The fixed mass assumption is consistent

with the electric aircraft used to test the system. At the altitude and speed at which the

vehicles will be tested, Coriolis effects can be ignored[9]. The zero-thrust assumption is in

place to minimize drag error. Any error in a measured state will decrease the accuracy of the

drag measurement, and the accuracy of a given drag measurement can be no better than the

worst state measurement error. In-flight thrust is difficult to measure accurately, so a folding

propeller will be used, and the motor will be turned off during data acquisition. This will

allow the propeller to fold back, eliminating most of the wind-mill drag associated with a

stalled propeller.

2.1 Reference Frames

For this thesis, the reference frames used will follow standard convention,[9] which will be

repeated here for clarity.

2.1.1 North-East-Down (NED) Axes (𝑥𝑛𝑒𝑑, 𝑦𝑛𝑒𝑑, 𝑧𝑛𝑒𝑑)

The NED axis system defines a local tangent plane on the Earth’s surface, with the origin

coinciding with the vehicle’s center of gravity. The 𝑖̂ vector points due north, the 𝑗̂ vector

3

points due east, and the 𝑘 vector points towards the center of the earth, in accordance with

the right-hand rule. This coordinate system is vehicle carried, meaning the origin is fixed to

the aircraft, but the axis directions are independent of vehicle orientation.

North

East

Down

Equator

Figure 2.1: NED Frame of Reference[1]

2.1.2 Body Axes (𝑥𝑏, 𝑦𝑏, 𝑧𝑏)

The body axis system has its origin at the vehicle’s center of gravity, with the 𝑖̂ direction

pointing out the vehicle’s nose, the 𝑗̂ direction pointing out the right wing, and the 𝑘 direction

pointing out the belly of the aircraft, in accordance with the right-hand rule. This coordinate

frame is fixed to the body, meaning the aircraft’s spatial orientation does not change the

direction of the axes.

4

North

East

Ψ

North

Down

Θ

Down

East

Φ

Yaw Pitch Roll

Figure 2.2: Body Axes Definition[2]

2.1.3 Stability Axes (𝑥𝑠, 𝑦𝑠, 𝑧𝑠)

The stability axes are defined with its origin coinciding with the center of gravity of the

vehicle. This axis system has essentially the same directions as the body axes, except rotated

about the body axis 𝑗̂ through an initial angle-of-attack, 𝛼0. This inital angle-of-attack is

defined at the beginning of a test maneuver and is then set for the remainder of the test,

making it a body-fixed coordinate system. This system assumes no initial sideslip angle [10].

In Figure 2.3, only the 𝑖⃗ stability vector is shown, for clarity.

α
0

i
BODY

i
S

k
S

Figure 2.3: Stability Axes Definition

5

2.1.4 Wind Axes (𝑥𝑤, 𝑦𝑤, 𝑧𝑤)

The wind axes are, again, a vehicle-carried coordinate system, meaning the origin of the

wind axis also coincides with the center of gravity of the vehicle. However, the wind axes are

not a body-fixed coordinate frame. The 𝑖̂ direction points into the oncoming air, as seen from

the vehicle. The 𝑘 direction lies in the x-z plane of the body reference frame. The 𝑗̂ direction

is then defined to be out the right side of the vehicle, in order to follow the right hand rule.

α

β
i
BODY

i
S

i
W

j
BODY

k
BODY

Figure 2.4: Wind Axes Definition

In Figure 2.4, only the 𝑖⃗ wind vector is shown, for clarity.

2.2 Equations of Motion

Newton’s 2nd Law of Motion states

Σ𝐹 =
𝑑

𝑑𝑡
(𝑚𝑉) (2.2.1)

where Σ𝐹 is the sum of all applied forces, 𝑚⃗ is the mass of the vehicle, and 𝑉⃗ is the vehicle’s

velocity. Using the fixed mass assumption, this reduces to

Σ𝐹 = 𝑚
𝑑𝑉⃗

𝑑𝑡
(2.2.2)

= 𝑚𝑎⃗ (2.2.3)

6

The applied forces on the vehicle for drag polar estimation are

Σ𝐹 = 𝐹𝐴 + 𝐹𝐺 + 𝐹𝑇 (2.2.4)

where 𝐹𝐴 accounts for all aerodynamic forces acting on the vehicle, 𝐹𝐺 is the force due to

gravity, and 𝐹𝑇 accounts for forces from the propulsion system, which are assumed to be zero.

The aerodynamic forces lift and drag are described in the wind reference frame. In general,

they are defined as

𝐹𝐴𝑤 = 𝐷𝑖̂𝑤 + 𝑌 𝑗̂𝑤 + 𝐿𝑘𝑤 (2.2.5)

where 𝐷 is drag force, 𝑌 is side force, and 𝐿 is lift force.

The gravitational force on the vehicle acts in the +𝑧𝑁𝐸𝐷 direction and is equal in

magnitude to the vehicle’s weight 𝑊 , leading to

𝐹𝐺𝑁𝐸𝐷
= 0̂𝑖𝑁𝐸𝐷 + 0𝑗̂𝑁𝐸𝐷 + 𝑊𝑘𝑁𝐸𝐷 (2.2.6)

The aerodynamic and gravity forces can be combined and expressed in the body frame

𝑚𝑎⃗𝑏 = 𝐹𝐺𝑏
+ 𝐹𝐴𝑏

(2.2.7)

which can then be expressed as

𝑚𝑎⃗𝑏 −𝑚𝑔⃗ = 𝐹𝐴𝑏
(2.2.8)

𝑚(⃗𝑎𝑏 − 𝑔⃗) = 𝐹𝐴𝑏
(2.2.9)

Then, it is noted that a body mounted accelerometer will not measure 𝑎⃗𝑏, but will instead

measure the quantity 𝑔⃗ − 𝑎⃗𝑏. This means Equation 2.2.9 is really

𝐹𝐴𝑏
= −𝑚𝑟⃗𝑏 (2.2.10)

where 𝑟⃗𝑏 is the reading from a body mounted accelerometer. The aerodynamic forces in wind

axes, which is the goal, can then be calculated using a rotation matrix

𝐹𝐴𝑤 = 𝑅̄𝑏
𝑤𝐹𝐴𝑏

(2.2.11)

7

Equations 2.2.10 and 2.2.11 are important, and show that the only sensors necessary for

drag polar estimation during gliding flight are a body-mounted accelerometer and an air data

system.

2.3 Kalman Filter Usage

This paper examined using multiple Kalman filters to estimate both regression coefficients

and improved states. By the end, it was not used for improving the state estimation, since

neither Euler angles or accelerations were available. It was studied for a robust regression

coefficient estimator, which will be discussed more in Section 5.3. As a brief overview, the

Kalman filter combines the measured state with a predicted state to give an optimal[11]

estimate of the actual system state. As an example, if a car is traveling at 10 ft/s ±1𝑓𝑡/𝑠,

after one second it is expected to be 10 feet away. If it is measured to be 14 feet away, ±5

foot, the Kalman filter will average the estimated 10 ft with the measured 14 feet, based on

how accurately each is known.

2.3.1 Linear Kalman Filter

A linear Kalman filter can be applied[12] where the system in question can be described

in the form

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵̄𝑢𝑘−1 + 𝑤𝑘−1 (2.3.1)

where 𝐴 is the state transition matrix, 𝑥𝑘−1 is the previous state, 𝐵̄ is the input matrix, 𝑢𝑘−1

is the input vector, and 𝑤𝑘−1 is random process noise.

The measured state is then

𝑧𝑘 = 𝐻̄𝑥𝑘 + 𝑣𝑘 (2.3.2)

where 𝐻̄ is the output matrix and 𝑣𝑘 is measurement noise.

The Kalman filter operates in a predictor-corrector manner, where the predictor step is often

8

called the a priori estimate, and the corrector step is often called the a posteriori estimate.

The a priori state estimate is calculated using prior states and inputs, while assuming no

process noise

𝑥−
𝑘 = 𝐴𝑥𝑘−1 + 𝐵̄𝑢𝑘−1 (2.3.3)

The a priori estimate of the covariance matrix is projected in a similar manner

𝑃−
𝑘 = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄̄ (2.3.4)

where 𝑃 is the covariance matrix and 𝑄̄ is the process noise matrix.

The Kalman gain is calculated by combining the predicted, a priori covariance matrix

with the measurement noise covariance matrix 𝑅̄

𝐾̄𝑘 = 𝑃−
𝑘 𝐻̄𝑇 (𝐻̄𝑃−

𝑘 𝐻̄𝑇 + 𝑅̄)−1 (2.3.5)

This optimal Kalman gain is then used to estimate the a posteriori estimate of both the

state and the covariance matrix

𝑥𝑘 = 𝑥−
𝑘 + 𝐾̄𝑘(𝑧𝑘 − 𝑦𝑘) (2.3.6)

𝑃𝑘 = (𝐼 − 𝐾̄𝑘𝐻̄)𝑃−
𝑘 (2.3.7)

where 𝑦𝑘 is the predicted value of 𝑧𝑘 found using the output matrix 𝐻̄ and the a priori state

estimate

𝑦𝑘 = 𝐻̄𝑥−
𝑘 . (2.3.8)

Note that Equation 2.3.6 is essentially a weighted average of a measured state and an expected

state. The weighting is the Kalman gain, which is related to the ratio of confidence in the

measured state and the expected state. For a 1-D case with equal confidence between the

measured state and the expected state, the Kalman gain 𝐾̄𝑘 = 0.5, and the Kalman filter

becomes a simple mean.

9

2.3.2 Extended Kalman Filter

The Extended Kalman filter is used for a non-linear system and is essentially a linearization

of a nonlinear plant. A nonlinear system can be described as [12]

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1) (2.3.9)

𝑧𝑘 = ℎ(𝑥𝑘, 𝑣𝑘) (2.3.10)

The process noise 𝑤𝑘−1 and measurement noise 𝑣𝑘 are not known (or the Kalman filter

would not be necessary), so the states are approximated assuming both noise sources are

zero, as shown in Equation 2.3.11

𝑥̃𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 0) (2.3.11)

𝑧𝑘 = ℎ(𝑥̃𝑘, 0) (2.3.12)

where 𝑥̃𝑘 is the approximate state vector and 𝑧𝑘 is the approximate measurement vector.

The actual states are related to the approximate states by

𝑥𝑘 ≈ 𝑥̃𝑘 + 𝐴(𝑥𝑘 − 𝑥𝑘−1) + 𝑊̄𝑤𝑘−1 (2.3.13)

𝑧𝑘 ≈ 𝑧𝑘 + 𝐻̄(𝑥𝑘 − 𝑥𝑘−1) + 𝑉 𝑣𝑘 (2.3.14)

where the matrices 𝐴, 𝑊̄ , 𝐻̄, and 𝑉 represent the different Jacobian matrices:

𝐴 =
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑥𝑘−1, 𝑢𝑘−1, 0) (2.3.15)

𝑊̄ =
𝜕𝑓𝑖
𝜕𝑤𝑗

(𝑥𝑘−1, 𝑢𝑘−1, 0) (2.3.16)

𝐻̄ =
𝜕ℎ𝑖

𝜕𝑥𝑗

(𝑥𝑘, 0) (2.3.17)

𝑉 =
𝜕ℎ𝑖

𝜕𝑣𝑗
(𝑥𝑘, 0). (2.3.18)

The Extended Kalman filter uses these linearized equations to perform the same process

as the linear Kalman filter. Again, the first step is to calculate the a priori estimate of the

10

state and the covariance matrix

𝑥−
𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 0) (2.3.19)

𝑃−
𝑘 = 𝐴𝑘𝑃𝑘−1𝐴

𝑇
𝑘−1 + 𝑊̄𝑘𝑄̄𝑘−1𝑊̄

𝑇
𝑘 . (2.3.20)

Next, the Kalman gain is calculated

𝐾̄𝑘 = 𝑃−
𝑘 𝐻̄𝑇

𝑘 (𝐻̄𝑘𝑃
−
𝑘 𝐻̄𝑇

𝑘 + 𝑉𝑘𝑅̄𝑘𝑉
𝑇
𝑘)−1. (2.3.21)

The Kalman gain is then used to calculate the a posteriori estimate of the state and

covariance matrix

𝑥𝑘 = 𝑥−
𝑘 + 𝐾̄𝑘(𝑧𝑘 − 𝑦𝑘) (2.3.22)

𝑃𝑘 = (𝐼 − 𝐾̄𝑘𝐻̄𝑘)𝑃−
𝑘 (2.3.23)

where 𝑦𝑘 is, as in the linear case, the predicted value of 𝑧𝑘, but calculated using the nonlinear

output function and the a priori state estimate

𝑦𝑘 = ℎ(𝑥−
𝑘 , 0). (2.3.24)

Unlike the linear Kalman filter, the Extended Kalman filter is not proven to be optimal.

However, it has been utilized for a wide range of applications with excellent results.

11

3.0 Drag Meta-Modeling

Drag force comes from many different contributions, but can be split into drag that is

independent of lift, and drag that is due to lift [13]. The summation of all sources of drag that

are independent of lift is often called minimum drag (𝐶𝐷𝑚𝑖𝑛
often used for the coefficient)[5],

and is roughly constant, for a given Reynold’s number and Mach number. The drag due to

lift can be split into viscous drag-due-to-lift and inviscid drag-due-to-lift.

Drag

Independent

of lift

Dependent

on lift

Types

Skin friction

Interference

Scrubbing

Pro!le

Separation

Viscous Inviscid

Figure 3.1: Drag Contribution Types

The viscous drag-due-to-lift is a profile drag, and it increases when the angle of attack of

the wing increases, therefore generating more lift. It is a function of airfoil geometry, such as

leading edge radius, thickness distribution, and camber. This type of drag is independent

of finite wing vortices, and can be seen on two-dimensional airfoil data charts. To show an

example of viscous drag-due-to-lift, a NACA 4412 was analyzed using XFOIL[14].

Figure 3.3 shows the airfoils viscous drag-due-to-lift. Since the shape is roughly parabolic

through the linear region of the lift curve, the contribution to the total aircraft drag is

approximated using the Equation 3.0.1[13].

𝐶𝐷𝑉 𝑖𝑠𝑐.𝐿𝑖𝑓𝑡
= 𝐾1(𝐶𝐿 − 𝐶𝐿𝑀𝑖𝑛𝐷𝑟𝑎𝑔

)2 (3.0.1)

12

−5 0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

α

C
l

Figure 3.2: NACA 4412 Lift Curve

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Cd

C
l

Figure 3.3: NACA 4412 Drag Polar

where 𝐾1 is the slope of the line shown in Figure 3.4, and 𝐶𝐿𝑀𝑖𝑛𝐷𝑟𝑎𝑔
is the lift coefficient

at which minimum drag occurs (roughly 0.25 for this airfoil.)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

K1 = 0.01049

(Cl − ClMIN
)2

C
d

Actual
Linear Fit

Figure 3.4: NACA 4412 𝐾1 Estimation

Inviscid drag-due-to-lift occurs because of the pressure difference between the top and

bottom of a finite wing. This pressure difference causes the high pressure flow underneath

the wing to slip over to the top of the wing, causing a downwash velocity on the free stream

velocity, shown in Figure 3.5.

13

Figure 3.5: Downwash Caused By Wingtip Vortices[3]

This downwash changes the direction of the flow going into the airfoil. Since lift acts

perpendicularly to the flow going into airfoil, there will be an induced angle between the

free-stream lift vector (perpendicular to 𝑉∞) and the airfoil’s lift vector.

V
∞

V
downwash

V
induced

Lift

Sec. A

Figure 3.6: Induced Drag Free Body Diagram

The red section, labeled Sec. A in Figure 3.6, is a component of the airfoil’s lift which is

parallel to the free stream velocity, 𝑉∞, meaning the airfoil’s lift causes drag on the vehicle.

Induced drag is affected by the span lift distribution and the wing aspect ratio[15], and is

governed by Equation 3.0.2.

𝐶𝐷𝑖
=

𝐶2
𝐿

𝜋𝑒𝐴𝑅
= 𝐾2𝐶

2
𝐿 (3.0.2)

These three coefficients (𝐶𝐷𝑚𝑖𝑛
, 𝐾1, and 𝐾2) are combined to result in a parabolic drag

polar of the form

14

𝐶𝐷 = 𝐶𝐷𝑚𝑖𝑛
+ 𝐾1(𝐶𝐿 − 𝐶𝐿𝑀𝐼𝑁

)2 + 𝐾2𝐶
2
𝐿. (3.0.3)

This drag polar gives valuable insight into how a vehicle will perform. The complete drag

polar can be found using various regression techniques, discussed in the following sections.

3.1 Regression Model - Least Squares Fit

The standard model for a polynomial regression is

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + ... (3.1.1)

where 𝑦 is the estimate of the dependent variable of the regression model, 𝛽𝑖 is the 𝑖 − 𝑡ℎ

regression coefficient, and 𝑥 is the independent regression variable.

When Equation 3.0.3 is expanded and like-terms of 𝐶𝐿 are combined, equation 3.1.1

becomes

𝐶𝐷 = (𝐶𝐷𝑚𝑖𝑛
+ 𝐾1𝐶

2
𝐿𝑚𝑖𝑛

) − 2𝐾1𝐶𝐿𝑚𝑖𝑛
𝐶𝐿 + (𝐾1 + 𝐾2)𝐶

2
𝐿. (3.1.2)

The value (𝐶𝐷𝑚𝑖𝑛
+ 𝐾1𝐶

2
𝐿𝑚𝑖𝑛

) is referred to as the parasite drag coefficient, and is

represented by 𝐶𝐷0
[5].

These coefficients can be estimated using an Ordinary Least Squares fit. The OLS problem

statement is as follows

𝐴𝑥⃗ = 𝑏⃗. (3.1.3)

If 𝐴 is an 𝑚x𝑛 matrix of measured state data, 𝑥⃗ is an 𝑛x1 vector of correlation coefficients,

and 𝑏⃗ is an 𝑚x1 vector of measured function data, the solution to the OLS problem is

𝐴𝑥⃗ = 𝑏⃗ (3.1.4)

𝐴𝑇𝐴𝑥⃗ = 𝐴𝑇 𝑏⃗ (3.1.5)

(𝐴𝑇𝐴)−1(𝐴𝑇𝐴)𝑥⃗ = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏⃗ (3.1.6)

𝐼𝑥⃗ = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏⃗. (3.1.7)

15

When applied to estimating a parabolic drag polar, the 𝐴 matrix becomes

𝐴𝑖,: =

[︂
1 𝐶𝐿𝑖

𝐶2
𝐿𝑖

]︂
, (3.1.8)

the 𝑏⃗ vector becomes

𝑏⃗𝑖 =

[︂
𝐶𝐷𝑖

]︂
, (3.1.9)

and the 𝑥⃗ vector, which is the vector of interest, becomes

𝑥⃗ =

[︂
𝐶𝐷0 −2𝐾1𝐶𝐿𝑚𝑖𝑛

(𝐾1 + 𝐾2)

]︂𝑇
. (3.1.10)

The coefficients 𝐶𝐷0 , 𝐾1, and 𝐾2 can then be found, assuming 𝐶𝐿𝑚𝑖𝑛
is known through

wind tunnel testing, XFOIL, CFD, or other means.

3.2 Regression Model - Kalman Filter

The coefficients in question can also be estimated using an Extended Kalman filter. The

system can again be described as

𝐶𝐷 = 𝐶𝐷0 − 2𝐾1𝐶𝐿𝑚𝑖𝑛
𝐶𝐿 + (𝐾1 + 𝐾2)𝐶

2
𝐿. (3.2.1)

For the Kalman filter regression, the state to be estimated are the coefficients 𝐶𝐷0 ,

−2𝐾1𝐶𝐿𝑚𝑖𝑛
, and 𝐾1 + 𝐾2. For ease of notation, substitute

𝐶1 = −2𝐾1𝐶𝐿𝑚𝑖𝑛
(3.2.2)

𝐶2 = 𝐾1 + 𝐾2. (3.2.3)

Since the regression coefficients should not change, the state transition matrix is an

identity matrix, leading to

16

𝑥̂𝑘 =

[︂
𝐶𝐷0 𝐶1 𝐶2

]︂
(3.2.4)

𝐴 =

⎡⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎦ . (3.2.5)

The measured data 𝑧𝑘 is a vector containing the lift and drag coefficients at the 𝑘-th

instant in time

𝑧𝑘 =

⎡⎢⎣𝐶𝐷𝑘

𝐶𝐿𝑘

⎤⎥⎦ = ℎ(𝑥𝑘, 0). (3.2.6)

The vector 𝑦𝑘 contains the estimates of 𝐶𝐷𝑘
and 𝐶𝐿𝑘

found using the a priori state vector

𝑥̂−
𝑘 and is equal to

𝑦𝑘 =

⎡⎢⎣𝐶−
𝐷0

+ 𝐶−
1 𝐶𝐿 + 𝐶−

2 𝐶
2
𝐿

𝐶𝐿

⎤⎥⎦ = ℎ(𝑥−
𝑘 , 𝑧𝑘, 0) (3.2.7)

To implement into the Extended Kalman filter, the Jacobian of ℎ(𝑥−
𝑘 , 𝑧𝑘, 0) with respect

to 𝑥𝑘 needs to be calculated. Once done, the 𝐻 matrix in the EKF becomes

𝐻𝑘 =

⎡⎢⎣1 𝐶𝐿𝑘
𝐶2

𝐿𝑘

0 0 0

⎤⎥⎦ (3.2.8)

With the 𝐻 matrix calculated, the EKF algorithim can be implemented as described in

Section 2.3.2. The measurement noise covariance at each instant was calculated by doing

error propagation as described in Section 4.1 and the process noise covariance was set to zero

because the parabolic regression coefficients should be exactly constant.

17

4.0 Error Analysis

Without estimates of the error in data, the data itself is fairly meaningless. There are two

main types of error in the system: model regression error and the error of a single data point.

The error of a single data point comes from random noise in sensors, and can be decreased by

improving the accuracy of the sensor or filtering the results. The model regression error comes

from the fact that every aspect of the dynamics of the system are not precisely modeled.

This type of error can be reduced by improving the accuracy of the dynamics being modeled,

choosing a better regression model, or by increasing the number of data points collected,

discussed later.

4.1 Random Error

The equations of motion can be used to propagate uncertainty in a signal, and they allow

the uncertainty in the coefficients to be estimated based on sensor noise.

The error of a single point is assumed to be random and normally distributed. The first

step in error propagation is to define 𝑦𝑖 to be the 𝑖-th entry of the true function vector, 𝑦𝑖 to

be the 𝑖-th entry of the measured function vector, and to then do a Taylor series expansion

about the operating point.

𝑦𝑖 = 𝑦𝑖 +
𝜕𝑦𝑖
𝜕𝑥𝑗

𝑑𝑥𝑗 (4.1.1)

where 𝑥𝑗 is the 𝑗-th element of the state vector. Note that the term 𝜕𝑦𝑖
𝜕𝑥𝑗

is the Jacobian

matrix (𝐽𝑖𝑗) of the state transition function. The error can then be defined as

𝑑𝑦𝑖 = 𝑦𝑖 − 𝑦𝑖 = 𝐽𝑖𝑗𝑑𝑥𝑗. (4.1.2)

If the error is then interpreted as a discrete difference instead of a continuous difference,

18

Equation 4.1.2 becomes

∆𝑦𝑖 = 𝐽𝑖𝑗∆𝑥𝑗. (4.1.3)

If the ∆ values are further assumed to represent standard deviations of normally distributed

error, Equation 4.1.3 becomes

𝜎𝑦𝑖 =
√︁

𝐽2
𝑖𝑗𝜎

2
𝑥𝑗
. (4.1.4)

For the purposes of this research, 𝜎𝑦𝑖 is a vector of the standard deviations of the aerodynamic

force coefficients,

𝜎𝑦𝑖 =

[︂
𝜎𝐶𝐷𝑖

𝜎𝐶𝑌𝑖
𝜎𝐶𝐿𝑖

]︂𝑇
(4.1.5)

and 𝜎𝑥𝑗
is a vector of the standard deviations of the state values,

𝜎𝑥𝑗
=

[︂
𝜎𝑟𝑏𝑗

𝜎𝛼𝑗
𝜎𝛽𝑗

]︂𝑇
. (4.1.6)

For initial error estimation, the noise levels reported by instrument manufacturers was

assumed to be one standard deviation of a normal distribution with mean equal to zero. The

Jacobian matrix was calculated at each observed data point and combined with the sensors’

standard deviation to produce estimates of the standard deviations of the aerodynamic

coefficients.

One of the key findings of this section is that the error of the coefficient depends on the

coefficient itself. This means that the error varies from data point to data point, which is called

heteroskedasticity (as opposed to homoskedasticity, which means the error is independent of

the state itself). To account for this, an error estimate function was created in MATLAB,

which used the error propogation outlined in this section. This function was used whenever an

estimate of point error was required, such as for the variance matrix 𝑃𝑘 used in the Kalman

filters utilized for state estimation. A plot of simulated flight data is shown in Figure 4.1,

where the error bounds shown were calculated using the error estimate function. Note that

this figure also shows the heteroskedastic nature of the error.

19

0 0.05 0.1 0.15 0.2
−0.5

0

0.5

1

1.5

2

2.5

3

C
D
 [−]

C
L
 [
−

]

Simulated Data

Error Bars

Figure 4.1: Heteroskedastic Error from Simulated Flight

While heteroskedasticity does not color the estimate of 𝛽𝑖, it does color the confidence

intervals. The method of dealing with this problem is discussed in Section 4.2.

4.2 Least Squares Regression Error

The error of a single data point is not the main driving factor in the accuracy of a

regression model. The important factor in the model is how accurately the coefficients are

known, which is a function of the accuracy of each point, as well as the number of points

sampled. The main parameter that describes the accuracy of the regression coefficients are

the confidence intervals. A confidence interval is a range of values such that, if the experiment

were repeated, the parameter calculated would be within the range some percentage of the

time.

A parameter can be represented as an estimated value, with a confidence bound

𝛽 = 𝛽𝐸𝑆𝑇 ± 𝑡
𝜎√
𝑛

(4.2.1)

where 𝛽 is the parameter in question, 𝛽𝐸𝑆𝑇 is the estimated value of the parameter, 𝑡 is

the Student’s 𝑡 value based on the number of samples and the desired confidence interval, 𝜎

20

is the standard deviation of the sample, and 𝑛 is the number of data points collected. Since

the number of data points collected during flight will be large (𝑛 > 100), the 𝑡 value will be

taken as 1.96 for a 95% confidence interval.

As previously mentioned, one of the assumptions made in a least squares regression is

homoskedasticity. However, the error using standard uncertainty propagation is heteroskedas-

tic. This becomes a problem in estimating confidence intervals, because the standard error

can be driven by outliers. If each data point had the same error, these outliers could be

valid. However, if the data is heteroskedastic, the outlier may have larger error bounds (see

Figure 4.1,) meaning the data point is not as likely as it first appears. This fact can drive the

standard error estimate to be larger than is appropriate, which leads to a larger confidence

interval and possibly a false lack of rejection of the confidence interval’s hypothesis test.

To account for this, the robustfit function in MATLAB was used to estimate both

the regression coefficients and robust standard error estimates. The robustfit function

calculates heteroskedastically-robust standard error estimates by doing an iterative weighted

least squares, where the weighting is based on a radial basis function from the previous

least squares solution. This means that the farther away a data point is from the estimated

regression model, the less impact it has on the standard error of the model. The default

weighting function used by robustfit is bisquare, and it was used for this research.

4.3 Kalman Filter Regression Error

Kalman filters are often used to propagate states. The filter does this by combining the

system dynamics with a measured state. The variance is propagated using Equation 2.3.23.

When estimating coefficients using the Kalman filter, the 𝐴 state transition matrix is an

identity matrix, which is due to the fact that the coefficients stay constant. When propagated

through the filter, this means the state estimate 𝑥𝑘 is essentially a variance-weighted-average

of the coefficient estimates. The matrix 𝑃𝑘 contains the variance of the coefficient estimates.

21

Equation 4.2.1 calculates the confidence interval of regression coefficients and needs the

standard deviation of the mean, also called the standard error. The matrix 𝑃𝑘 can be used

to calculate the confidence intervals by noting

𝑃𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
1 0 . . . 0

0 𝜎2
2 . . . 0

...
...

. . .
...

0 0 . . . 𝜎2
𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.3.1)

The confidence interval for coefficient 𝛽𝑖 can be calculated using 𝜎𝑖 in Equation 4.2.1.

22

5.0 Simulation

A 6-DOF flight simulator was used to validate the drag prediction method before hardware

was purchased. The main utility of the simulator was to provide simulated flight test data

with signals that contained no errors. The actual sensors used for flight testing contain noise,

and this noise can be added onto the pure simulator signals to test the sensitivity of the drag

polar regression to sensor accuracy.

5.1 Simulation Environment

The flight simulator used was a model of the de Haviland Beaver that comes as a demo

in the Aerospace Toolbox of Simulink. The Simulink model was modified to output required

signals to the workspace, which essentially created a sensor with zero noise. The mass,

moments of inertia, and reference lengths were then scaled to those of a Zagi R/C aircraft[16].

The original Simulink model was already connected to a FlightGear Flight Sim, used as a

visualization engine. This model was slightly altered to make flight gauges function properly.

5.2 Simulation Inputs

The engine forces and moments were set to zero in the simulator, to match the assumption

of a folding propeller. The drag force calculation built into the Beaver Simulink model was

replaced with a parabolic drag polar of the form

𝐶𝐷 = 𝐶𝐷0 + 𝐾1(𝐶𝐿(𝛼) − 𝐶𝐿𝑚𝑖𝑛
)2 +

(𝐶𝐿(𝛼))2

𝜋𝑒𝐴𝑅
(5.2.1)

Airfoil data, including 𝐾1, 𝐶𝐿𝑚𝑖𝑛
, and 𝐶𝐿(𝛼), was taken from nonlinear aerodynamic data

of a NACA 0012[17]. While this approximation to a real drag polar does not capture the

nonlinear section of profile drag rise due to stall, it does represent the limited lifting capability

of a real wing.

23

5.3 Simulation Results

The first goal of the simulation testing was to verify the drag polar equations were correct,

and that the data analysis routines developed in MATLAB did in fact match inputs to

outputs. The simulation was initialized with various initial states to ensure there was no

dependency on initial conditions. The vehicle was then flown by an R/C aircraft pilot using

a joystick attached to the simulation. It was noted early in the simulation testing that flying

a sweep of speeds was beneficial, as a wider range of the drag polar was flown. This result

was included in much of the flight test planning.

After adequate data had been taken, the data was analyzed without adding simulated

sensor noise. The results in Figure 5.1 show that the equations of motion used in the data

analysis functions properly calculate the coefficients being passed into the system.

0 0.02 0.04 0.06 0.08 0.1 0.12
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
D
 [−]

C
L
 [

−
]

Simulator Input

Output from EoMs

Figure 5.1: Data Analysis Verification (No Noise)

With this result, noise was added to the system to see how sensitive coefficient estimation

was to noise in each sensor. This process was a balancing act between available sensor accuracy

and the desired accuracy of the final solution. The final result guided sensor selection to

those discussed in Section 6. To check if the final sensors chosen were acceptable, Gaussian

noise was added to each state, with a mean of zero and a standard deviation equal to the

24

RMS error listed in the manufacturer’s data sheet for each sensor.

0 0.02 0.04 0.06 0.08 0.1 0.12
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
D
 [−]

C
L
 [

−
]

System Input

Calculated

OLS Regression

Robust Regression

Kalman

Figure 5.2: Drag Polar Prediction of Simulated Test Flight

For the particular simulated test flight shown in Figure 5.2, the estimated drag polar

coefficients are shown in Table 5.1.

Table 5.1: Nonlinear Model Results

𝐶𝐷0 𝐶1 𝐶2

System Inputs 0.0493 0 0.03

OLS Estimate 0.0300 0.0196 0.0264

Robust LS Estimate 0.0461 0.0034 0.0294

Kalman Estimate 0.0446 0.0039 0.0293

The results of this simulated flight test showed that the measurement system outlined in

Section 6 predicted the simulated drag polar with a reasonable error. It also demonstrates

the necessity of the heteroskedasticity correction, as the OLS regression has a 65% error on

𝐾2 and a 13% error on 𝐶𝐷0 , while the robust regression has a 7% error on 𝐾2 and a 2% error

on 𝐶𝐷0 .

Since adding random noise results in stochastic error estimates, a Monte Carlo simulation

was conducted to quantify expected accuracy values using the sensors selected in Section 6.

25

Error with a standard deviation equal to those reported by the manufacturer was added to

clean simulated flight data, and the percent error in each coefficient was saved. This process

was repeated 10,000 times, and the results are shown in Figures 5.3-5.5.

0 2000 4000 6000 8000 10000
−1000

0

1000

2000

3000

4000

5000

6000

Iteration [−]

C
D

0

 C
o

e
ff

ic
ie

n
t

[−
]

Poly Fit

Kalman

Robust

Figure 5.3: 𝐶𝐷0 Monte Carlo Simulation

0 2000 4000 6000 8000 10000
−1

0

1

2

3

4

5

6

Iteration [−]

C
1
 C

o
e

ff
ic

ie
n

t
[−

]

Poly Fit

Kalman

Robust

Figure 5.4: 𝐶1 Monte Carlo Simulation

26

0 2000 4000 6000 8000 10000
−10

0

10

20

30

40

50

60

70

80

Iteration [−]

C
2
 C

o
e

ff
ic

ie
n

t
[−

]

Poly Fit

Kalman

Robust

Figure 5.5: 𝐶2 Monte Carlo Simulation

The results of the study, summarized in Table 5.2, show that the robustfit regression

produced the most accurate and reliable results.

Table 5.2: Monte Carlo Results

Mean Percent Error Percent Standard Error

𝐶𝐷0 𝐶1 𝐶2 𝐶𝐷0 𝐶1 𝐶2

OLS 53.8 1.5 10.6 81.7 0.6 6.0

Robust LS 12.2 0.5 3.2 6.3 0.2 1.5

Kalman Filter 12.1 0.4 2.5 26.0 0.2 1.3

27

6.0 Hardware

One of the main goals of this research was to give the designer flexibility in choosing

the appropriate sensors for a given flight test. To this end, hardware that is available in

breakout boards was given preference, since it gives the aircraft designer more flexibility.

The aircraft designer can utilize surface mount components if vehicle integration space is

extremely limited, or can use the available breakout boards to make circuit-level integration

easier if vehicle space is not a driving flight test concern.

6.1 Flight Computer

The flight computer chosen was an Arduino Due. This board has a 32-bit ARM processor,

54 digital I/O pins, 12 analog input pins, and 2 analog output pins. The main driver in the

decision to use an Arduino-based platform was the vast support community, which allows

quicker software development. The Arduino also offers a package that integrates well into

most of the available airframes, and the stackable header pins allowed for easy integration

with other boards. The Due in particular was chosen as it is (at the time of writing) the most

advanced Arduino available. The main advantages it has over the comparable Arduino Mega

is its increased clock speed (84 MHz for the Due[18] vs 16 MHz for the Arduino Mega[19]) and

its 32-bit architecture (vs. 8-bit for the Arduino Mega).

Figure 6.1: Arduino Due Flight Computer

The Arduino Due uses a 3.3V architecture instead of the usual Arduino architecture,

28

which uses a 5V operating voltage. This was mainly beneficial, since most of the selected

sensors used 3.3V as both supply and logic voltage. Logic level circuits, shown in Figure

6.2, were used to translate to 5V signals where required. The board is powered through the

3.5mm barrel jack, using a 3-cell LiPo battery, with a nominal voltage of 11.1V.

Figure 6.2: Logic Level Converter Circuit

6.2 Accelerometer

The accelerometer chosen for the data acquisition system was the ADXL-362 from Analog

Devices. It has a noise error of 175𝜇G/
√

Hz and uses a 3.3V digital SPI interface[20]. The

accelerometer is in an LGA package and was surface mounted to the main PCB.

Figure 6.3: ADXL-362 Schematic

The accelerometer is calibrated in the field through a nonlinear least squares routine. For

any given orientation, the accelerometer’s reading can be expressed as⎡⎢⎢⎢⎢⎣
𝑟𝑥 0 0

0 𝑟𝑦 0

0 0 𝑟𝑧

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑚𝑥

𝑚𝑦

𝑚𝑧

⎤⎥⎥⎥⎥⎦ +

[︂
𝑏𝑥 𝑏𝑦 𝑏𝑧

]︂
=

[︂
(𝐺𝑥 − 𝑎𝑥) (𝐺𝑦 − 𝑎𝑦) (𝐺𝑧 − 𝑎𝑧)

]︂
. (6.2.1)

where the 𝑟 terms are the bit readings from the accelerometer for each axis, the 𝑚 terms are

29

the slope of a linear fit for each axis, the 𝑏 terms are the zero offset of a linear fit for each

axis, and the 𝑎 terms are the actual accelerations.

The slope and offset terms can be found using MATLAB’s fmincon nonlinear constrained

optimization function. The algorithm uses the fact that, while in a static orientation, the

magnitude of the measured vector should be exactly 1G. The optimization problem is then

minimize
𝑥

𝑓(𝑥) =

√︁
(1𝐺− |(⃗𝑡)|)2 (6.2.2)

where 𝑡⃗ is the right hand side of Equation 6.2.1, and the variable of interest 𝑥 is the vector

of slopes and offsets in Equation 6.2.1. The slope terms in 𝑥 are constrained to be positive.

To be a deterministic system of equations, at least six static orientations are required. To

avoid the noise of a single reading, the problem was expanded to take 100 data points in

six different static orientations, and Equation 6.2.1 was expanded to become a least squares

problem.

The main benefit of this technique is that field calibration can be accomplished without

needing precise knowledge of the orientation of gravity with respect to the sensor during the

calibration routine.

0 100 200 300 400 500 600
−40

−30

−20

−10

0

10

20

30

40

Sample [−]

A
c
c
e

le
ro

m
e

te
r

R
e

a
d

in
g

 [
ft

/s
2
]

X Axis

Y Axis

Z Axis

Figure 6.4: Calibration Results of ADXL-362 Accelerometer

30

When tested, the results of the calibration were consistent between this algorithm and

using known orientations. For error propagation, the noise during calibration was taken as

the sensor’s noise level.

6.3 Vehicle Mass

All test vehicles were weighed using a U-Line H-1650 counting scale. The scale has an

accuracy of 0.001 lbs and a maximum capacity of 30 lbs. The minimum capacity of the scale

is 10 grams [21].

6.4 Magnetometers

Two separate magnetometers were used for separate purposes. A Honeywell HMR-2300

3-D magnetometer, shown in Figure 6.5, is the main magnetometer. It is used when extremely

accurate heading information is needed, or when GPS course is unavailable, such as during

extremely slow or vertical flight.

Figure 6.5: Honeywell HMR-2300 3-D Magnetometer

This magnetometer provides a RMS error of 0.1 milliGauss for all axes, using the 1 Gauss

full-scale setting[22].

The HMR-2300 can be supplied with power between 6V and 15V, so the 3-cell 11.1V

nominal LiPo battery that powers the Arduino also passes through to power the magnetometer.

31

The HMR-2300 operates using an RS-232 serial interface. To properly interface with the

Arduino Due, which uses 3.3V TTL logic levels, a Max-3232 IC was used. This IC, when

combined with charge pump capacitors, translates TTL levels between 3V and 5.5V to RS-232

logic levels of ±6V.

Figure 6.6: HMR-2300 Logic Level Circuit

The second magnetometer is a Honeywell HMC-5883L, which comes in an LCC package

that was surface mounted to the main sensor board. It was added to the system for two

main reasons: it is much smaller for applications where size is critical, and it is much less

expensive for testing with unproven vehicles. It communicates with the Arduino using an

I2C interface and uses a 3.3V operating voltage[23]. The HMC-5883L has an accuracy of 2

milliGauss on each axis.

32

Figure 6.7: HMC-5883L Schematic

Both magnetometers were calibrated for both soft-iron and hard-iron effects[24]. To do this,

data was acquired for 10 seconds with the magnetometer being swept through all directions.

An ellipsoid was fit to the data using a ordinary least squares method available from the

MATLAB file exchange[25].

The least squares fit estimates the center and radius of each axis. The center values for

each axis was subtracted from the readings to remove hard-iron effects. Each 𝑖-th axis is then

scaled by 1
𝑅𝑖

to reshape the ellipse into a circle, which removes soft-iron effects.

−1000 −500 0 500 1000

−800

−600

−400

−200

0

200

400

600

800

X [−]

Y
 [

−
]

Calibrated

Raw

Figure 6.8: Soft- and Hard-iron Calibration for HMC-5883L

33

The surface-mounted HMC-5883L was assumed to be aligned with the surface-mounted

accelerometer. Since the two magnetometers both measured the North vector, a rotation

matrix that describes the difference in alignment between the two sensors can be calculated

by

𝑁⃗𝐻𝑀𝐶5883 = 𝑅̄𝑀1
𝑏 𝑁⃗𝐻𝑀𝑅2300. (6.4.1)

The rotation matrix 𝑅̄𝑀1
𝑏 can then be used to align the HMR-2300’s coordinate system

with the body mounted accelerometers, using

𝑁⃗𝑏 = 𝑅̄𝑀1
𝑏 𝑁⃗𝐻𝑀𝑅2300. (6.4.2)

6.5 Gyroscope

A three-axis gyroscope was also included in the system. The gyroscope chosen was the

Invensense ITG-3200, which comes in a QFN package. This gyroscope has a total error of

0.38∘/s-rms[26], and uses a digital I2C interface on a 3.3V operating voltage. This gyroscope

has a full-scale span of ±2000∘/s.

Figure 6.9: ITG-3200 Eagle Schematic

The gyroscope was calibrated in the same manner as the accelerometer. The device was

placed in six orientations on a turn table which rotated at a constant 33 1
3

RPM. Slope and

34

offset values for each axis were calculated using fmincon. Before each flight test, the offset

values were re-calculated by taking 10 seconds of static readings.

6.6 Air Data System

A five-hole probe was chosen to measure aerodynamic angles as they do not contain

moving parts and can provide very accurate, repeatable data. The five-hole probe selected

was the Aeroprobe Air Data probe. It is 6 inches long, has a diameter of 1/8 inch, and uses a

0.25” hexagonal section as its mounting section. The probe comes factory calibrated from

angles to pressure readings, and was calibrated at an airspeed of 70 ft/s.

The probe was extended roughly one chord length in front of the leading edge of the wing

by a 0.25” carbon fiber tube and an aluminum adapter which connected to the probe using

set screws.

Figure 6.10: Five-Hole Probe Adapter

The adapter was manufactured to be square to itself and to have the reference flat of the

probe’s hexagonal section be parallel to one side of the adapter. An accelerometer was then

glued to a side of the adapter, and the accelerometer was calibrated to the block using a

level surface and the flat sides of the adapter. Before each flight test, three static readings

35

are taken of the adapter’s accelerometer and the main body-mounted accelerometer. Since

the probe’s orientation with respect to the adapter’s accelerometer is known, this allows the

wind angles measured by the probe to be calculated with respect to the body axes, and gives

an accurate alignment of the wind reference frame to the body reference frame. The process

is similar to how two magnetometers are aligned, using Equation 6.4.1.

Each pair of lines of the five-hole air data probe is connected to an All Sensors digital

differential pressure sensor with a full scale range of ±5 in-H2O
[27]. The static port of the

five-hole probe was connected to an All Sensors BARO-DO digital barometric pressure

sensor,which has a range of 600 to 1100 mBar[28]. The barometric pressure sensor comes

in the same package and uses the same communication protocol as the differential pressure

sensors.

Figure 6.11: All Sensors 5-INCH-D-DO Pressure Sensor

The differential pressure sensors have a total error band of 0.25% FSO, and the barometric

pressure sensor has a nominal error of 1 mBar. They use a UART serial interface that operates

on a 5V logic level, so the logic levels were converted to the 3.3V levels of the Arduino Due.

The serial interface includes addressable read commands, which allows multiple devices on a

single data bus, and ensures all devices record pressure at the same time. The sensor can

output both a 14-bit pressure reading and a 12-bit temperature reading, which the device

uses to correct its pressure measurement.

A digital temperature sensor was combined with the barometric pressure sensor to estimate

36

the air density, which allowed air speed to be calculated.

Figure 6.12: Dallas Semiconductors’ DS18B20 Digital Temperature Sensors

The DS18B20 from Dallas Semiconductors was chosen for its relatively simple One-Wire

interface. The device can be powered with the communication line and has a ±0.5∘C nominal

accuracy[29].

6.7 GPS Receiver

A uBlox LEA-6T GPS receiver was included in the data acquisition system. This model

was selected for its ability to output raw timing data, which can be used to get an extremely

accurate inertial velocity estimate[32]. The receiver itself was integrated onto a breakout

board sold by CSG Shop, which has UART, USB, and I2C interface options.

Figure 6.13: CGS Shop Board for uBlox LEA-6T

37

6.8 Data Acquisition System Integration

The sensors were packaged into a main shield for the Arduino. This shield plugs directly

into the Arduino, eliminating the need to disconnect and reconnect wiring. Header pins

capable of reading commanded PWM signals to servos were also added on the main board.

Future work could include stability derivative estimation, and the header pins provide PWM

measurement, which can map to servo angles, if it is assumed the servo is not stalled. The

servo signal breakout pins also allowed the data to be easily split into sections with and

without commanded throttle for drag polar estimation without thrust. All data was saved

to a microSD card attached to the main sensor board. Data was saved in binary format for

both increased speed and file size reductions. Once on the ground, the data is converted to

meaningful values using a custom MATLAB data parser.

A second board was developed to integrate the air data system with the main sensor

board. This pressure board can be located near a wing tip and provides expandability should

additional sensors be desired in the future. It also interfaces with the temperature sensor,

which is located in the air flow.

38

7.0 Results

The system was built and tested to prove functionality. After functionality testing was

complete, the system was integrated into a 0.60-size Piper Cub R/C aircraft. The aircraft

weighed 10.0 lb, had a wing area of 6.85 ft2, and a wing span of 7 ft.

Figure 7.1: System Integration into 0.60-size R/C Piper Cub

Flight testing was completed at Cal Poly’s Education Flight Range. Each flight test

included multiple stalls and high speed dives, so that as much of the flight envelope was covered

as possible. More information on specific flight test procedures is available in Appendices A

and D.

7.1 Drag Polar

A drag polar captured from flight data is shown in 7.2. The red lines in figure 7.2 are 2-D

error bars calculated according to Section 4.1.

39

−0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
D

 [
−

]

CL [−]

Figure 7.2: Drag Polar from Flight Test

For this particular flight, the drag polar regression coefficients are shown in Equation

7.1.1.

𝐶𝐷 = 0.079243𝐶2
𝐿 + 0.036290𝐶𝐿 + 0.092005 (7.1.1)

Sections of particular interest in the drag polar are discussed below.

7.1.1 𝐶2 Coefficient

The wing used on this flight test had a chord of 11.75 inches and a span of 7 feet, which

corresponds to an aspect ratio of 7.15. Recalling that the 𝐶2 regression coefficient is

𝐶2 = 𝐾1 + 𝐾2 (7.1.2)

where 𝐾1 is the profile drag term from the airfoil, and 𝐾2 is the inviscid correction for a

finite wing, as shown in Equation 7.1.3.

40

𝐾2 =
1

𝜋𝑒𝐴𝑅
(7.1.3)

Rearranging Equation 7.1.3 for the ellipticity value 𝑒 gives

𝑒 =
1

𝜋𝐴𝑅(𝐶2 −𝐾1)
. (7.1.4)

The 𝐾1 term can be found using Equation 7.1.5,

𝐾1 =
𝐶1

−2𝐶𝐿𝑀𝐼𝑁

(7.1.5)

where 𝐶𝐿𝑀𝐼𝑁
is calculated from XFOIL and is 0.26 for the Clark-Y airfoil used. For this

flight test, 𝑒 = 0.30. A different method of estimating the ellipticity value is also discussed in

Section 7.3.

7.1.2 Drag Break

One of the benefits of the heteroskedastically-robust least squares regression is it’s ability

to remove outliers from the regression model. This is of substantial benefit when looking at

break drag. Break drag is the non-parabolic drag rise that occurs at and past stall. Break

drag is evident in Figure 7.2, around 𝐶𝐿 = 1.5. If the regression model had used an ordinary

least squares, the regression scheme would have equally weighted these points and led to an

artificially steep parabola. Instead, it’s evident that these points past 𝐶𝐿𝐵𝑅𝐸𝐴𝐾
are the only

points for which their error bars do not overlap the regression curve.

7.1.3 Error Estimation

One of the key lessons learned from the simulator was that the error in lift and drag

prediction is heteroskedastic, and increases as the lift coefficient increases. A plot of the drag

polar residuals is shown in 7.2.

41

0 0.5 1 1.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

C
L

C
D
 R

e
s
id

u
a
ls

Figure 7.3: Drag Polar Residuals from Flight Test

The scatter of the data matches the trend seen in the simulator. Namely, as 𝐶𝐿 goes

towards zero, the scatter decreases. This is a direct result of the heteroskedasticity. Since the

error is a function of the state, as 𝐶𝐿 goes to zero, that contribution of error drops out.

7.2 Lift Curve

A plot of lift coefficient versus angle of attack captured from flight data is shown in 7.4.

Also overlayed is airfoil sectional lift characteristics, taken from XFOIL.

42

−5 0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

α [deg]

L
if
t
C

o
e
ff
ic

ie
n
t
[−

]

Sectional Lift Coefficient − XFOIL

3−D Lift Coefficient − Flight

Lift Curve Slope

Figure 7.4: Lift Curve from Flight Test

Sections of particular interest in the lift curve slope are discussed below.

7.2.1 𝐶𝐿𝑀𝐴𝑋
and Stall

Due to the heteroskedastic nature of the error, the error in 𝐶𝐿 increases as 𝐶𝐿 increases,

which makes it particularly difficult to estimate 𝐶𝐿𝑀𝐴𝑋
with little error. However, the

approximate maximum lift coefficient in Figure 7.4 matches well with the estimate of the

maximum lift coefficient found using XFOIL. The stall angle of attack appears to be accurate

for the set of semi-continuous data. The group of data centered around 𝛼 = 25∘ is disconnected

from the main group of data, as shown Figure 7.5.

43

700 702 704 706 708 710 712 714 716 718
0

5

10

15

20

25

30

Time [sec]

α
 [
d
e
g
]

Stall

Figure 7.5: Angle of Attack History from Flight Test

The data point at 15 degrees angle of attack corresponds to the stall angle of attack as

estimated in XFOIL. After that, a sudden increase in angle of attack occurs as the vehicle

stalls. The stall causes the vehicle to rapidly lose altitude, which increases the angle of attack

as it falls. This effect causes the discontinuity and makes the original stall angle of attack,

which matches that calculated by XFOIL, more accurate.

7.2.2 Lift Curve Slope

The lift curve slope (𝐶𝑙𝛼) of a thin airfoil is 2𝜋 𝐶𝐿 per radian according to thin airfoil

theory. This decreases due to finite wing corrections, and is a function of wing aspect ratio

and ellipticity, as shown in Equation 7.2.1

𝐶𝐿𝛼 =
𝐶𝑙𝛼

1 +
𝐶𝑙𝛼

𝜋𝑒𝐴𝑅

(7.2.1)

where 𝐶𝐿𝛼 is the 3-D lift curve slope for the wing. Using the ellipticity value found earlier of

𝑒 = 0.30, this gives a 3-D lift curve slope of 𝐶𝐿𝛼 = 3.24. The slope of the linear regression

44

line in Figure 7.4 is 𝐶𝐿𝛼 = 4.76, which corresponds to a 32% error. Again, a different method

of estimating this value is presented in Section 7.3.

7.2.3 Zero Lift Angle of Attack

The 3-D wing corrections only affect the wing when it is producing lift. Therefore, the

zero lift angle of attack should stay constant between the 2-D airfoil data analyzed in XFOIL

and the 3-D wing data collected in flight. The zero lift angle of attack from XFOIL was -3.0

degrees, and the zero lift angle of attack from flight test was -3.5 degrees.

7.3 System Repeatability

The system was validated for both repeatability and accuracy. For repeatability, three

flight tests were conducted in a clean configuration, and the data was analyzed to verify

consistency. A plot of the drag polars from the three flight tests is shown in Figure 7.6.

45

−1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
L

C
D

First Flight

Second Flight

Third Flight

Figure 7.6: Drag Polar Repeatability Testing

The estimates of the regression model coefficients for three flight tests are shown in Tables

7.1-7.3.

46

Table 7.1: Clean Drag Polar Repeatability Testing : 𝐶𝐷0 Regression Coefficient

Flight Number 𝐶𝐷0 Estimate 95% Confidence Interval

1 0.097872 0.1170/0.0788

2 0.103945 0.1095/0.0984

3 0.092005 0.0981/0.0859

Combined Flights 0.100037 0.1038/0.0963

Table 7.2: Clean Drag Polar Repeatability Testing : 𝐶1 Regression Coefficient

Flight Number 𝐶1 Estimate 95% Confidence Interval

1 0.020783 0.0497/-0.0082

2 -0.002644 0.0039/-0.0092

3 0.036290 0.0446/0.0280

Combined Flights 0.011454 0.0163/0.0066

Table 7.3: Clean Drag Polar Repeatability Testing : 𝐶2 Regression Coefficient

Flight Number 𝐶2 Estimate 95% Confidence Interval

1 0.090236 0.1009/0.0796

2 0.123529 0.1255/0.1215

3 0.079243 0.0819/0.0766

Combined Flights 0.101002 0.1025/0.0995

The parasite drag coefficient was very repeatable for the system. Flights 1 and 3 showed

good repeatability for the 𝐶1 regression coefficient, but the second flight was an order of

magnitude lower. The 𝐶2 regression coefficient also showed good repeatability for flights 1

and 3, but was roughly 25% different for flight 2. This trend is not surprising, since the slope

of a linear regression model is more difficult to estimate than the intercept. This is due to

47

there being error in both 𝐶𝐿 and 𝐶𝐷, and estimating the slope requires multiplying the error

in both terms, instead of only the error in 𝐶𝐷 for the intercept term.

A plot of the correlation between the regression model and flight test data is shown in

Figure 7.7, and a plot of the residuals of the regression model is shown in Figure 7.8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Measured C
D

R
e
g
re

s
s
io

n
 C

D

First Flight

Second Flight

Third Flight

Figure 7.7: Correlation of Regression Model and Flight Data

48

−1 −0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

C
L

C
D
 R

e
s
id

u
a
l

First Flight

Second Flight

Third Flight

Figure 7.8: Residuals of Regression Model and Flight Data

The altered correlation and increased residuals past 𝐶𝐿𝐵𝑅𝐸𝐴𝐾
values was expected, and is

a result of using a heteroskedastically-robust estimator. Also note the error increasing on

either side of 𝐶𝐿 = 0, which compares well to the simulator data in Figure 4.1. The system

shows similar repeatability for the aircraft’s lift characteristics as it does for the drag polar

regression. Flight data for three clean flights is shown in Figure 7.9.

49

−10 −5 0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

2

2.5

α

C
L

First Flight

Second Flight

Third Flight

Figure 7.9: Lift Curve Repeatability Testing

Table 7.4 shows a summary of the zero lift angle of attack. The average zero lift angle of

attack is in very good agreement with XFOIL’s value of -3.0 degrees.

Table 7.4: Lift Curve Model

Flight Number 𝛼0𝐿 Estimate

1 -2.2∘

2 -3.4∘

3 -3.5∘

Combined Flights -3.0∘

The scatter in the 𝐶1 and 𝐶2 regression coefficients makes estimation of the ellipticity

value less accurate, as seen with the previously low estimate of 𝑒 = 0.30. However, the 𝐶1

regression coefficient can be calculated directly using XFOIL, as shown in Figure 7.10.

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

K
1
 = 0.0085115

(C
l
 − C

l
MIN

)
2

C
d

XFOIL Data

Linear Fit

Figure 7.10: XFOIL-based 𝐶1 Estimation

If that value is used, the estimate of the ellipticity value found from flight test data

becomes more reasonable, which makes the lift curve slope match better to that estimated

by lifting line theory. These results are summarized in Table 7.5.

Table 7.5: Ellipticity Value with 𝐶1 From Flight and XFOIL

Flight Number 𝐶1 𝑒 Estimate

Flight XFOIL Flight XFOIL

1 0.020783 0.0085115 0.34 0.54

2 -0.002644 0.0085115 0.38 0.39

3 0.036290 0.0085115 0.30 0.63

Combined Flights 0.011454 0.36 0.48

The ellipticity values from Table 7.5 were used in Equation 7.2.1, and the results are

shown in Table 7.6.

51

Table 7.6: Lift Curve Slope with 𝐶1 From Flight and XFOIL

Flight Number 𝐶1 𝐶𝐿𝛼 Estimate 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝐸𝑟𝑟𝑜𝑟

Flight XFOIL Flight XFOIL Flight XFOIL

1 0.020783 0.0085115 3.46 4.15 27 13

2 -0.002644 0.0085115 3.60 3.65 24 23

3 0.036290 0.0085115 3.24 4.35 32 9

Combined Flights 0.011454 0.0085115 4.76 3.9738 25 16

In the end, both this ellipticity estimate, and the one calculated according to the regression

coefficient alone are poor estimates. There are many reasons why this is the case. First, the

𝐶𝐿𝑀𝐼𝑁
calculated from XFOIL is for the airfoil alone and does not account for angle of attack

differences between the probe and the airfoil itself. It also does not account for the fuselage

drag, or a twisted wing, or any dihedral in the wing, or any other 3-D effects. So the vehicle’s

𝐶𝐿𝑀𝐼𝑁
could be drastically different than the airfoil’s 𝐶𝐿𝑀𝐼𝑁

. Without accurate XFOIL data

for the whole aircraft, the system becomes indeterminate, and it’s not possible to isolate the

𝐾2 term from the 𝐶2 regression coefficient.

7.4 System Accuracy

The accuracy of the system was validated by adding additional parasite drag of a known

amount and measuring the difference in the vehicle’s parasite drag coefficient. This was

accomplished using a cone that was trailed behind the aircraft, shown in Figure 7.11.

52

Figure 7.11: Parasite Drag Cone Integration

The drag coefficient of a cone, as a function of its half-vertex angle, is shown in 7.12.

Figure 7.12: Cone Drag as a Function of Half Angle[4]

The cone was 8 inches tall and had a radius of 4.25 inches, which corresponds to a

half-vertex angle of 28.0 degrees. Figure 7.12 was plot digitized, showing that a half-vertex

angle of 28.0 degrees corresponded to a drag coefficient of between 0.50 and 0.56, based on

the spread of the source data. For system validation, the mean of this range (𝐶𝐷 = 0.53) will

be used. When scaled by the reference area, this was equal to an additional 305 counts of

53

drag.

The system was tested three times while trailing the cone. The results are shown in

Tables 7.7-7.9.

54

Table 7.7: Dirty Drag Polar Repeatability Testing : 𝐶𝐷0 Regression Coefficient

Flight Number 𝐶𝐷0 Estimate 95% Confidence Interval

4 0.131446 0.1348/0.1281

5 0.119373 0.1277/0.1110

6 0.133337 0.1382/0.1285

Combined Flights 0.132458 0.1350/0.1300

Table 7.8: Dirty Drag Polar Repeatability Testing : 𝐶1 Regression Coefficient

Flight Number 𝐶1 Estimate 95% Confidence Interval

4 0.004732 0.0087/0.0007

5 0.056782 0.0681/0.0454

6 0.014184 0.0211/0.0072

Combined Flights 0.007363 0.0108/0.0039

Table 7.9: Dirty Drag Polar Repeatability Testing : 𝐶2 Regression Coefficient

Flight Number 𝐶2 Estimate 95% Confidence Interval

4 0.113344 0.1151/0.1115

5 0.080817 0.0846/0.0770

6 0.118783 0.1212/0.1164

Combined Flights 0.123563 0.1248/0.1223

55

Figure 7.13 shows combined drag polars for both dirty and clean configurations.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
L

C
D

Clean

Dirty

Clean Model

Dirty Model

Figure 7.13: Clean vs. Dirty Drag Polar

The combined regression model for the dirty configuration is shown in Equation 7.4.1,

and the combined regression model for the clean configuration is shown in Equation 7.4.2.

𝐶𝐷𝐷𝐼𝑅𝑇𝑌
= 0.123563𝐶2

𝐿 + 0.007363𝐶𝐿 + 0.132458 (7.4.1)

𝐶𝐷𝐶𝐿𝐸𝐴𝑁
= 0.101002𝐶2

𝐿 + 0.011454𝐶𝐿 + 0.100037 (7.4.2)

The difference between the clean parasite drag coefficient (𝐶𝐷0 = 0.100037) and the dirty

parasite drag coefficient (𝐶𝐷0 = 0.132458) is the contribution to the vehicle’s parasite drag

from the trailing cone. This amounts to 𝐶𝐷0,𝐶𝑂𝑁𝐸
= 0.0324, which is 6% higher than the

value previously estimated, and well within the error of the source data.

The lift curve for both dirty and clean flight tests is shown in Figure 7.14. The slopes are

constant as is expected, since the lift curve slope is not a function of parasite drag. Note

56

that the dirty data tends to occur at a slightly higher 𝐶𝐿 value, since the vehicle with more

drag spends more time at a slower speed.

−15 −10 −5 0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

α [deg]

C
L
 [
−

]

Clean

Dirty

Figure 7.14: Clean vs. Dirty Lift Curve

57

8.0 Summary

A flight data computer capable of measuring a small UAVs aerodynamic forces was

developed. The system utilizes an Arduino Due as the main flight computer, and integrates

both sensors necessary for aerodynamic force calculation, and additional sensors that provide

interesting information about the vehicle. The system was manufactured in a PCB form

to keep reliability high, integrated into a 0.60-size electric Piper Cub, and validated for

accuracy and repeatability. The flight tests showed a 𝐶𝐷0 accuracy of 6% of the trailing

cone’s estimated drag coefficient, and a zero lift angle of attack accuracy of less than 1%

error compared to that estimated by XFOIL. The lift curve slope estimated from combining

flight data with XFOIL analysis was, on average, accurate to 17%. Future work could include

a sensor fusion algorithm, which would be developed to combine inertial sensors with the air

data system and other available sensors in a manner similar to other current research,[33],[34]

thus giving full situational awareness to the UAS. This situational awareness could allow

stability and control derivative estimation, which the aircraft designer could use to size tail

and control surfaces. In-flight dynamic thrust estimation is also possible, and could be validate

against propeller data available from the University of Illinois at Urbana-Champagne.[35] Of

most interest to the other, future work could utilize this thesis to estimate the lift and drag

impact of difference vehicle configurations to quantitatively make trade studies early in the

conceptual design phase. This could include configuration level trades, or subsystem level (no

landing gear, normal gear, gear with wheel pants, retractable gear,etc.) trade studies, which

could dramatically increase the current small scale aerodynamic knowledge base at Cal Poly.

58

Bibliography

[1] Mike1024. Ecec enu longitude latitude relationships. Wikipedia, February 2010.

[2] MLWatts. Hawker tempest mark ii three view. Wikipedia, September 2012.

[3] Olivier Clynen. 737 ng winglet effect simplified. Wikipedia, June 2012.

[4] Sighard F Hoerner. Fluid-dynamic drag: practical information on aerodynamic drag and

hydrodynamic resistance. Hoerner Fluid Dynamics, 1965.

[5] Daniel P Raymer et al. Aircraft design: a conceptual approach, volume 3. American

Institute of Aeronautics and Astronautics, 1999.

[6] Leland Malcolm Nicolai and Grant Carichner. Fundamentals of aircraft and airship

design, volume 1. Amer Inst of Aeronautics &, 2010.

[7] Jan Roskam. Airplane design. DARcorporation, 1985.

[8] Sighard F Hoerner and Henry V Borst. Fluid-dynamic lift: Practical information on

aerodynamic and hydrodynamic lift. NASA STI/Recon Technical Report A, 76:32167,

1975.

[9] Vladislav Klein and Eugene A Morelli. Aircraft system identification: theory and practice.

American Institute of Aeronautics and Astronautics Reston, VA, USA, 2006.

[10] Jan Roskam. Airplane flight dynamics and automatic flight controls, design. Analysis

and Research Corporation, Lawrence, KS, 2001.

[11] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.

Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

59

[12] Greg Welch and Gary Bishop. An introduction to the kalman filter, 1995.

[13] Leeland Nicolai. Estimating r/c model aerodynamics and performance. White paper,

Society of Automotive Engineers, 2009.

[14] Mark Drela. Xfoil: An analysis and design system for low reynolds number airfoils. In

Low Reynolds number aerodynamics, pages 1–12. Springer, 1989.

[15] Ludwig Prandtl. Applications of modern hydrodynamics to aeronautics. National

Advisory Committee for Aeronautics, 1923.

[16] Brian L Stevens and Frank L Lewis. Aircraft control and simulation. 2003.

[17] Stephen R Osborne. Transitions between hover and level flight for a tailsitter uav. PhD

thesis, Citeseer, 2007.

[18] Atmel. Sam3x-sam3a series summary. Data Sheet 11057BSATARM13-Jul-12, Atmel,

2012.

[19] Atmel. 8-bit atmel microcontroller with 64k/128k/256k bytes in-systemprogrammable

flash. Data Sheet 2549PAVR10/2012, Atmel, 2012.

[20] Analog Devices. Micropower, 3-axis,2 g/4 g/8 g digital output mems accelerometer.

Technical report, 2012.

[21] U-Line. Easy-count counting scale data sheet. Technical report, U-Line.

[22] Honeywell Magnetic Sensors. Smart digital magnetometer hmr2300. Technical report,

Honeywell, 2006.

[23] Honeywell. 3-axis digital compass ic hmc5883l. Technical report, Honeywell.

[24] Talat Ozyagcilar. Calibrating an eCompass in the Presence of Hard and Soft-Iron

Interference. Freescale Semiconductors, rev 3.0 edition, 04 2013.

60

[25] Yury Petrov. Ellipsoid fit. Matlab File Exchange, 08 2013.

[26] InvenSense. Itg-3200 product specification revision 1.4. Technical report, 2010.

[27] All Sensors. Ds-0012 rev a. Technical report, All Sensors.

[28] All Sensors. Ds-0010. Technical report, All Sensors.

[29] Maxim Integrated. Ds18b20 programmable resolution 1-wire digital thermometer. Tech-

nical report, Maxim Integrated, 2008.

[30] Crystal Engineering, 708 Fiero Lane, Suite 9, San Luis Obispo, California 93401. nVision

Operation Manual for Reference Recorder, 2013.

[31] Paroscientific. Model 745 high accuracy portable pressure standard data sheet. Technical

report, Paroscientific.

[32] Doug Weibel. Proof of concept test - extremely accurate 3d velocity measurement with

a ublox 6t module., December 2012.

[33] Matthew B. Rhudy; Trenton Larrabee; Haiyang Chao; Yu Gu; Marcello Napolitano. Uav

attitude, heading, and wind estimation using gps/ins and an air data system. 2013.

[34] Seung-Min Oh and Eric N Johnson. Development of uav navigation system based on

unscented kalman filter. In AIAA Guidance, Navigation and Control Conference, 2006.

[35] John B Brandt and Michael S Selig. Propeller performance data at low reynolds numbers.

In AIAA Aerospace Sciences Meeting, AIAA 2011, volume 1255, 2011.

61

A.0 Data Acquisition System Usage

This section documents the steps required for correct usage of the data acquisition system.

A.1 Integration

The main data acquisition system should be integrated into the flight test vehicle near the

vehicle’s center of gravity. The system should have one of its principal axes lined up roughly

parallel to the vehicle’s longitudinal axis. Servos should be connected to both the main

board and the aircraft’s receiver using a y-splitter with 2 male and one female connectors. If

applicable, the servos should be connected according to the Table A.1.

Table A.1: Air Data System Setup

Servo PWM Pinout

Throttle D37

Elevator D38

Rudder D39

Aileron (1/2) D40

Aileron (2/2) D41

Gear D42

Auxiliary (1/2) D43

Auxiliary (2/2) D44

If the additional digital pin-outs are being use for measuring servo signals, the “+V”

jumper should not have a jumper on it. If using the digital pin-outs to run digital sensors or

command servos, place the jumper on the appropriate voltage level setting.

The data acquisition system is powered through the barrel jack on the Arduino Due. The

recommended operating voltage is between 7V and 12V, with an absolute maximum of 16V.

62

The power can be supplied using either a battery dedicated to the data acquisition system,

or through a BEC from the ESC. If using the ESC’s BEC, set the BEC output somewhere

between 7V and 12V. CRITICAL: ensure the red wire from the ESC does not pass to the

receiver, as it is over-voltage for standard R/C equipment.

The pressure board can be placed anywhere in the vehicle, as long as it can be connected

to the main board. The pressure sensors should be attached to the five-hole probe as follows:

Table A.2: Air Data System Setup

Pressure Sensor Port A Port B Measurement

0 Tube 5 Tube 4 𝛽

1 Tube 6 Tube 1 𝑞∞

2 Tube 3 Tube 2 𝛼

3 n/a Tube 6 𝑃𝑆

Port A and Port B refer to the ports as labeled in Figure A.1, and the tube number refers

to the five-hole probe tubes. These tube numbers increase as the tube length decreases: Tube

1 refers to the longest tube, Tube 6 refers to the shortest tube.

63

Figure A.1: Port Description for Pressure Sensors

The pressure tubing and temperature sensor line should be routed together to the air data

boom and secured for flight. The temperature sensor’s wiring is a standard servo extension.

The air data boom’s accelerometer wiring is a standard RJ-25 patch cable and should be

routed in a separate bundle, as it will be removed before flight.

The air data boom itself should be integrated as far from aerodynamic effects as possible.

For this thesis, the boom was mounted roughly one chord length in front of the leading edge

of the wing and approximately halfway down the wing span. Other mounting locations could

include out the aircraft’s nose for a pusher vehicle, or on the vertical tail. The aluminum

block accepts a 0.25” carbon fiber tube as it’s mounting interface, and this tube should be

mounted roughly in-line with the airflow angle expected during flight. The temperature

sensor can be taped to the tube.

64

A.2 Pre-flight Procedure

The pre-flight procedure in this section must be completed in addition to all preparation

listed in Section D.

1. With the transmitter turned on, power on the receiver.

2. Plug in the micro-USB cable into the main data acquisition board.

3. Ensure the micro-SD card is empty and formatted as FAT32, then insert it into the

main data acquisition board.

4. Plug in the main data acquisition system’s battery pack or the BEC. CRITICAL:

ensure the red wire does not connect the BEC to the receiver.

5. Plug the pressure sensor board into the main data acquisition board.

6. Plug in the air data system’s RJ-25.

7. Upload the calibration routine to the main board, and follow the prompts to calibrate

the gyroscope, accelerometer, and magnetometers.

8. Place a wind blocker (Daisy/Solo cups work) over the five-hole probe and calibrate the

pressure sensors, using the calibration routine.

9. Load the main data acquisition script onto the main data acquisition board.

10. Turn on serial output and check that all sensors are functioning properly.

11. Initialize the micro-SD card.

12. Turn off serial output.

13. Turn on data logging and verify the system is saving data.

14. Remove the micro-USB cable and the air data system’s RJ-25 cable.

65

15. Plug in the main propulsion battery pack.

The data acquisition system is now ready for flight.

A.3 Flight test plan

When using the data acquisition system for drag polar estimation, a better model estimate

is possible with proper flight maneuvers. The main technique to improve the model is to vary

speeds as much as possible, which allows more of the drag polar to be flown. Multiple glides

that begin at the highest speed possible should be completed. To achieve the highest initial

gliding speed, the aircraft should be put into a dive at full throttle, with plenty of available

altitude. Throttle should then be cut, and the dive should briefly continue. After a few

seconds of diving, the aircraft should be leveled off and altitude should be maintained, until

the vehicle stalls. Repeating this process will provide a large sweep of the flight envelope.

Inverted flight can also help fill out the section of the drag polar that occurs below 𝐶𝐿𝑚𝑖𝑛
.

However, inverted flight should occur at high speeds, to avoid the nonlinear section of the

inverted airfoil.

A.4 Post-Flight

Immediately after the vehicle lands, the vehicle’s propulsion pack should be unplugged.

Next, unplug the data acquisition system’s battery pack, remove the micro-SD card, and save

the data to a computer. Optionally, after the flight is complete, a second round of zero offset

calibration data may be acquired. This set ensures that any drift that occurred during the

flight is accounted for.

Once the data is saved to a computer, the data analysis GUI can be used to quickly

process the data. The user interface can estimate a drag polar using the following steps:

1. Run fileReader.m.

66

2. Click the “Load Data” button to load flight data. If you’d like an ASCII data file,

choose yes on the prompt.

3. Select the pressure calibration file.

4. Select the accelerometer/gyroscope calibration file.

5. Select the magnetometer calibration file.

6. Select the air data system alignment calibration file.

7. Input the reference area in the 𝑆𝑅𝐸𝐹 box and the weight in the Weight box.

8. Click “Ignore Data With Thrust.”

9. Click “Display” in the Quadratic Fit box.

Google Earth plots are also available by clicking the “Google Earth” button. The “X Axis”

and “Y Axis” drop down menus are also available, which allows any signal to be plotted

against any other signal.

A.5 Embedded Software Protocol

The main data acquisition code allows the user to interface with the Arduino through a

serial text interface. A list of available commands for the main data acquisition script, along

with their intended functions, is shown in Table A.3.

67

Table A.3: Available Commands for mainScript.ino

Command Utility

dataOn Turn on data logging to SD card

dataOff Turn off data logging to SD card

initSD Initialize SD card

serialOn Turn on serial output

serialOff Turn off serial output

? Help menu

Note that all commands must be sent with a start character (‘#’) and an end character

(‘&’.) A proper command to turn on serial output would then be ‘#serialOn&’.

The calibration code also interfaces with the Arduino using a text interface. The calibration

script’s commands are shown in Table A.4.

Table A.4: Available Commands for calibration.ino

Command Utility

accelGyro Calibrate accel for slope and offset, gyro for offset. Saved to ACCLGYRO.clb.

pressure Calibrate offset of pressure sensors. Saved to PRESSURE.clb.

mag Calibrate magnetometers for hard- and soft-iron effects. Saved to MGNTMTRS.clb.

? Help menu

Note that, like the main script, all commands must be sent with a start character (‘#’)

and an end character (‘&’.) A proper command to calibrate the air data system alignment

would then be ‘#pressure&’.

68

B.0 Lessons Learned

There were numerous lessons learned during this thesis. Many of them are presented here,

in an effort to reduce future learning curve pains.

1. Understand exactly what each sensor does.

During this thesis, there were issues with the exact measurement a sensor makes. For

instance, accelerometers do not measure accelerations. They measure the accelerations

resisting freefall, or in other words, the difference between gravity and accelerations.

As another example, magnetic compasses are extremely different than magnetometers,

and this difference should be known before purchasing either. It is absolutely critical to

understand what each sensor measures before sensors are purchased.

2. Continue to read papers while working.

A literature review at the beginning of a research project is important to help frame

the problem definition and scope. However, whenever there a problem occurs, it is

incredibly helpful to continue reading papers and see how the problem has been solved

in the past.

3. Simulation is in only as good as the inputs and assumptions. Know what

they are, and how they affect the results.

This lesson was directly coupled to the vector and orientation issue. Originally, the

assumption made was that Euler angles were required for drag polar estimation. Then, a

gliding flight assumption was introduced, which meant Euler angles were unnecessary to

begin with. However, simulation work was continued to estimate Euler angles. Another

assumption was made that, because most data sheets for magnetometers state roll and

pitch accuracy specifications, there must be a way to get Euler angles from them. So

work was stopped, and it was assumed Euler angles could be calculated. This meant

69

the assumptions going into the simulator were bad, and produced erroneous results,

but because assumptions were not clearly stated, the mistake was not caught until late

in the research.

4. Digital sensors are not necessarily better.

It is tempting to use all digital sensors since many microcontrollers have a lot more

digital I/O pins than analog I/O pins. The time it takes to understand the digital

interface is substantial when compared to analog voltages. Other digital effects, such

as line noise, were experienced in this research. This lesson is not that analog sensors

are better, but rather that an understanding of the pros and cons of each is required.

5. Understand the communication protocol and the system impact it might

have.

A significant portion of the system sampling time is consumed by transmitting and

reading unique commands to the pressure sensors. The unique commands required 40

bytes per read/write, while the non-unique commands required only 15 bytes. The 40

bytes of read/write time per sensor multiplied by the four sensors meant the pressure

sensors required as much read/write time as all other sensors combined, and grew at a

rate of 2.7 times the number of sensors sharing the line. That is in direct comparison to

the HMR-2300 magnetometer, which had a single unique and non-unique read command

of 5 bytes, and each response (unique or not)was 7 bytes.

6. Data sheets are your friend.

Data sheets seem daunting at first, especially with limited exposure to them. It is much

better to fully understand the data sheet, rather than to skim over it and waste time

figuring out why the system is not working as expected.

7. Hardware integration is difficult and necessary.

There were two in-flight issues that came as a result of this research hardware. The first

occurred when a jumper wire short circuited the control system of the vehicle. This

70

resulted in vehicle loss. If the PCB had been complete and the jumper cable was not

necessary, this crash most likely would not have occurred. The second issue was when

the RPM signal line came unplugged from the system. This did not result in a crash,

but made the data from that flight unusable. Both problems came from interfacing

the fully-integrated PCB with the outside world. Previous experience has shown much

lower flight success with systems not fully integrated into a PCB design. The lesson

learned here is that, while difficult and timely, an integrated PCB will lead to a much

more reliable and robust system.

8. Avoid surface mounted components whenever possible.

A lot of effort and money was put into surface mounting the sensors which could be

surface mounted. Eventually, this was successful. However, it required hand soldering

to be done by a professional, and half of those boards had thermal damage to the

sensors which made them unusable. There was no requirement driving the system to

be so small that surface mount devices were necessary. Unless necessary, always use

breakout boards.

9. Always buy the developer kit first.

When protoyping something, the developer kit is your friend. It will save substantial

headache and time, and is well worth the price difference.

71

C.0 Wiring Schematics

The following documents the wiring of the circuit boards. The actual Eagle files are

available in ~/eagle/.

Figure C.1: Arduino Due Flight Data Recorder v3.20BOB Schematic

72

Figure C.2: Arduino Due Flight Data Recorder v3.20BOB Layout

Figure C.3: Pressure Board v2.20 Schematic

73

Figure C.4: Pressure Board v2.20 Layout

74

D.0 Flight Test Procedure

This section documents proper flight test procedure, which has been learned from extensive

flight testing experience and many crashed vehicles. It is split into three main time periods:

1. Pre-Flight Preparation

2. Flying Field Procedure

3. Post-Flight

The testing procedure is split into these time categories to ensure the testing is efficient and

that any unforeseen circumstances can be dealt with quickly. Specifically , this guide applies

to the Cal Poly Flight Lab testing a vehicle at the Cal Poly Educational Flight Range.

D.1 Pre-Flight Preparation

The preparation work required for a test flight is often overlooked, and this section will

document how to effectively prepare to flight test a vehicle. The main purpose of pre-flight

preparation is to minimize the possibility of problems that might force a test to be canceled

after already going to the field.

D.1.1 Day Before Test

The days before a flight test are critical to ensuring the test is completed successfully.

The following should be done at least one day before the the test is scheduled:

1. Charge all flight battery packs, including receiver or auxiliary packs. NOTE: receiver

packs should be used whenever possible. Avoid using the BEC on the ESC, and cut

the red wire on the servo extension between the ESC and the receiver.

75

2. Charge the transmitter battery.

3. Ensure the airframe is structurally sound (wing tip test minimum.)

4. Verify radio system communicates properly, and the correct fail-safe is in place. Impor-

tant: If the receiver has been used by Design/Build/Fly, the fail-safe must be changed

to normal mode.

5. Verify control surface deflections matches desired directions, and all radio mixes work.

6. Verify the motor/propeller spin in the correct direction.

7. Pack a flight box, containing any necessary tools (recommend: screw drivers; masking,

painter’s, and strapping tape; razor blades; CA glue and kicker; spare propellers; paper

and pencil; sunglasses; as a minimum.)

8. Check the weather. The closest monitoring station to the field is KCASANLU17.It is

generally better to flight test early in the morning, since there will be less people at the

field, winds will be calmer, and the sun won’t be as harsh in the pilot’s eyes.

9. Check the SLO Flyers’ flight schedule. Some days are reserved for certain events (glider

competitions, etc.) and these need to be worked around.

10. Make sure all required personnel know when and where to meet, and there is sufficient

transportation to get to the field.

11. Create flight documentation that clearly lays out the test goals and how they will be

accomplished. Print copies for all personnel.

D.1.2 Day Of Test

The morning of the flight test, the person responsible for the test should arrive early

enough to accomplish the following, before leaving campus:

76

http://www.wunderground.com/cgi-bin/findweather/getForecast?query=35.326%2C-120.738&sp=KCASANLU17

1. Pack flight batteries into flight box, including receiver and auxiliary packs.

2. Pack battery charging equipment, with adapters and leads, if necessary.

3. Pack transmitter into box.

4. Double check control surface deflections and radio link.

5. Do a full system check, potentially including a short taxi test in the quad.

6. Do a final check that all equipment made it into vehicles, before leaving the lab.

D.2 Flying Field Procedure

With the pre-flight preparation completed, the testing at the flying field should be fairly

event free. Any problems that occur should be either fixable with the minimum supplies in

the flight box, or the test should be canceled to minimize risk, and repairs done at the lab.

Specific procedures at the flight field will depend on the test being conducted, but below are

steps that apply to nearly all tests before flight.

1. Verify structural integrity using a wing tip test.

2. Verify motor/propeller are spinning in the correct direction.

3. Verify control surface deflections match desired directions.

4. Verify radio link and fail safe mode by completing a range check.

5. Verify center of gravity is at an appropriate location.

6. Create flight timer on the transmitter so the pilot knows how long the aircraft has been

flying.

7. Document any required data before the flight, such as aircraft weight and geometry.

77

8. Document current weather conditions (wind speed and direction, temperature, humidity,

barometric pressure) using the Kestrel portable weather station.

D.3 Post-Flight

Upon successful completion of a flight test, all data should be saved to a computer. The

flight test cards, pre-flight data documentation, and any notes should be scanned and saved

with the flight data. This data should be archived in a .zip file, with the date attached.

If the test flight resulted in a crash, any available data should still be saved. Any video

or pictures of the flight should be saved as well, to aid in isolating what caused the crash. If

useful, pictures should be taken of the crash site. Afterwards, all pieces of the aircraft should

be returned to the lab, where the root cause of the accident should be determined.

After the root cause has been determined, remove all electronics from the vehicle, including

batteries, speed controller, motor, servos, and receiver. If the vehicle was a complete loss

or went into water, through these components away: do not return to lab supplies. If the

vehicle was not a complete loss, verify all components work properly.

78

E.0 Sample System Ouput

This appendix contains graphs representing typical outputs from the data acquisition

system, shown in strip chart format.

E.1 Sample System Ouput - Raw Data

Figure E.1: accelX vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−400

−300

−200

−100

0

100

200

300

Time [sec]

a
c
c
e
lX

 [
b
it
s
]

Figure E.2: accelY vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−400

−300

−200

−100

0

100

200

300

400

Time [sec]

a
c
c
e
lY

 [
b
it
s
]

79

Figure E.3: accelZ vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−500

0

500

1000

1500

Time [sec]

a
c
c
e
lZ

 [
b
it
s
]

Figure E.4: gyroX vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−4

−3

−2

−1

0

1

2

3
x 10

4

Time [sec]

g
y
ro

X
 [

b
it
s
]

80

Figure E.5: gyroY vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−4

−3

−2

−1

0

1

2

3

4
x 10

4

Time [sec]

g
y
ro

Y
 [

b
it
s
]

Figure E.6: gyroZ vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−4

−3

−2

−1

0

1

2

3

4
x 10

4

Time [sec]

g
y
ro

Z
 [

b
it
s
]

81

Figure E.7: magX vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

Time [sec]

m
a

g
X

 [
b
it
s
]

82

Figure E.8: magY vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

Time [sec]

m
a

g
Y

 [
b
it
s
]

Figure E.9: magZ vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

Time [sec]

m
a
g
Z

 [
b
it
s
]

83

Figure E.10: hmcX vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−4

−3

−2

−1

0

1

2

3

4
x 10

4

Time [sec]

h
m

c
X

 [
b

it
s
]

Figure E.11: hmcZ vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−4

−3

−2

−1

0

1

2

3

4
x 10

4

Time [sec]

h
m

c
Z

 [
b

it
s
]

84

Figure E.12: hmcY vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−4

−3

−2

−1

0

1

2

3

4
x 10

4

Time [sec]

h
m

c
Y

 [
b

it
s
]

Figure E.13: press0 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−3000

−2000

−1000

0

1000

2000

3000

4000

Time [sec]

p
re

s
s
0
 [
b
it
s
]

Figure E.14: press1 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−2000

0

2000

4000

6000

8000

10000

12000

Time [sec]

p
re

s
s
1
 [
b
it
s
]

85

Figure E.15: press2 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1000

0

1000

2000

3000

4000

5000

6000

Time [sec]

p
re

s
s
2
 [
b
it
s
]

Figure E.16: press3 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

2.9

2.92

2.94

2.96

2.98

3

3.02
x 10

4

Time [sec]

p
re

s
s
3

 [
b

it
s
]

86

Figure E.17: gpsLat vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

0

1

2

3

4

5

6
x 10

8

Time [sec]

g
p
s
L
a
t
[d

e
g
.m

m
]

Figure E.18: gpsLong vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−2

0

2

4

6

8

10

12

14
x 10

8

Time [sec]

g
p

s
L

o
n

g
 [

d
e

g
.m

m
]

87

Figure E.19: gpsSpd vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

9

Time [sec]

g
p
s
S

p
d

 [
K

T
S

]

Figure E.20: gpsCrs vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Time [sec]

g
p

s
C

rs
 [

d
e

g
]

88

Figure E.21: date vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

0

1

2

3

4

5

6
x 10

5

Time [sec]

d
a
te

 [
D

D
M

M
Y

Y
]

Figure E.22: CS vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

0

10

20

30

40

50

60

70

80

Time [sec]

C
S

 [
b

it
s
]

89

Figure E.23: temperature vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

Time [sec]

te
m

p
e
ra

tu
re

 [
d

e
g
F

]

Figure E.24: pwm0 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

Time [sec]

p
w

m
0

 [
u
s
e

c
]

90

Figure E.25: pwm1 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.5

1

1.5

2

2.5

3
x 10

7

Time [sec]

p
w

m
1

 [
u

s
e

c
]

Figure E.26: pwm2 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

Time [sec]

p
w

m
2
 [

u
s
e
c
]

91

Figure E.27: pwm3 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

Time [sec]

p
w

m
3

 [
u

s
e

c
]

Figure E.28: pwm4 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

Time [sec]

p
w

m
4

 [
u
s
e

c
]

Figure E.29: pwm5 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

Time [sec]

p
w

m
5

 [
u

s
e

c
]

92

Figure E.30: pwm6 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

−1

−0.5

0

0.5

1

Time [sec]

p
w

m
6

 [
u

s
e

c
]

Figure E.31: pwm7 vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

Time [sec]

p
w

m
7

 [
u

s
e

c
]

93

Figure E.32: deltaT vs. Time

1 2 3 4 5 6 7 8 9 10

x 10
5

0

100

200

300

400

500

600

700

800

Time [sec]

d
e

lt
a

T
 [

m
s
e

c
]

E.2 Sample System Ouput - Units Data

Figure E.33: accelX vs. Time

100 200 300 400 500 600 700 800 900 1000
−25

−20

−15

−10

−5

0

5

10

15

Time [sec]

a
c
c
e
lX

 [
ft
/s

2
]

94

Figure E.34: accelY vs. Time

100 200 300 400 500 600 700 800 900 1000
−30

−20

−10

0

10

20

Time [sec]

a
c
c
e
lY

 [
ft
/s

2
]

Figure E.35: accelZ vs. Time

100 200 300 400 500 600 700 800 900 1000
−40

−20

0

20

40

60

80

100

Time [sec]

a
c
c
e
lZ

 [
ft
/s

2
]

Figure E.36: gyroX vs. Time

100 200 300 400 500 600 700 800 900 1000
−3000

−2000

−1000

0

1000

2000

Time [sec]

g
y
ro

X
 [

d
e

g
/s

]

95

Figure E.37: gyroY vs. Time

100 200 300 400 500 600 700 800 900 1000
−3000

−2000

−1000

0

1000

2000

3000

Time [sec]

g
y
ro

Y
 [

d
e

g
/s

]

Figure E.38: gyroZ vs. Time

100 200 300 400 500 600 700 800 900 1000
−3000

−2000

−1000

0

1000

2000

3000

Time [sec]

g
y
ro

Z
 [

d
e

g
/s

]

Figure E.39: magX vs. Time

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Time [sec]

m
a

g
X

 [
ra

d
]

96

Figure E.40: magY vs. Time

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Time [sec]

m
a
g

Y
 [

ra
d

]

Figure E.41: magZ vs. Time

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Time [sec]

m
a
g

Z
 [
ra

d
]

Figure E.42: hmcX vs. Time

100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

Time [sec]

h
m

c
X

 [
ra

d
]

97

Figure E.43: hmcZ vs. Time

100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

Time [sec]

h
m

c
Z

 [
ra

d
]

Figure E.44: hmcY vs. Time

100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

Time [sec]

h
m

c
Y

 [
ra

d
]

Figure E.45: press0 vs. Time

100 200 300 400 500 600 700 800 900 1000
−2

−1

0

1

2

3

Time [sec]

p
re

s
s
0
 [
lb

/f
t2

]

98

Figure E.46: press1 vs. Time

100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

6

8

Time [sec]

p
re

s
s
1
 [
lb

/f
t2

]

Figure E.47: press2 vs. Time

100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

Time [sec]

p
re

s
s
2
 [
lb

/f
t2

]

Figure E.48: press3 vs. Time

100 200 300 400 500 600 700 800 900 1000
2060

2070

2080

2090

2100

2110

Time [sec]

p
re

s
s
3

 [
lb

/f
t2

]

99

Figure E.49: gpsLat vs. Time

2200 2400 2600 2800 3000 3200 3400 3600 3800
35.325

35.326

35.327

35.328

35.329

35.33

35.331

35.332

GPS Time [sec]

g
p

s
L

a
t

[d
e

g
.m

m
]

Figure E.50: gpsLong vs. Time

2200 2400 2600 2800 3000 3200 3400 3600 3800
−120.756

−120.755

−120.754

−120.753

−120.752

−120.751

GPS Time [sec]

g
p
s
L
o
n
g
 [
d
e
g
.m

m
]

Figure E.51: gpsSpd vs. Time

2200 2400 2600 2800 3000 3200 3400 3600 3800
0

10

20

30

40

50

GPS Time [sec]

g
p

s
S

p
d

 [
K

T
S

]

100

Figure E.52: gpsCrs vs. Time

2200 2400 2600 2800 3000 3200 3400 3600 3800
0

50

100

150

200

250

300

350

GPS Time [sec]

g
p
s
C

rs
 [
d
e
g
]

Figure E.53: date vs. Time

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
x 10

5

Time [sec]

d
a

te
 [

D
D

M
M

Y
Y

]

101

Figure E.54: CS vs. Time

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

Time [sec]

C
S

 [
b

it
s
]

Figure E.55: temperature vs. Time

100 200 300 400 500 600 700 800 900 1000
76

76.5

77

77.5

78

78.5

Time [sec]

te
m

p
e
ra

tu
re

 [
d
e
g
F

]

Figure E.56: pwm0 vs. Time

100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

Time [sec]

p
w

m
0
 [
u
s
e
c
]

102

Figure E.57: pwm1 vs. Time

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

7

Time [sec]

p
w

m
1

 [
u

s
e

c
]

Figure E.58: pwm2 vs. Time

100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

Time [sec]

p
w

m
2
 [
u
s
e
c
]

Figure E.59: pwm3 vs. Time

100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

Time [sec]

p
w

m
3
 [
u
s
e
c
]

103

Figure E.60: pwm4 vs. Time

100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

Time [sec]

p
w

m
4
 [
u
s
e
c
]

Figure E.61: pwm5 vs. Time

100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

Time [sec]

p
w

m
5
 [
u
s
e
c
]

Figure E.62: pwm6 vs. Time

100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

Time [sec]

p
w

m
6
 [
u
s
e
c
]

104

Figure E.63: pwm7 vs. Time

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

Time [sec]

p
w

m
7

 [
u

s
e

c
]

Figure E.64: deltaT vs. Time

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

Time [sec]

d
e
lt
a
T

 [
m

s
e
c
]

105

E.3 Sample System Ouput - State Data

Figure E.65: qbar vs. Time

100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

6

8

Time [sec]

q
b
a
r

[l
b
/f
t2

]

Figure E.66: rho vs. Time

100 200 300 400 500 600 700 800 900 1000
2.24

2.25

2.26

2.27

2.28

2.29

2.3

2.31

2.32
x 10

−3

Time [sec]

rh
o

 [
lb

/f
t3

]

106

Figure E.67: vinf vs. Time

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

Time [sec]

v
in

f
[f

t/
s
]

Figure E.68: alphaP vs. Time

100 200 300 400 500 600 700 800 900 1000
−20

−10

0

10

20

30

Time [sec]

a
lp

h
a
P

 [
d
e
g
]

Figure E.69: betaP vs. Time

100 200 300 400 500 600 700 800 900 1000
−20

−15

−10

−5

0

5

10

15

20

Time [sec]

b
e
ta

P
 [
d
e
g
]

107

Figure E.70: rollRate vs. Time

100 200 300 400 500 600 700 800 900 1000
−3000

−2000

−1000

0

1000

2000

3000

Time [sec]

ro
llR

a
te

 [
d

e
g

/s
]

Figure E.71: pitchRate vs. Time

100 200 300 400 500 600 700 800 900 1000
−2000

−1000

0

1000

2000

3000

Time [sec]

p
it
c
h

R
a

te
 [

d
e

g
/s

]

Figure E.72: yawRate vs. Time

100 200 300 400 500 600 700 800 900 1000
−3000

−2000

−1000

0

1000

2000

3000

Time [sec]

y
a

w
R

a
te

 [
d

e
g

/s
]

108

Figure E.73: accelX vs. Time

100 200 300 400 500 600 700 800 900 1000
−25

−20

−15

−10

−5

0

5

10

15

Time [sec]

a
c
c
e
lX

 [
ft
/s

2
]

Figure E.74: accelY vs. Time

100 200 300 400 500 600 700 800 900 1000
−30

−20

−10

0

10

20

Time [sec]

a
c
c
e
lY

 [
ft
/s

2
]

Figure E.75: accelZ vs. Time

100 200 300 400 500 600 700 800 900 1000
−40

−20

0

20

40

60

80

100

Time [sec]

a
c
c
e
lZ

 [
ft
/s

2
]

109

Figure E.76: CD vs. Time

100 200 300 400 500 600 700 800 900 1000
−600

−400

−200

0

200

400

600

Time [sec]

C
D

 [
−

]

Figure E.77: CY vs. Time

100 200 300 400 500 600 700 800 900 1000
−150

−100

−50

0

50

100

150

Time [sec]

C
Y

 [
−

]

Figure E.78: CL vs. Time

100 200 300 400 500 600 700 800 900 1000
−2500

−2000

−1500

−1000

−500

0

500

1000

1500

Time [sec]

C
L

 [
−

]

110

Figure E.79: D vs. Time

100 200 300 400 500 600 700 800 900 1000
−8

−6

−4

−2

0

2

4

6

Time [sec]

D
 [

lb
f]

Figure E.80: Y vs. Time

100 200 300 400 500 600 700 800 900 1000
−8

−6

−4

−2

0

2

4

Time [sec]

Y
 [

lb
f]

Figure E.81: L vs. Time

100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

10

15

20

25

30

Time [sec]

L
 [
lb

f]

111

	Abstract
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Nomenclature
	1 Introduction
	2 Method
	2.1 Reference Frames
	2.1.1 North-East-Down (NED) Axes (xned, yned, zned)
	2.1.2 Body Axes (xb, yb, zb)
	2.1.3 Stability Axes (xs, ys, zs)
	2.1.4 Wind Axes (xw, yw, zw)

	2.2 Equations of Motion
	2.3 Kalman Filter Usage
	2.3.1 Linear Kalman Filter
	2.3.2 Extended Kalman Filter

	3 Drag Meta-Modeling
	3.1 Regression Model - Least Squares Fit
	3.2 Regression Model - Kalman Filter

	4 Error Analysis
	4.1 Random Error
	4.2 Least Squares Regression Error
	4.3 Kalman Filter Regression Error

	5 Simulation
	5.1 Simulation Environment
	5.2 Simulation Inputs
	5.3 Simulation Results

	6 Hardware
	6.1 Flight Computer
	6.2 Accelerometer
	6.3 Vehicle Mass
	6.4 Magnetometers
	6.5 Gyroscope
	6.6 Air Data System
	6.7 GPS Receiver
	6.8 Data Acquisition System Integration

	7 Results
	7.1 Drag Polar
	7.1.1 C2 Coefficient
	7.1.2 Drag Break
	7.1.3 Error Estimation

	7.2 Lift Curve
	7.2.1 CLMAX and Stall
	7.2.2 Lift Curve Slope
	7.2.3 Zero Lift Angle of Attack

	7.3 System Repeatability
	7.4 System Accuracy

	8 Summary
	Bibliography
	Bibliography
	A Data Acquisition System Usage
	A.1 Integration
	A.2 Pre-flight Procedure
	A.3 Flight test plan
	A.4 Post-Flight
	A.5 Embedded Software Protocol

	B Lessons Learned
	C Wiring Schematics
	D Flight Test Procedure
	D.1 Pre-Flight Preparation
	D.1.1 Day Before Test
	D.1.2 Day Of Test

	D.2 Flying Field Procedure
	D.3 Post-Flight

	E Sample System Ouput
	E.1 Sample System Ouput - Raw Data
	E.2 Sample System Ouput - Units Data
	E.3 Sample System Ouput - State Data

