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Global patterns of ethnolinguistic diversity vary tremendously.
Some regions show very little variation even across vast expanses,
whereas others exhibit dense mosaics of different languages spoken
alongside one another. Compared with the rest of Native North
America, prehistoric California exemplified the latter. Decades of
linguistic, genetic, and archaeological research have produced
detailed accounts of the migrations that aggregated to build
California’s diverse ethnolinguistic mosaic, but there have been
few have attempts to explain the process underpinning these migra-
tions and why such a mosaic did not develop elsewhere. Here we
show that environmental productivity predicts both the order of
migration events and the population density recorded at contact.
The earliest colonizers occupied the most suitable habitats along
the coast, whereas subsequent Mid–Late Holocene migrants settled
in more marginal habitats. Other Late Holocene patterns diverge
from this trend, reflecting altered dynamics linked to food storage
and increased sedentism. Through repeated migration events, in-
coming populations replaced resident populations occurring at
lower densities in lower-productivity habitats, thereby resulting in
the fragmentation of earlier groups and the development of one
of the most diverse ethnolinguistic patterns in the Americas. Such
a process may account for the distribution of ethnolinguistic
diversity worldwide.

Native California has long stood out as as a region of ex-
ceptionally high ethnolinguistic diversity, a pattern generally

recognized as the end product of repeated in-migrations by suc-
cessive groups (1–6) (Fig. 1 and Fig. S1). Explaining why migra-
tions led to the aggregation of so many ethnic groups in California,
but not in neighboring regions, has been a longstanding challenge
for North American prehistorians. Previous research worldwide
has found correlations between environmental productivity, pop-
ulation density, and linguistic diversity (7–9), but these studies fail
to explain the processes that fostered such patterning. Proposed
explanations tend to focus on population replacement events,
where incoming groups equipped with more intensive subsistence
strategies out-compete in situ groups (10, 11). Although of great
use in understanding cultural patterns in prehistory, these explan-
ations provide less-than-adequate explanations for circumstances
where in-migrations resulted not in full-scale replacement, but in
the buildup of ethnic diversity.
Here we propose a simple explanation for this patterning

based on predictions from an ideal free distribution model (IFD)
from behavioral ecology (12, 13) (Fig. S2). Recent anthropo-
logical applications of the IFD have proven useful for explaining
patterning in prehistoric colonization and settlement (14–18).
The basic model assumes that environments vary in their suit-
ability and that habitats decline in suitability as a function of
population density. Assuming that individuals should attempt to
maximize habitat suitability, incoming colonizers and migrants

should occupy the highest-ranking habitats until a point where
suitability declines to a level equal to the next highest ranking
habitat. As populations increase through either migration or in
situ growth, lower-ranking habitats should fill in rank order, with
higher-ranking habitats always occupied by more individuals per
area. From these dynamics, the IFD provides two main quali-
tative predictions: (i) the most suitable habitats should always
be occupied first, and (ii) they should always have the highest
population densities.
Observations that do not conform to these expectations may

result from a number of factors, one of which is caused by a vi-
olation of the “free” assumption of the IFD. If for some reason
individuals are no longer free to select the most suitable habitat,
then IFD dynamics would give way to those of the ideal despotic
(or dominance) distribution model (IDD) (12). Archaeological
studies have used the IDD to better understand the emergence
of hierarchies and intergroup resource competition (19, 20). IDD
dynamics can emerge from any exclusionary tactics, including
territoriality or even strongly sedentary adaptations that provide
some advantage against potential competitors. This is more likely
to occur where resources are concentrated and predictable, making
resource-bearing habitats defensible (21).
Based on these model dynamics, we hypothesize that that the

first people to colonize California would have occupied the most
suitable habitats. Individuals in these sweet spots were more
likely to stay in place due to the greater demographic potential of
these highly suitable environments. Subsequent migrants would
have been best off settling in adjacent, although less productive,
regions, resulting in the sequential occupation of increasingly
marginal habitats. Because populations in more marginal hab-
itats were likely to have lower population densities, they may
have been susceptible to replacement by incoming migrants
whose population densities were more likely to be at parity. In
contrast, those occupying more suitable habitats would have
been susceptible to replacement only in circumstances where
incoming populations adopted exclusionary tactics ranging from
greater sedentism to territorial aggression (10). In this way, the
prehistory of regions with greater heterogeneity in habitat suit-
ability should be characterized by a mix of migration outcomes
that gradually produce the aggregation of ethnolinguistic diversity.
Regions characterized by more homogeneous distributions of
habitat suitability should experience zero-sum outcomes resulting
either in stasis or full-scale replacement, leading to very limited
ethnolinguistic diversity (11).
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Here we test these predictions with estimates of habitat suit-
ability, settlement chronologies, and population densities for pop-
ulations in California. We use terrestrial net primary productivity
(NPP), an approximation of plant productivity, as a proxy for
habitat suitability. To test the first prediction of the IFD that the
most suitable habitats are occupied first, we use genetic (22–26)
and linguistic (4–6, 27, 28) data to estimate the timing of coloni-
zation and migration events for each language group in California
(Table 1). We then use estimates of contact population density
for each ethnolinguistic group (2, 9, 29–31) (Table S1) to test the
second prediction that the most suitable habitats always have the
highest population densities.

Results
Fig. 1 shows the distribution of environmental productivity
(measured by NPP) summarized for each ethnolinguistic territory
(Table S1). As has been shown globally for hunter–gatherer pop-
ulations (7), NPP negatively covaries with the size of ethnographic
territories throughout California ([linear: r2 = 0:19; p= 0:0002,

log linear: r2 = 0:287; p< 0:0001 (Fig. S3)]. Mean environmental
productivity (NPP) varies significantly across linguistic groups
(ANOVA, df = 8, F = 10:52, p< 0:0001). These differences are not
a function of spatial autocorrelation (Moran’s I = 0:30, z= 0:94,
p= 0:35).

Prediction 1: Most Suitable Habitats Are Occupied First. To test this
prediction, we examine mean NPP for each ethnographic territory
by linguistic grouping rank-ordered by the estimated colonization
or migration date. As shown in Fig. 2, the variability is largely
distributed through time following our chronological predictions.
The earliest groups to enter California occupied some of the most
productive habitats. It appears that these habitats remained oc-
cupied until the contact era. Mean productivity declines sig-
nificantly with subsequent migrations through the Middle to
Late Holocene (Table 2). The Late Holocene spread of Numic
speaking peoples into the lowest-ranking habitats continues the
declining trend. However, subsequent migrations of Algic and
Athabaskan groups diverge from this patterning, suggesting that
a different process was driving these last migration events.

Prediction 2: Most Suitable Habitats Have the Highest Population
Densities. To test this prediction, we examine population den-
sity as a function of mean NPP for each ethnographic group. As
shown in Fig. 3, there is a highly significant relationship between
the two variables: as environmental productivity increases,
population density increases at an exponential rate (linear:
r2 = 0:62; p< 0:0001; exponential: r2 = 0:63; p< 0:0001). In agree-
ment with the IFD predictions, habitats with higher suitability
support larger populations per unit area. Coupled with the chro-
nological results, this suggests that the earliest migrants into a re-
gion are likely to grow to higher densities, thereby reducing the
probability of replacement from subsequent migrations. However,
again, Algic and Athabaskan groups are an anomaly: although
they are the latest arrivals in the region, they still exhibit some of
the highest population densities.

Discussion
Implications for California Prehistory. The first people to settle Cal-
ifornia, the ancestors of Chumash and Yukian speakers, occupied
some of the most productive habitats, likely traveling to the region
along the coast via boats (32). These findings provide ancillary
support for a coastal colonization model for the Americas showing
that the earliest migrants into the region settled along highly
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Fig. 1. NPP values averaged for each ethnolinguistic group in California
overlaying the processed MODIS satellite imagery showing NPP values.
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productive shorelines with adjacent productive terrestrial resource
patches. Geographic hot spots like estuaries and river mouths
probably acted as draws for people where marine and terrestrial
resources were concentrated (33). Although archaeological sup-
port for such patterning is greater in the southern portion of the
state (32), the limited support for Early Holocene dates along the
northwestern coast may be due to biased erasure of the record
resulting from sea level rise at a steeper gradient along the interface
between land and sea (34).
In the second wave of migrations, predecessors of the speakers

of Hokan languages came to occupy less productive habitats, but
in contiguous territory covering much of the region (2, 6). After
their initial movement into these moderately productive areas,
populations likely outgrew their resource base, causing individ-
uals to spread into adjacent lands. Such in-filling of un- or under-
occupied lands helps to explain the putative expansion of this
second wave of migrants into moderately productive contiguous
territory across the region.
This contiguous territory occupied by Hokan-speaking ances-

tors was later fragmented by migrations of Penutian (Yok-Utian,
Wintuan, and Maiduan) and perhaps Takic-speaking ancestors.
These groups occupied habitats that did not differ significantly
from one another or from the lands inhabited by Hokan speakers
until the time of contact. These replacement and fragmentation
events were a potential consequence of environmental degra-
dation in the Great Basin, which lowered landscape productivity
and pushed populations westward (6, 35).
In the Late Holocene, Numic-speaking peoples spread through-

out southeastern California and across the rest of the Great
Basin. This expansion did not spill into adjacent highly productive
areas, suggesting that these locations were already occupied at
high densities by earlier migrants. Instead, these migrations filled
in regions of low productivity, replacing previous populations
that occupied the region at low densities. The previous occupants
were likely out-competed by the intensive foraging practices of
these migrants (11), a trend perhaps common to many of the
Late Holocene migrations.
The subsequent Late Holocene migrations of Algic- and

Athabaskan-speaking peoples into northwestern California
departs from our predictions: these groups took over highly
productive habitats that were initially settled by some of the
earliest colonizers. This departure from IFD predictions likely
signals a shift to IDD dynamics, which could have been driven
by the intensive fishing practices previously adopted by these
incoming populations who were focused on acquiring and storing
anadromous fish (salmon) (36, 37). Such a subsistence focus
coupled with more sedentary adaptations and notions of own-
ership over productive resource patches would have provided a
competitive advantage for the incoming populations, who would

have been able to remain in place throughout the year, thereby
excluding the previous populations who were more seasonally
mobile (2, 5, 37, 38). Furthermore, these migrations also likely
brought the bow and arrow to the region (38), a technology that
potentially provided greater foraging returns and possibly di-
rectly aided in population displacement (39, 40).

A General Framework. The dynamics embedded within IFD and
IDD models provide a framework to explain why global patterns
reveal a correlation between ecological and linguistic diversity.
In ecologically homogenous regions where habitat suitability does
not vary extensively across space, populations are likely to be more
evenly distributed across the landscape. With roughly equitable
population densities, colonization attempts by incoming migrants
are likely either to fail outright and be completely repelled or to
succeed and result in the complete replacement of the resident
population (11).
In ecologically diverse regions with alternating habitats of

varying suitability, migration events by mobile hunter–gatherers
should be repelled by large populations that occupy highly suit-
able habitats, but should be more likely to succeed in replacing
low-density populations that reside in low-suitability habitats. This
will result in the fragmentation of a population whose occupations
span habitats of varying suitability. As a result, regions charac-
terized by greater environmental diversity will come to exhibit
greater linguistic diversity through repeated migration events
that end in partial replacements.
We expect these dynamics to hold until populations adopt

exclusionary tactics that restrict individuals from occupying more
suitable habitats. At that point, all of these rules would be swept
aside. Whether these tactics are adopted by resident or migrant
populations will result in very different outcomes. As such, this
would represent a potential bifurcation point in historical trajec-
tories. If resident populations are the first to adopt such practices,
then they would be more likely to stay in place. However, if
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Table 1. Estimated time since (years BP) and rank order of
migration (arrival) events for California language groups based
on genetic (modern and ancient mtDNA) and linguistic data

Language group Genetic estimate Linguistic estimate Rank order

Chumash 13,233–3,333 Early Holocene 1
Yukian – Early Holocene 1
Hokan Early Holocene 8,000–6,000 2
Yok-Utian 5,000–3,000 4,500 3
Takic Mid-Holocene 3,500 4
Wintuan-Maiduan – 1,500 5
Numic ≤1,000 2,000–1,000 6
Algic – 1,450–1,050 7
Athabaskan – 1,250–750 8

Greater detail on genetic (22, 24–26) and linguistic (6, 27, 28) estimates is
available in Materials and Methods.



incoming populations bring such practices with them, then they
would have a competitive advantage and could replace in situ
populations. This may result from factors as simple as increased
sedentism around predicable, dense resources, thereby excluding
more mobile foragers during their seasonal rounds or as complex
as the in-migration of intensive agricultural groups (10).

Conclusion
This approach provides simple predictions about human population
movements without relying on complex models or assumptions.
Following the IFD and IDD, we suggest that foraging individuals
will tend to distribute themselves across landscapes in ways that
provide the greatest benefit at minimal cost. These simple pre-
dictions provide a framework to explain the emergence of a com-
plex mosaic of ethnolinguistic groups not found elsewhere in North
America. Intergroup dynamics that include practices of exogamy,
networks of exchange, and episodes of violence complicate this
picture. Stochastic environmental shocks, which may have helped
initiate many of these movements, also restructure habitat suit-
ability in significant ways (35, 41). However, overall, broad pat-
terning in migration aggregations appears to meet the predictions
from this simple model.
As an initial test of this hypothesis, this work outlines broad

patterning in the prehistory of western North America, including
an explanation of spatial patterning in the colonization of the
continent. Given patterns in continental NPP, our findings
highlight the potential of coastal habitats (42), which itself lends
support for a coastal corridor as one of the first entry routes into
the Americas (32, 43). Applied elsewhere, this approach may aid
in the explanation of prehistoric hunter–gatherer migrations
across the globe, including the initial spread of people out of
Africa into Europe, Asia, and across to Sahul (Australia/New
Guinea) (17, 44, 45). Although many of these linguistic records
have been erased by the migrations of agricultural peoples (10),
archaeological patterning coupled with estimates of environmen-
tal productivity could eventually provide a global test of our hy-
pothesis and help elucidate why and how humans spread across
the planet, creating a patchwork of linguistic and ethnic diversity.

Materials and Methods
Environmental Productivity. As a proxy for habitat suitability, we relied on
terrestrial NPP. NPP is a measure of the initial step in the carbon cycle where
energy is turned intomass; it is frequently used to approximate plant growth.
Remote sensing data used to calculateNPP came from theModerate Resolution
Imaging Spectroradiometer (MODIS) collected from NASA’s Terra satellite.
MODIS data processed following the MOD17 Photosynthesis and Net Primary
Productivity algorithm were made available by the Numerical Terradynamics

Simulation Group at the University of Montana (46). The raster image consists
of average NPP calculated from 2000 to 2011 in 1-km resolution. Inland waters
and urban areas were excluded and appear white on the map (Fig. 1). A map
that estimates the distribution of California’s ethnographic groups at contact
(2, 6) (Fig. S1) was used to estimate mean NPP values for each linguistic group
with the Zonal Statistics tool in ArcGIS 10 (47). The magnitude of NPP values
was then reduced by four orders to aid interpretation.

Chronology. A rank-ordered chronology for the timing of group migrations
into the region was developed using combined linguistic (5, 6, 28) and ge-
netic (22, 23) estimates. Chumashan and Yukian appear to represent the
oldest linguistic stratum in the region (4–6). This broadly corresponds with
genetic findings, with an estimated age of the clade around 7,353 (13,233–
3,333) years ago (22). Hokan languages are estimated to be the second
oldest group in California with linguistic diversity, suggesting an arrival date
between 8,000 and 6,000 y ago. Hokan languages were likely fragmented by
the first Penutian intrusion which brought Yok-Utian languages into Cal-
ifornia from the Great Basin between 5,000 and 3,000 y ago (6, 24). Lin-
guistic evidence suggests that the Takic branch of Uto-Aztecean languages
expanded sometime about 3,500 y ago (28); genetic evidence comparing
ancient and modern mtDNA confirms this patterning (25). Linguistic analysis
on the other Uto-Aztecan branch represented in the region places the di-
vergence of Numic languages at about 2,000 (27) or 1,000 y ago (6).
Based on a comparison of ancient mtDNA from burials recovered at Pyramid
Lakes and Stillwater Marsh to modern mtDNA, this population replacement in
the eastern Great Basin is thought to have occurred just short of 1,000 y ago
(24). Tubatulabal were left out of this analysis due to their complicated and
debated origin and migration estimates. Wintuan and Maiduan groups
were probably pushed south based on the expansion of Algic and Atha-
baskan migrations in the Late Holocene; it is estimated that they settled
into their historic territories by about 1,500 y ago (6). Their entrance into
northern California was followed by the continued expansion of Algic and
Athabaskan groups between 1,450 and 1,050 and between 1,250 and 750 y
ago, respectively (6). A summary of these data along with rank order esti-
mates is provided in Table 1.

Population Estimates. To approximate population densities at the time of
contact, we drew on established estimates in the published literature (2, 3, 9,
29–31, 48). Where estimates of density were not available, we used two
methods to generate approximations. For those groups with available total
population estimates, values were divided by the area occupied by the
ethnographic group. These included Kroeber’s estimate of 3,500 for Serrano,
Vanyume (subgroup of Serrano), Kitanemuk, and Alliklik (or Tataviam);
1,000 for Halchidhoma; 3,000 for Mohave; and 2,500 for Quechan (Yuma;
estimates for the final two were reduced by half given that their territories
are split between California and Arizona) (2). For those groups lacking
estimates, we followed Cook in using average estimates based on neigh-
boring populations of the same linguistic group (31). This included Cook’s
average estimate of 1.92/km2 for two Athabaskan groups (Nongatl and
Rogue River Athabaskan) (31) and Binford’s estimate of 0.65/km2 for Togva
(Gabrielino) applied to Fernandeño (48). All estimates are reported in
number of peoples per square kilometer.

Analytical Methods. To determine if patterning in mean NPP across ethno-
linguistic territories was biased by nonrandom neighboring relationships, we
used the Spatial Autocorrelation (Morans I) function in ArcMap 10 (47). To
examine the relationship between rank-order migration and NPP values, we
used the linear model function in R to run a series of paired ANOVAs to test
for significant departures in mean NPP values between each ethnographic
group; linear models were also used to examine the effect of productivity on
population density (49).
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