

REAL-TIME DIGITAL EFFECTS

PROCESSING USING iOS

Jonah Clinard
Advisor: Dr. Wayne Pilkington

CPE 462 – Senior Project
California Polytechnic State University, San Luis Obispo

Computer Engineering Program

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32433376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Table of Contents
List of Tables and Figures .. 2

Acknowledgements ... 3

Abstract ... 3

I. Introduction ... 3

Motivation... 3

Definition of intended/user/customer/context ... 4

Market Alternatives .. 4

II. Background ... 4

Digital Signal Processing .. 4

Mobile Based Computing .. 5

Available Mobile Development Platforms .. 5

Digital Effects .. 6

III. Product Design Engineering Requirements ... 7

Functional and Feature Requirements ... 7

Performance Specifications .. 8

Description of User Interface .. 8

IV. System Design .. 10

V. Technology Choices and Design Approach Alternatives Considered ... 12

VI. Project Design Description... 13

VII. Physical Construction and Integration .. 14

VIII. Integrated System Tests .. 14

Audio Effect Throughput Test ... 14

Buffer Length Test ... 14

User Experience QA .. 15

Summary of Test Results ... 15

IX. Conclusion .. 16

Proposed Alternative Approaches, Future Improvements, Project Reflection 17

X. Bibliography .. 18

XI. Appendices ... 19

A. Analysis of Senior Project Design.. 19

Summary of Functional Requirements ... 19

2

Primary Constraints... 19

Economic ... 20

Environmental ... 21

Manufacturability ... 21

Sustainability ... 22

Ethical .. 22

Health and Safety .. 22

Social and Political .. 22

Development ... 22

B. Parts List and Costs ... 23

C. Project Schedule ... 23

Milestones ... 23

D. Program Listing ... 24

E. Source Code .. 25

List of Tables and Figures
Figure II.i - Total Market Share of Mobile based Operating Systems ... 5

Figure III.i - Level 0 Blackbox Diagram .. 8

Figure IV.i - Level 1 Input Device Diagram .. 10

Figure IV.ii - Level 1 iOS Device signal flow ... 10

Figure IV.iii - Software Flow Chart .. 11

Table V.i - Operating System Decision Matrix .. 12
Figure VI.i - Level 2 Software flow diagram .. 13

Table VIII.i - Effect Throughput Testing .. 14

Table VIII.ii - Effect Throughput Results .. 15

Table IX.i - Summary of Project Specifications.. 16

Table XI.i - Original Estimated Cost ... 20

Table XI.ii - Final Bill of Materials .. 20

Figure XI.i - Estimated Project Timeline .. 21

Figure XI.ii - Actual Project Timeline ... 21

Table XI.iii - Final Cost of Project ... 23

file:///C:/Users/Jonah/Desktop/Seniorprojectnewwithflatimages.docx%23_Toc437244731
file:///C:/Users/Jonah/Desktop/Seniorprojectnewwithflatimages.docx%23_Toc437244732
file:///C:/Users/Jonah/Desktop/Seniorprojectnewwithflatimages.docx%23_Toc437244733
file:///C:/Users/Jonah/Desktop/Seniorprojectnewwithflatimages.docx%23_Toc437244735

3

Acknowledgements
I’d like to thank Dr. Pilkington, and Taylor Collins, for your help, guidance, patience, and incredible

support, without you this project would have been nothing more than a dream. My family for your

unconditional love. My friends for the humor and encouragement. Finally I’d like to thank Music, for

being my voice when words fall short.

Abstract
In today’s society, we are seeing incredible improvements in terms of creating smaller technological

devices that behave more and more like the personal computers of yesterday. Mobile “Smart” devices,

in particular, are becoming incredibly powerful not just in terms of processing power, but in the fact that

they are able to provide assistance to users in their everyday lives. Application developers are now able

utilize the power and size of these devices, to create and realize ideas that would have been previously

viewed as impossible. This project applies the fields of digital signal processing, music, and mobile

application development, to effectively create a Real-Time digital effects processing application running

on iOS.

I. Introduction
This project documents the overall development of a software application running on iOS, to perform

real-time digital effects processing on a signal obtained from the devices onboard microphone input.

Motivation

Smartphones have become so widely available and powerful that a recent reporting (March 2015)

showed that there were nearly 187.5 million smart phone users in the United States [1]. This number of

users offers mobile application developers an incredibly large base to share their creative visions with.

Taking into consideration the number of users that have smart phones, and the raw power of the

hardware that these devices contain, the possibilities for application development become ever

increasing.

Having an application on a smart device perform digital effect processing offers an incredible

convenience and cost savings to the end user. On average, effects units targeted towards guitar players

will cost around $80 - $100. These effect units will generally provide a user with a single effect, or

process a signal in single way. This results in the consumer paying potentially hundreds of dollars on

effects processors alone. These effects units will also have to be hauled around with the user

everywhere they go, which can become a fairly large inconvenience if the user has multiple effects units.

Having an application that would provide these same effects and that could be used on a smart device,

would offer to the user the ability to carry all their effects processing needs on a single device, and this

device would be something they already used and carried in their everyday lives.

4

Definition of intended/user/customer/context

The intended user for this application is anyone who is interested in using a mobile application to

provide a digital effects solution to be used with a musical instrument. The intended purpose of this

application is to provide the user with a functional and intuitive method for applying digital effects to a

musical signal, though the application will have no restrictions on the context of either the input or

output signal. Necessary requirements and restrictions on the use of this application are as follows:

 The user must have access to and have the general knowledge of how to operate an iOS device.

o This is necessary to ensure a positive user’s experience with the application. Without

access to/general knowledge of how to operate an iOS device the user will not be able

to fully benefit from the features/functionality offered by this application.

 The user must have access and the ability to connect some analog input signal to the iOS device

being used. – This is necessary in order to actually obtain a signal to process. The input signal

may be connected to the iOS device in a multitude of ways, this project will seek to take the

analog signal and sample it via the 3.5mm headphone jack onboard the iOS device.

 The user should have a musical instrument that provides some form of an analog output signal,

such as an electric guitar, bass, keyboard etc. – This is necessary in order to ensure an engaging

and positive experience for the user.

Market Alternatives
Other alternatives to this application do exist, the most popular for iOS devices is Garageband by Apple.

Garageband offers users the ability to record and create music on their mobile iOS devices. In addition

to the recording capabilities, Garageband also offers a number of virtual instruments and digital effects

to the user. However, this application seeks to provide an implementation that is cost free to the user

and involves sophisticated and clever use of digital signal processing to ensure and produce a high

quality, and pleasant user experience. In addition to the prior mentioned this application represents an

application of the passion and education that I, Jonah Clinard, have received while attending California

Polytechnic University in San Luis Obispo, California.

II. Background

Digital Signal Processing

Digital signal processing involves the operation of using mathematical techniques to process or alter a

digital signal. In general digital signal processing can perform the same functionality of analog circuitry,

but is even more expansive in its ability to finely tune signals with a great level of control. This iOS

application will seek to take various concepts of digital signal processing and apply them in order to

achieve its desired functionality. In particular the concepts of digital signal manipulation to produce

musical effects will be used in this application, therefore, this project in no way attempts to describe or

define all the abilities that one may accomplish though DSP.

5

Mobile Based Computing

Mobile based computing entails the use of devices that are inherently more portable to perform similar

functionality to that of a desktop computer. Such devices are commonly seen in the form of tablets, and

cellular phones. One of the main goals of this project is provide a musical effects solution available via a

mobile computing device. Figure II.i below shows a comparison of the total market share occupied by

mobile platforms. Three platforms will be discussed: iOS, Android, and Windows Phone OS. The other

shareholding platforms: Java ME, Symbian, Blackberry, and other devices will not be discussed in terms

of this project due to their low share holdings.

Figure II.i - Total Market Share of Mobile based Operating Systems Source: https://www.netmarketshare.com/operating-
system-market-share.aspx?qprid=8&qpcustomd=1

Available Mobile Development Platforms

iOS by Apple

iOS is a distributed mobile operating system developed by the technology company Apple. This

operating system runs exclusively on Apple’s line of i-based devices. Such devices include the iPhone,

iPod, and iPad. Currently iOS is on version 8.3 of its release. With this release Apple improved the

general overall performance of the operating system as well as a large number of social and technology

based Application Programmer Interfaces (APIs). Though other mobile based

Android by Google

Android is a distributed mobile operating system developed by the technology company Google. This

operating system runs on a wide range of devices, employing the “Be different, not the same” design

philosophy. Android is an entirely open source platform, meaning its source code is shared freely to the

public. Currently Android is on its 5.1 Lollipop release. Lollipop represents a complete overhaul in terms

of Android’s user interface, as well as several general performance improvements.

6

Windows Phone OS by Microsoft

Windows Mobile is a distributed mobile operating system developed by the technology company

Microsoft. This operating system is currently on version 8.1 of its release. The Windows Phone OS runs

exclusively on windows phone devices and tablets.

Digital Effects

Digital Delay

The concept behind a digital delay is fairly straightforward. At the most basic level the effect combines

the current output signal with time delayed versions of the same signal. The following diagram shows a

basic implementation of the Digital Delay effect. We can see that the filter used for implementation is

an FIR filter with order equal to number of delays.

Figure II.ii - Digital Delay Realization

Flanger

Flangers work off of the principles of the Doppler effect. By combining the current output signal with

varying short delayed versions of itself (0 – 10 milliseconds) the perceived signal appears to have a slight

pitch modulation. The following diagram shows the basic implementation of the flanger

Figure II.iii - Digital Flanger Realization

7

Tremolo

The tremolo effect works using the principles of amplitude modulation. By modulating the current signal

with an oscillator we are able to produce a “shuttering” effect characteristic of the tremolo.

Figure II.iv - Digital Tremolo Realization

III. Product Design Engineering Requirements

Functional and Feature Requirements

This application obtains input in the form of a musical analog signal and processes this signal with the

user selected effects all in “real time.” This means that the effects processing is performed in an efficient

manner that will prevent the user from noticing any discernable latencies between the input signal and

the dry output signal, unless intended by the effect, for example a digital delay. The features of the

application include:

 Adjustable effects parameters

o Intensity of the effect

o Variable actions associated with the effect

o Output volume of the signal

 Interactive User interface that provides visual feedback to the user’s actions

 Provided Effects

o Delay

o Reverb

o Flanger

o Tremolo

8

Performance Specifications

The following are a list of specific metrics that will be used to evaluate the proper functionality of the

application.

 Overall output latency of no greater than 13ms vs. the detected input signal.

 Minimum 12bit sampling resolution - This speciation is in terms of the input signal being

sampled.

 Minimum 22kHz sampling frequency – Following the nyquist criteria this should provide us with

a bandwidth of around 11kHz, which should be wide enough to capture most of the produced

harmonic content from an instrument such as an electric guitar.

 Maximum 10 second initial application load time.

Blackbox Diagram (Level 0 Diagram)

Figure III.i shows the level 0 blackbox diagram of the system. The flow of the system will be as follows:

1. Signal input from the Input Device/Signal Generation component to the iOS device

2. iOS Device receives the input signal which it then processes as determined by the application.

Then iOS device takes the processed signal and outputs it.

3. The signal is output from the iOS device which can be observed both via a connected

oscilloscope, and heard by connecting speakers/headphones to the device.

Description of User Interface

The following are a listing of the user controlled variables that the application works in partner with.

 Effect volume level – A relative ratio of the blend of the processed output signal vs. the clean

input signal.

 Effect feedback level – Where necessary (effect based) the feedback level of the effect that will

route from the processed output back to the input to the effects processor.

 Digital sliders that will be displayed on the devices screen will allow over the control of these

effects/variables.

 Effect selection – Provides the user with the ability to process the signal using more than one

effect (this may be limited to the effects being used).

 Output volume control – The iOS device will have hardware buttons that will control the level of

the output signal from the application.

Figure III.i - Level 0 Blackbox Diagram

9

The following image shows the Applications User Interface. We can see the provided controls and parameters for each effect. This is the only

user interface element of the application, therefore the following represents the main and only view users will interact with.

Figure III.ii - Application User Interface

10

IV. System Design
The following figures shown in the Input Device and iOS device sub-sections show the signal flow paths

for the processed signal.

Input Device

iOS Device

Figure IV.i - Level 1 Input Device Diagram

Figure IV.ii - Level 1 iOS Device signal flow

11

Application Software Flow Chart

Figure IV.iii - Software Flow Chart

In general the software flows as follows

1. The user is presented with the main application screen

2. The user provides feedback to the application via the touchscreen

a. If the user signals to the application that they would like to exit, the application will exit.

b. If the user provides the application with what effect they would like to use the

application will obtain the digital signal and process the signal with the desired effects.

3. Unless the user provides instructions to the application to exit or modify the effects being

applied to the signal, the application will repeat the “Process and Output Signal with Desired

Effects” block.

12

V. Technology Choices and Design Approach Alternatives Considered
The main selection choice came in regards to which mobile operating platform would be used. The

choices were between the following:

 iOS by Apple

 Android by Google

 Windows Mobile OS by Microsoft

In order to determine which platform was to be used the platforms were ranked across several

categories, which were:

 Accessibility – How user friendly is the device

 Audio Latency – How quickly can audio be processed and output

 Developer Toolkit (APIs) – How much documentation and functionality is provided to the

developer?

 Overall Operating System Performance – In terms of overall performance how efficiently does

the operating system perform?

The effects of the above rankings were considered and assigned associated weightings. Using the

associated weightings the following decision matrix was generated:

Table V.i - Operating System Decision Matrix

 iOS Android Windows Phone OS

Accessibility .15 10 9 8

Audio Latency .45 9 5 5

Developer Toolkit .25 7 9 6

Overall Operating
System

Performance

.15 7 7 4

Score 8.35 6.9 5.55

We can see that the greatest weighting is placed on the audio latency of the system. This is necessary

because the intended functionality of the application is to operate in a real time fashion. The greater the

latency corresponds to an undesired and noticeable delay, which will break the intended functionality

and overall experience of the application. The developer toolkit takes the second highest ranking to

account for the ease and friendliness of the platform. The accessibility and overall operating system

performance result in equal weighting, in that while both are important considerations, they don’t affect

the design considerations as much as the others.

We can see that iOS ultimately wins, this is due to the fact that research showed that the throughput of

the device can be seen in as little as 3ms, whereas Android results in 15ms in the most optimized

fashions, and Windows Phone OS comes in around 25ms. Since the highest weighting was associated

13

with audio latency, iOS results in the overall winner. In addition it provides a high level of accessibility as

well as exceptional developer provided APIs with good overall system performance.

VI. Project Design Description
The following figure is a level 2 software flow diagram. This diagram shows the flow of the application

from audio obtainment to audio output. In general the process is fairly simple in terms of individual

components. The process to follow will be in the form of making a call to obtain audio from the ADC via

a helper method provided from the Novocaine audio SDK. Once this call is completed we will make a call

to place the obtained audio into a circular buffer. After this buffer is populated, the application checks

which effects the user wishes to apply to the signal, after which processing of the audio can then take

place. Once the audio is processed it is then written out using the Novocaine audio SDK helper method.

Since audio may be input to the iOS device in a multitude of ways we will take some time to examine

why we are simply using analog input, when we could be using Bluetooth, or USB. In terms of quality the

analog signal obtained via the headphone port on the iOS device will not be better and potentially will

be worse than a digital signal transmitted over USB via the lightning port on the iOS device. Bluetooth

will be prone to cross channel interference and results in an over higher complexity in terms of

implementation, so it was ruled out. USB audio also results in higher complexity, though in terms of

quality it provides the greatest. Thought is currently being put into whether or not USB audio support

Figure VI.i - Level 2 Software flow diagram

14

will be implemented. Due to the timeframe of this project, for now audio will be handled via the

headphone port on the iOS device.

VII. Physical Construction and Integration
The overall physical implementation of this project will focus primarily with working with the provided

ADC and DAC provided from the headphone input and output jack onboard the iOS Device. In general

the only external hardware that may be needed (but does not affect the functionality of the application)

will be in the form of pre-amplification of the input signal and post amplification of the output signal.

This is necessary to provide the application with a signal that operates at line level as opposed to

instrument level.

VIII. Integrated System Tests
In order to provide the best overall end experience to users of the application vigorous testing plans will

need to be implemented in order to ensure that the application functions with no bugs, and as quickly

as possible. The following are a proposed list of planned test procedures that will help to ensure the

correct functionality of the application

Audio Effect Throughput Test
In order to test the real time processing effectiveness of the application multiple trials will be ran with

each individual audio effect applied as well as with a combination of each in every scenario. The

following table will be used to document and record the overall audio throughput of the device. In order

to measure the audio latency software timestamps will be logged dictating the overall time an effect

block takes to complete. Using this information we can determine the throughput of the audio via the

effects path.

Table VIII.i - Effect Throughput Testing

Run/Effect Digital Delay
(seconds)

Tremolo
(seconds)

Flanger
(seconds)

Total Time
(seconds)

1 Time run 1 Time run 1 Time run 1 Time run 1

2 Time run 2 Time run 2 Time run 2 Time run 2

3 Time run 3 Time run 3 Time run 3 Time run 3

Average (seconds) Average time Average time Average time Average time

Buffer Length Test

Each effect that is processed will result in more overhead, which results in more overall usage of the

processor. Because of this the audio will have to be buffered before being output. A larger buffer size

allows the application to perform more processing between writes to the DAC. This means that larger

buffer sizes will provide the best quality output, but will also add latency to the system. Most of this is

provided behind the scenes from the kernel, but as a developer you still have levels of control over the

buffer length. Finding the correct length results in having a long enough buffer to allow your application

15

to breathe, but also short enough that the output writes of the application are not noticeable (less

latent). In order to test this, the buffer size will be adjusted until the optimal level is found. This will

need to be tested with every individual effect as well as combination of them all. In order to ensure that

the audio does not encounter buffer underruns the audio will be monitored to ensure that no pops or

clicks are present when processing the audio.

User Experience QA

User Experience quality assurance testing will be performed in order to ensure a pleasant overall user

experience. This testing is directed at the average level user whom might not know all the ins and outs

of the application upon usage. The following test plan and questionnaire will be implemented and

tested with multiple individuals.

1. Launch the application

a. Are you presented with a welcome message/direction on how to proceed with the

application?

b. Is the visual layout aesthetically pleasing to you? Is it easy to see what you are doing?

2. Apply an effect

a. Can you hear a noticeable difference?

b. Is there anything unpleasant about the audible difference?

c. Are you easily able to disable the applied effect?

3. Apply an additional effect

a. Can you hear a noticeable difference?

b. Is there anything unpleasant about the audible difference?

c. Are you easily able to disable the applied effect?

4. Exit the application

a. Can you confirm that the audio is no longer playing?

Summary of Test Results

Audio Throughput Results

The following table shows the results taken from 3 separate trials in which the effects algorithms were

profiled to determine the amount of runtime which each effect, as well as a combinations of all effects

took.

Table VIII.ii - Effect Throughput Results

Run/Effect Digital Delay
(seconds)

Tremolo
(seconds)

Flanger
(seconds)

Total Time
(seconds)

1 0.001 0.001 0.006 0.008

2 0.002 0.001 0.005 0.008

3 0.001 0.001 0.006 0.008

Average (seconds) 0.0013 0.001 0.0057 0.008

16

Buffer Length Results

Due to how the Novocaine SDK hands off raw sample data, the buffer length is fixed at 2048 samples of

stereo audio, or 1024 samples for each channel per callback. This results in 23.22 milliseconds of audio

being delivered in each callback. However, due to the need for the circular buffer, it was found that

storing 10 seconds worth of samples at a sampling rate of 44100 Hz (441000 floating point samples)

resulted in providing the application with a sufficient memory component that didn’t result in any

noticeable increase in latency.

User Experience Results

In general, user acceptance testing resulted in generally positive comments with respect to the overall

application experience. One users experience was as follows:

1. Launch the application

a. Are you presented with a welcome message/direction on how to proceed with the

application? No, there is no welcome message – the application is shown immediately

b. Is the visual layout aesthetically pleasing to you? Is it easy to see what you are doing?

Yes – visually the application is easy to look at and understand

2. Apply an effect

a. Can you hear a noticeable difference? Yes

b. Is there anything unpleasant about the audible difference? None that I can note

c. Are you easily able to disable the applied effect? Yes

3. Apply an additional effect

a. Can you hear a noticeable difference? Yes

b. Is there anything unpleasant about the audible difference? None that I can note

c. Are you easily able to disable the applied effect? Yes

4. Exit the application

a. Can you confirm that the audio is no longer playing? Yes

IX. Conclusion
The end result of the developed application met the desired specifications. The following offers a

summary of the end project results vs. those of the initial project specifications.

Table IX.i - Summary of Project Specifications

Initial Specification Final Project Implementation

Output Latency of no greater than 13ms Output Latency of 8ms

Minimum 12bit Sampling Resolution 16 bit resolution provided by the devices ADC

Minimum 22kHz Sampling Frequency 44.1kHz Sampling Frequency

Maximum 10 second load time 0.5 second load time

17

While the project specifications were met, one of the initial proposals of this project was to implement

the digital Chorus effect. Due to the time restrictions and development issues this effect was not

implemented in the final version of the application.

Proposed Alternative Approaches, Future Improvements, Project Reflection

This application could greatly benefit from a User Interface redesign, due to time development

difficulties the user interface was left in a wireframe stage. The current User Interface of the application

provides functional levels of feedback to the user as to what they are controlling in the application. This

project also could greatly benefit from effect algorithm optimization, some of the calls made in the code

are extraneous and could be finessed in a manner that provides less latency to the overall audio

throughput.

Future proposed improvements from the applications current state that would offer more value to the

user are:

 User Interface Redesign

 Additional Effects

o Particularly Pitch Shifting, Compression, Distortion/Overdrive, Equalization

 Ability to arrange effects signal flow

o Ability to choose between parallel and series signal chains

 Effect Algorithm Optimization

This project proved to be quite challenging in a number of ways. First, it offered me the opportunity to

develop my first mobile application, which meant it carried along the lessons and challenges of learning

how to develop for a mobile platform. This project also tested my ability to take a design plan and fully

see it through to the end. In the past, my experience with software engineering has been limited to a

structured way that was enforced by an instructor. In the development of this project I had to take all

the previous design practices I had been educated on and implement them in a way that allowed for the

successful completion of this project. This project was an incredibly humbling experience and I am

greatly looking forward to working on further revisions of this project.

18

X. Bibliography

[1] comScore, Inc, 'March 2015 U.S. Smartphone Subscriber Market Share', 2015. [Online]. Available:

https://www.comscore.com/Insights/Market-Rankings/comScore-Reports-March-2015-US-Smartphone-

Subscriber-Market-Share. [Accessed: 16- Apr- 2015].

[2] Acm.org, 'Software Engineering Code of Ethics and Professional Practice — Association for

Computing Machinery', 2015. [Online]. Available: http://www.acm.org/about/se-code. [Accessed: 12-

Nov- 2015].

[3] Apple, 'iOS - Apple', 2015. [Online]. Available: http://www.apple.com/ios/. [Accessed: 18- Apr- 2015].

[4] GitHub, 'Novocaine Audio', 2014. [Online]. Available:

https://github.com/alexbw/novocaine/blob/master/README.md. [Accessed: 27- Sep- 2015].

[5] Developer.apple.com, 'Xcode - Apple Developer', 2015. [Online]. Available:

https://developer.apple.com/xcode/. [Accessed: 28- Sep- 2015].

19

XI. Appendices

A. Analysis of Senior Project Design

Summary of Functional Requirements

The current version of this application allows the user to process a given input signal with several digital

based effects. The following is a summary of the provided effects as well as their respective adjustable

parameters:

 Digital Delay

o Volume of the effect

o Delay Time (up to 1 second)

o Number of Repeats (up to 6 repeats)

o Feedback

 Tremolo

o Rate of the Oscillator (0.5 – 100 Hz)

 Flanger

o Rate of the Oscillator (0.1 – 2 Hz)

o Reach of the Flanger (0 – 10 ms)

o Volume of the effect

 Reverb

o Size of the room

o Volume of the effect

All the effects mentioned above appear to function in a manner that would be considered real-time -

that is to say there is very little to no noticeable latency between the input signal and processed output

signal.

Primary Constraints

This project proved to be significant, both in terms of its implementation and in the experience and

knowledge it provided me with. One of the notable challenges encountered was in the implementation

and use of the circular buffer used to store the previous output/input samples. As it exists right now, the

buffer is simply an array of floats that is written to and read from using an iterator that uses the modulo

operator to “circulate” around the array. While this seems like a simple solution and a basic circular

buffer, getting to this point proved to be quite the challenge. This was a scenario in which my design

went through several iterations on the best way to handle the buffer, it ultimately resulted in the use of

a fundamental data structure (the array) and the very useful modulo operator. I definitely was fighting

the issue of trying to do too way more than was necessary to implement the buffer. This buffer was

absolutely crucial in my implementation of the delay, flanger, and reverb effects.

Another notable difficulty encountered was in the implementation of the oscillator for the flanger

effect. During my initial attempt at implementation I kept obtaining an aliased version of my input signal

and a sinusoidal output! I realized my issue was that I was performing the calculations correctly for the

20

oscillator, however I wasn’t accounting for the fact that I was running on a priority thread in the

operating system, which meant that my callback functions were actually getting called at a rate of

around 43Hz which was actually generating the sinusoid in my output! Once I accounted for this rate I

was able to make the flanger work as desired!

Overall the most difficult aspect of this project, which turned out to be the most rewarding, was my lack

of knowledge with the iOS development framework. This was really the first mobile application I’ve ever

developed, and my first time programming in Objective-C . There was definitely a fairly steep learning

curve to the application development framework. Ultimately this resulted in me having to truly learn by

doing, which proved to be incredibly rewarding in the end.

Economic

The following is a summary of the economic factors incurred by this development of this project,

included is the project’s estimated cost, as well as the final bill of materials.

Table XI.i - Original Estimated Cost

 Item Cost

1 iOS Device (iPad Air 2) $450.00

2 IK Multimedia iRig2 $39.99

3 Instrument Cable $29.99

Total Cost (including CA sales
tax)

-- $561.58

Table XI.ii - Final Bill of Materials

 Item Cost

1 iOS Device (iPad Air 2) $450.00

2 MacBook (Development Device) $799.99

3 Combined Microphone/Headset
Cable

$9.99

Total Cost (including CA
sales tax)

-- $1360.79

In terms of development time I initially estimated to have the project fully completed by the end of my

second quarter. However, I ran into several issues during the alpha stage of development, which

resulted in little beta stage and release stage development time. The following Gantt charts provide

both the initial and actual time estimates for this project.

21

Figure XI.i - Estimated Project Timeline

Figure XI.ii - Actual Project Timeline

Environmental

Environmental impacts from the use of this application exist via the energy use of the device as well as

any materials used in conjunction with the application, such as instrument cables. The main

environmental concern is in regards to the energy use of the device, which is actually fairly minimal.

Manufacturability

Since this project dealt with the development of a software application and had no produced hardware

related components, there are no notable mentions in terms of the manufacturability of this project.

0 5 10 15 20 25

Preliminary Design Formation

Preliminary Design Documentation

Alpha Stage Application Development

Beta Stage Application Development

Release Stage Application Development

Week

Project Timeline - Estimated

0 5 10 15 20

Preliminary Design Formation

Preliminary Design Documentation

Alpha Stage Application Development

Beta Stage Application Development

Release Stage Application Development

Week

Project Timeline - Actual

22

Sustainability

The main challenge for maintaining the application includes adhering to future iOS SDK standards, this

will be necessary to ensure that the application is able to run on future iOS devices. In addition to

adhering to future standards the application could also obtain performance gains in terms of the new

hardware that will be released alongside future versions of the SDK. Improvement to this application can

come in regards to adding additional effects, as well as optimizing the effects algorithms implemented.

Ethical

In terms of ethical implications, the design of this product adheres to the design standards outlined at:

http://www.acm.org/about/se-code [2]

Additional note is given to credit that this software uses helper methods as produced by the Novocaine

Audio Framework by Alex Wiltschko. Further information is available at:

https://github.com/alexbw/novocaine/blob/master/README.md [4]

Developer documentation for Apple’s iOS Development framework is available at:

https://developer.apple.com/xcode/ [5]

Health and Safety

Any user of this application should ensure that the iOS devices output signal is at a safe level to prevent

any potential damage to the user’s ears.

Social and Political

The development of this application does not contain any political concerns or factors. In terms of social

use, this application offers a means for users to create and share their musical ideas with one another.

This application provides a means for users to further interact with music and to express themselves.

Development

Development of this application introduced me to multiple new tools and development techniques that

I have never in the past encountered. Once of the greatest things I learned throughout the development

of this project was in regards to the iOS development framework. This was the first mobile application

I’ve ever developed which meant learning the development process as well as the development tools for

iOS applications. I now have experience with XCode, which is the IDE used for developing iOS and OSX

applications. In order to develop for iOS I had to become familiar with the Objective-C++ programming

language, which before this application I had never programmed in. Overall I’m incredibly happy with

the knowledge I’ve gained from creating this application.

http://www.acm.org/about/se-code
https://github.com/alexbw/novocaine/blob/master/README.md
https://developer.apple.com/xcode/

23

B. Parts List and Costs

The following is a list of the items used for the development of this project. All of the following items

were necessary items to ensure the successful development of this project.

Table XI.iii - Final Cost of Project

 Item Cost

1 iOS Device (iPad Air 2) $450.00

2 MacBook (Development Device) $799.99

3 Combined Microphone/Headset
Cable

$9.99

Total Cost (including CA
sales tax)

-- $1360.79

C. Project Schedule

Development of this application was implemented into the following 4 core stages:

 Preliminary Design - This stage dealt with preliminary and prerequisite research into the project

– ie. Available technology, educational resources, user interface design etc.

 Alpha Stage Application Development – This stage dealt with the fundamental proceedings of

the application development. This is the stage that was responsible for taking the application

from the preliminary design phase into the beginning phases of software development.

 Beta Stage Application Development – This stage focused primarily on the refinement of the

aesthetic elements of the application, as well as vigorous testing to thwart out any potential

bugs.

 Release Stage Application Development - This stage aims to provide a fully functional feature

rich and release ready application with all known bugs removed.

Milestones

In order to stay on track for project completion within the two quarter long span the following were the

proposed milestone dates.

 Preliminary Design – Completed by end of Week 11 of the first quarter of development.

 Alpha Stage Completion – Completed by end of Week 4 of the second quarter of development.

 Beta Stage Completion – Completed by the end of Week 7 of the second quarter of

development.

 Senior Project Report Rough Draft – Completed by the end of Week 8 of the second quarter of

development.

 Release Stage Completion – Completed by the end of Week 11 of the second quarter of

development.

 Senior Project Report Final Draft – Completed by the end of Week 11 of the second quarter of

development.

24

For actual project timelines please see figures XI.i and XI.ii in the Analysis of Senior Project Design

subsection of the appendices

D. Program Listing

The primary program used for the development of this application was Apple’s IDE: Xcode 7. For further

information on Xcode please visit the development website at: www.apple.com/xcode

http://www.apple.com/xcode

25

E. Source Code

The following shows both the ViewController.h and ViewController.mm implementation files. Together

these files define the logic and behavior of the entire application.

/* ViewController.h Senior Project Implementation

*/

#import <UIKit/UIKit.h>

#import "Novocaine.h"

#import "RingBuffer.h"

@interface ViewController : UIViewController

@property (nonatomic, strong) Novocaine *audioManager;

@end

/* ViewController.mm Senior Project Implementation

Student: Jonah Clinard

Advisor: Dr. Wayne Pilkington

Fall 2015

Version 1.0

*/

#import "ViewController.h"

@interface ViewController ()

@property (nonatomic, assign) RingBuffer *ringBuffer;

@property (weak, nonatomic) IBOutlet UISlider *volumeSlider;

@property (weak, nonatomic) IBOutlet UISlider *delayTime;

@property (weak, nonatomic) IBOutlet UILabel *volumeLabel;

@property (weak, nonatomic) IBOutlet UILabel *delayTimeLabel;

@property (weak, nonatomic) IBOutlet UISwitch *delayToggle;

@property (weak, nonatomic) IBOutlet UISwitch *tremoloToggle;

@property (weak, nonatomic) IBOutlet UISlider *repeatSlider;

@property (weak, nonatomic) IBOutlet UISlider *tremoloSlider;

@property (weak, nonatomic) IBOutlet UILabel *repeatLabel;

@property (weak, nonatomic) IBOutlet UILabel *tremoloRateLabel;

@property (weak, nonatomic) IBOutlet UILabel *gainLabel;

@property (weak, nonatomic) IBOutlet UISlider *gainSlider;

@property (weak, nonatomic) IBOutlet UISlider *reverbSlider;

@property (weak, nonatomic) IBOutlet UISlider *reverbVolumeSlider;

@property (weak, nonatomic) IBOutlet UISwitch *feedbackToggle;

@property (weak, nonatomic) IBOutlet UISlider *mixFeedbackSlider;

@property (weak, nonatomic) IBOutlet UISlider *flangerReach;

@property (weak, nonatomic) IBOutlet UISlider *flangerRate;

@property (weak, nonatomic) IBOutlet UILabel *flangerRateLabel;

@property (weak, nonatomic) IBOutlet UILabel *flangerReachLabel;

@property (weak, nonatomic) IBOutlet UISwitch *flangerToggle;

@property (weak, nonatomic) IBOutlet UISlider *flangerVolumeSlider;

@property (weak, nonatomic) IBOutlet UILabel *flangerVolumeLabel;

@end

@implementation ViewController

float gain = 1;

float repeatVolume = 1;

float reverbVolume = 1;

26

float feedbackVolume = 0;

float echoDelay = 22050;

float tremoloRate = 500;

bool delayOn = false;

bool tremoloOn = false;

bool reverbOn = false;

bool feedbackOn = false;

bool flangerOn = false;

int delayRepeat = 1;

int reverbSize = 0;

UInt32 flangerCount = 0;

UInt32 place = 0;

UInt32 i = 0;

- (void)dealloc

{

 delete self.ringBuffer;

}

- (void)viewDidLoad

{

 [super viewDidLoad];

}

- (void)viewDidUnload

{

 [super viewDidUnload];

}

// Handle UI Elements

- (IBAction)repeatChanged:(id)sender {

 delayRepeat = self.repeatSlider.value;

 self.repeatLabel.text = [NSString stringWithFormat:@"%i", delayRepeat];

}

- (IBAction)volumeChanged:(id)sender {

 repeatVolume = self.volumeSlider.value;

 self.volumeLabel.text = [NSString stringWithFormat:@"%.1f",

self.volumeSlider.value];

}

- (IBAction)delayTimeChanged:(id)sender {

 echoDelay = self.delayTime.value*44100;

 self.delayTimeLabel.text = [NSString stringWithFormat:@"%f", self.delayTime.value];

}

- (IBAction)delayToggleTapped:(id)sender {

 i = 0;

 self.ringBuffer->Clear();

 if (self.delayToggle.on) {

 delayOn = 1;

 }

 else{

 delayOn = 0;

 }

}

- (IBAction)tremoloToggleTapped:(id)sender {

 if(self.tremoloToggle.on){

 tremoloOn = true;

 }

 else {

 tremoloOn = false;

 }

27

}

- (IBAction)tremoloSliderChanged:(id)sender {

 tremoloRate = self.tremoloSlider.value*1000;

 self.tremoloRateLabel.text = [NSString

stringWithFormat:@"%f",self.tremoloSlider.value];

}

- (IBAction)gainSliderChanged:(id)sender {

 gain = self.gainSlider.value;

 self.gainLabel.text = [NSString stringWithFormat:@"%f",gain];

}

- (IBAction)reverSliderChanged:(id)sender {

 reverbSize = round(self.reverbSlider.value);

}

- (IBAction)feedbackToggleTapped:(id)sender {

 if (self.feedbackToggle.on){

 feedbackOn = true;

 }

 else{

 feedbackOn = false;

 }

}

- (IBAction)mixFeedbackSliderChanged:(id)sender {

 feedbackVolume = self.mixFeedbackSlider.value;

}

- (IBAction)flangerRateSliderChanged:(id)sender {

 self.flangerRateLabel.text = [NSString

stringWithFormat:@"%f",self.flangerRate.value];

}

- (IBAction)flangerToggleTapped:(id)sender {

 if (self.flangerToggle.on){

 flangerOn = true;

 }

 else{

 flangerOn = false;

 }

}

- (IBAction)flangerReachSliderChanged:(id)sender {

 self.flangerReachLabel.text = [NSString

stringWithFormat:@"%f",self.flangerReach.value];

}

- (IBAction)flangerVolumeSliderChanged:(id)sender {

 self.flangerVolumeLabel.text = [NSString

stringWithFormat:@"%f",self.flangerVolumeSlider.value];

}

- (void)viewWillAppear:(BOOL)animated

{

 [super viewWillAppear:animated];

 __weak ViewController * wself = self;

 self.audioManager = [Novocaine audioManager];

 self.ringBuffer = new RingBuffer(44100*100, 2);

 float *holdingBuffer = (float *)calloc(44100*20, sizeof(float));

 float *holder = (float *)calloc(44100*100, sizeof(float));

 float *processedData = (float *)calloc(44100*30, sizeof(float));

 __block float phase = 0.0;

 __block float samplingRate = wself.audioManager.samplingRate;

 __block float tremoloOsc = 0.0;

 __block float reachBack = 0;

 __block float flangerOsc = 0;

 __block int bufferLength = 0;

 __block UInt32 lastPlace = 0;

 __block UInt32 delayFetch = 0;

 __block UInt32 flangerBack = 0;

28

 __block UInt32 numSamples = 0;

 [self.audioManager setInputBlock:^(float *data, UInt32 numFrames, UInt32

numChannels) { // Callback to receive audio

 for (int i = 0; i<numChannels*numFrames;i+=numChannels){ //copy samples over to

send mono out

 for (int j=i; j<i+numChannels;++j){

 data[j] = data[i];

 }

 }

 wself.ringBuffer->AddNewInterleavedFloatData(data, numFrames, numChannels);

 }];

 [self.audioManager setOutputBlock:^(float *outData, UInt32 numFrames, UInt32

numChannels) { //Callback to output audio

 // Grab our playthrough audio

 wself.ringBuffer->FetchInterleavedData(outData, numFrames, numChannels);

 numSamples = numFrames*numChannels;

 bufferLength = numSamples*430; //Buffer to hold up to 10 seconds worth of prior

samples

 if (place == bufferLength) { // Handle circulation of buffer

 lastPlace = place;

 place = 0;

 }

 for (int j = 0; j<numSamples; j++) { //Copy current output samples into our

buffer

 outData[j] *= gain; //apply input volume gain

 holder[place+j] = outData[j];

 }

 place += numSamples; // adjust our offset for samples stored

 // Check if Our Delay is enabled

 if (delayOn) {

 i = 0;

 while (++i <= delayRepeat) {

 reachBack = (int)round(2*echoDelay*i);

 if ((int)reachBack%2)

 reachBack -= 1;

 if (place >= (UInt32)reachBack+numSamples){

 memcpy(holdingBuffer,holder+place -(UInt32)reachBack-

numSamples,sizeof(float)*numChannels*numFrames);

 }

 else { //Last written index is at the end of our buffer, or the first

stages of the buffer

 if (place == numSamples){ //we started over, so grab from the end

of the buffer

 memcpy(holdingBuffer,holder+lastPlace+place -(UInt32)reachBack-

numSamples,sizeof(float)*numSamples);

 }

 else {// we need to copy both data from the end of the buffer and

beginning

 for (delayFetch = 0; delayFetch < numSamples;delayFetch++){

 holdingBuffer[delayFetch] = holder[(lastPlace+place-

numSamples-(UInt32)reachBack+delayFetch)%bufferLength];

 }

 }

 }

 repeatVolume /= .8*i; // Decrease volume of each repeat

29

 // Multiply the samples and copy them to our current output

 vDSP_vsmul(holdingBuffer, 1, &repeatVolume, holdingBuffer, 1,

numSamples);

 vDSP_vadd(holdingBuffer, 1, outData, 1, outData, 1, numSamples);

 }

 repeatVolume = self.volumeSlider.value; // Reset volume

 }

 if (feedbackOn){ //Handle Delay Feedback logic

 vDSP_vsmul(outData,1,&feedbackVolume, holdingBuffer,1,numSamples);

 vDSP_vadd(holdingBuffer, 1, holder+place-numSamples, 1, holder+place-

numSamples, 1, numSamples);

 }

 if (tremoloOn) { //Handle tremolo logic

 for (int i=0; i < numSamples; i++)

 {

 tremoloOsc = phase * M_PI * 2 * tremoloRate/samplingRate; //Generate

iteration oscilation

 outData[i] *= sin(tremoloOsc) + 1; //Amplitude Modulate

 phase+=tremoloRate/samplingRate;

 if (tremoloOsc>512){ //Count to numSamples/4 to deal with callback

oscillation

 phase = -512;

 }

 }

 }

 if (flangerOn){ //Handle Flanger Logic

 for (int i=0; i<numSamples; i++) {

 flangerOsc =

fabsf(sin(2*M_PI*(flangerCount++/self.flangerRate.value)/samplingRate)); // Generate

iteration oscillation

 flangerBack =

(UInt32)ceil(flangerOsc*self.flangerReach.value*samplingRate);

 if (((flangerBack)%2)){ //align - only grab valid data

 flangerBack -=1;

 }

 if (place == numSamples){ //grab from the end of the holding buffer

 outData[i] += self.flangerVolumeSlider.value*holder[(lastPlace + i

- flangerBack)%bufferLength];

 }

 else if ((int)(place -numSamples +i - flangerBack) >= 0){ //grab from

"front of the buffer"

 outData[i] += self.flangerVolumeSlider.value*holder[place -

numSamples + i - flangerBack];

 }

 if (flangerCount/self.flangerRate.value >= samplingRate) { //Reset

flangerCount

 flangerCount = 0;

 }

 }

 }

 //Copy samples over to both channels

 for (int i = 0; i<numSamples;i+=numChannels){

 for (int j=i; j<i+numChannels;++j){

 outData[j] = outData[i];

 }

30

 }

 //Copy current output samples into our processed buffer

 for (int j = 0; j<numSamples; j++) {

 processedData[place-numSamples+j] = outData[j];

 }

 if (1) { //Handle Reverb always enable

 i = 10;

 while (i <= reverbSize) {

 reachBack = 512*i;

 if ((int)reachBack%2) {

 reachBack -= 1;

 }

 if (place >= (UInt32)reachBack+numSamples) {

 memcpy(holdingBuffer,processedData+place -(UInt32)reachBack-

numSamples,sizeof(float)*numSamples);

 }

 else { //Last written index is at the end of our buffer, or the first

stages of the buffer

 if (place == numSamples){ //we started over, so grab from the end

of the buffer

 memcpy(holdingBuffer,processedData+lastPlace+place -

(UInt32)reachBack-numSamples,sizeof(float)*numSamples);

 }

 else { // we need to copy both data from the end of the buffer and

beginning

 for (UInt32 reverbFetch = 0; reverbFetch <

numSamples;reverbFetch++){

 holdingBuffer[reverbFetch] =

processedData[(lastPlace+place-numSamples-

(UInt32)reachBack+reverbFetch)%bufferLength];

 }

 }

 }

 reverbVolume /= (1/self.reverbVolumeSlider.value)*(i/8);

 vDSP_vsmul(holdingBuffer, 1, &reverbVolume, holdingBuffer, 1,

numSamples);

 vDSP_vadd(holdingBuffer, 1, outData, 1, outData, 1, numSamples);

 i += 10;

 }

 reverbVolume = self.reverbVolumeSlider.value;

 }

 }];

 //Begin audio Playback

 [self.audioManager play];

}

-

(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientat

ion

{

 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone) {

 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);

 } else {

 return YES;

 }

}

@end

