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ABSTRACT

Automated Multi-Modal Search and Rescue using Boosted Histogram of

Oriented Gradients

Matthew Lienemann

Unmanned Aerial Vehicles (UAVs) provides a platform for many automated

tasks and with an ever increasing advances in computing, these tasks can be more

complex. The use of UAVs is expanded in this thesis with the goal of Search and

Rescue (SAR), where a UAV can assist fast responders to search for a lost person

and relay possible search areas back to SAR teams. To identify a person from

an aerial perspective, low-level Histogram of Oriented Gradients (HOG) feature

descriptors are used over a segmented region, provided from thermal data, to

increase classification speed. This thesis also introduces a dataset to support

a Bird’s-Eye-View (BEV) perspective and tests the viability of low level HOG

feature descriptors on this dataset. The low-level feature descriptors are known

as Boosted Histogram of Oriented Gradients (BHOG) features, which discretizes

gradients over varying sized cells and blocks that are trained with a Cascaded

Gentle AdaBoost Classifier using our compiled BEV dataset. The classification

is supported by multiple sensing modes with color and thermal videos to increase

classification speed. The thermal video is segmented to indicate any Region of

Interest (ROI) that are mapped to the color video where classification occurs. The

ROI decreases classification time needed for the aerial platform by eliminating a

per-frame sliding window. Testing reveals that with the use of only color data

and a classifier trained for a profile of a person, there is an average recall of

78%, while the thermal detection results with an average recall of 76%. However,

there is a speed up of 2 with a video of 240x320 resolution. The BEV testing
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reveals that higher resolutions are favored with a recall rate of 71% using BHOG

features, and 92% using Haar-Features. In the lower resolution BEV testing, the

recall rates are 42% and 55%, for BHOG and Haar-Features, respectively.

Keywords: Unmanned Aerial Vehicles (UAV), Histogram of Oriented Gra-

dients (HOG), Haar, AdaBoost, cascade, thermal, computer vision, search and

rescue, multi-modal
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Chapter 1

Introduction

In SAR, the outcome of a search is resolved within the first few hours of

response. SAR teams set-up a theoretical search area based on the last known

location and the distance a subject could have traveled in the time elapsed.

Introduction to Search and Rescue [18] outlines the various resources used for

SAR as described in Table 1.1. These resources provide the SAR effort the tools

needed to maximize the probability of success in the minimum amount of time.

Unfortunately these methods are prone to the need of skilled searchers, which

may not always be available.

Further resources can expand to more technological efforts as described in

the Australian National Search and Rescue Manual and the Navy Search and

Rescue Manuals by using aircraft [3] [8]. Observers are used on search aircrafts

to monitor equipment such as radar and thermal scanners. However, radar may

only be used if beacons are available, so the observers must rely on visual signals

and thermal scanners. The well-trained observers may be affected by fatigue,

and the speed of the aircraft also affects the effectiveness of the observers. We

can improve this method by automating the observer’s job through color and

thermal cameras and computer vision techniques. The larger aerial platforms

can also be replaced by UAVs, which are cheaper, easier to operate, and offer

longer endurance.

The observer can use the thermal camera to locate a person quicker through a

color camera by only observing the heat signature and the outline of the person.
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Table 1.1: SAR Common Teams and Resources [18]

Teams Description

Hasty Search Teams Highly Skilled in land navigation. Quickly check high probability areas.
Locate clues to establish search area, and provide up to date information
that maps may not include.

Grid Search Teams Search in well-defined segments in tight search areas. Can be damaging
to environment and clues. Not as well trained as trackers and hasty
search teams. Usually a last resort effort.

Trackers Search for clues and can provide a direction of travel as well as determine
areas of high probability. Best utilized in early phases of response.

Search Management Analyze the resource needs based on incident objectives.

Investigation Gather information about subject.

Technical Teams Specific rescue needs and skills such as rope rescue and water rescue,

Canine and Equestrian
Canine: Used for scent tracking.
Equestrian: Horses provide high platforms to search.

In a similar fashion, the thermal camera can provide an initial segmentation of

a possible person to classify in an automated system. However, the thermal

camera only provides sparse spatial information, due to resolution of the frame.

By creating this segmentation, or ROI, a mapping to the color camera can be

made for further classification. Through the use of these sensing modes, it is

possible to correctly identify a person from an aerial perspective using feature

descriptors over a segmented region provided from thermal data.

The major problem involved in this work is in classifying a segmented region

as a possible human. The features must be robust for variations in illumination

and background. The feature set must also be fast to calculate, due to the moving

UAV platform and to effectively search an area for any lost people. The two main

methods of feature extraction that are researched in this project are HOG [5] and

Haar-like features presented by Viola-Jones [25]. We investigate the use of the

HOG features combined with the speed of Viola-Jones. Another aspect that is

considered is the speed of identifying a region of interest versus a sliding window

technique, using the combined feature extraction technique.

2



We discuss previous works on various human detection techniques and similar

projects in Section 2. Section 3 provides the theoretical framework for human

detection via computer vision, and thermal segmentation. Section 4 analyzes the

problem and special considerations involved using an aerial platform, describes

the training of the feature set, and evaluates the human detection and thermal

segmentation in specific environments. Section 5 concludes our thesis, noting the

successes and current problems with our method, as well as possible future work

for expansion on the thesis.
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Chapter 2

Related Work

The research for human detection can be divided into two sub-areas; common

feature sets for human detection and improvements to these feature sets. In order

to determine a proper classifier for aerial human identification, we examine the

techniques commonly used in human detection via computer vision and adapt

these techniques for aerial identification of a human.

2.1 Feature Sets for Human Detection

In order to determine whether a human is found in an image, a set of features

must first be defined. In the early 2000’s, a real-time face detection algorithm was

proposed by Viola and Jones [25]. Viola and Jones uses integral images to quickly

calculate Haar-like features. A Haar feature set is a set of rectangular features

that detect change in contrast to neighboring rectangular groups of pixels. The

feature set produces 162,336 features for each feature (shown in Figure 2.1) at

every position and scale in a 24x24 detection window.

In order to train the large amount of features, a Cascaded-AdaBoost Classifier

is used to select the best features. The Cascade Classifier also increases the

efficiency by rejecting most false positives early in the detection stage, and spends

more processing time on more reliable Haar-features. Viola et. al [26] expand

on the Haar features to detect moving humans. This method has proven to be

faster than other detection methods, however, HOG based classifiers continuously

outperform the Haar features, [28], [5], [16].
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Edge Features

Line 
Features

Four-Rectangle Features

Figure 2.1: Haar Feature Set. [25]

In 2005, Dalal and Triggs [5] presented a framework known as HOG that

extracts features based on gradients. It significantly outperforms other feature

sets for human detection in terms of accuracy, including Haar features. HOG

features use gradients to cast votes into an histogram based on orientation. Each

histogram is collected over a block of pixels called cells in a detection window and

a set of cells is normalized to provide invariance to illumination. Given a detection

window of 64x128, the HOG method creates a rich descriptor of 3780 features.

The features are trained on a Support Vector Machine to classify a window as

human or non-human. However, calculating the HOG features is costly. Dalal

[5] reports that processing a 320x240 scale-space image is approximately 1 frame-

per-second.
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2.2 Improvements to HOG

Due to the success of the HOG feature set, many researchers have sought

to decrease it’s computational complexity by reducing the dense feature calcula-

tions. Each feature of HOG is calculated over rectangular regions known as cells

or blocks, and within each cell a histogram is formed based on gradients. Common

speed-ups includes removing the tri-linear interpolation in favor of linear inter-

polation for binning, and rectangular region calculations are sped up through

integral images. The following research papers expand on the fundamentals of

HOG by increasing speed, or handling occlusions.

In 2006, Zhu et al. [28] speeds up the HOG algorithm through a Cascade of

HOGs. This fast human detection method detects humans from 5 to 30 frames

per second from a 320x280 frame, depending on the density of the scan. Zhu et

al. improves on the HOG features through the combination of integral images to

calculate histograms and by using the cascade rejector approach. The method

uses a parts-based detection using a single window approach by using variable

sized blocks from 12x12 to 64x128. The variable sized blocks captures both small

local gradients and larger global gradients. This method produces 5021 total

blocks in a 64x128 window, each of which contains a 36 dimension histogram.

To train the 5021 possible blocks, a Cascaded AdaBoost learning algorithm with

Support Vector Machines (SVMs) to select the best features from the feature

set. From the tests performed, it has been shown that the Cascade of HOGs [28]

is not as accurate as Dalal and Triggs original HOGs implementation [5]. The

Cascade of HOGs has a detection rate of 95% while HOG has a detection rate of

97% at 0.01 False Postives Per Window (FPPW). However, as the FPPW goes

down, it is comparable and faster.
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In 2007, Jia and Zhang [16] improves HOG by using each histogram bin as a

feature in a cascade classifier, similar to Zhu et al. [28] . Each feature is defined

by its cell position, parent block position and the orientation bins, to produce

tens-of-thousands of features in an 18x36 detection window. To simplify the

calculation process, integral images are used similar to Zhu et al. [28], and each

feature is found in constant time with only 8 lookups. To reduce the amount of

features, a Cascade AdaBoosting architecture, with classification and regression

trees as the weak learners is used. This method does perform faster than HOG

[5] but has lower detection rate. It is also slower than Viola and Jones [26] but

has a higher detection rate.

Wang et al. [27] develop a HOG detection with partial occlusion handling

by combining HOG features with cell structured Local Binary Parts (LBP). To

speed up the HOG-LBP, integral histograms are used in the same manner as Zhu

et al. [28]. Zhu et al. reports that tri-linear interpolation does not fit well with

integral images, however, Wang et al. apply a Convoluted tri-linear interpola-

tion over each integral image. The tri-linear interpolation reduces aliasing effects

of strong edge pixels at cell boundaries. The linear interpolation voting scheme

assigns the pixel’s weight to different histogram bins, whereas tri-linear interpo-

lation distributes the weight to all neighbors. HOG-LBP also provides occlusion

handling by constructing an occlusion likelihood map. This map then generates

a confidence score which determines if the a parts-based detector is used, or no

further processing is needed.
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2.3 Aerial Human Identification

The following papers make use of Haar and HOG features for aerial human

identification. The method presented by Oreifej, O. et al. [19] attempts to iden-

tify a human from an aerial platform by using HOG features, a voter candidate

model, blob extraction of the target, and alignment to eliminate variation of cam-

era orientation and human pose. The overall results from this method showed

a mean average precision of 89.6%. It should also be noted that Oreifej, O. et

al. identified a manually selected person that is then identified in test images.

Their presented method does provide a solution to identify people in low quality

aerial images, where there is little availability of minor details of a person and

only dominant features (head and torso) are available.

The following two research papers expand on aerial human identification

through the use of thermal cameras to create a ROI, and then their classifier

is applied to this ROI. Helen Flynn and Stephen Cameron [13] propose a part

based model presented by Felzenszwalb et at. [12] in order to detect the high

variability of a person. However, the parts-based model is slower to process than

HOG descriptors. Helen et al. incorporate a multi-modal process to reduce the

processing time by using a thermal camera to create a ROI that is mapped to a

color frame for further evaluation. The determination of the ROI is based on the

assumption that a person is hotter than the surroundings, so a hard-threshold of

high intensity pixels is used to extract from the thermal video.

Similar to Helen et a. [13], Piotr Rudol and Patrick Doherty uses a multi-

modal approach [22]. Instead of a direct mapping of the thermal ROI to the

frame matched colored image, as Helen et al. have done, Piotr et al uses the

altitude, pitch and yaw information of the UAV, arguing that direct mapping
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will use more memory. The meta-data from the UAV translates the thermal

pixels to world coordinates and are used to acquire corresponding pixel locations

on the color frame. Each ROI is then subjected to a detector based on extended

Haar features.

Schmidt and Hinze [24] proposed a method to detect and track people in

high altitude aerial images by taking advantage of global position, time data,

and casted shadows from a person. The detection phase uses boosted enhanced

Haar-like features for object shape, rectangle features for color information, and

a detector designed for a person and a potential shadow.

Gaszczak et. al [15] have presented a way to detect people and vehicles

from UAV imagery using thermal data. Every frame detects people or vehicles

using Haar classifiers with multivariate Gaussian shape matching as a secondary

confirmation. The thermal images are processed with the Haar classifiers, as

opposed to using the color images for classification. The results from the classifier

are further processed based on the size constraints of the objects, which is based

on the altitude and camera filed of view. The detected object will be discarded

if it does not meet the size requirement.

Table 2.1 summarizes the improvements to HOG features by comparing tests

on the INRIA dataset. Similar FPPW are shown to provide a fair performance

metric. The speed of the detector is also included in Table 2.2 if it is provided in

the respective method. If a test was not available, it is labeled as N/A.
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Table 2.1: Improvements to HOG Performance Comparisons

Method FPPW Detection Rate

Improved HOG HOG Haar
Zhu et. al. [28] 0.001 92% 94% 70%

Jia and Zhang [16] 0.001 88% 94% 75%
Wang et al. [27] 0.0001 98% 93% N/A

Table 2.2: Improvements to HOG Time Comparisons. Each metric is over 12,800
detection windows per 240x360 image

Method Time(ms)

Improved HOG HOG Haar
Zhu et. al. [28] 106 7000 55

Jia and Zhang [16] 55 5000 32
Wang et al. [27] N/A N/A N/A

10



Chapter 3

Theoretical Framework

The main goal of this project is to correctly identify a person from an aerial

perspective using modified HOG descriptors over a segmented region provided

from thermal data. The HOG descriptor derivation is addressed, and analyzed

where improvements will be made. We will also implement the multi-modal

process using a thermal and color camera that are frame matched. It has been

shown to greatly improve timing as well as reduce false positives [13] [22], however,

we will extract thermal thresholds through Otsu’s method [1] to create ROIs. The

overall proposed system is outlined in Figure 3.1.

Thermal and 
Color Frame 

Mapping

Thermal 
Segmentation

ROI Extraction
Object 

Detection on 
ROIs

Thermal Video 
Input

Color Video 
Input

Color 
Processing

Thermal Processing

Figure 3.1: System Diagram of the Search and Rescue Computer Vision System.

3.1 Histogram of Oriented Gradients Feature Description

The main idea of HOG is to use a detection window that is divided into

NxM cells that accumulate a histogram for edge orientations. The cells are nor-

malized with overlapping blocks to provide better invariance to illumination.

After normalization, the cells in the detection window are concatenated into a

11



1-dimensional feature that can then be used for classification. The overview of

the HOG process can be seen in Figure 3.2. The following section will show how

the HOG features are calculated.

Gradient 
Calculations

Spatial 
Orientation 

Binning

Normalization and 
Descriptor Blocks

Final Feature 
Vector

 …

 …

Classification

Figure 3.2: Overview of the Histogram of Oriented Gradients. Each image has its
gradients and orientations calculated. Histogram bins are calculated over cells,
where the bins correspond to the orientation, and each vote is a portion of the
gradient. Cells are normalized over blocks, where the blocks overlap one another.
The final feature vector are the normalized cells. [5]

The first step, as outlined in Figure 3.2, is to compute the gradient magnitudes

and orientations of the input image. To calculate the magnitude, two images are

formed; GV which captures vertical gradients and GH which captures horizontal

gradients. Both are calculated by convolving the original image Img, with the

kernel [1, 0,−1] and its transpose, which can be seen in equations 3.1 and 3.2.

The kernel [1, 0,−1] is used since Dalal and Triggs [5] have found that when

computing the gradients, small kernels exhibit the best performance. Using GH

and GV , the magnitude is calculated by Equation 3.3, where r and c are row

and column pixel values.

GH = Img ⊗

 1

0

−1

 (3.1)
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GV = Img ⊗ [1, 0,−1] (3.2)

M [r, c] =
√
G2
V [r, c] +G2

H [r, c] (3.3)

Similar to calculating the magnitude, Equation 3.4 shows how the orientations

are obtained by using the same vertical and horizontal gradients, GH and GV .

O[r, c] = arctan
GV [r, c]

GH [r, c]
(3.4)

3.1.1 Spatial/Orientation Binning

After the magnitude and orientation images are found, histograms can be

formed over cells. Cells are a rectangular area of pixels, where each pixel in a

cell casts a weighted vote based on the gradient magnitude and orientation (see

Figure 3.2). The voting scheme uses the orientation as bins, spaced evenly over

0◦-180◦ or 0◦-360◦, and the magnitude casts a weighted vote. The voting process

is as follows:

1. Find the closest bins for a given pixels orientation (the neighbors).

2. Given a pixels magnitude, calculate a linear vote between the neighbors.

Equation’s 3.5 and 3.6 shows how the vote is calculated, given PM as the

pixel’s magnitude, PO as the pixel’s orientation and Nx as neighbor X.

V oteN1 = PM ∗
∣∣∣∣N1 − PO
N1 −N2

∣∣∣∣ (3.5)
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V oteN2 = 1− V oteN1 (3.6)

3.1.2 Block Normalization

Dalal and Triggs [5] explains that the gradient strengths varies over a wide

range due to variations in illumination and foreground-background contrast. To

solve this, cells are grouped into spatial blocks that overlap one another. Within

each block, the histograms are normalized. Dalal and Triggs uses a 50% overlap

of cells on each block. They have also shown that the square root of the L1-Norm

has shown the best detection rate, however, it is slower to process.

All histograms from a block are concatenated to form a 1D vector, b. Equa-

tion 3.7 describes how b is normalized using the L1-sqrt method, where ‖b‖ is

the euclidean norm.

L1sqrt−b =

√
b

‖b‖
(3.7)

3.1.3 Final Feature Descriptor and Classification

The final feature descriptor is a 1D normalized array of histograms. This de-

scriptor is applied to a Support Vector Machine for training or classification. The

final descriptor size of a window depends on the cell size, block size and number

of bins. If we consider a 64x128 detection window, divided into 7 blocks across

and 15 blocks vertically, with each block containing 4 cells with 9 histograms,

there are a total of 3780 features.
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3.2 Integral Images

Integral Images are presented [26] to quickly detect faces in an image using

rectangular features. The integral image is a representation of the original image

where each Integral Image pixel at location (r, c) contains the sum of the pixels

up and to the left of (r, c). The generation of the integral image can be done in

O(1) time, with just one pass over the image. Equation 3.8 describes this process,

II(−1, 0) = II(0,−1) = 0 (3.8)

II(r, c) = i(r, c) + II(c− 1, r) + II(c, r − 1)− II(c− 1, r − 1) (3.9)

where r and c are row and column pixel values, II(r, c) is the integral image

and i(r, c) is the original image. Equation 3.8 specifies the edge case of the top

most left pixel of an image, i(0, 0).

After creating the Integral Image, any rectangular sum can be computed given

four reference points. For example, to calculate the area of D in the original image

as shown in Figure 3.3 , the following values from the integral image are needed:

PA, PB, PC and PD. The sum of the rectangle area D is thus PA+PD−PC−PB.

3.2.1 Integral Histograms

To improve the speed of HOG, Integral Histograms can be used to calculate

a cell at some bin n. To do this, we generate our bins in the same fashion as Zhu

et. al. [28]; each pixel’s orientation and magnitude is discretized into N bins, or

bin images. Figure 3.4 represents how each bin image is constructed. Each bin
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A B

DC

    
PA PB

PC PD

Figure 3.3: Integral Image calculating the area D, given the four reference points
PA, PB, PC and PD.

image is an orientation, and each pixel value in a bin is the magnitude based on

the voting scheme as described in Section 3.1.1. Each of these bin images is then

transformed into a respective integral image for feature computation. Each bin

calculation for a HOG feature is then 4xN operations.

Bin 3

Bin 2

Bin 1

Bin N

Figure 3.4: Representation of N Bin Images. Each bin image corresponds to
some angle, and each pixel location contains a vote of the magnitude from the
original image.

16



3.3 Boosted Histogram of Oriented Gradients

In order for the HOG feature descriptors to be more suitable for aerial human

detection, a small detection window is needed. The original HOG descriptors uses

a 64x128 detection window, which will translate to a lower maximum altitude

(see Figure 4.4). The smaller detection window will allow for higher maximum

altitude searches. Also, as mentioned in Section 4.1, the speed of the detector

is critical. Given a maximum detection time of approximately two seconds to

detect an object before it leaves a frame at a height of 30 meters, Figure 4.4, a

detector that can detect the object multiple times before it leaves the frame will

be more reliable.

To achieve the time and detection goals, the BHOG detection scheme will be

used [16]. BHOG offers the discriminative power of HOG and the detection time

of Cascade Haar-Features, while having a rich number of features in a smaller de-

tection window. The framework behind BHOG consists of a Cascaded AdaBoost

Classifier detection similar to Viola-Jones, and each feature is based on HOGs.

3.3.1 BHOG Feature Definition

The BHOG features, f(C,B, k), are defined by its cell position C(cc, rc, wc, hc),

parent block position B(cb, rb, wb, hb) and the orientation bin K, where r and c

are the pixel row and column coordinates, respectively, w is the width, and h is

the height. To form the features, the gradient magnitude M [r, c] and orientation

O[r, c] are first calculated using Equations 3.3 and 3.4. Binning is simpler than

the original HOG method presented in Section 3.1.1. The orientation bin range
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of [0, 180] is divided into K bins and each bin, βk, is denoted

βk =


M [r, c] if O[r, c]εbink

0 otherwise

(3.10)

where O[r, c]εbink denotes that O[r, c] is assigned to the nearest bin k.

The final feature value, f(C,B, k), is defined as

f(C,B, k) =

∑
(rc,cc)εC

βk(r, c) + ε∑
(rb,cb)εB

G(r, c) + ε
(3.11)

where
∑

(rc,cc)εC
βk(r, c) + ε is the sum of the respective values in the kth bin

in cell C which belongs in block B, and
∑

(rb,cb)εB
G(r, c) + ε is the sum of the

gradients G in block B. The ε value is some small number in case of any division

by zero.

Each feature can be quickly computed by using an integral image of each bin

and gradient image as described in Section 3.2. Each bin is constructed into it’s

own image and a corresponding integral image is created, IIβ,k, for a total of k

integral images. A gradient image IIG is also formed, and a total of 8 lookups

are needed to calculate a feature as described in Equation 3.12,

∑
(rc,cc)εC

βk(r − 1, c− 1) = IIβ,k(rc, cc) + IIβ,k(rc + hc − 1, cc + wc − 1)

−IIβ,k(rc + hc − 1, cc − 1)− IIβ,k(rc, cc + wc − 1)

(3.12)

∑
(rb,cb)εB

G(r, c) = IIG(rb − 1, cb − 1) + IIG(rb + hb − 1, cb + wb − 1)

−IIG(rb + hb − 1, cb − 1)− IIG(rb − 1, cb + wb − 1)

(3.13)
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and the edge cases, IIG(−1, cb) = IIG(−rb,−1) = IIG(−1,−1) = 0. The

same holds for IIβ,k.

Each feature block is defined in the same manner as Jia et. al [16]. Figure 3.5

shows the various blocks that are used. Each shaded area within a block repre-

sents a cell where bin calculations take place, and the whole rectangle represents

a block. While generating a feature pool, a set ratio r, block stride sb, a scaling

factor sf and minimum block size wmin hmin are used to constrain the amount of

features generated. Given r = {1 : 2, 1 : 1, 2 : 1}, sb = 0.5, sf = 1.2, wmin = 4,

wmin = 4 and a maximum training sample size of 18x36, the feature pool contains

124,821 features.
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1. One block contains one cell

2. One block contains four cells

3. One block contains two cells

Figure 3.5: Boosted Hog Feature Templates.
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3.4 Thermal Segmentation

The assumption that a human will be hotter than the surrounding environ-

ment can be taken advantage of in order to only classify a small region of interest.

This process acts as a first layer of classification based on thermal data and seg-

mentation.

B) Apply a  Morphological Closing 
Operation

C) Invert Morphologically Closed ImageA) Input Thermal Image

E) Apply Otsu’s Method on all non-zero 
values in D

D) Subtract Morphologically Closed 
image from its inverse. ( D = B  - C)

F) Retrieve ROI’s through Contours

Figure 3.6: Thermal Segmentation Flow.

The flow of the thermal segmentation process can be seen in Figure 3.6.

Beginning with the original thermal image (A), a morphological closing operation

is performed over the image (B). This is done to reduce the non-uniformity of

an objects temperature. In the case of a human, clothes usually block the high

temperature of the human body, creating thermal voids and the closing operation

will close any openings presented by the differences in temperatures. Next, the

result of the morphological close is inverted (C) and is then subtracted from

the morphological close image (B) to reveal the hot spots (D). To finalize the
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segmentation, Otsu’s method [1] is used to create a binary image (E) by creating

a global threshold based on all non-zero values from the hot spots image (D).

The final binary image (F) defines where the ROIs are located through the use

of an OpenCV function, findContours().

After the ROIs are received, a detection window will center itself at the top

left pixel of a thermal ROI. Scanning will then continue in a raster scan fashion,

and the detection window will shift by ∆pr and ∆pc pixels, in each row and

column, respectively. The scanning will end when the detection window’s center

reaches the bottom right pixel. The process can be more clearly seen in Figure

3.7. This process will continue for every ROI at every scale.

Figure 3.7: Thermal ROI Scanning Example.
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Chapter 4

Evaluations

Two datasets tests the speed and accuracy of the feature set; thermal and

color matched frames [7] and BEV videos [20]. Each dataset provides an en-

vironment to test the feature set in this project and will be compared our im-

plementation of HOG features, and OpenCV’s implementation of Haar-Cascade

features. The frame-matched thermal and color video evaluates the speed of the

detector coupled with thermal data. The thermal data also acts as layer of de-

tection, as previously described. The BEV dataset consists of two videos taken

from rooftops, each with different heights and lighting conditions.

In order to evaluate each frame in a video, we adopt the per-image evaluation

from Dollar et al. [9]. Each video is manually annotated using The Video Per-

formance Evaluation Resource (ViPER) [6] to create a ground truth bounding

box (BBgt) around each possible candidate. Each detection and ground truth

bounding box in a frame is evaluated based on the PASCAL [11] evaluation mea-

surement in Equation 4.1, which calculates the area overlap between the ground

truth and predicted bounding boxes. A correct detection between BBGT and a

predicted bounding box, BBP , is any overlap greater than or equal to 50%, as

defined in the PASCAL Visual Object Classes Challenge [11], anything less is

considered a miss. Each BBGT is also labeled for any partial or fully occluded

people, which are ignored in the evaluation process since our detector does not

take into account any occluded objects. The ignored BBGT does not count as
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either a hit or miss.

a =
area(BBGT ∩BP )

area(BBGT ∪BP )
(4.1)

The videos will be evaluated based on the recall rate and False Positives Per

Image (FPPI), where the FPPI is calculated as the average false positives found

in a frame over the entire length of the video.

4.1 Minimum Speed of Detector

The speed at which a human needs to be detected is dependent on the height

of the aerial platform and the resolution of the camera. It will be assumed that

the aerial platform is traveling parallel to the vertical resolution of the camera

(see Figure 4.1). Given the horizontal and vertical Angle of View (AOV) βH

and βV , the altitude of the aerial platform (A) and the vertical and horizontal

resolution of the camera, RV and RH we can determine the ground resolution

and the time for an object to span that resolution. We can also translate the size

of an object with these parameters from pixels to meters.

Using the dimensions outlined in Figure 4.2, the horizontal ground resolution

RH and vertical ground resolution RV are calculated as follows:

V = 2 ∗ A ∗ tan(
βV
2

) (4.2)

H = 2 ∗ A ∗ tan(
βH
2

) (4.3)

The time for an object to pass in a frame (tO) will be dependent on the

aerial platform. We will use the velocity of the two aerial platforms the RMAX
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V

RH

Sp

B
p

Person

Flight Direction of 
Aerial Platform

Figure 4.1: Bird’s Eye View Geometry. Where RV corresponds to vertical ground
resolution, RH is horizontal ground resolution, A is altitude of the aerial platform,
and β is the Angle Of View.

project currently uses, the RMAX helicopter and a Telemaster Radio Controlled

Airplane. The cruising speed of the RMAX helicopter is 5.56 m/s [23] and the

Telemaster’s cruising speed is 15.4 m/s [4]. Equation 4.4 shows the how to cal-

culate tO, given aerial platform’s speed, Pspeed.

tO = Pspeed ∗ V (4.4)

Next we will observe how tO is affected according to the altitude. We will use

an AOV based on the wide angle lens, Tamron 23FM65L, with βH = 71.6 and
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Figure 4.2: Camera Geometry.

26



0

1

2

3

4

5

6

7

8

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ti
m

e 
fo

r 
o

b
je

ct
 t

o
 s

p
a

n
 fr

a
m

e 
(s

)

Altitude (m)

Object's Time to Span Frame vs. Altitude

Figure 4.3: The amount of time an object needs to span a frame at various
altitudes.

βV = 55.5. Figure 4.4 provides us with a benchmark that the feature detector

needs to meet, and it is assumed that the object is standing still relative to the

aerial platform. Note that the time is not affected by the resolution.

It should also be noted, that the size of a person at various altitudes is impor-

tant, since higher altitudes will contain lower resolution objects. We will be using

the previous assumption that the human is in a bird’s-eye view perspective. In

the bird’s-eye view perspective, the most notable features are the shoulder width

(Sp) and bust depth (Bp), which can be seen in Figure 4.1. The size of a human

in pixels (PPixels) is calculated according to the Equation 4.5. We use the values

Bp = 25cm and Sp = 48.9cm, for shoulder width and bust depth, respectively,

and are based on the anthropometric measurements of an American male in the

early 2000’s [2].

PPixels = Vr ∗Hr ∗ (Sp ∗Bp)/(V ∗H) (4.5)
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Figure 4.4: Square pixels of a human in a bird’s eye view, with varying altitudes
and resolutions. The size of the human is based on the bust and shoulder length.

4.2 Training

Training involves the use of a positive (human) and negative (non-human)

datasets. Two training sets are used: INRIA dataset for thermal testing, and a

dataset for BEV testing. The BEV annotations are chosen based on concentric

shoulder alignment, where the shoulders are centered in the sample window. The

BEV positive sample windows are mirrored, rotated, and flipped to generate

more poses from a single image. The end result generates 2,185 positive training

images. Figure 4.5 shows 16 samples of the BEV positive training dataset.

Negative training images are randomly sampled from the 1218 image INRIA

dataset used in Dalal and Triggs [5]. Each sample is generated by randomly

generating a width and height with the same ratio as the positive images, and

then randomly generating the top left corners of the sample. A random negative
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sample is approved if it’s variance is above 0.001, to ensure that the random

sample isn’t too uniform. The sample is then resized to the desired training size.

Eight negative sample images are shown in Figure 4.6.

Figure 4.5: Example of Positive Training Images, sized at 25x25 pixels.

Figure 4.6: Example of Negative Training Images.
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4.2.1 Cascaded AdaBoost Training

The BHOG descriptors produces 120,933 features for a 25x25 detection win-

dow from the BEV dataset. The use of a SVM would not be applicable for

BHOGs due to the time it would take to train and predict these features. Hui et

al. [16] use a cascade classifier that consists of Classification and Regression Trees

(CART) as a weak classifier to train over BHOG features, and demonstrated that

a stump classier performs better than their CART classifier. We will be using a

stump classifier method as presented in the Viola-Jones face detection framework

[10].

AdaBoosting is a meta-learning algorithm first proposed by Freund and Schapire [14].

The main idea behind boosting is to combine several weak weighted classifiers to

produce one strong classifier. The weak classifier is defined as any classification

method that can produce an error rate less than 50%. Boosted classification was

extended by Viola and Jones [10] by cascading AdaBoost classifiers in order to

quickly invalidate false positives.

AdaBoost Algorithm

In this project, we will be using a Gentle AdaBoost classification method,

which has been shown to outperform Discrete AdaBoost [17]. The Gentle Ad-

aBoost training algorithm is based on the node training algorithm from Jian-Qing

et al. [21], however we use an iterative update of the weighted squared errors to

speed up processing, similar to Viola and Jones.

In order to measure the squared error, we first perform a stump classifier over

all positive and negative samples, as outlined in Table 4.1. The stump classifier

sorts each feature based on the feature value extracted from each training sample.
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Every sample is given a weight wi and the feature values are then sorted in

increasing order.

K0: +    K1: - K2: - K3: + K4: + K5: -

θ 
wL wR

Figure 4.7: Example Diagram of a Stump Classifier Given 6 Samples.

Figure 4.7 provides an example of the structure of a stump classifier given a

set of 6 samples. The stump classifier is split by the threshold, θ, giving an error

of classification on either side. These errors are denoted as errors on the left eL

and right side eR of the threshold, and are calculated as shown in Equation 4.6

and Equation 4.7,

eL =
k=K−1∑

k=0,f(xk)<θ

w(xk) ∗ (yk − αl)2 (4.6)

eR =
k=K−1∑

k=0,f(xk)>θ

w(xk) ∗ (yk − αr)2 (4.7)

θ =
f(xk) + f(xk+1)

2
(4.8)

where, f(xk) is the feature value for some sample xk, K is the total amount

of samples, yk is the sample label (yk = 1 for positive samples, and yk = −1

for negative samples), and αl and αr are sum of positive sample and negative

sample weights on the left and right sides of the threshold. The final threshold

for the stump classifier is determined by Equation 4.8, where the errors are at a
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minimum, min(el + er). In order to efficiently update the squared errors, four

values are iteratively updated; the positive and negative sample values on the left

side of the threshold (wlp and wln, respectively) and similarly for the right side

(wrp and wrn). The left values are updated to the current sample’s label (S) as

shown in Equation 4.9 and 4.10.

wlp =
s=S∑

s=0,ys=−1

w(xs) (4.9)

wln =
s=S∑

s=0,ys=1

w(xs) (4.10)

The right positive and negative sample weights are updated according to wlp

and wln, as shown in Equations 4.11 and 4.12, where wtp and wtn are the total

positive and negative weights.

wrp = wtp− wlp (4.11)

wrn = wtn− wrn (4.12)

Next, we can calculate the squared error of each side of the current threshold

by using the normalized difference of the sum of positive and negative weights as

expressed in Equations 4.13 and 4.14.

αl =
wlp− wln
wlp+ wln

(4.13)

αr =
wrp− wrn
wrp+ wrn

(4.14)
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Finally, the iteratively updated squared error for each side is calculated by

using Equations 4.15 and 4.16.

el = wlp ∗ (1− αl)2 + wln ∗ (−1− αl)2 (4.15)

er = wrp ∗ (1− αl)2 + wrn ∗ (−1− αr)2 (4.16)

Once the ideal threshold is identified, the stump classifier returns the thresh-

old, θ, the normalized differences of the weights, αl and αr, and the best feature

f . Table 4.1 demonstrates the pseudo-code to calculate the best weak threshold

for a given feature set and sample set.
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Table 4.1: Weak Stump Classifier Pseudo-code

Calculate the best threshold for a given set of BHOG features F
over positive and negative samples, Ps and Ns, respectively.

Input: F : Set of all possible BHOG features
Pm : set of (m) positive samples
Nl : set of (l) negative samples
wPm : Normalized Positive Weights
wNl : Normalized Negative Weights

1. loop: For every feature f = 1 . . . F

(a) Initialize Values:

wtp =
∑m

s=1(wPt,s),

wtn =
∑m

s=1(wPt,s),

wlp = wln = wrp = wrn = 0

e = LARGE V AL

(b) Create a sorted list: Calculate the feature value f(s) for
each sample S(s=m+l) = {Pm, Nl}, and sort the feature
values in ascending order.

(c) loop: For every sorted sample s = 1 . . . S

i. Calculate errors for current s.

• wlp = wlp+ wPs

• wln = wln+ wNs

• wrp = wtp− wlp
• wrn = wtn− wln
• αl = (wlp−wln)

(wlp+wln)

• αr = (wrp−wrn)
(wrp+wrn)

• el = wlp ∗ (1− αl)2 + wln ∗ (−1− αl)2

• er = wrp ∗ (1− αr)2 + wrn ∗ (−1− αr)2

ii. Update threshold based on current error
if (el + er) < e
e = (el + er)

θ = f(s)+f(s+1)
2

fbest = f
αl,best = αl
αr,best = αr

2. Return θ, fbest, αl,best, and αr,best
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In order to build a set of the best features, as determined by the stump

classifier, AdaBoost is used, as outlined in Table 4.2. A user defined value T

is provided to determine the number of weak features to generate. The user

also provides a set of positive and negative training samples. Each weak feature

h is determined by the stump learner in Table 4.1, and is defined in Equation

4.17, where s is a sample, f is the feature, and αl, αr, and θ are defined in

Equations 4.13, 4.14, and 4.8, respectively. Weights for each sample are updated

as a function of h and the label of the sample, y, as shown in Equation 4.18. The

weights are then normalized so that
∑

sws = 1. Once T features are generated,

the final classifier in Equation 4.19 can be performed on a given sample.

h(αl, αr, θ, f, s) =


αl f(s) < θ

αr otherwise

(4.17)

wx,T+1 = wx,T ∗ e−yx∗h(αl,αr,θ,f,s) (4.18)
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Table 4.2: AdaBoost Algorithm [10]

Input: T : Number of best features
F : Set of all possible BHOG features
Pm : set of m positive samples
Nl : set of l negative samples

1. Initialize weights:

Positive Weights : wP1,s = { 1
2∗m}

Negative Weights : wN1,s = { 1
2∗l}

2. for t = 1 .. T:

(a) Normalize weights,

wPt,s ← wPt,s∑m
j=1 wPs,j

wNt,s ← wNt,s∑l
j=1 wNs,j

(b) Select the best weak classifier with respect to
the weighted error, e, using the stump classi-
fier, Table 4.1.

(c) Define the weak classifier: h(αl, αr, θ, f, x),
see Equation 4.17.

(d) Update the weights:

wPx,T+1 = wPx,T ∗ e−h(αl,αr,θ,f,x)

wNx,T+1 = wNx,T ∗ eh(αl,αr,θ,f,x)

3. The final strong classifer for the node is:

C(x) = sign(
T∑
t=1

ht) (4.19)
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Cascaded AdaBoost Algorithm

Viola and Jones [10] extend the AdaBoost algorithm to a cascaded architec-

ture as shown in Figure 4.8. Each AdaBoost Classifier acts a node with a set of

learned features. Every node tests a detection window with said features, and if

that node fails, the detection window is determined as a failure. In order for a

detection window to return positive, every node must return positive. The ad-

vantage of using a cascade over a single AdaBoost Classifier is that the cascade

uses the small set of the strongest features first, and only tests on other weaker

features if a node has passed. This way any false positives are quickly thrown

out.

Classifier 
Node 1

Classifier 
Node 2

Classifier 
Node 3

Fail

Pass 
Detection 
Window

Detection 
Window

Figure 4.8: Cascade Classifier Architecture.

Selecting the ideal features is accomplished programmatically where a user

defines an overall target false positive rate of the cascade, Ftarget, a maximum false

positive rate per node, fi, and minimum detection rate per node, and di. Table

4.3 describes the process to build the Cascaded AdaBoost classifier. The positive

and negatives samples are split into two sets; the training set and evaluation set.

Each positive and negative evaluation set consists of randomly selected images

from the respective input samples, up to 30% the input sample size. The training

set consists of the remainder input samples. The inner loop starting at 2.a selects
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the features for every node. Training begins at step 2.a.i using the classifier in

Table 4.2 with T = 1 number of features. Step 2.a.ii evaluates the current selected

feature(s) to determine the current false positive rate Fi and current detection

rate Di. Each evaluation is based on Equation 4.20, where θt is an adjustable

threshold for each cascade node. Step 2.a.iii decreases the threshold,θt, in order

to achieve a detection rate of at least d ∗ Di−1, and then evaluates Fi with the

updated threshold.

C(x) = sign((
T∑
t=1

ht)− θt) (4.20)
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Table 4.3: Building the Cascade AdaBoost Algorithm [10]

Input: Ftarget : Overall Cascade False Positive Rate.
fmax : Maximum false positive rate per node.
dmin : Minimum detection rate per node.
Pm : Set of m positive samples.
Nl : Set of l negative samples.

1. Initialize values:

i = 0; Di = 1.0; Fi = 1.0;

2. while Fi > Ftarget:

i = 0; Fi = Fi−1; T = 0;

(a) While Fi > f ∗ Fi−1

i. Use Ptrain and Ntrain to train the AdaBoost classifier
in 4.2 using T features.

ii. Evaluate the current cascade classifier on a valida-
tion set to determine Fi and DI .

iii. Decrease the threshold for the ith classifier and re-
evaluate the ith cascade classifier until a detection
rate of at least d ∗Di−1. is reached. Fi will also be
updated until the detection rate is reached.

(b) If Fi > Ftarget, then evaluate the current cascaded clas-
sifier on the set of negative examples and put any false
detections into the set Ntrain
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4.3 Testing

The testing environment consists of a system with a Intel Core2 Quad CPU

Q9550, at 2.84GHz, with 8GB of ram on a 64-bit Windows 7 Operating System.

All timed tests are ran independently to provide the most accurate times.

4.3.1 Thermal Testing

The first evaluations are made using BHOG features trained over the INRIA

dataset. We first use three of the color videos from the Oklahoma State Uni-

verstity (OSU) Color-Thermal Database [7] to test the viability of the BHOG

detector. A monolithic 100 feature classifier is first used to evaluate the BHOG

classifier. Four monolithic classifiers are trained using two training sizes of 18x36

and 20x38. The 20x38 training set images are oversized to determine whether

or not the edge effects of calculating the magnitude and orientations affects the

classification. After the magnitude and orientations are calculated, the resulting

images are trimmed by 1-pixel on each side for further processing. Both training

sets are also trained with two bin voting schemes; the nearest scheme as shown

in Section 3.3.1 and a linear voting scheme as shown in Section 3.1.1.

Table 4.4 outlines the properties of the videos tested. A stride length of

two-pixels is used to scan the images, and is scaled according to a user defined

scaling factor of 0.90 for a total of 52803 possible detection windows. Overlapping

detections are grouped together using the OpenCv function groupRectangles().

Figure 4.9 shows that the oversized trained images continuously achieves a higher

recall rate than the non-oversized trained images. This is because each integral

image is computed per frame instead of per detection window, leaving any edge

effects at the borders of the frame and not at each window. Additionally, a linear

40



voting scheme also achieves a higher recall rate than the nearest-vote scheme.

However, the performance of the oversized linearly trained classifier produces a

higher FPPI.

Table 4.4: OSU Video Properties and Detection Settings
Video Resolution (w x h) Total Frames Stride (pixels) Scaling Factor Total Detection Windows

OSU4 320 x 240 1506 2 0.9 52803
OSU5 320 x 240 2032 2 0.9 52803
OSU6 320 x 240 1651 2 0.9 52803
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Figure 4.9: Recall (a) and FPPI Results (b) of Different Training and Voting
Methods over the OSU Dataset.
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Using the data from the monolithic tests, we train a cascade of BHOG features

over the INRIA dataset. We opted to train the cascade at a maximum of 14 levels,

each with a maximum of 50 features to reduce training time. To demonstrate the

performance of the cascade, we test each video over 10 different cascade levels.

Figure 4.10 shows that the cascade has a similar detection rate to the monolithic

classifier at comparable FPPI rates. Also, the processing time is substantially

reduced with the Cascade having speed improvement of approximately 8, over

52803 total detection windows, as can be seen in Table 4.5. Figure 4.12 shows

example frames of detections and common false positives in each frame, where the

false positives tend to focus around rigid objects. OSU6 results in a 50% recall

due to certain detections only occurring where contrast is sharp (clear definition

of the person and background), as shown in Figure 4.11.
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Figure 4.10: Recall and FPPI Results of OSU Videos over 10 Cascade Levels.

To further reduce the processing time, the thermal data is used to scan only

portions of a video, as described in Section 3.4. The pixel stride is set to 2 pixels
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Figure 4.11: OSU6 False Positive Examples.
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Table 4.5: Average Detection Times Using AdaBoost and Cascade Classification

OSU4 OSU5 OSU6 Average

AdaBoost BHOG Time (s) 0.8383 0.846 0.8426 0.8423
Cascade BHOG Time (s) 0.1058 0.1063 0.1047 0.1056

Speed Up 7.923 7.959 8.048 7.977

(A) 4b

(B) 5b (C) 6b

Ground 
Truth

Detection

False 
Postive

Figure 4.12: Example of Detections in OSU Video Dataset.

in both row and column directions with a scale factor of 0.9. Figure 4.13 shows

the thermal Recall and FPPI results of each OSU video over 10 cascade levels,

and Figure 4.14 shows a comparison with non-thermal videos at the 5th cascade

level. We can see that the color and thermal combination resulted in comparable

performance, with a lower recall in OSU4 and similar recall rates in both OSU5

OSU6. However, due to a smaller scan area using the thermal ROI’s, the FPPI

rate is dramatically lower in all videos.

The final processing time is also dependent on the video’s thermal density,
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Figure 4.13: Recall and FPPI Results of OSU Thermal Videos over 10 Cascade
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where a larger density corresponds to a larger scan area. The density is defined as

the average amount of detection windows per frame, as shown in Equation 4.21 .

Each video in Table 4.6 has a fairly small density, compared to the original 52803

detection windows and consequently a much lower processing time. Compared

to the Cascade times in Table 4.5, we see a speed-up of approximately 2. It

is expected that the speed up should be linear with the amount of detection

windows, however, during thermal scanning, there are significant overlaps with

nearby thermal ROI’s, as well as overhead to map from the thermal image to the

color image.

td = detWindowstotal/framestotal (4.21)

Table 4.6: Thermal and Color Video Processing Time Comparison

OSU4 OSU5 OSU6 Average

Cascade BHOG Time (s) 0.1058 0.1063 0.1047 0.1056
Cascade Thermal BHOG Time (s) 0.0560 0.0549 0.0544 0.0551

Density 4210.90 3859.72 3451.64 3840.75
Speed Up 1.890 1.937 1.925 1.918

4.3.2 Bird’s Eye View Testing

The next videos tests the viability of using a birds-eye view for camera place-

ment on a UAV using the two videos from the BIWI Walking Pedestrians Dataset

[20]. The video frames that are used for testing are outlined in Table 4.7, where

EWAP HOTEL and EWAP ETH represent the two videos. Table 4.8 provides

the total possible detections and the time to scan each video using BHOG fea-

tures. Each video has distinct characteristics that will test where our detector
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succeeds and fails. Example frames of the EWAP HOTEL and EWAP ETH

videos are shown in Figure 4.15. EWAP HOTEL provides a variety of pedes-

trians, in a well lit environment, offering various degrees of contrast with the

background. Many occlusions also occur with the surrounding environment. The

EWAP ETH video is dimly lit and recorded at a high altitude, causing pedestri-

ans to be hard to locate, however, most pedestrians are not occluded.

(a) EWAP ETH Frame Sample (b) EWAP HOTEL Frame Sample

Figure 4.15: BIWI Walking Pedestrians Dataset.

Table 4.7: EWAP Video Properties and Detection Settings
Videos Resolution (w x h) Frame Span Stride (pixels) Scaling Factor Total Detection Windows

EWAP HOTEL 720 x 576 10000-11000 2 0.9 342454
EWAP ETH 640 x 480 8250-9250 2 0.9 249517

Table 4.8: EWAP Detection Times

Videos Total People Total Positives Average Time per Frame (s)

EWAP HOTEL 38 7638 1.75
EWAP ETH 45 9237 1.672

We test a Cascade in the same manner as the previous tests. The pascal

rating is set to 0.2 to account for the wide variety of ground truth box ratios

versus the predetermined ratio of the detection boxes. We will examine the total
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recall and FPPI rates. We also compare the BHOG cascade method with the

OpenCV Haar-Cascade classifier and our implementation of HOG features.

With the EWAP HOTEL video, we achieve a recall rating of 71.5% and a

FPPI of 9.116 at 10 cascade levels. We run tests over 10 cascade levels to provide

a better overview of how the classifier performs. Figure 4.16 shows the Recall and

FPPI over the 10 cascade levels. Some of the false positives are consistent through

each frame focusing on rigid structures. In Figure 4.18 we see that the lamp post,

branches, and various body parts are marked as a positive detection. We also

see that some occlusions are correctly identified, however, occluded objects are

ignored in our analysis. Our detector also tends to focus around the head and

shoulder region.
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Figure 4.16: BHOG Cascade Results on the EWAP HOTEL Video.

The EWAP ETH video produces a recall rate of 42.15 and a FPPI rate of

23.617 at level 10 of the cascade. Figure 4.17 shows the Recall and FPPI over

10 cascade levels. In Figure 4.19 we see false positives tend to occur around

rigid structures and shadows similar to the EWAP HOTEL video. We also see
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Figure 4.17: BHOG Results on the EWAP ETH Video.

that our detector fails with the lower resolution video as compared to the higher

resolution EWAP HOTEL video.

Next, we compare the BHOG features to the Haar features using a Haar-

Cascade [25] and HOG features trained on a SVM. The HOG-SVM and Haar-

Cascade both use 2184 positive samples for training, and sample from a set of

1218 images for negative samples. We use the OpenCV cascade training and

testing libraries for the Haar Features using similar training parameters as the

BHOG features as shown in Table 4.9, with a minimum hit rate of 99.7%, a

maximum false alarm rate of 75%, a maximum of 50 features per cascade node,

and a total of 11 stages.

The HOG features are computed as described in Section 3.1, and are trained

using OpenCV’s SVM training functions, with the parameters shown in Ta-

ble 4.10, and is bootstrapped to reduce false positives. The SVM does not use

validation as described in training the BHOG features (Section 4.2), so 3654 total
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Figure 4.18: EWAP HOTEL Annotated Frames.
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Figure 4.19: EWAP ETH Annotated Frames.

negative samples are generated. The SVM type is an ε-Support Vector Regres-

sion, where the distance between feature vectors from the training set and the

fitting hyper-plane must be less than p, and outliers use a penalty multiplier of

C. The chosen SVM kernel type is linear.

Table 4.9: Training Parameters for OpenCV Haar Cascade Training

Minimum Hit Rate Max False Alarm Rate Max Weak Count Number of Stages

Haar-Cascade 99.7% 75% 50 40

The results of the HOG-SVM and Haar-Cascade classifiers are shown in Ta-
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Table 4.10: OpenCV SVM Training Parameters

SVM Type Kernel Type c Value p Parameter

HOG-SVM EPS SVR Linear 0.01 0.1

ble 4.12 and Table 4.11, for both the EWAP HOTEL and EWAP ETH videos,

respectively. The Haar-Cascade out performs the BHOG features at higher lev-

els, and both the BHOG and Haar-Cascade models outperform our HOG-SVM

model. The Haar-Cascade also exhibits poor detection in the EWAP ETH video.

Table 4.11: Results of Comparisons between HOG-SVM, Haar-Cascade, and
BHOG classifiers on the EWAP HOTEL Video

HOTEL RECALL FPPI

BHOG 10 Levels 71.5% 9.116
Haar-Cascade 34 Levels 92.7% 9.117

HOG-SVM 37% 8.552

Table 4.12: Results of Comparisons between HOG-SVM, Haar-Cascade, and
BHOG classifiers on the EWAP ETH Video

ETH RECALL FPPI

BHOG 10 Levels 42.1 % 23,617
Haar-Cascade 34 levels 55.1% 60.838

HOG-SVM 35.7% 27.668

To provide better comparison with the BHOG and Haar-Cascade, we compare

10 levels of both detectors. Figure 4.20 and Figure 4.21 provide the statistics on

the EWAP HOTEL and EWAP ETH videos, respectively. We see that Haar-

Cascade outperforms the BHOG cascade at similar FPPI rates. For example, at

9.1 FPPI, the Haar-Cascade achieves a recall rate of 92.7%, where as the BHOG

cascade achieves a recall rate of 71.5%.
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Figure 4.20: Haar-Cascade Results on the EWAP HOTEL Video.
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Figure 4.21: Haar-Cascade Results on the EWAP ETH Video.
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Chapter 5

Conclusion and Future Work

In this work we analyzed the use of thermal segmentation with a BHOG fea-

ture classifier, using the INRIA dataset for thermal testing and our own compiled

dataset for birds-eye view testing. We demonstrated that the thermal segmenta-

tion has a speed up of 2 with videos of 320x240 resolution. The speed up however

is highly dependent on the thermal density of the environment. Thermal segmen-

tation also decreases the FPPI by only focusing on the hottest parts of the image.

The BHOG classifier was also able to classify people in the OSU video dataset

with recall rates of 91.5%, 93.1%, and 51.8%, and FPPI of 1.59, 1.81, 1.85, in

OSU4, OSU5 and OSU6 videos, respectively.

Our dataset has shown promise with the higher resolution EWAP HOTEL

video. The BHOG feature set has an overall recall of 74.3% and 9.811 FPPI at

10 cascade levels. Most of the false positives tend to be around rigid objects, such

as limbs and tree branches. Our dataset unfortunately fails in a lower resolution,

higher altitude scenario where people are harder to locate, with a recall rate of

42.1% recall rate and FPPI of 23.617 at 10 cascade levels.

Overall the Haar-Cascade outperforms the BHOG features with our BEV

dataset. At 34 cascade levels, the Haar-Cascade exhibits a recall rate of 92.7%

and a FPPI of 9.117 in the EWAP HOTEL video. Similarly, the Haar-Cascade

also fails in the EWAP ETH video with a recall rate of 55.1% and a FPPI of

60.838. The failure of the EWAP ETH can be attributed to the training of the

features over our dataset, since our dataset does not include enough low resolution
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training examples.

There are many methods to explore for future work for aerial identification

of a human. In order to build upon the work presented in this project, more

positive lower resolution training samples can potentially improve the classifier

with lower resolution images. Our dataset also is trained using all positions of a

human which introduces a lot of noise for training, so in order to improve upon

this, future tests can focus on training for one pose. However, training for one pose

would also mean exploring rotation invariant detectors or other machine learning

techniques to handle multiple poses. The speed of an object detector can also be

improved through hardware, such as Graphics Processing Unit (GPU), or Field

Programmable Gate Array (FPGA) to compute object features. In addition,

other multi-modal processes can be investigated to improve on the color and

thermal data. Along with segmenting for regions of interests, the thermal data

can also be used to enhance the features through image fusion techniques.
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