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Purpose of review

In nature, carbohydrates are a source of energy often equated with sweetness, the

detection of which is associated with powerful hedonic appeal. Intakes of processed

carbohydrates in the form of added sugars and sugar-sweetened beverages have risen

consistently among all age groups over the last two decades. In this review, we describe

the biological underpinnings that drive the consumption of sweet-tasting foods among

pediatric populations.

Recent findings

Scientific literature suggests that children’s liking for all that is sweet is not solely a

product of modern-day technology and advertising but reflects their basic biology. In

fact, heightened preference for sweet-tasting foods and beverages during childhood is

universal and evident among infants and children around the world. The liking for sweet

tastes during development may have ensured the acceptance of sweet-tasting foods,

such as mother’s milk and fruits. Moreover, recent research suggests that liking for

sweets may be further promoted by the pain-reducing properties of sugars.

Summary

An examination of the basic biology of sweet taste during childhood provides insight, as

well as new perspectives, for how to modify children’s preferences for and intakes of

sweet foods to improve their diet quality.
Introduction
Carbohydrates are the primary source of energy for all

body functions. In nature, carbohydrates are often equa-

ted with sweetness (e.g., fruits, honey), the detection of

which is associated with powerful hedonic appeal. In

recent years, the increasing use of both nutritive and

non-nutritive sweeteners has resulted in a food supply

that can also provide sweetness in processed (e.g., foods

with ‘added sugars’) forms [1]. Foods and beverages

containing processed carbohydrates not only taste

sweeter but also are less expensive and more accessible

than those containing natural carbohydrates [2].

A hallmark of childhood is the liking for all that tastes

sweet. Sweet-tasting carbohydrates comprise a significant

portion of the daily energy intake of American children

[3�]. However, today’s children favor foods with pro-

cessed carbohydrates (e.g., foods and beverages with

sugars added by manufacturers) to foods with natural

carbohydrates (e.g., fruits): 86% of 2–3-year-old children

consume some type of sweetened beverage or dessert in

a day [4�], whereas 80% of children do not meet recom-

mendations for fruit intake [5]. Intakes of added sugars

and sugar-sweetened beverages have risen consistently

among all age groups over the last two decades [6,7],
despite research showing high consumption of processed

carbohydrates is associated with increased risk for

cardiovascular disease [8] and recommendations from

health organizations to reduce or eliminate the amount

of added sugars and sugar-sweetened beverages from the

diets of all Americans, including children (e.g., [9–11]).

How can we account for patterns of food choice that

seem antithetical to health and for difficulties in changing

them? In this essay, we describe two factors that conspire

to predispose many individuals to consume diets that are

rich in sweet-tasting foods and beverages: (1) innate,

evolutionarily driven taste preferences that are magnified

during childhood; and, (2) consequences of repeated

exposure to highly processed, intensely sweet foods,

which are abundant and heavily marketed within the

food supply. This review serves as a foundation for a

discussion on the physiological and motivational pro-

perties of sugars. But first, we provide an overview of

the molecular and neural mechanisms underlying sweet

taste perception and liking.
The basic biology of sweet taste
Evolution has shaped the types of foods initially pre-

ferred or rejected by children [12��]. Sensory systems
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Key points

� Two factors conspire to predispose some individ-

uals to consume diets high in sweet tastes: innate

taste preferences that are magnified during child-

hood, and repeated exposure to abundant, highly

processed, sweetened foods; understanding their

respective contributions is important for developing

strategies to promote healthy eating habits.

� Variations in genes coding sweet taste receptors

can affect how sensitive someone is to nutritive

(e.g., sucrose) and non-nutritive (e.g., sucralose)

sweeteners.

� In addition to the mouth, sweet taste receptors are

expressed in the gut as part of a nutrient feedback

system. Because these receptors do not distinguish

between nutritive and non-nutritive sweeteners,

ingesting a highly sweet food that is devoid of

calories may dysregulate appetitive processes.

� Tasting something sweet activates the same plea-

sure-generating brain circuitry involved in the

addictions of several drugs. Sweet taste acts as an

analgesic for infants and some children but not for

adults, children exhibiting depressive symptoma-

tology, or overweight children.

� The sense of taste has an inherent plasticity: begin-

ning very early in life, sensory experiences can

shape and modify flavor and food preferences,

including preferences for sweet tastes – the matrix

within which sweet taste experiences occur are

important and children learn which foods should

and should not taste sweet through repeated

exposure and familiarization.
evolved to detect and prefer the once rare calorie-rich

foods that taste sweet (and the mineral-rich foods that

taste salty) and to reject the potentially toxic ones that

taste bitter. These responses are intensified during

childhood and, we argue, reflect the nutritional problem

of attracting children to foods that contain energy,

minerals, and vitamins (e.g., mother’s milk, fruits) during

periods of maximal growth [13,14].

In recent years, major scientific progress has been made

in identifying the initial events in sweet taste recognition

(the milestones of this discovery have recently been

summarized in [15�]) and the brain mechanisms under-

lying the strong hedonic responses experienced after

tasting something sweet [16�]. G-protein-coupled recep-

tors play a prominent role in taste recognition, activating

taste cells to send electrical messages to the brain. In

humans, two receptors, encoded by the TAS1R2 and

TAS1R3 genes, act in pairs to detect molecules imparting

sweet taste qualities. Variations in these genes have been

shown to predict taste sensitivity to both nutritive (e.g.,

sucrose) and non-nutritive (e.g., sucralose, acesulfame-K)

sweeteners [17] and to affect habitual consumption of

sugars [18�].

Sweet taste receptors are expressed not only in the mouth

but also in other areas, particularly the gut and pancreas

[19–21]. These peripheral receptors do not distinguish

between nutritive and non-nutritive sweeteners when

these compounds are equated for sweetness [21] and

stimulation of these receptors by a sweet substance

stimulates nutritive processes such as the uptake of

glucose [22] and release of gut hormones [23�]. Further,

the taste system is a peripheral target of factors involved

in appetite regulation; for example, leptin (an anorexi-

genic factors) suppresses, whereas endocannabinoids

(orexigenic factors) enhance, sweet taste responses at

cellular and behavioral levels [24]. Thus, the ‘sense’ of

taste controls one of the most important decisions

an animal makes – whether to reject a foreign substance

or to take it into the body. Then, upon ingestion, this

sense is ‘in communication’ with the gastrointestinal and

central nervous systems, providing information about the

quality and quantity of the impending rush of nutrients

and perhaps playing an important role in regulating

energy homeostasis. This system evolved in response

to nutritive sweeteners and the consistent pairing of

sweetness with energy sources; recent research has

suggested non-nutritive sweeteners, which are intensely

sweet but devoid of calories, may disrupt the balance

between taste receptor action, nutrient assimilation, and

appetite [25].

The emotions experienced upon tasting something

sweet are complex processes mediated by taste receptors

in the periphery and by multiple brain substrates, which
phylogenetically are remarkably well conserved [26].

Tasting something sweet leads to the activation of

pleasure-generating brain loci that are associated with

reward. Brain circuitry involved in the hedonic impact

of sweets is the same or overlaps with the circuitry

mediating the addictive nature of drugs such as alcohol

and opiates [16�]. These drugs appear to be co-opting

neural pathways originally designed for seeking sweet

tastes, man’s oldest natural reward [27]. These pathways

facilitate a strong attraction to the intensely sweet,

processed carbohydrates that comprise a large portion

of the American food supply and intense nutritive and

non-nutritive sweeteners can be seen as supernormal

stimuli with the potential to override normal behaviors

[28].
Innate preference for sweet
The machinery needed to detect and respond to tastes

is well-developed before birth and continues to mature

postnatally [29]. Specialized taste cells first appear in

the human fetus at 7–8 weeks, and morphologically

mature receptor cells are recognizable at 13–15 weeks.



Taste buds are capable of conveying gustatory infor-

mation to the central nervous system by the last trimester

of pregnancy, and this information is available to systems

organizing changes in autonomic activity, sucking, as well

as facially expressive and other affective behaviors.

Infants

Several lines of evidence show that the sensory pleasant-

ness derived from tasting something sweet has an innate

basis (see [27] for review). First, the ability to detect

sweet tastes is functioning and interacting with systems

controlling affect even before birth: premature infants

born as early as the 33rd gestational week suck at a

faster and stronger rate in response to a sweet-flavored

nipple compared to an unflavored nipple. Second, new-

born infants show increased heart rate when a sweet-

tasting substance is in the oral cavity. Third, newborns

differentiate varying degrees of sweetness and will con-

sume a greater volume of a solution that tastes sweeter

[30]. Finally, infants’ faces relax in response to placement

of a sweet solution in the oral cavity, and this relaxation is

often accompanied by a smile, resembling satisfaction

[26,31]. These behavioral responses to sweet-tasting

solutions are reflex-like and unlearned.

Children

Both cross-sectional [32�,33�,34] and longitudinal [35]

studies demonstrate that, although humans generally

prefer sweets, there are age-related differences in the

intensity of sweetness most preferred. In a recent study of

930 participants, children selected a 0.54-mol/l sucrose

concentration as their most preferred [32�], a concentration

higher than that preferred by adults and equivalent to

11 teaspoons (about 44 g) of sugar in an 8-oz. glass of

water (nearly twice the sugar concentration of a typical

cola). The intensity of children’s most-preferred sweet-

ness, as measured in the laboratory, has real-world signi-

ficance as it relates significantly to their preferred levels

of sugar in beverages [32�,34] and cereals [32�,34,36].

Among all age groups, there are individual differences

in sweet preferences that can be due to a variety of

factors including early experience (see below), genetics,

race/ethnicity, medication use, nutritional deficiencies,

metabolic changes, otitis media, and addictions (e.g.,

[33�,37,38]). However, the positive hedonic response to

sweet taste and the preference for a greater intensity

of sweetness among children than adults is universal,

with findings replicated across several different countries

and cultures: North America [32�,33�,34,35], Mexico [39],

Brazil [40], the Netherlands [41], France [42], Iraq [43],

and Israel [31]. The age-related decline in the intensity

of sweetness most preferred, which occurs during adoles-

cence [35], may be a developmentally normative process,

as it has been observed in other mammals [44]. Although

the reason for this decline remains unknown, two
plausible hypotheses, not mutually exclusive, have been

proposed for this decline. First, children have a higher

threshold for sweet taste than adults, thus requiring

larger quantities of sugar to obtain the same sweet taste

experience as adults; evidence for this hypothesis is

lacking. Second, growing children’s high need for calories

drives their preference for sweet foods, as sweetness

signals energy. Although evidence for this hypothesis

is also limited, one recent cross-sectional study showed

that 11–15-year-old children who preferred a higher

concentration of sucrose exhibited greater rates of

linear growth (as indicated by urine levels of type I

collagen cross-linked N-telopeptides, a metabolite pro-

duced during bone turnover) than children who preferred

a lower concentration of sucrose [13]. Longitudinal

studies are needed to further explore and understand

the mechanisms underlying age-related changes in sweet

preferences.
Early-life experiences can modify preferences
Functional plasticity is one of the defining characteristics

of the developing brain and highlights the ability to

change behavior based on experience. The sense of taste

has an inherent plasticity: beginning very early in life,

sensory experiences can shape and modify flavor and food

preferences [45], including the strong liking that children

have for sweet taste. Like other sensations, the sensation

of sweetness is context dependent and can acquire mean-

ing through associative learning (see [46] for review).

The fetal environment

Learning about tastes and flavors begins long before

experience with solid foods. The tastes and flavors of

the mother’s diet are transmitted through the amniotic

fluid and breast milk [47], and children show preferences

for flavors to which they were repeatedly exposed during

the prenatal and postnatal periods [45].

There is evidence to suggest that prenatal factors, such as

undernutrition or overnutrition, also influence offspring

eating behaviors and health outcomes, again suggesting

that learning and/or programming occurs prior to birth

[48]. With regards to undernutrition, women who were

born severely growth restricted, a marker for adverse fetal

conditions, had higher carbohydrate intakes than women

who were not [49]. With regards to overnutrition, the high

levels of glucose experienced by the fetuses of dams

with gestational diabetes led to disturbances in the

differentiation and organization of hypothalamic centers

involved in body weight and metabolism [50]. There is

also evidence that gestational diabetes is associated with

greater cravings and preferences for intensely sweetened

foods in pregnant mothers [51]; whether this condition

affects the sweet taste preferences of their offspring

remains unknown.



The child’s environment

Although the heightened preferences for sweetness in

beverages and foods appear to reflect a common bio-

logical drive among children, experience is a means of

tuning the taste system to respond more strongly to

stimuli that are relevant to an individual’s environment.

Longitudinal studies revealed that babies who were

routinely fed sweetened water during the first months

of life exhibited a greater preference for sweetened water

compared to those who had little or no experience with

sweetened water [52]. A more recent cross-sectional

study on 6–10-year-old children revealed that such early

feeding practices may have longer-term effects on the

preference for sweetened water than previously realized

[53].

When children were repeatedly exposed to a sweetened

orange-flavored beverage for 8 consecutive days during

their daily mid-morning snack, they not only gave higher

preference rankings for the beverage, but also drank more

of it at the end of the exposure period [41]. Although

children will prefer the level of sweetness to which

they have been repeatedly exposed in a beverage or

food, there are no compelling data to suggest that such

repeated exposure results in a heightened hedonic

response to sweetness in general. Rather, the matrix in

which the sweet taste experience occurs is an important

factor. Through familiarization, children develop a sense

of what should, or should not, taste sweet.

Since the mid-1990s, food manufacturers have intro-

duced more than 600 new food products that are

marketed directly to children, most of which are candy

and sweet snacks [54]. More research is needed to

determine the extent to which marketing and availability

of sweetened foods affects children’s preferences [55,56],

as well as their expectation that certain foods should taste

intensely sweet.
Sweet taste analgesia
The liking for sweets may also have its roots in the pain-

reducing properties of sugars, which, along with prefer-

ences for a more intense sweet taste, may be an identifying

feature of childhood (see [27] for review). A sweet-tasting

solution placed in an infant’s oral cavity can reduce

responses to painful stimuli, such as single or repeated

heel lances [57��]. The mechanism of action appears to be

that sweet taste perception mediates both endogenous

opioid and nonopioid systems to block pain afferents,

thus reducing stress and cardiac changes in response to

painful stimuli [58]. Because noncaloric sweet substances

such as aspartame mimic the calming effects of sucrose

[59] and because the administration of sucrose by direct

stomach loading is not effective [60], afferent signals

from the mouth, rather than gastric or metabolic changes,
appear to be responsible for the analgesic properties

of sweet tastes. This ability for sweet taste to act as an

analgesic continues throughout childhood [33�,61] but is

not evident during adulthood [61].

Depression and obesity renders sucrose analgesia

ineffective

The presence of a concentrated sucrose solution

(0.70 mol/l), but not water, in the oral cavity increased

children’s pain tolerance when undergoing the cold

pressor test, a cold-induced pain stimulus test [33�,61].

The more children liked this concentration of sucrose,

the better it worked for increasing pain tolerance

during the test [61]. However, sucrose was not an

effective analgesic for children exhibiting depressive

symptomatology [33�] or for overweight children [61],

despite the finding that children who were depressed

reported a greater liking for sweet-tasting foods and

candies.

Several explanations, not mutually exclusive, are pre-

sented. First, painful stimuli may elicit more emotional

stress and increased affective processing in depressed or

obese children, thus impairing abilities to modulate the

experience of pain [62]. Second, depressed or obese

individuals may have an altered brain reward system

[63] that needs a more intense sensation of sweetness

to release dopamine to levels high enough to compensate

for the anhedonia and reduced sensitivity to reward

associated with these conditions. Last, greater sweet food

liking by depressed children may lead to more frequent

indulgences in sweets, which in turn could affect the

ability of sucrose to act as an analgesic; animal model

studies have shown that excessive sugar intake alters the

efficacy of sucrose as an analgesic [64]. The role that

dietary habits and individual differences contribute to

the preferences for sweet taste and its physiological

consequences in children is an important area for future

research.
Conclusion
In the USA, consumption of sweet-tasting carbohydrates

far exceeds recommended levels, with children and

adolescents consuming a significant portion of total

energy from added sweeteners [3�,7]. Children’s innate

and learned reactions to sweet taste provide insight into

why they are so drawn to sweet tastes, and why this

preference is so resistant to change, especially in the

modern food environment.

Preference for intensely sweet tastes during develop-

ment may have ensured the acceptance of nature’s first

food – mothers’ milk – as well as nature’s sweet-tasting

foods (e.g., fruits), which contain energy, minerals, and

vitamins. However, today’s food supply is characterized



by an abundance of nutrient-poor, highly concentrated

sugars in foods and beverages, as well as non-nutritive

sweeteners that may disrupt the balance between taste,

nutrients, and appetite [25].

Sweet tastes act as an analgesic during childhood but

there are striking individual differences in the levels

of sweetness preferred and the effectiveness of sweet

tastes as an analgesic. Therefore, it is important to realize

that attempts to limit consumption of sweet foods and

beverages may be more difficult for some individuals

because individuals differ in the inherent hedonic

value of sweet tastes and how sweets make them feel.

More knowledge about the factors that contribute to

preferences for sweet-tasting foods and beverages in

children, who today struggle with obesity and diabetes

more than any previous generation, may elucidate

population-based strategies to overcome diet-induced

disease and promote healthy eating habits.
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