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Abstract 

The study of coprolites from earlier cultures represents a great opportunity to study an ‘‘unaltered’’ composition of the 
intestinal microbiota. To test this, pre-Columbian coprolites from two cultures, the Huecoid and Saladoid, were evaluated 
for the presence of DNA, proteins and lipids by cytochemical staining, human and/or dog-specific Bacteroides spp. by PCR, 
as well as bacteria, fungi and archaea using Terminal Restriction Fragment analyses. DNA, proteins and lipids, and human-
specific Bacteroides DNA were detected in all coprolites. Multidimensional scaling analyses resulted in spatial arrangements 
of microbial profiles by culture, further supported by cluster analysis and ANOSIM. Differences between the microbial 
communities were positively correlated with culture, and SIMPER analysis indicated 68.8% dissimilarity between the 
Huecoid and Saladoid. Proteobacteria, Bacteroidetes and methanogens were found in all coprolite samples. 
Propionebacteria, Shewanella and lactic acid bacteria dominated in the Huecoid samples, while Acidobacteria, and 
peptococci were dominant in Saladoid samples. Yeasts, including Candida albicans and Crypotococcus spp. were found in all 
samples. Basidiomycetes were the most notable fungi in Huecoid samples while Ascomycetes predominated in Saladoid 
samples, suggesting differences in dietary habits. Our study provides an approach for the study of the microbial 
communities of coprolite samples from various cultures. 
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Introduction 

There is an increasing interest towards the intestinal micro-

biome as it can provide evidence of changes in host-microbe 

interactions. However, modern lifestyles may have a great impact 

on the composition of the intestinal microbiota [1]. One possible 

approach to study this effect is by collecting fecal samples of 

individuals of various geographical regions and cultures; yet, these 

reports are scarce due to limitations in the methods employed [2]. 

These studies consider fecal samples, not only from contemporary 

cultures, but also from individuals in isolated regions. It has also 

been suggested that the study of earlier cultures may represent a 

possible approach to study an ‘‘unaltered’’ composition of the 

intestinal microbiota [1]. Such is the case of pre-Columbian 

cultures, which were not affected by modern practices. The 

characterization of the intestinal microbiota of pre-Columbian 

humans may provide insights of microbial communities not 

affected by antibiotic usage and/or processed foods, for example. 

The Tainos represent a pre-Columbian culture that had a great 

cultural impact in modern societies in the Caribbean. 

The Tainos were pre-Columbian inhabitants of the Bahamas, 

Greater Antilles and the northern Lesser Antilles. Prior to 1980, 

evidence supported that the Tainos were preceded by the Saladoid 

society, which in turn may have been constituted by two sub

cultures: the Cedrosan and Huecan Saladoid. The Saladoid 

society migrated from Venezuela during the last centuries of the 

pre-Christian era and the first of the Christian era, but differing 

archeological evidence has raised polemics about the Saladoid 

society. Specifically, during the 1970’s, archeologists Chanlatte 

and Narganes [3] found evidence of a pottery-making horticultur

alist culture, even older than the Saladoid, that may have migrated 

from Bolivia and Colombia. The controversy began when it was 

proposed that this society, the Huecoid, was not a subgroup of the 

Saladoid, rather, a separate culture and an earlier migration of 

pottery-making horticulturalists [4,5]. Differences between the 

Saladoid and Huecoid cultures so far are based on archeological 

evidence. For instance, unlike the Saladoids, the Huecoid culture 

did not paint their ceramic, there is no evidence of human burials 

in the Huecoid society, Saladoid and Huecoid houses are 

positioned differently and materials used to make tools differ 

between both societies. Saladoid and Huecoid archeological sites 

are characterized by the presence of animal remains. Extinct 

rodents have been found in the Saladoid archeological sites, but 

this culture is characterized by the presence of marine and fresh 

water turtles and bivalves, which were consumed. Animal remains 

such as rodents, iguanas, land snails and birds have been identified 

in the Huecoid deposits, and were consumed as well. Both cultures 

consumed mangrove land crabs, marine snails and gastropods 

[4,5,6]. Despite the notorious archeological evidence pointing out 

that the Saladoid and Huecoid are separate cultures, this is still not 

completely accepted by some members of the scientific commu

nity. 
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Human Coprolites to Study Pre-Colombian Cultures 

Currently, there is no other evidence of cultural differences 

between the Saladoid and Huecoid cultures. Insights of these 

differences may be studied through coprolites as diet is influenced 

by culture. Coprolites are desiccated fecal material which may 

provide information of cultural traditions, dietary habits and the 

status of the intestinal microbiota of an individual [7]. The 

amount, type and balance of the main dietary macronutrients 

(carbohydrates, proteins and fats) have a great impact on the 

intestinal microbiota. In addition, the gut microbiome harbor 

millions of genes, and thus can be one possible approach to 

distinguish individuals, even cultures [2]. The characterization of 

the intestinal microbiota of earlier cultures may serve as a baseline 

for studies of how modern lifestyles may influence intestinal 

microbial communities. In the present study, human coprolites 

were obtained from the Saladoid culture in the archeological sites 

of Sorcé in the island municipality of Vieques (Puerto Rico) and 

Tecla 1 in Guayanilla, Puerto Rico. Coprolite samples were also 

acquired from the Huecoid culture in the archeological site of 

Sorcé in Vieques. Coprolites were evaluated in terms of their 

source (human vs. animal), the presence of ‘‘informative’’ DNA, 

proteins and lipids and profiles of the intestinal microbiota of both 

groups were obtained as well. 

Results 

Bacterial, Fungal and Archaeal Identification 
Four coprolites originating from the archeological site of Sorcé 

in the island of Vieques (Figure 1) and one from the archeological 

site of Tecla 1 in Guayanilla, in south central Puerto Rico 

(Table 1) [8], were subjected to cytochemical stainining for the 

presence of macromolecules. DNA, proteins and lipids were 

successfully detected in all the coprolite samples by cytochemical 

staining (Figure 2), indicating the presence of analyzable DNA in 

the sample. The presence of human Bacteroides was evaluated by 

PCR and its presence detected in all five of the coprolite samples. 

None of the samples were positive for dog Bacteroides. 

The valuation of the data, as sufficient for the intended study 

was conducted by species accumulation plots. Leveling of the 

rarefaction curve indicated that bacteria, fungi and archaea 

detected by T-RFLP were sampled efficiently (Figure 3). The 

Saladoid coprolite samples exhibited a similarity percent of 31.16 

and were characterized by the presence of bacteria of the genera 

Haemophilus, Pseudoalteromonas, Corynebacterium, Bifidobacterium, Shewa

nella, Anoxybacillus, Mycoplasma and Desulfovibrio. The average 

abundances, average similarities, contribution percents and 

cumulative percents of these bacterial genera are presented in 

Table 2. Fungi were also detected in the Saladoid coprolite 

samples and included the genera Candida, Cryptococcus, Saccharomy

ces, Bullera, Penicillum, Melanconium, Absidia and Debaryomyces. The 

average abundances, average similarities, contribution percents 

and cumulative percents of the fungal genera present in the 

Saladoid coprolite samples are also presented in Table 2. The 

Huecoid coprolite samples showed a higher similarity percent 

(58.17) compared to those of the Saladoid culture and were 

distinguished by bacteria of the genera Bacteroides, Arthrobacter, 

Comamonas, Shewanella, Capnocytophaga, Actinobacillus, Acidobacteria and 

Acinetobacter. The average abundances, average similarities, contri

bution percents and cumulative percents of the bacterial genera 

present in the Huecoid coprolite samples are shown in Table 2. 

Fungal genera in the Huecoid coprolite samples included 

Cryptococcus, Candida, Melanconium, Saccharomyces, Penicillium, Leucos

poridium, Bullera and Dictyoglomus. Fungal average abundances, 

average similarities, contribution percents and cumulative percents 

of the bacterial genera present in the Huecoid coprolite samples 

are shown in Table 2. Database searches for archeal terminal 

restriction fragments (TRF) were unproductive as most of the taxa 

identified were either unculturable or unidentified archaeon. The 

few putatively-identified taxa Methanobrevibacter sp., Methanosphaera 
sp. and Sulfolobus sp. were found in all coprolites with no 

discriminatory power between archaeological sites. 

Bacteria accounting for the dissimilarities between the Saladoid 

and Huecoid groups include Anoxybacillus, Vibrio, Clostridium, 

uncultured Actinobacteria, Micrococcus, Lactobacillus, Alicyclobacillus, 

Geobacillus, Lysinibacillus and Fusobacterium (Saladoid) and Leuconostoc, 

Sulfitobacter, Brevibacterium, Dehalococcoides, Coprococcus, Cellulomonas, 

Xylella, Alicyclobacillus, Methylobacterium and Eubacterium (Huecoid). 

Average dissimilarities, dissimilarities/SD, contribution and cu

mulative percents are shown in Table 3. Similarly, fungi 

responsible for dissimilarities between both cultures include 

Melanconium, Debaryomyces, Candida, unclassified Ascomycetes, 

Venturia and Candida (Saladoid), and Leucoagaricus and Pleurotus 
(Huecoid). Average dissimilarities, dissimilarities/SD, contribution 

and cumulative percents are shown in Table 4. 

Analyses of the Bacterial, Fungal and Archaeal 
Communities 

When the TRF area and height were analyzed for each enzyme, 

global R statistics revealed significant differences between the two 

archaeological sites (Table 5). These differences were more salient 

with bacteria and fungi. Archaeal T-RFLP analysis with the 

enzyme HhaI and fungal analysis with HpaI indicated no 

significant difference between the two cultures. All other analyses 

with individual enzymes as well as the combined data for bacterial 

and fungal TRFs showed significant differences in cumulative R 

values. Microbial diversity, as estimated by standard indices of 

diversity, varied across the coprolite samples (Table 6). The MDS 

analyses showed an arrangement of the coprolite samples by 

culture (Figure 4). These results were further supported by the 

cluster analyses, in which the Saladoid and Huecoid cultures 

formed distinct clusters (Figure 5), and ANOSIM. When the 

Saladoid sample from Guayanilla was removed from the MDS 

analysis, a grouping of the coprolite samples by culture was still 

noticeable. Coprolite samples of the same culture exhibited 

similarities of 40% (Figure 6). 

Discussion 

The present study evaluated the resident microbiota of 

coprolites as a source of information. As coprolites and other 

similar fossilized materials are subject to environmental contam

ination, the sample preparation, DNA extraction and PCR 

amplification for this study were conducted in areas designated 

for handling of such ancient materials and routinely monitored for 

extraneous DNA contamination. The information contained 

herein is predicated on the degree of preservation of macromol

ecules within the coprolite. In this study, we assessed the presence 

of macromolecules, including proteins and nucleic acids as a first 

step in the study to ensure that the information gathered 

represents what is contained in the coprolite and not what may 

come from environmental contamination. Cytochemical studies of 

coprolite material from the core of the coprolite indicated that 

proteins, lipids and DNA were detectable in the interior of the 

coprolites and therefore further analysis could ensue. Also, studies 

of proteins and lipids from human coprolites are still very limited 

[9]. The detection of proteins and lipids in the coprolite samples in 

the present study is very promising as these may provide 

nutritional and metabolic information. 
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Figure 1. Archeological sites and coprolite samples in the present study. Panel (A) shows the deposits of the Saladoid and Huecoid groups 
in Vieques, Puerto Rico, from which the coprolite samples were collected. (B) Representative coprolite from the Sorcé, Vieques archaeological site. 
doi:10.1371/journal.pone.0065191.g001 

The human origin of the coprolites was assessed, not only 

based on archaeological observations, but also on the detection 

of human-associated Bacteroides sp. by the PCR-based method 

described elsewhere (23, 24). Human-specific Bacteroides spp. 

have shown to be reliable indicators of this type of contami

nation in the water environments [10]. Based on these results, 

we inferred that the coprolites under study were of human 

origin and of sufficiently high quality to warrant further study. 

Moreover, the microbiological evidence in the present study also 

indicates the source (child vs. adult) of the coprolite samples. 

The presence of Micrococcus sp. in the Saladoid coprolites, may 

suggest that the samples belong to children, since several species 

have been associated with nurslings [11]. This is further 

supported by the presence of Lactobacillus spp., common in the 

feces of breast-fed children [12]. Similarly, in the Huecoid 

coprolite samples, the presence of bacteria belonging to the 

genera Leuconostoc suggests that the samples belong to children as 

well, as these bacteria are associated with maternal milk [13]. 

Interestingly, based on the microbial profiles, these children also 

consumed solid food and this accounted for the presence of 

bacteria commonly present in animals and plants, and 

pathogenic plant and edible fungi. This is also supported by 

the comparatively small size of the coprolites [7]. Notably, the 

similarity between the microbial communities in the coprolite 

samples of the Saladoid and Huecoid cultures was 40%. 

Previous studies have suggested that the intestinal microbiota 

between children is more dissimilar than the intestinal 

microbiota of adults of the same culture (5). 

Our results are consistent with previous reports in which the 

human intestinal microbiome varies according to and is affected 

by diet and cultural traditions [2,14,15,16]. Our report is the first 

to simultaneously report the bacterial, fungal and archaeal 

communities of human coprolites. Metagenomics studies have 

attempted to describe the bacterial communities in coprolites; 

thus, comparisons of our results with previous studies are restricted 

to the bacterial fraction. Human coprolites from North, Central 

and South America harbor Firmicutes. Coprolite samples from 

Central America seem to exhibit a greater diversity of bacterial 

communities as these harbor bacteria from the Bacteroidetes, 

Actinobacteria and Proteobacteria groups [1]. Although the 

Saladoid coprolite samples from Guayanilla and Vieques clus

tered, there are still differences that accounted for the separation of 

the samples in the MDS plots, the differences for which still need 

to be determined. Multivariate statistics, including PCA, MDS and 

cluster analysis were used to assess the ecological and diversity 

features of the coprolites. Ordination methods such as PCA and 

MDS were useful in identifying groups of individuals or samples 

Table 1. Description of coprolites used in this study. 

Deposit Depth Unit Culture Location C-14 Dating 

YTA-1 0.60cm. I-5. Saladoide Vieques 335–395 A.D. 

YTA-2 1.20mt. I-24. Saladoide Vieques 230–385 A.D. 

Z 0.40cm. Z-X. Huecoide Vieques 470–600 A.D. 

Z 1.80mt. Z-W. Huecoide Vieques Circa 180 A.D. 

T-I-G 1.10mt. M-64 Saladoide Guayanilla 100 AC-300AD 

doi:10.1371/journal.pone.0065191.t001 

that share characteristics in common. The utility of univariate and 

multivariate analyses in analyzing microbial community structure 

from an array of taxa or TRFs has been shown [17]. The Saladoid 

and Huecoid cultures exhibited significant differences in their 

intestinal bacterial and fungal profiles as assessed by multivariate 

as well as ANOSIM and SIMPER analyses. This accounted for 

the clustering of the Huecoid and Saladoid coprolite samples by 

culture; however, microbial variation within populations is very 

extensive, and depends on age, diet, and culture [2]. More samples 

would be required to fully conclude that differences between the 

Saladoid and Huecoid are strictly cultural and not environmental 

or ecological. Results would also need to be supported by 

mitochondrial DNA analyses, but the present study opens the 

opportunity to perform such analyses. 

Putative taxonomic identification of bacteria and fungi 

(Table 2) was assessed by comparing the predicted TRF size 

from three different restriction enzymes with bacteria, archaeal 

and fungal databases of predicted fragment size as described by 

Kaplan et al (19, 25). The reliability of the taxon identification 

increases as the number of restriction enzymes is used. Kitts (19) 

and Kaplan et al. (25) propose that the use of three enzymes can 

provide reliable, putative taxonomic identification of principal 

TRFs. Coprolite samples of the Saladoid society exhibited the 

presence of bacteria that are commonly found in aquatic animals. 

Such is the case of Vibrio spp. (present in marine waters and in 

association with aquatic animals) and Actinobacteria (certain 

species are found in the intestines of fish) [18], supporting that the 

Saladoid culture included aquatic animals in their diets. The 

Huecoid coprolite samples were characterized by bacteria 

involved in cellulose degradation (Cellulomonas spp.) and leaf-

associated bacteria (Methylobacteria) [19,20]. In terms of the fungi, 

the Saladoid coprolite samples harbored DNA from Debaryomyces, a  

marine yeast resistant to salt concentrations of up to 24%, which 

has been isolated from fish [21]. Other fungal genera in the 

Saladoid coprolite samples included the Ascomycetes, which 

although is a wide group, certain species are edible. This suggests 

that the Saladoid culture may have included Ascomycetes in their 

diets, although certain species are plant pathogens and it remains a 

possibility that individuals ingested these fungi when consuming 

contaminated food or decaying vegetable matter. Other plant 

pathogenic fungi present in the Saladoid coprolite samples 

included Melanconium sp. and Venturia spp., confirming the possible 

ingestion of contaminated plants. From the results it appears that 

the Huecoid culture included fungi such as Leucoagaricus and 

Pleurotus spp. as part of their diets. Notably, Pleurotus species such as 

P. ostreatus and P. pulmonarius are used by some cultures around the 

world for anti -bacterial, -viral, inflammatory and -tumor 

treatment [22]. It is possible that the Huecoid culture ingested 

these mushrooms for medicinal purposes as well [22]. Yet, it 

remains to be addressed if several of the identified animal remains 

in the Saladoid and Huecoid sites were used for consumption and/ 

or as pets and if these could have directly and/or indirectly 

influenced the intestinal microbiota. 

The present study lends support to the hypothesis proposed 

by Chanlatte and Narganes, that the Saladoid and Huecoid 

cultures may be different cultures. Given that two samples were 

analyzed, and that it would be difficult collecting more samples 

due to their unique nature, results may not truly reflect the 

intestinal microbiota of the population, rather of a subgroup. It 

should be noted that the Saladoid refuse deposits in Vieques are 
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Figure 2. Presence of DNA, proteins and lipids in the coprolite samples. Detection of the macromolecules was determined using specific 
cytochemical staining. 
doi:10.1371/journal.pone.0065191.g002 

located in the north, west and central regions of the Sorcé 

archeological site and most of the Huecoid deposits are located 

to the southern part. In addition, there is no stratigraphic 

superposition of the Saladoid and Huecoid cultural materials in 

the archeological site of Sorcé, indicating that each deposit 

corresponds to a specific culture. A stratigraphic superposition 

would indicate that a more recent culture occupied the space 

previously inhabited by an older culture, but this is not the case 

for the Saladoid and Huecoid cultures in Sorcé. The Saladoid 

and Huecoid sites in Vieques are separated by a distance of 15– 

150 m, and thus the location where the neighbor culture was 

established was highly accessible. This would suggest that 

differences between both groups would be largely cultural 

rather than environmental or ecological. 

Contamination with exogenous microorganisms may represent 

a concern in coprolite studies [23]. However, T-RFLP has 

sufficient discriminatory power for the identification of microbes 

from fecal sources by comparisons with contemporary human 

fecal microbiota. The microbial community of coprolites was 

reflective of the normal human fecal flora [24] and thus lends 

further credence that the results obtained originated from coprolite 

DNA and not environmental contamination. The present study is 

among the few performed using T-RFLP to study microbial 

profiles in human coprolites. Although T-RFLP is a library-

dependent method, it is less expensive than metagenomic 

sequencing, results are obtained within 3 to 4 days, and bacterial, 

fungal and archaeal analyses can be performed individually or 

altogether [25]. In the present study, bacteria from the groups 

Proteobacteria (Vibrio and Desulfovibrio spp.), Bacteroidetes, Firmi

cutes (Clostridium sp.) and Actinobacteria (Micrococcus and Coryne

bacterium spp.) were detected using T-RFLP and these profiles are 

very similar to those using a metagenomic approach in human 

coprolites [1]. It should also be noted that bacteria detected in the 

human coprolites in the present study do not correspond to those 

previously described in tropical soils [26]. This lends credence to 

the observation that bacteria detected in the coprolite samples are 

from a fecal origin. 

Conclusions 
Our results suggest that the intestinal microbial profiles of 

earlier and modern cultures possess a core microbiome. This 

accounts for the matching of the intestinal microbial profiles of 

pre-Columbian cultures with those of T-RFLP databases, 

although specific bacterial and fungal communities accounted 

for differences between the coprolite samples. Based on fecal 

microbial community comparisons, it is apparent that the Huecoid 

and Saladoid cultures differ, at least in part, by the nature of their 

diet. When observed that these two societies virtually share the 

same differences were based on cultural differences. While the 

results are encouraging and support the two-culture hypothesis, 

further analyses are required to substantiate the favored hypoth

esis. The approach considered in the present study could be 

applied to characterize the intestinal microbiota of various 

cultures. 
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Figure 3. Cumulative number of unique TRF peaks accumulating with sample intensity. Values were calculated from the average of 
unique bands resulting from 50 permutations of random ordering. 
doi:10.1371/journal.pone.0065191.g003 

Table 2. Similarity percentages for the Huecoid and Saladoid coprolites and the bacterial and fungal contributions. 

Ave. Ave. Ave. Ave. 
Culture TRF Putative Taxon1 Abund. Similar. Contrib. % Culture TRF Putative Taxon1 Abund. Similar. Contrib. % 

Saladoid (31.16% Similarity) Huecoid (58.17% Similarity) 

Bacterial contributions Bacterial contributions 

364 Haemophilus sp. 179.32 5.05 16.21 366 Bacteroides sp. 208.69 3.76 6.47 

365 Pseudoalteromonas sp. 217.41 4.08 13.1 367 Arthrobacter sp. 215.45 3.72 6.39 

503 Corynebacterium sp. 193.82 3.78 12.14 365 Comamonas sp. 201.46 3.66 6.29 

361 Bifidobacterium sp. 121.81 3.48 11.16 529 Shewanella sp. 185.37 3.44 5.92 

529 Shewanella sp. 139.34 3.25 10.44 513 Capnocytophaga sp. 199.67 3.32 5.71 

212 Anoxybacillus sp. 142.36 3.08 9.88 531 Escherichia coli. 177.56 3.27 5.63 

528 Mycoplasma sp. 209.5 3 9.61 63 Acidobacteria sp. 170.25 3.13 5.38 

93 Desulfovibrio sp. 94.46 2.8 8.97 526 Acinetobacter sp. 218.28 2.85 4.9 

Fungal contributions Fungal contributions 

79 Candida sp. 352.62 8.4 16.93 87 Cryptococcus sp. 327.66 6.91 17.95 

87 Cryptococcus sp. 392.94 7.76 15.64 79 Candida sp. 336.22 4.87 12.67 

82 Saccharomyces sp. 239 6.41 12.92 135 Melanconium sp. 249.34 4.71 12.24 

85 Bullera sp. 210.02 5.73 11.55 82 Saccharomyces sp. 243.47 4.7 12.22 

591 Penicillium sp. 185.83 4.4 8.86 591 Penicillium sp. 331.91 3.82 9.92 

135 Melanconium sp. 259.85 4.31 8.68 506 Leucosporidium sp. 162.4 3.77 9.79 

58 Absidia sp. 252.9 3.35 6.75 85 Bullera sp. 153.2 3.54 9.19 

349 Debaryomyces sp. 97.48 3.3 6.66 585 Dictyoglomus sp. 198.44 3.45 8.96 

doi:10.1371/journal.pone.0065191.t002 
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Table 3. SIMPER Analysis of Bacterial taxa impacting clustering of Huecoid and Saladoid Coprolite. 

Average Abundance 

TRF Putative Taxon Saladoid Huecoid Av. Diss.* Diss./SD Contrib.% Cumul.% 

212 Anoxybacillus sp. 142.36 0 2.05 3.12 3.12 3.12 

527 Vibrio sp. 139.22 0 0.76 0.87 1.15 74.75 

522 Clostridium sp. 121.90 0 0.65 0.87 0.99 89.37 

361 Uncultured actinobacterium 121.81 0 1.75 19.05 2.67 11.54 

505 Micrococcus sp. 120.94 0 0.69 0.87 1.05 80.13 

519 Lactobacillus sp. 117.16 0 0.78 0.87 1.18 72.43 

230 Uncultured acidobacterium 110.58 0 1.58 0.87 2.41 21.64 

93 Desulfovibrio sp. 94.46 0 1.36 79.42 2.07 34.37 

207 Alicyclobacillus sp. 92.6 0 0.68 0.87 1.04 84.32 

243 Geobacillus sp. 78.66 0 1.13 0.87 1.71 43.55 

512 Lactobacillus sp. 74.69 0 1.07 0.87 1.62 48.49 

231 Lysinibacillus sp. 74.31 0 1.06 0.87 1.62 51.73 

200 Fusobacterium sp. 63.33 0 0.92 0.87 1.39 60.73 

63 Leuconostoc sp. 0 170.25 1.63 48.11 2.48 19.24 

61 Sulfitobacter sp. 0 147.10 1.41 15.52 2.15 25.99 

508 Brevibacterium sp. 0 144.15 1.38 5.00 2.10 30.23 

497 Dehalococcoides sp. 0 111.63 1.07 0.87 1.62 50.11 

178 Coprococcus sp. 0 105.94 1.01 0.87 1.54 56.37 

371 Cellulomonas sp. 0 89.93 0.86 0.87 1.31 67.41 

372 Escherichia coli sp. 0 88.89 0.85 0.87 1.29 68.70 

206 Alicyclobacillus sp. 0 80.36 0.77 0.87 1.17 73.60 

299 Methylobacterium sp. 0 71.70 0.69 0.87 1.05 82.23 

376 Eubacterium sp. 0 66.97 0.65 0.87 0.98 90.35 

*Total Average dissimilarity = 65.75. 
doi:10.1371/journal.pone.0065191.t003 

Materials and Methods samples originated from the archeological site of Sorcé in the 

island of Vieques (Figure 1) and one, used as a control, from the 
Sample Description archeological site of Tecla 1 in Guayanilla, in south central Puerto 

Coprolite samples were originally obtained by Yvonne M. Rico. Two of the Sorcé samples, as well as the Guayanilla sample, 
Narganes-Storde and Luis Chanlatte, archeologists at the Center were of a Saladoid origin and the remaining two samples were of a 
of Archeological Research at the University of Puerto Rico. All Huecoid origin. 
necessary permits were obtained for the described study, which 

complied with all relevant regulations. A total of five coprolites, 

dating 180 A.D. to 600 A.D., were analyzed (Table 1). Four 

Table 4. SIMPER Analysis of fungal taxa impacting clustering of Huecoid and Saladoid Coprolite. 

Average Abundance 

TRF Putative Taxon Saladoid Huecoid Av. Diss. Diss./SD Contrib.% Cumul.% 

136 Melanconium sp. 151.12 0 1.63 8.86 2.88 22.65 

349 Debaryomyces sp. 97.48 0 1.72 13.68 3.03 10.91 

519 Candida sp. 92.86 0 1.59 0.87 2.81 25.46 

553 Unclassified Ascomycetes 92.72 0 1.67 0.87 2.96 16.85 

75 Venturia sp. 89.87 0 1.58 17.68 2.79 31.04 

133 Candida sp. 87.68 0 1.58 0.87 2.79 28.25 

646 Leucoagaricus sp. 0 145.47 1.69 0.87 2.99 13.89 

590 Pleurotus sp. 0 139.54 1.65 0.87 2.91 19.76 

doi:10.1371/journal.pone.0065191.t004 
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Figure 4. MDS plot of the microbial communities of the Saladoid and Huecoid societies in Vieques, Puerto Rico. Plot includes the 
Saladoid coprolite sample from Guayanilla, Puerto Rico as comparison. 
doi:10.1371/journal.pone.0065191.g004 

Figure 5. Dendrogram of the coprolite samples of the Saladoid and Huecoid cultures in Vieques, and the Saladoid culture in 
Guayanilla, Puerto Rico. 
doi:10.1371/journal.pone.0065191.g005 
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Figure 6. MDS analysis of the Saladoid and Huecoid coprolite samples from Vieques, Puerto Rico. 
doi:10.1371/journal.pone.0065191.g006 

Sample Handling 
All experiments were performed in an Ancient DNA laboratory 

where DNA extraction is conducted in class II hoods, earmarked 

for ancient DNA, exclusively. The hoods are routinely decontam

inated with chlorine and PCR reactions are prepared in a DNA-

free room, maintained under germicidal UV light while not in use. 

Sterile, DNA-free instruments were used to extract the DNA. 

Controls are done ad-libitum for the absence of extraneous DNA. 

Table 5. R Statistics for Coprolites from Saladoid and Huecoid 
Archaeological Sites in Vieques. 

Taxon Enzyme Cumulative R 

Eubacteria DpnII 0.5 

HaeIII 0.5 

HpaI  0.3  

Combined 1.0 

Fungi AciI  0.6  

HaeIII 0.5 

HpaI  0.0  

Combined 1.0 

Archaea HaeIII 0.3 

HhaI  –0.3  

Combined –0.3 

All Taxa Combined 1.0 

doi:10.1371/journal.pone.0065191.t005 

Macromolecule Detection, DNA Extraction and PCR 
Amplifications 

All procedures, including sample preparation, DNA extraction 

and PCR amplification were conducted in a laboratory earmarked 

for ancient DNA studies and where DNA extraction was 

conducted in decontaminated hoods. PCR mixtures were 

conducted in DNA-free rooms and physically separated from all 

DNA handling spaces. The exterior shell of the coprolites was 

removed in order to minimize environmental contamination using 

a sterilized brush [1]. Once the exterior shell was removed, the 

core of the coprolites (around 0.25 g) was extracted using aseptic 

techniques with gloved hands and sterile instruments in a laminar 

flow cabinet to minimize environmental contamination. Coprolite 

samples were analyzed for the presence of DNA, proteins and 

lipids by cytochemical staining using Acridine Orange, Fast 

Green, and Nile Red, respectively. Samples were reconstituted at 

10 mg/mL in phosphate buffered saline. Fast Green FCF (5:100 

(v/v)), for protein staining) and Nile Red (2:100 (v/v)), for 

intracellular lipid staining) was added to 100 mL of the reconsti

tuted sample and incubated protected from light for 30 minutes at 

room temperature. Twenty-five mL of stained suspension was 

mixed with 25 mL of melted agarose (0.5% w/v) and placed on a 

concave microscope slide, then immediately covered with a cover-

slip. Imaging was done with a confocal laser scanning microscope 

(CLSM) Fluoview FV1000 system equipped with an IX81 inverted 

microscope (Olympus, Tokyo, Japan). The observations were 

made with a PLAPON 60X immersion oil objective (0lympus). 

FCF was excited with the 633 nm HeNeR laser and Nile Red with 

the 488 nm AR line. Images were analyzed with the Fluoview 

FV1000 software (version 1.7.2.2, Olympus). 

DNA was extracted using the PowerSoilH DNA Isolation Kit 

(Mo Bio Laboratories, Carlsbad, CA), following the manufactur

er’s instructions with the exception that samples were placed in the 

PowerBead tubes overnight at –20uC. DNA quantity was 

estimated using a QubitH 2.0 fluorometer (Life Technologies, 
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Table 6. Diversity Statistics for all enzymes used for coprolites from Vieques archaeological sites. 

Coprolite Taxon 

ALL 

ALL 

ALL 

ALL 

Enzyme(s) 

HaeIII 

All eubacteria 

HaeIII 

All fungi 

HaeIII 

All taxa 

HaeIII 

All eubacteria 

HaeIII 

All fungi 

HaeIII 

All taxa 

HaeIII 

All eubacteria 

HaeIII 

All fungi 

HaeIII 

All taxa 

HaeIII 

All eubacteria 

HaeIII 

All fungi 

HaeIII 

All taxa 

Total TRF 

27 

84 

21 

49 

20 

174 

25 

87 

23 

77 

19 

205 

28 

83 

24 

64 

24 

198 

26 

83 

19 

61 

15 

173 

Richness 

3.057 

16.589 

2.397 

5.195 

2.292 

16.589 

2.833 

19.355 

2.627 

7.956 

2.184 

19.355 

3.167 

18.736 

2.735 

6.693 

2.736 

18.736 

2.948 

16.469 

2.168 

6.369 

1.717 

16.469 

Evenness 

0.986 

0.985 

0.973 

0.966 

0.965 

0.985 

0.986 

0.988 

0.970 

0.983 

0.963 

0.988 

0.987 

0.986 

0.973 

0.973 

0.973 

0.986 

0.983 

0.986 

0.974 

0.979 

0.964 

0.986 

H’ (Shannon) 

3.250 

5.079 

2.963 

3.761 

2.890 

5.079 

3.173 

5.261 

3.040 

4.272 

2.836 

5.261 

3.287 

5.217 

3.092 

4.048 

3.093 

5.217 

3.204 

5.079 

2.868 

4.023 

2.610 

5.079 

Simpson’s 

0.959 

0.993 

0.943 

0.972 

0.937 

0.993 

0.956 

0.994 

0.947 

0.985 

0.931 

0.994 

0.961 

0.994 

0.951 

0.980 

0.950 

0.994 

0.957 

0.993 

0.939 

0.980 

0.918 

0.993 

ZW Bacteria DpnII 26 1.810 0.939 3.060 0.941 

HhaI 31 3.489 0.993 3.410 0.966 

Fungi HpaI 25 2.839 0.981 3.159 0.955 

AciI 3 0.276 0.785 0.863 0.497 

Archaea HhaI 21 2.390 0.979 2.979 0.946 

All archaea 41 4.433 0.977 3.629 0.971 

ZX Eubacteria DpnII 31 2.171 0.965 3.313 0.958 

HhaI 31 3.496 0.988 3.393 0.965 

Fungi HpaI 27 3.061 0.982 3.237 0.958 

AciI 27 3.062 0.981 3.233 0.958 

Archaea HhaI 22 2.503 0.980 3.031 0.949 

All archaea 41 4.438 0.978 3.631 0.970 

YTA1 Eubacteria DpnII 28 1.950 0.970 3.231 0.957 

HhaI 27 3.053 0.988 3.255 0.960 

Fungi HpaI 20 2.304 0.954 2.859 0.932 

AciI 20 2.295 0.961 2.880 0.936 

Archaea HhaI 27 3.064 0.980 3.230 0.958 

All archaea 51 5.470 0.981 3.857 0.977 

YTA2 Eubacteria DpnII 29 2.027 0.960 3.233 0.955 

HhaI 28 3.162 0.990 3.298 0.962 

Fungi HpaI 21 2.394 0.976 2.970 0.945 

AciI 21 2.408 0.963 2.933 0.939 

Archaea HhaI 14 1.601 0.961 2.536 0.912 

All archaea 29 3.171 0.970 3.267 0.957 

doi:10.1371/journal.pone.0065191.t006 
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Carlsbad, CA) and stored at –20uC until used. All PCR primers in 

the present study are described in Table 7 [27,28,29,30,31]. PCR 

reactions for both human and dog Bacteroides were performed in 

total volumes of 50 mL and with the following reagent concentra

tions: 1X GoTaqH buffer (Promega Corp.), 0.4 mM dNTP 

(Promega Corp.), 1 mM MgCl2 (Promega Corp.), 2 U GoTaqH 
DNA polymerase (Promega Corp.), 0.5 mM HF183 or BacCan 

forward primer, 0.5 mM Bac708R reverse primer, and 10 ng of 

template DNA. PCR conditions consisted of an initial denatur

ation step of 95uC for 4 min, followed by 35 cycles at 95uC for 

30 s, 57.5uC for 30 s, 72uC for 1 min and a final extension at 

72uC for 5 min. 

All PCR reactions for bacteria, fungi and archaea were carried 

in triplicate. For the bacterial 16SrRNA gene, reactions were 

carried in 50 mL volumes reactions with 1X GoTaqH buffer, 

0.6 mM dNTP, 3.5 mM MgCl2, 0.8 mg BSA (2 ml of 20 mg/mL), 

2 U GoTaqH, 0.2 mM labeled primer *8dF and 0.2 mM primer 

K2R (10 uM) and 10 ng of DNA template. PCR conditions 

consisted of an initial denaturation at 94uC for 10 min, followed 

by 40 cycles at 94uC for 1 min, 46.5uC for 1 min, 72uC for 2 min 

and a final extension at 72uC for 10 min. The PCR reactions of 

the ITS region of fungi were carried in 50 mL volumes with 1X 

GoTaqH buffer, 0.6 mM dNTP, 2.5 mM MgCl2, 2 U of GoTaqH 
DNA polymerase, 0.2 mM of labeled ITS1F primer, 0.2 mM 

ITS4R primer and 10 ng template DNA. Reaction conditions 

consisted of an initial denaturation at 94uC for 5 min, 13 cycles of 

94uC for 35 s, 55uC for 55 s and, 72uC for 45 s; 13 cycles of 94uC 

for 35 s, 55uC for 55 s and, 72uC for 2 min; 9 cycles of 94uC for 

35 s, 55uC for 55 s and, 72uC for 3 min; followed by 72uC for 

10 min. PCR products were stained using ethidium bromide 

(0.5 ng/L) and visualized in 1% agarose gels. For the PCR 

amplification of the archaeal 16S rRNA gene, reactions were 

performed in 50 mL with 1X GoTaqH buffer, 0.8 mM dNTP, 

2.5 mM MgCl2, 0.8 mg BSA (2 ml of 20 mg/mL), 2 U GoTaqH, 

0.2 mM labeled primer Arch21F and 0.2 mM primer Arch958R 

(10 uM) and 10 ng of DNA template. Reaction conditions 

consisted of an initial denaturation at 94uC for 10 min, 40 cycles 

at 94uC for 1.5 min, at 55uC for 1.5 min, 72uC for 1 min; and a 

final extension of 10 min at 72uC. 

Terminal Restriction Fragment (T-RFLP) Analyses 
PCR products were purified using the MoBio PCR UltraCleanH 

Kit following the manufacturer’s instructions. The fluorescently 

labeled amplicons (50 ng) of the bacterial and archaeal 16S rRNA 

gene and fungal ITS region were separately digested using two to 

three restriction endonucleases. Bacterial 16S rRNA gene 

amplicons were digested using DpnII, HaeIII and HhaI, fungal 

ITS amplicons were digested using AciI, HaeIII and HpaI, and the 

archaeal 16S rRNA gene amplicons were digested using HaeIII 

and HhaI. T-RFLP analyses of bacteria, archaea and fungi were 

conducted as described previously [25,29]. Briefly, digestions were 

carried out using a thermocycler program of 37uC for 4 h and 

either 65uC or  80uC for 20 min. After ethanol precipitation the 

DNA was dissolved in 20 mL of formamide (Beckman Coulter) 

with 0.25 mL of 600 base pair size standard (Beckman Coulter). 

The fragments were separated using capillary gel electrophoresis 

on the CEQ8000 (Beckman Coulter). Terminal restriction 

fragment length in nucleotides, and TRF peak area were exported 

from the CEQ8000 into EXCEL (Microsoft, Seattle, WA). To 

standardize the data for comparison between samples, the area 

under each TRF peak was normalized to the total amount of DNA 

analyzed and expressed as parts per million (ppm). Peaks with an 

area of less than 5000 ppm (,0.5% of the total for that sample) 

were excluded from analysis to reduce noise. 

Statistical Analyses 
TRF data matrices were transformed by taking the square root 

of the area as described previously [32]. For statistical analysis of 

TRF peaks, results from all enzymatic digests for each of the 

microbial groups were pooled into a single matrix. Sørensen’s 

similarity index [33] was used to determine similarities in 

microbial community structure in each of the five coprolites 

[34]. Similarity matrixes were used to construct dendrograms. 

Additionally, the similarity matrix was analyzed with a one-way 

analysis of similarities (ANOSIM, Primer E software v. 6) to test 

the null hypothesis that association of individual TRFs with 

coprolites was independent of site. Global R sample statistics were 

computed for each comparison as described [34,35]. Species 

accumulation plots were constructed to assess whether or not the 

sites were effectively sampled. Multidimensional scaling (MDS) 

plots were constructed using a similarity matrix comprised of T

RFLP coprolite results (Primer E software v. 6) [34]. The MDS 

plot was used to arrange samples in two-dimensional space 

according to their relative similarities and the BvSTEP procedure 

was used to select the OTUs that were the best predictors of the 

patterns [36]. The OTUs most responsible for the overall pattern 

were separated from those considered to be outliers, and separate 

MDS plots were made for each group. The similarity percentages-

species contributions one-way analysis (SIMPER, Clarke, 1993) 

was used to quantify the contribution of each TRF to within-site 

Table 7. Primers in the present study included those for human and dog Bacteroides, universal primers for the 16S rRNA of 
bacteria and archaea, and the ITS region of fungi. 

Primers Sequence Direction Target Reference 

BacCan GGAGCGCAGACGGGTTTT Forward Dog Bacteroides Kildare et. al., 2007 

8dF AGAGTTTGTTCMTGGCTCAG Forward Bacterial 16S rRNA gene Kaplan et. al., 2001 

Arch21F TTCCGGTTGATCCYGCCGGA Forward Archaeal 16S rRNA gene DeLong, 1992. 

ITS1F CTTGGTCATTTAGAGGAAGTAA Forward Fungi ITS region Gardes and Bruns, 1993 

HF183F ATCATGAGTTCACATGTCCG Forward Human Bacteroides Bernhard and Field, 2000. 

Bac708R CAATCGGAGTTCTTCGTG Reverse Human and Dog Bacteroides Bernhard and Field, 2000. 

K2R GTATTACCGCGGCTGCTGG Reverse Bacterial 16S rRNA gene Kaplan et. al., 2001 

Arch958R YCCGGCGTTGAMTCCAATT Reverse Archaeal 16S rRNA gene DeLong, 1992. 

ITS4B TCCTCCGCTTATTGATATGC Reverse Fungi ITS region Gardes and Bruns, 1993 

doi:10.1371/journal.pone.0065191.t007 
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similarity and between-site dissimilarity. Standard indices of 

diversity (DIVERSE), including total TRFs (S), Margalef species 

richness, Pielou’s evenness, Shannon diversity index (H’), and 

Simpson’s diversity index were calculated for all enzymes and taxa 

used in T-RFLP analyses (Primer E software v. 6) [34]. 

Database Matching of TRF Peaks 
TRFs designated by SIMPER analysis to contribute significant

ly to within culture similarity and/or between culture dissimilarity 

were assigned a putative taxonomic identification by matching 

predicted TRF peaks to in-house and public databases. Databases 

for eubacteria, archaea and fungi were created from the 
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