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ABSTRACT 

Spacecraft Trajectory Optimization Suite (STOpS): Optimization of Multiple 

Gravity Assist Spacecraft Trajectories Using Modern Optimization Techniques 

Timothy J. Fitzgerald 

 

In trajectory optimization, a common objective is to minimize propellant 

mass via multiple gravity assist maneuvers (MGAs). Some computer programs 

have been developed to analyze MGA trajectories. One of these programs, 

Parallel Global Multiobjective Optimization (PaGMO), uses an interesting 

technique known as the Island Model Paradigm. This work provides the community 

with a MATLAB optimizer, STOpS, that utilizes this same Island Model Paradigm 

with five different optimization algorithms. STOpS allows optimization of a 

weighted combination of many parameters. This work contains a study on 

optimization algorithm performance and how each algorithm is affected by its 

available settings. 

STOpS successfully found optimal trajectories for the Mariner 10 mission and 

the Voyager 2 mission that were similar to the actual missions flown. STOpS did 

not necessarily find better trajectories than those actually flown, but instead 

demonstrated the capability to quickly and successfully analyze/plan trajectories. 

The analysis for each of these missions took 2-3 days each. The final program is 

a robust tool that has taken existing techniques and applied them to the specific 

problem of trajectory optimization, so it can repeatedly and reliably solve these 

types of problems. 
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1. INTRODUCTION 

1.1 Statement of Problem 

With many engineering problems, not just any solution will do. It is desirable 

and often required to find the best solution within reason: the ‘optimal’ solution. 

The field of optimization originated within the field of calculus; the objective was to 

find the minima or maxima (the optima) of calculus functions. These functions 

typically contain a small number of variables and have well-known derivatives. The 

derivatives can be used to easily identify the optima of the function, and the second 

derivatives can be used to identify whether these optima are maxima or minima. 

The absolute, most optimal solution is often difficult to find in real-world 

engineering problems, which typically have large quantities of variables and 

functions/derivatives that are not clearly defined. Additionally, once an optimal 

solution is found, it is even harder to determine if that is the absolute best (the 

global optimum) or just a very good solution (a local optimum). 

Various methods have been developed to find global and local optima over a 

wide range of search spaces, and the best method to use for a particular problem 

is an optimization problem of its own. A particularly interesting method to tackle 

this conundrum is the Island Model Paradigm [7], where multiple methods run 

simultaneously and continuously compare solutions. This allows the different 

methods to play off each other’s strengths, building a more robust optimization 

tool.  This work serves to utilize this model with other existing optimization 

algorithms in a new tool to optimize spacecraft trajectories. 
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1.2 Purpose of Study 

Each spacecraft trajectory poses an incredibly difficult optimization problem 

to mission designers. The search space is often immense with an unknown 

landscape, and designing algorithms for particular problems is time consuming. 

Running these algorithms can be computationally expensive. As the exploration of 

space continues to grow, the desire to quickly and efficiently find the best available 

trajectories grows as well. The need for an effective and robust optimization 

algorithm that returns the global optimum within a reasonable amount of time is 

continually increasing. This thesis will provide an open source solution to the 

problem, available to universities, industry, and individuals interested in the field of 

trajectory optimization. The work does not serve to develop new optimization 

methods, but instead to take existing techniques and develop a tool that can 

repeatedly and reliable solve the specific problem of spacecraft trajectory 

optimization. 

1.3 Literature Review 

Some other programs exist that perform a similar function to the suite 

presented in this work. Most existing programs are proprietary or expensive. Some 

examples of existing programs that come with a hefty price tag are BullsEye [21], 

COPERNICUS [22], Mission Analysis Environment for Heliocentric High-Thrust 

Missions [23], and Mixed Integer Distributed Ant Colony Optimization [24].  

There are also some programs that are publicly available, free of charge. One 

is called Java Astrodynamics Toolkit [25]. This tool is written in Java, and is exactly 

what the name implies: multiple individual functions that can be used for mission 



3 
 

analysis. This includes orbits, ADC, optimization, etc. The program requires some 

digging and manipulation of existing code before it can be applied to any particular 

trajectory problem.  

Another program is called Skipping Stone [26]. This program is a MATLAB 

user interface developed for a master’s thesis that analyzed the possibility of a 

mission to the solar bow shock. The mission kept the time of flight under 15 years 

and tried to keep the spacecraft dry mass as close to 500 kg as possible. Skipping 

Stone utilized four stochastic methods, but the user’s control over these algorithms 

is limited and the number of flybys is limited to four. 

One last program is called Parallel Global Multiobjective Optimization 

(PaGMO) [27]. PaGMO was developed by Dario Izzo et al. of the European Space 

Agency. This program was supplemented by a Cal Poly Thesis by Jason Bryan, 

titled “Global Optimization of MGA-DSM Problems Using the Interplanetary Gravity 

Assist Trajectory Optimizer (IGATO)” [28]. PaGMO is a C++/Python program that 

is generic to optimization. It does not have an overarching interface, and like JAT 

it requires some manipulation and code building to use for trajectory optimization 

problems. This is what Jason did. He built a user interface around PaGMO specific 

to spacecraft trajectory problems, and added in dynamic restart capabilities, a 

pruning algorithm, and subdomain decomposition. 

1.4 Structure of Paper 

This paper first gives an introduction/refresher on orbital mechanics in 

Section 2. For readers with experience in this area, this section can be skipped. 

Section 3 then dives into the general field of optimization. This section also 
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includes more detail on each of the five algorithms utilized in the suite. Even the 

reader who is familiar with the algorithms presented here is encouraged to read 

this section, as this work employs particular aspects of each algorithm that may 

not be the reader’s understood ‘standard’. Following an explanation of 

optimization, Section 4 details how the Island Model Paradigm works. With the 

workings of STOpS explained, Section 5 shows the verification process used for 

each algorithm on known test functions. After the ideal default parameters for each 

algorithm have been presented, Section 6 shows the results of two specific test 

cases. Lastly, Section 7 briefly shows the GUI used in this work, followed by the 

conclusions drawn in Section 8. 

All images, unless otherwise cited, were generated by the author using 

MATLAB 2015a or 2015b. 

1.5 Acronyms 

ACO – Ant Colony Optimization 

ACS – Ant Colony System 

AS – Ant System 

DE – Differential Evolution 

EAS – Elitist Ant System 

GA – Genetic Algorithm 

GUI – Graphical User Interface 

LS – Local Search 

MMAS – Min-Max Ant System 

PSO – Particle Swarm Optimization 

SOI – Sphere of Influence 

STOpS – Spacecraft Trajectory 

Optimization Suite 

TSP – Traveling Salesman Problem 
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2. ORBITAL MECHANICS REVIEW 

Contrary to the common misconception, objects in orbit are not in ‘zero-g’. 

Gravity is actually the main force acting on an object in orbit, and without it, the 

orbit would not exist. Objects in orbit are simply traveling fast enough to escape 

the pull of gravity, but slow enough that they do not leave the planet entirely. 

Consider the cannonball example, proposed by Isaac Newton [2] and shown in 

Figure 2.1 [1]. 

If a cannonball is shot from the North Pole, it will eventually hit the ground 

(trajectory A). If it is shot faster, it will go further before it hits the ground (trajectory 

B). Eventually, the ball will be shot fast enough that by the time it falls to where it 

would have hit the ground, it is beyond that point horizontally (trajectory C). It then 

continues its motion; it is in orbit. If the ball is shot faster, then on the other side of 

the Earth it gets even further away, but it is still within Earth’s gravity so it still gets 

pulled back (trajectory D). All trajectories described so far return back to the 

original height of the cannon. If the ball is shot fast enough, it will no longer return. 

Instead, it has enough energy to get far enough away from the Earth that it can 

escape Earth’s gravitational pull (trajectory E). 

 

Figure 2.1. Newton’s Cannonball 
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2.1 Planetary Flybys & ΔV Maneuvers 

Consider trajectory E from Newton’s cannonball example. If time were 

propagated backwards from the shot out of the cannon, there would be a mirrored 

escape trajectory going in the opposite direction. If an object enters a celestial 

body’s sphere of influence (SOI) with enough energy, then it will continue until it 

escapes at a different location. Within the celestial body’s reference frame, the 

magnitude of the object’s velocity will be the same at the entry and exit points of 

the SOI, but the direction will be different. When examining an interplanetary 

trajectory, this process takes place so quickly and in such a small area (relative to 

the entire trajectory/problem), that it can be reasonably approximated as an 

impulsive ΔV maneuver [5]. This is called “patched conics”, and allows these 

trajectory problems to be broken up into individually solvable parts. The core of 

these problems, gravity assist maneuvers or “flybys”, can be seen below in Figure 

2.2 [5]. 

 

Figure 2.2. Planetary Flyby Maneuver 



7 
 

Keeping in mind that one of the main variables being optimized for these 

spacecraft trajectories is fuel mass, it is easy to understand why these ΔV 

maneuvers are valuable: they are essentially “free”. If the spacecraft is placed on 

the right flyby, the over-arching gravity assist trajectory can be altered while 

expending no fuel. Even though the magnitude of the craft’s velocity (relative to 

the celestial body), has not changed, the vector itself (its direction) has. In the 

larger reference frame (outside of the flyby body’s reference frame), the direction 

has also changed. Based on how the spacecraft has approached and leaves the 

body it is flying by, the magnitude of the spacecraft’s velocity can actually be 

changed as well. 
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3. OPTIMIZATION 

Optimization can be simply stated as finding the best solution to a given 

problem. In general, the only difference between finding a maximum and minimum 

with the algorithms used in this work is applying a negative sign to the value of the 

cost function being optimized. For clarity, all explanations in this section refer to 

the minima of a function as the function’s optima. 

In real-world engineering problems, optimization can be a difficult process. 

These problems typically have many variables, and the bounds for these variables 

can span a large range of values; they have an immensely large search space. 

Trying to define what makes a particular solution the “best” is tough as well. For a 

problem with n variables, the search space spans n-dimensional space. This 

makes the search space impossible to visualize if n is greater than 3. For the sake 

of discussion this section will deal with only 2-dimensional problems in order to 

more effectively and visually explain the processes and algorithms. All processes 

and algorithms apply to these 2-dimensional problems in the same way they apply 

to problems with more dimensions without any loss of generality.  

This section serves to explain the optimization algorithms and processes 

utilized in this work. All processes used were taken from literature. However, 

various implementations of the algorithms and processes have been found, so it 

is necessary to establish exactly which elements have been taken from literature 

and implemented here. The only optimization process that is unique to this work is 

the particular application of Ant Colony Optimization to spacecraft trajectory 

problems.  
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3.1 Local vs. Global 

As mentioned earlier, when a good solution is found, it is sometimes difficult 

to determine if it is just a really good solution (a local optima) or the actual best 

solution (the global optimum). It is important to understand the difference between 

these two, as certain methods work better at finding one as opposed to the other. 

For example, local search optimization specializes in finding local optima, whereas 

genetic algorithms have the ability to move from optima to optima without always 

getting stuck in the first one they find. As a result, they have a chance to actually 

find the global optimum; local search methods will only find the global optimum if 

they are initially placed in that optimum’s basin. Ackley’s function [18], whose two-

dimensional version is shown in Figure 3.1 below, serves as an excellent example 

of the two types of optima. 

 

Figure 3.1. Ackley’s Function (surface plot on left, contour plot on right) 

Ackley’s function can be evaluated in any number of dimensions, as can be 

seen in Eq. 3.1, where d is the number of dimensions. The two-dimensional version 

will be used as the example function when explaining the various optimization 

methods used in this work, with a=20, b=0.2, and c=2π. 
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𝑓(𝒙) =  −𝑎 ∗ 𝑒𝑥𝑝 (−𝑏√
1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) − 𝑒𝑥𝑝 (

1

𝑑
∑ cos(𝑐𝑥𝑖)

𝑑
𝑖=1 ) + 𝑎 + 𝑒𝑥𝑝(1)  (3.1) 

A function like this is called multi-modal, because it contains many optima. 

Every bottom of a basin is a local optima; it is better than a group of points 

immediately around it. However, there is only one global optima, or point that is 

better than all the other points. The tricky part in telling the difference is that by 

definition, the global optimum is also a local optimum, so there is no clear cut 

difference (unless the search space is fully defined as it is in Ackley’s function or 

most other 2-dimensional problems). This particular function has its global 

minimum value at 0 when all elements of x are 0. 

3.2 Local Search Methods 

A basic, but effective, set of methods often used in optimization can be 

generalized to be called local search methods. A gradient-based method is a local 

search method that uses the gradient (a.k.a. the slope or derivative) of a cost 

function. When dealing with minimization problems, this means that the optimizer 

will travel “down” until it cannot go down any further. In the case of Ackley’s 

function, it is as if one were to place a drop of water randomly somewhere in the 

search space; it would slide down into the bottom of whichever basin it landed in. 

This is why local search methods are very good at finding local optima as opposed 

to global optima: they go to the nearest good solution and stop. It would be quite 

surprising if the water shot all the way back out the other side of the basin!  

That particular path in the water droplet example reflects a specific gradient-

based method called steepest descent [6]. Steepest descent is more efficient than 
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other local search methods, but it requires knowledge of the function’s gradient to 

actually be used.  

Another way to define a good search direction is to simply take one variable 

and see if changing it (either increasing or decreasing) improves the solution. 

Whatever change makes the cost decrease is the new search direction. The 

process is then repeated for the next variable. This method (holding all variables 

constant except for one at a time) is called univariate search, or one at a time 

search [6]. This method is not as effective as steepest descent since directly along 

any one axis is rarely the direction of most improvement [6], but it does allow some 

progress in functions with undefined derivatives. A benefit of this search is that 

since all sequential search directions are perpendicular, the function will not undo 

any of its progress on its next step. 

Methods like steepest descent and univariate search are used to find the best 

direction to look for a minimum, but there is another step to actually finding the 

minimum. When a direction is chosen, the problem is essentially converted into a 

one-dimensional problem: the optimizer can travel along the chosen search 

direction until a minimum is found. Binary bracketing and golden sectioning 

techniques [6] are used to actually locate the minimum along the chosen search 

direction. Binary bracketing ‘feels’ out along the search direction until one point 

has a cost value lower than both the initial point and a third point (that is further 

away, along the search direction). This scenario guarantees that some minimum 

exists along that bracket. Golden sectioning then continually shortens the bracket 
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that contains the optima until the bracket has become smaller than some preset 

tolerance.  

Once the minimum is found, the process to choose a new search direction is 

repeated. Once the optimizer cannot find a direction that will improve the solution, 

an optima has been found. It should be noted that in the univariate search in this 

work, when the direction of improvement is decided, the test point along that 

direction is used as the initial point in binary bracketing. This can be seen in the 

following example. Since Ackley’s function’s derivative is not well defined at all 

points, the example will use univariate search to define the direction and golden 

sectioning to find the minimum along each direction.  

A point is randomly chosen in the search space: (-1.4,0.75). The first direction 

examined is the X direction. It can be seen that increasing X leads us to an 

improvement in the function’s cost value. The optimizer continues to travel in that 

direction until it senses that it is moving “up”. After golden sectioning has been 

applied, the minimum of that line has been found to lie at (-0.9392,0.75). Moving 

next in the Y direction, the process is repeated and the optimizer finds itself at the 

point (-0.9392,0.9682). Finally, one more improvement in the negative X direction 

places the optimizer on its final point, (-09695,0.9682). Increasing or decreasing 

either the X or Y value from this point increases the cost, instead of decreasing it. 

Therefore, an optima has been found. The path can be seen below in Figure 3.2. 
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Figure 3.2. Univariate Search, Ackley’s Function 

Since the search space for Ackley’s function is known, it is obvious that a 

local minimum has indeed been reached, and the global minimum has been 

completely ignored. 

3.3 Genetic Algorithms 

One of the global optimization methods used in this work is that of the Genetic 

Algorithm (GA). This work follows the methods found in two sources: “Genetic 

Algorithms in Search, Optimization, & Machine Learning” by David E. Goldberg [9], 

and “Practical Genetic Algorithms” by Randy L. Haupt and Sue Ellen Haupt [10]. 

This section serves as a summary of the techniques presented in those books, as 

well as the adaptations required for the particular problems tackled here. The 

interested reader is encouraged to reference these books for more detailed 

explanations. 
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Essentially, GAs (a subset of evolutionary algorithms) mimic biological 

optimization similar to the theory of Darwin and survival of the fittest. GAs start with 

a span of random solutions (a population) and use some selection method to 

decide which solutions to use in mating to create a new group of solutions (the 

next generation). This process continues until the best member of the current 

generation has a solution that meets some criteria, or the algorithm can run for a 

fixed number of generations.  

GAs are a type of stochastic method; they rely heavily on randomness to 

effectively search the entire search space. This randomness, when combined with 

the survival of the fittest mentality, works well in optimization. As described by 

Goldberg, “[w]hile randomized, genetic algorithms are no simple random walk. 

They efficiently exploit historical information to speculate on new search points 

with expected improved performance” [9]. An example of GA’s progress can be 

seen in Figure 3.3. The processes will be explained in the following sections.  

 

Figure 3.3. Progress of a GA (left to right: generations 1, 3, 6, 20) 

3.3.1 Binary vs. Continuous 

GAs can be divided into two distinct groups: binary and continuous. These 

terms deal directly with the variables used to solve the problem, or more directly, 

the cost function. Original GAs were binary. In binary GAs, population members 
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are strings, each made of binary values of all the variables in succession. For 

example, if the cost function has two variables that are integers between 0 (binary 

representation 000) and 7 (binary representation 111), a possible population 

member could be (2,5). This would be represented as the string 010101, where 

the 010 is the 2 and the 101 is the 5. 

This type of variable representation poses some obvious concerns for 

modern optimization problems. The search space is discrete; the system above 

would only be able to look at integer values. In order to obtain the precision needed 

for many real world problems (whether that means a larger range of integers, or 

floating point decimal numbers), the length of the string must be quite large, 

especially when high precision is paired with a multi-dimensional cost function. 

The solution to this conundrum is the continuous GA. In this type of variable 

representation, the variables are free to be any value between specified upper and 

lower bounds, with precision limited only by computational programming. Aside 

from how variables are represented, the main difference between these two 

methods is how population members are mated to create the next generation, 

which will be discussed later.  

3.3.2 Selection Methods 

The selection method in GAs has a noticeable effect on the algorithm’s 

performance. A good selection method does not eliminate areas of the search 

space too quickly (avoiding premature convergence), yet accurately guides the 

algorithm to the global optimum in a reasonable amount of function evaluations. 

There are multiple choices for how to choose which members of a population to 
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keep and use for mating. Obviously, random selection is a choice. It does not 

guarantee any progress, but given a large enough population, it could potentially 

discover some local, or even the global, optima. 

Another more useful method is called natural selection due to its similarity 

to the process in nature. In this method, the population is sorted and arranged from 

best to worst. The best members (exactly how many is up to the user) are kept 

and advance to the next generation. It is the same as the survival of the fittest, as 

if the weaker members of the population have died out; they were not strong 

enough to survive. After the best members have been selected, they continually 

mate and produce offspring until the population has been replenished. For 

example, if a population contains 100 members, and the best 20 are selected to 

advance, then these 20 members mate until 80 more offspring have been 

produced, thus giving the next generation the required 100 members. More details 

on how the mating process works will follow.  

Another option for selection methods is known as thresholding. In this 

method, the number of population members that survive fluctuates; any member 

with a cost below the threshold survives, advances, and is used in mating. By itself, 

this solution can only guarantee a solution as good as the cost of the threshold. 

Eventually, members will all have costs below the threshold and the number of 

members selected to advance will be equal to the size of the population, which 

leaves no room for new offspring. The difficulty with this method is that the user 

must have some realistic idea of the cost of an optimal solution. If no members 

meet the threshold requirement, then the algorithm needs to start over with an 
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entirely new randomized population. A workaround for this problem is setting a 

variable threshold. In the case when some solutions actually meet the threshold, 

as soon as a certain percentage of the population meets the threshold, the 

threshold can be lowered. In the case when no population members meet the 

threshold, the threshold can be raised. 

The last method for selection is called roulette selection. In this method, 

each member of the population is assigned a probability, with the better solutions 

receiving the higher probabilities. No population members are automatically 

eliminated in this method. While at first this may seem counterproductive, in reality 

this is the only way to ensure that no part of the solution space is ignored. This 

gives all areas at least a small chance for survival, which could be useful in 

functions that have a noisy search space and/or isolated optima. Each time the 

mating procedure is executed, two members are selected based on their 

probabilities, analogous to spinning a roulette wheel [9]. 

The roulette selection method has two options for assigning probabilities to 

the population members; weight based on rank, or weight based on cost. The 

former is a “blinder” approach; it allows solutions a better chance to survive, 

because the probabilities are the same whether the fitness values are similar or 

distinct. With the latter option, if there is a solution that is considerably better than 

the rest,  in a cost based probability scenario it is highly probable that this solution 

will dominate the mating process, and could potentially lead the algorithm to 

premature convergence. 
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3.3.3 Mating Methods 

After solutions have been selected and added to the mating pool, there are 

a few options as to how the mating will be performed. Just as in nature, it is 

possible for an offspring to inherent a trait identical to one of its parents, but it is 

also possible for its other traits to be mixtures of its parents. 

When mating, the stark difference between a binary and continuous GA 

becomes even more apparent. Binary mating uses a method called crossover, 

which is similar to DNA exchange. Single bits, or chunks of the binary strings, can 

be exchanged to change the value of the variables. This allows the algorithm to 

explore new areas of the search space. With this method, the resulting new 

variables in the offspring may or may not be between its parents’ values; it could 

also be a direct copy of its parents’ values. To perform crossover, the number and 

location of ‘break points’ must be chosen to determine the crossover pattern. For 

example, consider two parents at (2,5), or 010101, and (1,0), or 001000. If two 

break points are desired, and their locations are between bits two & three and bits 

five & six, respectively, then the children would be 011001, or (3,1), and 000100, 

or (0,4). 

Continuous GAs can also follow a crossover pattern, but since their 

variables are just numbers, not binary strings, the crossover only allows switching 

of whatever values were initially generated. This means that new information 

cannot be introduced (except via mutation, which will be discussed next), severely 

limiting the areas available for exploration. To circumvent this issue, typically 

continuous GAs use a different mating method. Instead of literally exchanging bits, 
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population members of these problems give values to their offspring that are 

between their own values. This process is accomplished via equation (3.2) [9], 

where β is a random number between 0 and 1. This equation is applied to each 

variable amongst the parents, not the vectors as a whole. 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =  𝛽 ∗ 𝑝𝑎𝑟𝑒𝑛𝑡1 + (1 − 𝛽) ∗ 𝑝𝑎𝑟𝑒𝑛𝑡2         (3.2) 

Going back to the two parents used in the example above, the children 

could potentially have values (1.63,4) and (1,2.5). This way of mating is called 

blending, since traits of both parents are combined to form some new combination 

of the two [10]. One downside to this method is that future information is limited to 

values only between these two parents. To get around this issue, if the range of β 

is extended to be from –δ to 1+δ, the range of potential new information extends 

beyond the parents. 

3.3.4 Mutation 

No matter what type of GA, which selection method, or which mating 

method is chosen, all have the chance for mutation. Typically the probability for 

mutation is around 20%. Sometimes, an algorithm can converge prematurely. In 

this case, if a mutation is introduced into the system, a new area can be brought 

back into consideration. After the mating process is finished, each variable of each 

child has a chance to undergo mutation; it has a chance to become a new, totally 

random value somewhere between the previously defined variable bounds. One 

may assume that this could diminish the algorithm’s performance. On the contrary, 

if the mutation creates a population member with a higher cost, then that 

population will end up not making it to the next generation; no negative progress 
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will have been made. The possibility for it to help outweighs the chance that it will 

hurt.  

In the literature, the mutation method for continuous GAs gave each 

individual variable a chance for mutation [9]; that is to say that it is possible for only 

one or some of a population member’s variables to be mutated. In this work, it was 

found that this mutation did not adequately explore the search space. In two-

dimensional functions specifically, this only allowed exploration mostly in a cross 

(along the two dimensions) about the current main grouping of points. This problem 

is shown on the left side of Figure 3.4. To allow mutation to promote adequate 

exploration, if the mutation probability was met, then the population member’s 

entire set of variables was allowed to mutate. The effect of this modification can 

be seen on the right side of Figure 3.4, and this work found this method to be more 

successful overall. In this particular example, the algorithm had already reached 

success so exploration was not necessary, but in harder functions, when the GA 

may temporarily lie in only a local optimum, the continued exploration is quite 

important to avoid premature convergence. 

 

Figure 3.4. Mutation Methods (one variable on left, all variables on right) 
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This work also implements a new form of mutation that was not found in the 

literature. In many test cases, the GA arrived in the basin of the global optimum, 

but not directly on the value. A standard solution to this problem would be to apply 

a local search method at the final solution of the GA. However, when using local 

search methods on a function whose derivative is unknown, it is incredibly difficult 

to know which direction will lead to improvement. Furthermore, even if the correct 

direction is known, it is difficult to know how far to travel in that direction. The 

workaround presented in this work relies on the GA eventually having multiple 

members of the population as identical solutions. When this is the case, if two 

identical members are selected for mating, then both offspring just match them in 

traditional methods. Even with the extension of β mentioned in the previous 

section, there will be no new exploration if the parents are identical. So, in this work 

if the two parents are indeed the same, instead of them mating, one parent is 

slightly perturbed. Each variable has a chance to get perturbed between 0-δ% of 

the span of the original bounds. This mimics the process of a random march local 

search, and was found to improve the solution found by the GA in every test case. 

3.4 Differential Evolution 

The method of Differential Evolution (DE) used in this work was adapted from 

one source: “Differential Evolution: A Practical Approach to Global Optimization” 

by Kenneth Price, Rainer M. Storm, and Jouni A. Lampinen [12]. This section 

serves as a summary of the techniques presented in that book, as well as the 

adaptations required for the particular problems tackled here. The interested 

reader is encouraged to reference that book for more detailed explanations. 
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The process that DE follows is roughly similar to GAs; they both generate a 

random initial population, then from that population they choose certain members 

to change (create offspring), then they decide which of all these possibilities move 

on to the next generation. This process is repeated until either convergence is met 

or a certain number of function evaluations has been exceeded. The difference 

between the methods lies in how they select members (both before and after the 

“mating” process), and how they actually change (“mutate”) those members. 

3.4.1 Mating/Mutation 

In DE, there is not really a mating process, or any process that is analogous 

to nature. Instead, it is referred to as mutation. The mutation in DE uses equation 

(3.3) [12]. In that equation, V is referred to as the mutant vector. All of the x vectors 

are members from the current population. The subscript r0 is for the base vector, 

and the subscripts r1 and r2 are for the vectors used to create the difference vector. 

The variable F is the scaling factor that is applied to the difference vector. 

�⃑� 𝑖 = 𝑥 𝑟0 + 𝐹(𝑥 𝑟1 − 𝑥 𝑟2)    (3.3) 

In every generation of DE, the same number of mutant vectors are 

generated as there are original population members. These mutant vectors are not 

necessarily the vectors that are able to move on to the next generation. After each 

mutant vector has been formed, there is a chance for crossover; a probability that 

the trial vector (the one up for survival) will either take its trait (aka variable) from 

the ith mutant vector, or from the ith original population member. After all the trial 

vectors have been created, there is a group of vectors that is twice the size of the 
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original population. Half of these members survive until the next generation. The 

method of survivor selection will be discussed in a later section. 

The other option DE offers for customization besides selection is the value 

chosen for F. In the literature it was found that a value of F between 0.4 and 1 

should work for most functions [12]. There are also two other options (besides that 

of a constant F), which will be discussed later. 

3.4.2 Selection of Base Vector & Difference Vector Contributors 

The basic methodology and exploration strategy of DE is to get overall 

trends from the search space. For that reason, the selection of vectors to create 

the difference vector is always random. A vector from the original population can 

be used any number of times for any number of difference vectors. The only rule 

is that the base vector, difference vector contributors, and original population 

vector must all be unique. 

The literature presented three methods for choosing the base vector. The 

first is random selection, where “[a]ll vectors serve as base vectors once and only 

once per generation” [12]. They are continually selected at random, with no “regard 

for their objective function value” [12] until none are left. The next option is to use 

only the best so far solution as the base vector for every mutant vector generated. 

The last option is a combination of the two. For each mutant vector created, the 

base vector is some vector on the line between the best so far vector and a random 

vector. Exactly where on this line the vector lines is a random chance between 0 

and 1 (corresponding to 0% through 100% of the distance from the best so far 

vector to the randomly chosen vector). 
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3.4.3 Selection of Survivors 

After all trial vectors have been created, the DE algorithm is left with a group 

of potential survivors that is twice as large as the original population. There are two 

ways to determine which members survive. The first and most obvious option is to 

only allow the best members to survive. That is to say that the half of the population 

that has the best objective function values will move on to the next generation, and 

the rest will be discarded. 

The other option for selecting survivors is called tournament selection. In 

this method, each vector is paired up against T other vectors. If the current vector 

has a better objective function value, then it is assigned a win. After all vectors 

have finished their competitions, the half with the most wins moves on to the next 

generation. This method gives some chance for suboptimal solutions to move 

through. These selection methods both make DE an elitist method. Neither method 

can discard the best solution. 

The literature had mentioned that any selection process used for parent 

selection in evolutionary algorithms and GAs could work in DE. However, when 

cost weighted random and rank weighted random selection of survivors was 

employed, no combination of parameters led the algorithm to higher than a 15% 

success rate, and so it was not employed later. 

3.5 Particle Swarm Optimization 

The method of Particle Swarm Optimization (PSO) used in this work was 

adapted from one source: “Particle Swarm Optimization” by Maurice Clerc [17]. 

This section serves as a summary of the techniques presented in that book, as 
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well as the adaptations required for the particular problems tackled here. The 

interested reader is encouraged to reference that book for more detailed 

explanations. 

PSO can be imagined as the optimization of bees. The bees essentially begin 

their search for pollen by flying randomly. As bees find areas with flowers, they 

communicate these optimal areas to the other bees, until essentially all bees know 

where the best area to find flowers is. In this scenario, the bees are flying to and 

from a set location: their hive. In optimization, it does not add anything to the 

algorithm to have solutions move to and from a set location. Instead, in PSO, 

particles are given a random initial position and a random initial velocity, and from 

there they explore the workspace. The particles communicate with each other, and 

a few things influence a particle’s velocity: its own velocity, the best solution it has 

found, and the best solution that a different particle has told it about.  

3.5.1 Particle Motion 

As soon as the algorithm starts, the particles all have a velocity. One of the 

inputs to the algorithm is the maximum velocity. When choosing the initial velocity 

values for the particles, a value between the negative and positive maximum 

velocity is chosen. A typical value for the maximum velocity is one half the length 

of the search space for each dimension. Given a particle’s initial position and 

velocity (if acceleration is, for the time being, ignored), the particle will eventually 

leave the boundaries of the search space. When this happens, the particle’s 

position is set to be the edge that was crossed, and the velocity’s sign is changed. 

This keeps all particles within the set solution space. 
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However, the acceleration of the particles is what makes this algorithm 

interesting. There are three aspects that affect a particle’s movement: its own 

current velocity (v), its knowledge of the best solution that it has seen (location 

denoted by p), and the knowledge of the best solution that an informant particle 

has seen (location denoted by g). With these three pieces of information, the 

particle’s path is altered using Eq. 3.4 [17]. In this equation x corresponds to the 

particle’s position and the three c terms correspond to the particle’s confidence in 

each of the respective pieces of information it has. 

𝑣𝑛𝑒𝑤 = 𝑐1𝑣 + 𝑐2(𝑝 − 𝑥) + 𝑐3(𝑔 − 𝑥)         (3.4) 

The area that the user has control over in this algorithm is the confidence 

values. The confidence in the particle’s velocity, c1, is set to a value initially and 

then kept constant throughout the entire time span. This value is always kept less 

than 1, which signifies a deceleration (it is not desirable for the particle to 

continually gain speed, because this would make convergence impossible). The 

confidence values for the other two terms, however, vary. An input to the algorithm 

is cmax, which is the maximum confidence that can be placed on either piece of 

information. A random number is chosen between 0 and cmax for each iteration.  

The equation to decide a particle’s next velocity now has only two 

parameters that are up to the user. The literature found that making these two 

parameters dependent was beneficial [17]. The equation used is given below in 

Eq. (3.5), where φ is now the only parameter up to the user. 

{
𝑐1 =

1

𝜑−1+√𝜑2−2𝜑

𝑐𝑚𝑎𝑥 = 𝜑𝑐1
                     (3.5) 
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It is important to note that the value of φ cannot be less than 2, because 

then the parameter c1 has imaginary components. This work found this method to 

be less effective than giving the user full control over both confidence values. 

3.5.2 Informants 

When looking at the entire PSO algorithm, and not just a single particle, it 

becomes apparent that the communication of the particles is another parameter 

that affects the performance of the algorithm. If all particles speak to each other on 

each iteration, then the current best overall solution found will dominate the 

choices made by all particles, which could potentially lead to premature 

convergence. Conversely, if not enough particles communicate, then each particle 

could be left to explore on its own, which eventually turns back into purely random 

search. The number of informants, K, is an important parameter for the user to set.  

3.6 Ant Colony Optimization 

Although ants can sometimes be pesky little creatures, they definitely excel 

at finding and exploiting optimal paths between their nests and food sources. Like 

many optimization methods that seek to model real world behavior, Ant Colony 

Optimization (ACO) algorithms seek to mimic the behavior of ants. All algorithms 

developed, equations used, and explanations presented stem from one source: 

“Ant Colony Optimization” by Marco Dorigo and Thomas Stützle [11]. This section 

serves as a summary of the techniques presented in that book, as well as the 

adaptations required for the particular problems tackled here. The interested 

reader is encouraged to reference that book for more detailed explanations. 
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Real ants communicate with each other indirectly, via stigmergy, to tell each 

other how well their choices have paid off. They lay down a chemical, called 

pheromone, and they lay more or less depending on how happy they are with their 

path/findings. For any ants that come that way later, their decisions are influenced 

by the amount of pheromone that has been deposited by previous ants; if there is 

a lot of pheromone on a certain path, then they will likely follow that path. As the 

pheromone from bad paths gradually evaporates (since less or no ants follow it), 

and pheromone builds up on better paths, eventually all the ants follow one path. 

In ACO algorithms, artificial ants are generated that follow ‘paths’ through 

discrete or NP-hard optimization problems, continually updating the pheromone 

levels of their paths to influence the choices of later ants. Traditionally, ACO has 

been applied to ‘round-trip’ problems, like the Traveling Salesman Problem. In 

these problems, ants leave from a random node, and travel to every available node 

in the problem, finally ending up at the node from which they started. Based on the 

cost of their tour, they alter their pheromone deposit at every node. This is a direct 

analogy to the behavior of ants in real life: they leave the nest, find food, and return 

to the nest. This methodology does not map directly over to other NP-hard 

problems, such as the orbit optimization problems tackled in this work. Instead, 

this work models these problems as ‘one-way’ problems, where the same basic 

idea is applied: ants travel from the first planet to the last, and based on how much 

their trip costs, they alter the levels of pheromone deposited. The nodes are the 

bodies involved in the trajectory at different time steps. The initial body’s time is 
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chosen randomly for the first iterations, then at some point the algorithm transitions 

to a probabilistic selection of the first node. 

One of the original ACOs was called Ant System (AS). Although it worked 

well on ‘shorter’ problem instances, it has inspired many variations that have 

significantly improved the obtained results, especially for more complex, ‘longer’ 

problems. One part of AS that remains with all its variations used in this work is its 

“choice info” matrix. This matrix serves as a probability matrix (hence the variable 

p) that combines the amount of pheromone on the next available arcs with the cost 

to cross those arcs to arrive at the next available nodes. By placing more or less 

weight on either contributing part, the path the ants eventually end up on changes. 

This matrix is given by Eq. (3.6) below, where i and j represent the current node 

and the next potential node, respectively. The amount of pheromone on a 

particular arc is denoted by 𝜏𝑖𝑗, and the cost to get from node i to node j is 𝜂𝑖𝑗. 

These two values are raised to the power of α and β, respectively, to vary the 

importance of either. The summation term in the denominator is the sum of all the 

weights of the possible arcs to use at that step. In this work, that means the sum 

of all the potential weights of the next set of nodes (the available transfers to the 

next celestial body).  

𝑝𝑖𝑗 =
[𝜏𝑖𝑗]

𝛼
[𝜂𝑖𝑗]

𝛽

∑ [𝜏𝑖𝑗]
𝛼
[𝜂𝑖𝑗]

𝛽
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

               (3.6) 

The variations/extensions of AS that have been included in this work are 

Elitist Ant System (EAS), Rank-Based Ant System (ASrank), Min-Max Ant System 

(MMAS), and Ant Colony System (ACS). The differences between these specific 
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algorithms are explained in the sections below. A summary table for reference is 

provided in Table 3.1 [11] that shows the recommended values for the various 

parameters in these problems. The number of nodes is given by the variable m, 

the number of ants is given by n, and the initial pheromone level applied to each 

node is given by 𝜏0. The initial level of pheromone and the evaporation rate 

determine how much exploration can occur in the beginning of the optimization 

process. If the initial level is too low, then the search may prematurely converge 

on a suboptimal solution, and if it is too high, then it may take an unnecessarily 

long time to converge to any solution. The parameters e and Cnn will be described 

in the next sections. 

Table 3.1. Parameter Settings for ACO Algorithms 

ACO Algorithm 𝛼 𝛽 𝜌 𝑚 𝜏0 

AS 1 2 to 5 0.5 𝑛 𝑚/𝐶𝑛𝑛 

EAS 1 2 to 5 0.5 𝑛 (𝑒 + 𝑚)/𝜌𝐶𝑛𝑛 

ASrank 1 2 to 5 0.1 𝑛 0.5𝑟(𝑟 − 1)/𝜌𝐶𝑛𝑛 

MMAS 1 2 to 5 0.02 𝑛 1/𝜌𝐶𝑛𝑛 

ACS -- 2 to 5 0.1 10 1/𝑛𝐶𝑛𝑛 

 

3.6.1 Tour Construction 

In this work, a tour construction technique was developed that, to the best 

knowledge of the author, is unique to spacecraft trajectory optimization problems. 

In this technique, for every celestial body involved in the trajectory, there is a set 

of nodes. In an ant’s tour, it will visit each set of nodes once, unlike traditional ACO 

problems where the ant visits each node once. There is also no return to the 

original node (as that would be simulating direct travel from the final body back to 

the launch body).  
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Before any ant is sent on a tour, the ‘nearest neighbor tour’ must be 

completed. The cost of this tour is denoted as Cnn, and is needed for each method’s 

initial pheromone deposit calculation. To construct this tour, an ant is placed on a 

random initial node. While the choice info matrix has not yet been calculated since 

the pheromone levels are unknown, the cost to get from each node to another (all 

𝜂𝑖𝑗) is known. Using this information alone, the ant takes the cheapest path for 

each leg of the tour. This final cost is then used to give all nodes their initial 

pheromone level, and the artificial ants can begin their actual tours. 

The user has input a range of launch dates, followed by a range of possible 

times of flight between the celestial bodies. So naturally, the possible locations of 

the body that the spacecraft is launching from serve as the first set of available 

nodes. Then, each subsequent body has a set of nodes defined by its locations 

that span the earliest possible time the spacecraft could arrive to the latest. As 

more legs are added to the trajectory, the window of time for each set of nodes 

increases, depending on how large the given TOF span is. 

3.6.2 Pheromone Update 

After the ants have all completed their tour (except in ACS, where the ants 

complete their tours and update pheromone levels in parallel), the pheromone 

levels are updated. First, evaporation is applied. The input parameter ρ is used to 

denote the amount of pheromone that evaporates after each iteration. For 

example, if ρ is set to 2% (as it is in MMAS), then after each iteration, 2% of the 

pheromone from every node is removed. Each of the variations on ACO has a 

value for ρ that gives the best results in most cases, but this value of course may 
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need to be changed per the problem. These recommended values can be seen in 

Table 3.1. 

The amount of pheromone applied to each node, as well as how many ants 

are even allowed to deposit pheromone, is where the various algorithms differ the 

most. Ant System is the simplest. In AS, every ant deposits pheromone. Each ant 

deposits pheromone only on the arcs it has visited, and the amount of pheromone 

deposited is inversely proportional to the cost of its tour.  

One of the first extensions of AS, the Elitist Ant System, changes the 

pheromone update procedure slightly. It uses the same evaporation technique and 

the same deposit procedure for each ant except for one small change. In addition 

to each ant depositing an amount inversely proportional to its own tour, it adds an 

amount inversely proportional to the cost of the cheapest tour so far, but only if the 

arc it traveled on belongs to the best tour. The influence of this ‘best so far tour’ is 

assigned by the parameter e. Typically, this parameter is set to equal the number 

of ants used in the problem. 

In the next modified version of AS, the Rank-Based Ant System, only w ants 

are allowed to update the pheromone levels along their trails. This parameter is 

typically set to 6 ants. Then, each ant updates its own trail similar to AS, except 

the inversely proportional cost is multiplied by w minus that ant’s tour’s rank, so 

better tours affect the pheromone levels more. Also, if an arc of any of the w ants’ 

trails lies on the ‘best so far’ trail, it receives pheromone equal to w multiplied by 

the inverse value of the ‘best so far’ cost.  
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The last variation of AS that still has the ants complete their tours separately 

before any pheromone update is applied is the Min-Max Ant System. As the name 

would imply, the pheromone levels for all arcs are bounded by a pre-set minimum 

and maximum. The only ant that is allowed to deposit pheromone is either the ‘best 

so far’ ant, or the ant that has the best tour of that iteration. This may lead to 

premature convergence, but this possibility is minimized by setting the pheromone 

levels of the arcs to, initially, the maximum bound. 

The last extension of AS, called Ant Colony System, is the most different. It 

actually adds some new parts that AS and the variations previously described do 

not have. In ACS, the ants move along their tours in parallel. In the previous 

algorithms, each ant completed a full tour before the pheromone levels were 

changed. Here, the pheromone level is updated after any single ant completes a 

tour. After an ant travels from one node to another, it removes some pheromone 

from that arc in order to promote exploration. Also, when the ant is traveling, it does 

not only look at the choice info matrix. Instead, there is a chance that an ant can 

ignore this decision weight and choose its next path purely based on cost (ignoring 

pheromone completely). After all tours have been completed, the ant which has 

been on the ‘best so far’ tour adds pheromone to that path, this time with the added 

pheromone equal to the evaporation rate multiplied by the inverse cost of that arc’s 

travel.  

A difference unique to this work arises in the flyby penalties. In the ACO 

formulation, each portion of the total cost is only associated with its respective leg, 

and the only time the flyby penalty can be applied is when a certain pair of legs are 
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matched. That is to say that the costs of just the legs is not all of the information 

needed; the penalty could not be added to the ACO cost matrix. It was instead 

used as an influence on the pheromone deposit left by the ants. It is included in 

each ant’s stored tour cost, but not the cost information for each leg that feeds into 

the choice info matrix. 
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4. GENERALIZED ISLAND MODEL 

The generalized island model [7] is a method used in optimization that allows 

multiple algorithms to run, then allows them to share and compare their solutions. 

They can then use this information to explore new areas of the search space or 

update their population to find a solution faster. This allows different algorithms to 

work together and feed off of each other’s strengths and overcome each other’s 

weaknesses. Each method constitutes one island, and the layout of these islands 

is referred to as a topology. Different topologies, or ‘archipelagos’, can be applied 

to a problem. Having different sets of islands connected alters the topologies. 

When islands share/compare their solutions, this is referred to as migration, 

and how often this occurs is called the migration policy. The solution(s) an island 

chooses to share are chosen based on that island’s selection policy. Finally, 

whether or not an island keeps the solution(s) that other islands share with it is 

called an island’s replacement policy. 

4.1 Topology 

Arguably the most important element of the Island Model is the chosen 

topology. Different topologies may work better with certain problems, but the exact 

choice of which topology to use is a difficult one to answer. A topology with more 

islands is typically assumed to have a better chance at finding the best solution, if 

islands are set to different algorithms and islands with the same algorithm have 

different parameters. This is a good option if not much is known about the search 

space or which algorithms will perform better on the problem at hand. Incorporating 

many different islands allows the better islands to ‘control’ the migration, without 

the user needing to know beforehand which islands will be these better islands. 
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The down side to this, of course, is an increase in the needed computational power 

and time. One strategy that can be used is to run each algorithm by itself through 

the problem first, to see how well the algorithm performs. It is then easier to make 

an informed decision on which algorithms to finally include in the topology. 

4.2 Migration 

Migration is the main element in the island model. The island model can 

almost be thought of as a cousin to evolutionary algorithms, where the migration 

process is just another operator for obtaining new solutions for the next generation. 

When choosing a migration policy, there are a few options. The first choice is 

between synchronous or asynchronous migration. There are pros and cons to 

each method. 

In a synchronous migration policy, all migrations occur at the same time. 

This means that the migration can only occur at the pace of the slowest of the 

islands. In this method, all islands must obtain their solutions before any sharing 

can take place. When all islands have their solutions, the connected islands 

share/compare the solutions, all based on their selection and replacement policies. 

In asynchronous migration, islands do not need to wait for other islands. 

With asynchronous migration, there are two possible options as well: migration 

driven by the sharer, or migration driven by the receiver. In the former, as soon as 

an island finishes, it sends its solutions to all of the islands that it is connected to. 

These islands then take these shared solutions, and choose whether or not to use 

them based on their replacement policy. This could potentially render an island 

useless; if it is significantly slower than another island that shares with it, then it 
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will never be able to finish, and will be dominated by the faster island(s). The other 

option, migration driven by receiver, resolves this potential issue, by giving control 

of the migration to the receiving island. In this case, even the slowest island is 

allowed to finish before any sharing occurs.  

4.3 Selection 

An island’s selection policy dictates which solution, and how many solutions 

if multiple are desired, the island will share with its connected islands. The options 

for an island’s selection policy are essentially the same as the selection policies 

for the GA; they can be random, or natural selection can be used, or some sort of 

weighted probabilities can be assigned. For a detailed explanation of these 

possible choices, see Section 3.3.2. 

4.4 Replacement 

Just because a solution is shared with an island does not mean that the island 

will accept it. An island’s replacement policy decides whether or not the shared 

solution is kept, or if the island would like to only keep some of the solutions. The 

replacement policies follow almost the same guidelines as the selection policies: 

they can be random, only keep the best solutions, or keep only some solutions 

based on some weighted probabilities or thresholds. A possibility for a replacement 

policy is one where an island only keeps solutions that are better than solutions it 

has generated itself.  
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5. ALGORITHM VERIFICATION 

Before any testing was done with the STOpS GUI (spacecraft trajectory 

problems or the Island Model), each algorithm had to be tested to examine how 

well it worked independently, as well as which parameter settings should be used 

as the defaults. The five algorithms used in this work were placed into three groups, 

each with its own verification process. The first verification (detailed in “Stochastic 

Verification A”) was applied to three of the four stochastic methods: Genetic 

Algorithm, Differential Evolution, and Particle Swarm. The second verification 

(detailed in “Stochastic Verification B”) was applied to the Ant Colony algorithm. 

The third verification (detailed in “Deterministic Verification”) was applied to the 

Local Search algorithm. 

5.1 Stochastic Verification A 

For the first stochastic verification process, two difficult and well-known test 

functions were chosen: Ackley’s function and Rosenbrock’s function [4]. Both 

functions were run with 10 dimensions. The search space for Ackley’s function 

spanned each dimension from -20 to 20, and the search space for Rosenbrock’s 

function spanned each dimension from -10 to 10. The two-dimensional 

representation of and d-dimensional equation [4] for Rosenbrock’s function can be 

seen below in Figure 5.1 and Eq. 5.1, respectively. The two-dimensional 

representation and d-dimensional equation for Ackley’s function can be seen in 

Figure 3.1 and Eq. 3.1, respectively. As a measure of success in this verification 

process, if the algorithm obtained a solution below 1.5 for Ackley’s function or 10 

for Rosenbrock’s function, then that run was deemed a success. These values are 

more conservative than some of the tests found in the literature. They were not set 
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any lower because the purpose of this verification was to ensure that the 

algorithms could get into (or at the very least, near) the basin of the global optima. 

The process of moving along that basin is more the responsibility of the local 

search optimizer (when utilizing the entire island model), and as the algorithms 

communicate with each other in the island model, a close answer will still serve as 

valuable information for the algorithm on the next iteration. 

𝑓(𝒙) = ∑ [100(𝑥𝑑+1 − 𝑥𝑑
2)2 + (𝑥𝑑 − 1)2]𝑑−1

𝑖=1         (5.1) 

 

Figure 5.1. Two-Dimensional Representation of Rosenbrock’s Function 

5.1.1 Genetic Algorithm Verification 

The first algorithm tested was the Genetic Algorithm (GA). For the GA, there 

are 10 total options: five generation advancement options (natural selection, rank 

weighted random, cost weighted random, thresholding, total random replacement) 

and two mating options (binary or continuous). These options were run 100 times 

at 10 values of crossover probability and mutation probability, each from 0-100%. 

The population was kept at 100 members for each test, ran for 20 generations, 

and kept 30 members for the next generation (when that parameter applied). On 
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each run, the best solution found was recorded and plotted to see how the various 

parameters affected the GA’s performance. These surface plots shed some light 

on multiple aspects of the GA. First, it verified that total random replacement was 

not nearly as successful as the other options available to the GA. Additionally, the 

thresholding method was not effective, since it could only guarantee a solution as 

good as the threshold set by the user, and only if the algorithm found any solutions 

that met that threshold in the randomized phase. A variable threshold method 

could potentially fix this issue, but was not implemented in this work.  

When examining the weighted random option sets, it can be seen that rank 

weighted random outperformed the cost weighted random in each case. The cost 

weighted method placed too much emphasis on the local minima found early on, 

whereas the rank weighted method allowed enough freedom to escape them.  

It can also be seen that the binary GA outperformed the continuous GA in 

each case. In each option set, the binary GA was able to find a better solution than 

the continuous GA over a wider range of crossover & mutation probabilities. 

However, the binary and continuous GAs each had their own set of optimal 

parameters.  

Based on these findings, the only options examined in the next step of the 

GA verification were natural selection and rank weighted random (each for both 

binary and continuous GAs). Two of the plots used to come to these conclusions 

are shown below in Figure 5.2 and Figure 5.3.  
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The full set of these surface plots can be found in Appendix A. It should also 

be noted that when executing this first verification step, the binary GA took 

significantly longer to complete than the continuous GA.  

 

Figure 5.2. Rosenbrock: Rank Weighted Random, Binary 

 

Figure 5.3. Rosenbrock: Cost Weighted Random, Binary 
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The plots in Figure 5.2 and Figure 5.3 both show the clear trend that a higher 

crossover probability and lower mutation probability lead to the best results. To get 

a better feeling for the best crossover and mutation probabilities for each method, 

the four continuing option sets were run 100 times again, but with the crossover 

probabilities varying from 60-100% and the mutation probability varying from 0-

40%, each with 10 points again. This time, in addition to recording the best solution 

found, the number of successes was also recorded. Two of these plots can be 

seen below in Figure 5.4 and Figure 5.5, and a table showing the best success 

rate and the associated probabilities for each option set can be seen below in Table 

5.1. In the case of continuous rank weighted random (where both functions never 

saw success), the best solution found for Ackley’s function was 2.833, and the best 

solution found for Rosenbrock’s function was 27.65. 

These results show that using natural selection is clearly the best 

generation advancement choice for the GA, with binary outperforming continuous.  

As a result, the default settings used in this work are binary natural selection, with 

crossover and mutation probabilities of 70% and 10%, respectively. 

Table 5.1. Success Rates of GA Option Sets (Npop = 100, Ngen = 20, Nkeep = 30) 

    Ackley's Fxn Rosenbrock's Fxn 

    pcross pmut 
Success 

Rate 
pcross pmut 

Success 
Rate 

Natural 
Selection 

Binary 66% 3% 37% 66% 9% 43% 

Continuous 80% 0% 35% 91% 14% 7% 

Rank 
Weighted 
Random 

Binary 69% 3% 3% 71% 6% 5% 

Continuous 83% 11% 0% 97% 9% 0% 
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Figure 5.4. Ackley: Natural Selection, Binary 

 

Figure 5.5. Ackley: Natural Selection, Continuous 
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5.1.2 Differential Evolution Verification 

The second algorithm tested was the Differential Evolution algorithm (DE). 

For DE, there are 18 total options: three options for selection of the base vector 

(random, best so far, random/best so far blend), three options for the scaling factor 

(constant, jitter, dither), and two options for survivor selection (natural selection, 

tournament). As mentioned in Section 3.6, two other survivor selection methods 

were originally explored (rank weighted random & cost weighted random), but they 

were found to be incredibly ineffective (see Appendix B). First, these options were 

run 100 times at 10 values of crossover probability and scaling factor, changing 

from 0-100% and 0.2-1.2, respectively. The jitter and dither methods were not yet 

examined. The population was kept at 100 members for each test and ran for 20 

generations. On each run, the best solution found was recorded and plotted to see 

how the various parameters affected the DE’s performance. These surface plots 

shed some light on multiple aspects of the DE algorithm. It can be seen that the 

scaling factor should be kept low. This confirms the findings in the literature that 

the scaling factor should not be greater than 1, which would accelerate the solution 

particles [12] instead of allowing them to converge. However, the literature 

recommended a value of around 0.7, where these tests show that a value closer 

to 0.4 is more effective. The ideal crossover probability was around 40-80% for 

each case. Two examples can be seen in Figure 5.6 and Figure 5.7 below. The 

full set of these surface plots can be found in Appendix B. 
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Figure 5.6. Ackley: Blended Base, Constant F, Natural Selection 

 

Figure 5.7. Ackley: Random Base, Constant F, Natural Selection 

The plots show that when choosing the base vector, selecting random base 

vectors is ineffective. These cases saw no success, whereas both the best so far 

and blended selection processes saw success for multiple parameter values. For 

the next step in the verification process, the random base vector selection method 

was not included. 
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The tournament survivor selection method performed similarly to natural 

selection. This is because the number of competing tournament members was 

kept low, which allowed the method to behave similar to natural selection. As the 

number of tournament members increases, the algorithm approaches the behavior 

of the weighted random selection process, which was found to be ineffective. In 

particular, the tournament method was found to perform best when 10% of the total 

population was used for the number of competitors, but this still saw a slight 

decrease in performance from natural selection in all tests run. For this reason, the 

tournament selection method was excluded from the rest of the verification. The 

table from this step can be found in Appendix B. 

The next verification step was to run the algorithm again with only 30 

members per generation to see if the population size affected the best values to 

use. It was found that the population size did not change the optimal scaling factor 

or optimal crossover probability. It did, however, decrease the success rate, since 

fewer members corresponds to a smaller range of initial exploration. 

One more verification step was required before the final verification. All base 

vector selection methods (paired with natural selection for the survival method) 

were run with both jitter and dither. Jitter saw no success in either function for either 

base vector selection method, and therefore it was removed from the rest of the 

verification. Dither saw moderate success, but only with the best so far base vector 

selection method. It is possible that since dither utilizes some randomness, when 

combined with the randomness involved in the blended base vector selection 
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method, the algorithm does not receive enough guidance. Dither was still included 

in the final analysis. These results are shown in Table 5.2 below. 

Table 5.2. Success Rates of Jitter & Dither (Npop = 100, Ngen = 20) 

    Ackley's Fxn Rosenbrock's Fxn 

    pcross 
Success 

Rate 
pcross 

Success 
Rate 

Best So Far 
Jitter ~ 0% ~ 0% 

Dither 83% 31% 96% 27% 

Blend 
Jitter ~ 0% ~ 0% 

Dither 100% 2% 100% 1% 

 

The last step of tests used the larger population size of 100 and the constant 

scaling factor technique, with surface plots generated for values from 0.1 to 0.7 

with 20 points. The remaining options were run 100 times with the crossover 

probability ranging from 20-100%, with 20 points. The surface plots for success 

rates can be seen in Figure 5.8 and Figure 5.9 below, and a table showing the best 

success rate and the associated parameters for each option set can be seen in 

Table 5.3. The surface plots for best solutions found in this step can be found in 

Appendix B. 

Table 5.3. Success Rates of Final DE Option Sets (Npop = 100, Ngen = 20) 

    Ackley's Fxn Rosenbrock's Fxn 

    pcross F 
Success 

Rate 
pcross F 

Success 
Rate 

Best So 
Far 

Constant F 71% 0.45 91% 83% 0.48 53% 

Dither 83% ~ 31% 96% ~ 27% 

Blend 
Constant F 83% 0.42 96% 87% 0.42 56% 

Dither 100% ~ 2% 100% ~ 1% 
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Figure 5.8. Ackley: Best So Far Base, Constant F, Natural Selection 

 
Figure 5.9. Ackley: Blended Base, Constant F, Natural Selection 

These results show that dither was never more effective than the constant 

scaling factor. Both base vector selection methods saw the most success around 

the same scaling factor. Both base vector selection methods, when paired with a 

constant scaling factor, performed well. The blended method saw slightly higher 

success rates (5% more for Ackley’s function and 3% more for Rosenbrock’s). It 

can also be seen that the crossover probability fluctuates a bit, but typically 

performs well on the interval between 70% and 90%. 
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Consequently, the default settings used in this work are the blend for base 

vector selection, a constant scaling factor, and natural selection for survivor 

selection, with the scaling factor set to 0.4 and the crossover probability set to 80%. 

5.1.3 Particle Swarm Verification 

The third algorithm tested was the Particle Swarm Optimization algorithm 

(PSO). For PSO, there is only one set of options. This verification process found 

the best values of the two parameters that the user has control over: the number 

of informants for each particle (K), and the relation between the particle’s 

confidence in its own velocity and its confidence in it informants’ velocities (φ). The 

algorithm was run 100 times at 10 values of both K and φ, changing from 1-10 and 

2.1-3, respectively. The population was kept at 50 members for each test and 

allowed to run for 200 time steps. On each run, the best solution found was 

recorded and plotted to see how the various parameters affected the PSO’s 

performance. These surface plots shed some light on multiple aspects of the PSO 

algorithm. It can be seen that for both functions, the best tested number of 

informants was 4, and the best tested confidence relation value was 2.1 (the lower 

limit, which corresponded to a c1 value of 0.6417 and a cmax value of 1.348). The 

success surface plots can be seen below in Figure 5.10 and Figure 5.11. The best 

solutions found can be seen in Appendix C. 
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Figure 5.10. Ackley Success Rate 

 
Figure 5.11. Rosenbrock Success Rate 

This test left much to be desired. It showed a favorable trend in the choice 

for number of informants, so the confidence values were made independent again, 

and they were varied. The confidence in the particle’s velocity was varied from .1 

to 1.1, and the maximum confidence in the other pieces of information was varied 

from .2 to 2.2. Eleven points were used for each. This process was run for 4 

informants, 8 informants, and 12 informants. The success plots can be seen below 

in Figure 5.12 and Figure 5.13, with the best solutions found available in Appendix 

C. The results are shown in Table 5.4. 
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Figure 5.12. Ackley Success Rate 

 
Figure 5.13. Rosenbrock Success Rate 

Table 5.4. Success Rates of Final PSO Option Sets (Npop = 50, tspan = 200) 

  Ackley's Fxn Rosenbrock's Fxn 

  c1 cmax 
Success 

Rate 
c1 cmax 

Success 
Rate 

K = 4 0.9 0.2 73% 0.8 0.6 95% 

K = 8 0.9 0.2 69% 0.8 0.4 94% 

K = 12 0.9 0.2 56% 0.8 0.6 91% 
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These results show that only a small number of informants are needed. It 

is interesting to note that the algorithm performed better when c1 was greater 

than cmax. This contradicts the literature’s claim that the two confidence values 

can be calculated via the relation in Eq 3.7. It seems better to have c1 be twice 

the value of cmax (instead of vice versa). This difference may arise from a slight 

difference in implementation of the algorithm; although in the literature the 

framework for the algorithm was presented, new code was developed for this 

work since source code in MATLAB was not provided. Despite this difference, 

the findings from this verification step were used due to the success they saw. 

As a result, the default values used in this work were 50 population 

members with 4 informants, and confidence values of 0.85 for c1 and 0.4 for cmax. 

5.2 Stochastic Verification B 

The next verification step tested the Ant Colony Optimization algorithm. To 

start, the general procedure was tested on the traditional ACO test problem: the 

Traveling Salesman Problem (TSP). This ensured that the algorithm did in fact 

work before it was transferred over to the new formulation. This also served as a 

baseline for which extensions of the traditional Ant System were expected to have 

the highest success rates.  

The TSP used was a randomly generated problem with 36 nodes. This 

problem with its optimal solution is shown below in Figure 5.14. The optimal tour 

length is 55.42. Keeping with the more conservative definition of success, in this 

verification step if the algorithm arrived at a tour length equal to or less than 57, it 

was deemed a success. 
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Figure 5.14. Randomly Generated TSP 

The original Ant System, its three extensions, and Ant Colony System, were 

all run while varying the α and β parameters from 0.5 to 2 and 1 to 7, respectively. 

Each parameter was tested at 20 intermediate values, and each intermediate value 

was tested 25 times. Each run was allowed to run for 100 ant tours. Two success 

rate plots are shown below in Figure 5.15 and Figure 5.16, and the results are 

tabulated in Table 5.5. The full set of the surface plots can be found in Appendix 

D. 

 
Figure 5.15. Rank-Based Ant System Success 
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Figure 5.16. Ant Colony System Success 

Table 5.5. Success Rates of ACO TSP Option Sets (Nants = 15, Ntours = 50) 

  α β 
Success 

Rate 
Best 
Soln 

Ant System 
(AS) 

1.17 2.33 72% 55.58 

Elitist AS 1.50 1.67 100% 55.42 

Rank-Based 
AS 

1.33 2.33 100% 55.42 

Min-Max AS 2.00 6.33 64% 55.70 

Ant Colony 
System 

1.33 2.33 100% 55.42 

 

The two extensions that performed the best were Rank-Based AS and Ant 

Colony System. Elitist AS saw a 100% success rate with one setting, but it was not 

successful once α and β were changed. Both Rank-Based AS and Ant Colony 

System saw low average costs, but Rank-Based slightly outperformed Ant Colony 

system. As a result, the default extension used in this work was the Rank-Based 

AS, and its associated parameters in Table 5.5 were used as the default settings 

for it. 
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There were no known test functions to verify the unique ACO formulation in 

this work. Instead, close attention was paid in the test cases of Section 6 to the 

differences between the ACO answers obtained and the answers obtained with 

the other algorithms. That process is explained in more detail in that section. 

5.3 Deterministic Verification 

Verification of the deterministic method was a simple process. Since, by 

definition, deterministic methods are expected to arrive at the same solution every 

time for a given input, the algorithm was given an input in the optimal basin, five 

times for each function. It was found to arrive at the bottom of that basin with the 

same number of function evaluations each time. Although other basins are not well 

understood for those functions in 10 dimensions, five random points were chosen 

for each function and the algorithm was allowed to run another five times (for each 

point). The algorithm again found the same answer every time with the same 

number of function evaluations. For each test, a tolerance of 0.0001 was set (the 

algorithm was commanded to go until the improvement was less than 0.0001). The 

results of this test can be seen in Table 5.6 below. 

Table 5.6. Deterministic Verification Results 

X0 
Ackley's Fxn Rosenbrock's Fxn 

Jfinal Fxn Evals Jfinal Fxn Evals 

Optimal 
Basin 

0.000037 307 0.031497 211 

[8,8,….,8] 15.95934 112 47.86959 1037 

[1,2,3,….,10] 14.21791 49 43.31912 1126 

[10,9,8,….,1] 14.21192 140 8.21095 1272 

[-1,-1,….,-1] 3.57449 211 8.56036 416 

[-5,-5,….,-5] 12.63227 189 8.56583 466 
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6. TEST CASES 

With the algorithms verified independently, two test cases were run using the 

STOpS trajectory optimization interface. Both test cases are based on actual 

missions that have utilized multiple gravity assists. The first test case (Mariner 10) 

looked at the differences between the different individual algorithms as well as a 

few different topologies. The second test case (Voyager 2) examined the effects 

of the weights applied to the parameters being optimized. Each test case is 

discussed in the sections below. The default parameter values discussed in 

Section 5 were used throughout this analysis. 

6.1 Mariner 10 Mission 

The Mariner 10 mission was the first mission to ever successfully utilize a 

flyby maneuver to alter its trajectory [15]. The mission launched in November of 

1973 and performed a flyby of Venus in February of 1974 to reach Mercury in 

March of 1974 [16]. This mission is interesting not only because it is the first ever 

gravity assist maneuver, but because it had unique objectives from a trajectory 

design standpoint. The Venus flyby was necessary because the launch capabilities 

at that time could not place a craft on a direct path to Mercury. However, even 

having the craft arrive in an orbit around Mercury after utilizing a Venus flyby would 

require a large ΔV. So, the mission designers decided to place Mariner into an obit 

that was achievable at the time: a heliocentric orbit that had a period equal to twice 

that of Mercury’s, so that it could observe Mercury every 176 days. 

When this test case was run, there were three components to the objective 

function, all of which were being minimized: the required V∞ when launching the 

craft from Earth, a penalty ΔV induced if the Venus flyby did not match exactly to 
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a natural flyby, and the ΔV required to alter the craft’s velocity at Mercury to place 

it in an orbit that hits the same heliocentric position 176 days later. The dates from 

the actual mission, when run through this cost function, returned a value of 4.5372 

km/s for the total cost. 

This first test case was considered to be relatively easy since it had only 

three variables and therefore its primary purpose was to establish a good default 

number for how many solutions each algorithm should accept via its replacement 

policy. Each algorithm was run as one island and allowed one migration (meaning 

it could communicate with itself one time). Three quantities of accepted solutions 

were examined, each running 25 times for each algorithm. The solution quality for 

each scenario was used to establish the defaults. The results from the first step of 

this test are shown below in Table 6.1. 

Table 6.1. Mariner 10 Test Case Results: Number of Accepted Replacements 

  Nrep GA DE ACO PSO 

A
v

e
ra

g
e
 

F
in

a
l 
C

o
s
t 

2 6.7952 4.6135 9.6617 6.2906 

5 8.0964 4.6069 9.8738 5.1060 

10 8.7376 5.8848 9.8038 5.4575 

 

This first step tested three values for the number of replacements that each 

algorithm would accept after migration: 2, 5, and 10. The GA, DE, and PSO 

algorithms saw the best performance when only 5 solutions were accepted after 

the migration, whereas the ACO algorithm saw better performance with 10 

solutions shared. This shows that if too many solutions are shared (except in 

ACO’s case), then the algorithms are influenced too heavily by the previously 

discovered optima. This leads to premature convergence. Sharing only a few 
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solutions allows the algorithms to still adequately explore the search space with 

only slight guidance towards the better solution(s).  

To get a better idea of how effective the different algorithms (global search 

optimizers) were when connected to a local search island (local search optimizer), 

the individual islands were tested with that topology. For GA, DE, and PSO, five 

solutions were accepted, and for ACO ten solutions were accepted. The results 

are shown in Table 6.2. It is important to note the in this table and the tables 

following it, when function evaluations are reported, they are only reported to three 

significant figures of the average, since the purpose of reporting this value was to 

show the general computational expense; the exact number will change based on 

the random initialization phase, but was always near the number shown. 

Table 6.2. Mariner 10 Test Case Results: Effectiveness of LS Island 

  GA DE ACO PSO LS 

Total Cost               
(solo) 

8.0964 4.6069 9.8038 5.1060 34.1679 

Fxn Evals               
(solo) 

12000 12400 45000 12000 34000 

Total Cost 
(w/ GB) 

7.3585 4.6138 7.8558 5.5976 n/a 

Fxn Evals (w/ 
GB) 

13000 13500 47000 13000 n/a 

 

As expected, the GA and ACO algorithms found better solutions when 

paired with the local search algorithm. When the local search performed by itself, 

it only saw solutions as good as the local basin it started in. After the first migration, 

there was no solution improvement, since it had already met its tolerance. 

However, it appears that the DE and PSO algorithms actually did better on their 

own than they did with the local search island. This is not exactly the case. These 
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algorithms consistently found final solutions in the optimal basin (values around 

4.2). The reason their averages are higher is from one, two, or three of the 25 

evaluations ending in the non-optimal basins (around 9.2 or 12.4) a few times. The 

differences in the averages stem from one case where the non-optimal basin was 

located as the final answer. The addition of the LS island should not be 

misconstrued as detrimental. Instead, it shows that the DE and PSO algorithms, 

after finding the global basin, can actually navigate to that local optima comparably 

as well as the LS algorithm. 

The next step was to see how much the solution improved when utilizing 

more than one algorithm (multiple global search optimizers with a local search 

optimizer). The solution quality here is expected to improve for two reasons. First, 

since all algorithms find a solution before they compare with each other, whichever 

algorithm is best suited for this problem will be able to guide the other algorithms 

towards the best solution found so far, even if the other algorithms may have 

struggled. Second, since all the algorithms are allowed to run to completion, more 

function evaluations occur, which means more area of the search space is 

explored in the randomized phase. 

The Mariner test case was run 10 more times with all included algorithms 

and a local search island. The first topology for this step was all five islands fully 

connected. Then this setup was run 10 more times with a second topology where 

each island was only connected to two others: a ring. After these results had been 

collected, the problem was run another 10 times with a third topology: only the two 

other algorithms that performed the best in the first step (DE and PSO) connected 
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to a local search island. All topologies allowed two migrations. To further examine 

how DE and PSO worked with LS, the results were also recorded when only one 

migration was allowed. These three topologies are shown in Figure 6.1 and Figure 

6.2. The results are shown in Table 6.3. 

             

Figure 6.1. Topologies 1 (left) & 2 (right): Islands (in order) are GA, DE, ACO, PSO, & LS 

 

Figure 6.2. Topology 3: Islands (in order) are DE, PSO, & LS 

Table 6.3. Mariner 10 Test Case Results: Island Model Results 

  
FULLY 

CONNECTED 
RING 

DE, PSO, LS                 
2 MIGRATIONS 

DE, PSO, LS                  
1 MIGRATION 

Best Cost 
Found 

4.2058 4.2030 4.1979 4.2046 

Fxn Evals 120000 120000 38000 26000 

 

When the island model was utilized, the solution quality increased, as 

expected. Interestingly, when only the two most effective algorithms were used (in 
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conjunction with a local search island), the suite was actually able to find a better 

answer than when all the algorithms were used together. This may show a flaw in 

the fully connected topology. If every island is connected, they all receive the same 

information as a start for the next generation, if they all only accept the five best 

solutions found by all islands. This limits exploration, so they are likely to converge 

to the same local optima. That is why the test was repeated with the ring 

connection topology. This means that each island is only connected to two of the 

other four islands. This promoted more exploration, and therefore more diversity 

amongst the shared solutions. However, the solution quality was still not as good 

as when only including DE and PSO. This is likely because the optimal connections 

were not established; it is possible that the solutions would have better if different 

algorithms communicated. Given enough migrations, the best solutions would 

make their way around the ring, but two migrations was not enough to see this 

effect. Every connection combination for the ring topology was not evaluated. 

Instead, focus was placed on the DE and PSO algorithms. 

Although the DE and PSO islands saw slightly worse performance (than 

when operating by themselves) when paired with only a local search island, when 

paired with each other and a local search island they performed better. This was 

the case even when only one migration was allowed. When the DE and PSO 

algorithms can run together and then send all of their solutions to the local search 

island, there is a much higher chance of actually being in the global optima’s basin 

for two reasons. First, there is a larger initial randomized search population. 

Second, the two algorithms give twice as many final answers for the local search 
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island to choose from as when that island was only connected to one of them. This 

avoids the potential passing on of detrimental information that was seen when 

either island was connected only to a local search island. This success is party 

attributed to the island model, and partly attributed to the higher number of function 

evaluations. This test showed that the extra migration did add a small 

improvement; the improvement when compared with the additional function 

evaluations could be argued to be worth it in some cases, but unnecessary in 

others. 

It is interesting to note that many of the solutions found in this test have a 

lower cost than the cost obtained when using the dates from the actual mission. In 

all of these tests, the best solution found had a cost value of 4.1979 km/s, 

compared to the cost of 4.5372 km/s that is obtained with the true mission inputs. 

This makes sense because in reality, the mission designers had to plan around 

feasible launch windows, orbital perturbations, manufacturing inaccuracies, and 

other factors that were not reflected in this work. Additionally, the actual mission 

did not exactly match the objectives laid out in this scheme. The objectives placed 

on the trajectory here are similar to the actual mission, but are more tailored to this 

work than the actual Mariner trajectory. 
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6.2 Voyager 2 Mission 

After Mariner 10 blazed the trail and opened the doors for mission designers 

to utilize flybys, a few more missions were conceived. Among these were the two 

Voyager probes, which took advantage of the unique alignment of the outer 

planets, which occurs only once every 176 years [15]. Voyage 1 flew past Jupiter 

and Saturn before heading out of the solar system, whereas Voyager 2 continued 

on to Uranus and Neptune [17]. Since Voyager 2 had a trajectory with more 

variables up for optimization, this was the next test case examined. This test case 

served as an observation of the importance of the weights applied to the 

parameters being optimized. In order to focus on this aspect, only one topology 

was used: a DE island, a PSO island, and a LS island all fully connected and 

allowing for two migrations (the topology from Figure 6.2). 

When this test case was run, there were many components to the objective 

function. Most of the parameters were minimized: required V∞ when launching the 

craft from Earth, the flyby periapsis at each planet (Jupiter, Saturn, Uranus), and 

the flyby penalty at each planet. One parameter was maximized: the heliocentric 

specific energy when arriving at Neptune.  

The flyby periapsis was minimized to allot importance to the scientific 

discoveries available from high resolution photos as well as a more detailed 

atmospheric analysis (which are more valuable at lower altitudes). When 

maximizing the heliocentric velocity, the value was multiplied by -1 before adding 

it to the total cost. 
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The flyby periapsis and flyby penalty for Neptune were not included 

because there was no specific destination after Neptune in this test. Due to the 

nature of the patched conics used to solve this problem, this makes any periapsis 

possible then. Instead of looking at the heliocentric specific energy after the flyby, 

the energy before the flyby was examined, since at this point the ideal flyby to 

maximize the increase in heliocentric velocity is always possible. 

As intended, this case required some fine tuning of the weights applied to 

each parameter. In the Mariner test case, all objectives had the same units and 

were on the same order of magnitude. However, in this case, there are three 

different units (km/s, km, and km2/s2) and three different orders of magnitude (101, 

106, and 1010). The algorithms in this work treat the final cost value as a single 

unitless parameter; it is purely a quality value for the particular inputs the algorithm 

currently has. The weights applied to these objectives were intended to bring all 

values to the same order of magnitude. As a baseline, 25 runs were executed 

where none of the objectives were normalized; all of their weights were left at 1. 

This case was heavily biased towards the solution with the highest possible 

heliocentric velocity at the end, since that parameter has the largest absolute value 

by four orders of magnitude. This meant the shortest possible time of flight 

between the planets was optimal. This, obviously, is unrealistic. The minimum 

bound for the time of flight of each leg was set to 100 in this case (arbitrarily), but 

as a result this was what the optimal solution was found to be. This trajectory is 

shown in Figure 6.4. This figure, and all trajectory figures contained in this section, 

follow the legend displayed in Figure 6.3. 
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Figure 6.3. Voyager 2 Test Case Trajectory Legend 

 
Figure 6.4. Voyager 2 Test Case: No Normalization 

The next test normalized the parameters to the same order of magnitude 

and similar absolute values. The dates for the actual mission were run through the 

cost function to see what values should be used to normalize. The cost function 

returned a value of 18.438 km/s for the associated ΔV’s, a value of 3144399 km 

for the sum of all flyby periapses, and a value of 33977129766 km2/s2 for the final 

heliocentric specific energy. 
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In running this next test, the ΔV parameters had their weight slightly 

adjusted up to 2 (putting their adjusted value around 37). The flyby periapsis values 

were assigned a weight of 10-5 (putting their adjusted value around 31), and the 

heliocentric velocity was assigned a weight of 10-9 (putting its adjusted value 

around 34). This brought all the values down to the same order of magnitude and 

similar absolute values. 

Twenty-five runs were executed with these weights. The results are shown 

in Table 6.4 (in the “Normalized to ΔV” column). This resulted in a mission that was 

better than the actual mission for each parameter. The ΔV was brought down, the 

total periapsis altitudes were brought down, and the heliocentric energy at Neptune 

was increased. Interestingly enough, the time from launch to Neptune rendezvous 

was also decreased. The resulting trajectory for this case can be seen in Figure 

6.5. Again, like the Mariner test case, the objectives laid out in this example do not 

match the exact objectives of the Voyager mission. 

Table 6.4. Voyager 2 Test Case Results 

  
Actual 

Mission 
No 

Normalization 
Normalized 

to ΔV 
Adding in 

TOF 
Only ΔV 

ΔV [km/s] 18.438 301828 14.928 15.426 9.479 

Periapsis 
Heights [km] 

3144399 48 374595 323556 2346912 

Heliocentric 
Energy 
[km2/s2] 

3.40E+10 1.04E+12 5.42E+10 5.46E+10 2.00E+10 

 

The table also has two more columns for other objective weight cases. The 

“Adding in TOF” column used the same weights as the “Normalized to ΔV” column, 

but also included the time of flight for each leg of the trajectory in the final cost. 

Since the actual mission took 4338 days, the weight applied to this parameter was 
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10-3. This places the value one order of magnitude smaller than the other values, 

because it was intended to be added only as a secondary objective. It found a 

solution with a slightly higher energy orbit, and a lower total periapses value, but it 

requires more ΔV. It still requires less than the actual mission. Although these two 

answers are similar, they would still require a trade study from the mission 

designers; the TOF objective had a noticeable effect on the overall mission. 

 
Figure 6.5. Voyager 2 Test Case: Normalized to ΔV 

For a last comparison, 25 runs were executed with only the ΔV parameters 

included (flyby periapsis, specific energy, and time of flight were given weights of 

0). This trajectory saw a drastic decrease in the overall ΔV, but at the cost of raising 

the periapsis altitudes significantly, as well as reducing the specific energy at 



68 
 

Neptune arrival by more than half. Additionally, the total time for this scenario was 

five years longer. 

To show the effects of the optimization weights in a different light, the time 

of flights for each leg with each scenario are shown in Table 6.5, next to the actual 

time of flights for Voyager 2’s true trajectory. 

Table 6.5. Voyager 2 Test Case Time of Flights [days] 

  
Actual 

Mission 
No 

Normalization 
Normalized 

to ΔV 
Adding in 

TOF 
Only ΔV 

Earth to 
Jupiter 

688 100.0 1150.1 1124.9 836.1 

Jupiter to 
Saturn 

779 100.1 773.2 750.2 1187.6 

Saturn to 
Uranus 

1612 100.0 1218.7 1230.5 2141.7 

Uranus to 
Neptune 

1309 100.0 989.9 988.4 1817.3 

TOTAL 
TIME: 

4388.0 400.1 4131.9 4094.0 5982.7 

 

This test case showed the importance of the weights applied to the 

objectives of the optimization scheme. Only the weights were changed across 

each scenario, yet each time different results were obtained.  

  



69 
 

7. GUI ENVIRONMENT 

The user interface for this work is explained briefly in this section. The initial 

set-up is shown in Figure 7.1 below; this is the interface that appears when the 

suite is first run. The left-most and right-most panels change, but the rest remains 

constant. The top menu has buttons that allow the user to load preset trajectories 

or optimization settings (“Load”), as well as an option to save custom trajectories 

and optimization settings (“Save”). The “OPTIMIZE” button in the bottom left will 

optimize the trajectory based on the user inputs, showing current progress in the 

middle panel. The “Ephemerides Generation” button group next to that button 

allows the user to choose between using JPL Horizons ephemeris data [20] or 

using MATLAB’s built in ode45 solver to generate the information using simple 2-

body orbital equations of motion and planetary ephemeris equations from Vallado 

[19]. The middle panel shows the current progress for each algorithm/island and 

shows how many migrations have occurred. Later, it allows the user to choose 

which analysis plots are shown.  

The left hand side of the GUI is where the user deals with all available 

inputs. There are six available panels that are chosen via a dropdown menu. The 

right hand side is where results are displayed. There are four available panels 

there, again available via a dropdown menu. The dropdown menu panel choices 

for each side are shown below in Figure 7.2. 
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Figure 7.1. Initial STOpS GUI Window 

    
Figure 7.2. Options for Left Panels (left) and Right Panels (right) 

The Trajectory Information panel is the left-most panel shown in Figure 7.1. 

In this panel, the user chooses how many flybys occur in the sequence. They 

choose which bodies are involved in the trajectory, and in which order. They also 

set the bounds for all variables by choosing an earliest and latest launch date, then 

they set the minimum and maximum time of flights for each leg of the trajectory. 

They also choose how many revolutions are allowed per leg. This information can 

be saved and loaded using the “Save” >> “Save Trajectory Information” and “Load” 

>> “Load Trajectory Information” menu buttons. 
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The Island Topology panel is where the user sets how many islands will be 

used, how many migrations will occur, and what topology to use. There is a 

dropdown menu of some preset topologies, or next to “Panel Choice” the user can 

alter the connection matrix to decide exactly which algorithms are connected. The 

user also sets which algorithm each island will use here. For each island, the 

replacement policy and selection policy can be specified, as well as the associated 

additional parameters that are needed for each policy. This panel is shown in 

Figure 7.3. 

 
Figure 7.3. Island Topology Panel 
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The Optimization Options panel is where the user has the option to fine tune 

all the parameters available based on which algorithms are chosen. The GUI uses 

the default values mentioned in Section 5 of this work, but if the user desires, they 

can be changed here. Each of the five algorithms has its own set of choices, and 

certain parameters are only visible when they apply to particular extensions of that 

algorithms that have been selected. This panel is shown in Figure 7.4. 

 
Figure 7.4. Optimization Options Panel 

 

 



73 
 

The Cost Function Options panel is where the user chooses the values to 

be optimized over the trajectory, as well as the weight to assign to each value. 

Certain parameters can be applied to the entire trajectory or to only particular legs 

or flybys. Some of the options are shown in the panel below in Figure 7.5. 

 
Figure 7.5. Cost Function Options Panel 

The Actual Missions panel allows the user to show a few pre-defined real 

life missions that were used in the verification process for this work. They serve as 

good examples when the user is starting to learn how to use the interface. 

The Custom Cost Function panel allows the user to implement the Island 

Model Paradigm (the central part of this work) on a custom cost function that does 

not fit within the bounds of this specific user interface. Some examples of custom 

cost functions would be GTOC problems [8]. 
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The 3-D Trajectory panel is where the final optimized trajectory is shown. 

This is useful to show that the trajectory is feasible and realistic, and also adds to 

the aesthetic appeal of the interface. This panel is shown below in Figure 7.6. The 

top menu of the GUI also has a “Legend Window” button that pulls up a color coded 

legend for this panel. There is an option to animate the trajectory, or the user can 

change between zooming on the trajectory or rotating it in 3D. 

 
Figure 7.6. 3-D Trajectory Panel 
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The Cost Analysis panel shows the maximum, minimum, and average cost 

for each algorithm as they progress through their iterations. This panel is useful for 

determining which algorithms are performing the best or performing the worst if the 

user is looking to eliminate algorithms in the interest of increasing computational 

efficiency. This panel is filled after all migrations have occurred. At this point, the 

central progress panel pulls up checkboxes that allow the user to choose which 

islands’ trends to show. There are also checkboxes that allow the user to toggle 

the visibility of the minimum, maximum, and average cost per iteration of all 

islands. This panel is shown below in Figure 7.7. 

 
Figure 7.7. Cost Analysis Panel 
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The Detailed Results panel shows all information about the trajectory. It 

shows all possible information that could be used as values to be optimized. It also 

shows all relevant dates. This panel is shown below in Figure 7.8. 

 
Figure 7.8. Detailed Results Panel 

The Custom Results panel fills when a custom cost function is optimized. The 

final cost value is displayed, as well as all the variables that give that associated 

cost.  
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8. CONCLUSIONS 

The Spacecraft Trajectory Optimization Suite created for this work 

successfully implemented five separate optimization algorithms (four stochastic 

methods for global search and one deterministic method for local search), both 

unique to this work and already existent in literature. These algorithms were 

verified with known multi-dimensional test functions, then run on actual spacecraft 

trajectory missions.  

STOpS successfully found optimal trajectories for the Mariner 10 mission and 

the Voyager 2 mission that were similar to the actual missions flown. The costs 

observed here were lower costs than those found when using the dates for the 

actual missions, but the takeaway is not that STOpS found better trajectories than 

those actually flown for these missions. Instead, what is important is that STOpS 

demonstrated the capability to quickly and successfully analyze/plan these 

trajectories in the preliminary design phase of missions. The analysis for each of 

these missions took only 2-3 days each. When used for non-test case applications 

this time will likely be shorter since not every element of the tests performed here 

will be necessary. The development for STOpS took much longer, but the result is 

a robust tool that has taken existing techniques and applied them to the specific 

problem of trajectory optimization, so it can repeatedly and reliably solve these 

types of problems. 

 

 

 

 



78 
 

8.1 Future Work 

There are certain generalizations that could be added to the suite, but were 

left for future work because although they would increase the fidelity of the 

solutions found, they would not affect the underlying optimization processes. Some 

other improvements were considered to be more coding based and less of a 

contribution to the engineering community, but they could easily be added later. 

These include physical effects of a particular spacecraft (drag, SRP, other orbital 

perturbations), the capability to optimize trajectories with different systems/bodies, 

including moons when examining flybys, and allowing for departure from specific 

parking orbits or arrival in particular parking orbits. 

There were also some modifications/additions to particular optimization 

algorithms that interested the author, but time did not permit their full exploration. 

These include a variable threshold method for the Genetic Algorithm and the GA’s 

behavior when both parents are identical: randomly searching nearby the parents. 

Since the static threshold method showed little utility, the variable threshold 

method may hold some promise. The identical parent mating method was intended 

to mimic a randomized local search, but it has been theorized by the author that a 

more valuable solution would be to have one child actually perform a univariate 

local search to find that solution’s basin and have the other child undergo mutation. 

This combination explores the local area and promotes exploration later in the 

optimization stages. 

When working on the Differential Evolution algorithm, the only method 

explored when using the jitter and dither techniques was a uniform random 
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distribution between the upper and lower limits for the scaling factor. The literature 

discussed some other options for the scaling factor distributions, including a log-

normal or power law distribution (equations 2.36 and 2.38, respectively, in [12]). 

There are also some methods that could be added to the Particle Swarm 

Optimization method. An alternative form of PSO uses the parameter M in addition 

to K. This new parameter determines the number of memory particles to use. The 

memory particles take the memory responsibility away from the movers. This 

division of responsibilities can potentially reduce the computational load of the 

algorithm and lead to improved convergence rates. In addition to determining the 

number of each type of particles, the user must also decide how many particles 

speak with each other (particle topology). 

The Ant Colony Optimization algorithm poses some interesting questions in 

this work. Since it traditionally dealt with round trip problems, the application to 

spacecraft trajectories was essentially an open door. The method employed in this 

work saw success, but the author and committee members have theorized some 

additional methods. First, it may be possible to utilize a one-way method similar to 

that used here, but with the first city being a “ghost” city, so each initial city has a 

path leading to it that could have pheromone. It also may be possible to treat the 

trajectory as a round trip, with a ghost city connecting the last body to the first. The 

ants could start at any leg of the trajectory, then based on whatever trip is taken, 

the cost function knows to ‘ignore’ the ghost city and calculate the trajectory that 

works spatially and according to time. 
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A last potential improvement to ACO is a formulation that functions solely 

on pheromone levels. The fact that the current ACO formulation also relies on 

knowing all possible costs between nodes makes it very computationally 

expensive. While the author did begin to explore this option with an undesirable 

amount of success, it is possible that with more time and effort the formulation 

could be perfected.  

One addition to this work that was not pursued due to time constraints was 

the analysis of orbital synodic periods. It has been theorized that given an initial 

range of inputs, the minima that occur may have a periodic re-appearance. That is 

to say, that since optimal trajectories are based heavily on planetary locations 

relative to each other, it could be useful for the program to determine the periodicity 

of the legs of the trajectories, as well as possibly the entire trajectory. 

The last major area of improvement for this work would be to implement 

options for deep space maneuvers and low-thrust trajectories. These options can 

technically still be optimized here by utilizing the custom cost function interface, 

but having them built into the suite would be more practical. Due to time 

constraints, these aspects were left for future work. 
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APPENDICES 

APPENDIX A: Genetic Algorithm Verification 

Comparison of Parameters: Step 1 
Npop = 100 Nkeep = 30 Ngen = 20 pc = [0,1] pm = [0,1] 
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Comparison of Parameters: Step 2 
Npop = 100 Nkeep = 30 Ngen = 20 pc = [0.6,1] pm = [0,0.4] 
Ackley Success: <1.5 Rosenbrock Success: <10 
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APPENDIX B: Differential Evolution Verification 

Step 0: Comparison of Survivor Selection Methods 
Npop = 50 Ngen = 30 pc = [0,1] F = [0.4,1.2]  T = 3 
Takeaway: Both rank weighted random and cost weighted random are extremely 
ineffective compared to random and tournament selection. Consequently, they will 
not be included in the STOpS GUI. 
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Comparison of Parameters: Step 1 
Npop = 100 Ngen = 20 pc = [0,1] F = [0.05,1.2] 
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Comparison of Parameters: Step 1B, Tournament Exploration 
Npop = 30 Ngen = 20 pc = [0,1] F = [0.05,1.2]  T = 5,10,15 

 
 

Comparison of Parameters: Step 2 
Npop = 30 Ngen = 20 pc = [0,1] F = [0.05,1.2] 
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Comparison of Parameters: Step 4 
Npop = 100 Ngen = 20 pc = [0.2,0.8] F = [0.2,0.7] 
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APPENDIX C: Particle Swarm Optimization Verification 

Comparison of Parameters: Step 1 
Npop = 50 tspan = 200 K = [1,10] φ = [2.1,3] 

 
  



96 
 

APPENDIX D: Ant Colony Verification 
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