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Abstract

The continuum theory of sintering is used for the analysis of the stability of forging of a cylindrical powder speci-
men. The constitutive properties of the powder material are assumed to follow a power-law creep relationship. Tem-
perature-coupled linear non-uniform stability analyses are carried out. Stability maps are obtained for forging of
copper powder components.
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1. Introduction

Macroscopic deformation of porous and powder materials have been considered by various researchers
during the last two decades. Among the successful approaches in this area, continuum theories of sintering
should be mentioned. Recently, along with the refinement and the creation of new constitutive models, the
research focus was on the solution of certain boundary-value problems associated with industrial treatment
of porous and powder products.
For hot deformation processes, as experimental practice indicates, the dominant mechanism is the

power-law creep (see Ashby, 1990; Wilkinson and Ashby, 1975) which is usually described by Ashby
relationship
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where r and _e are the stress and strain rate, respectively; A, r0, _e0, and m are material parameters.
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Nomenclature

A pre-exponential factor in the power-law creep relationship
c heat capacity of the porous material
_e volume change rate (first invariant of the strain rate tensor)
Fz constant axial externally applied force
h sample current height
h0 sample initial height
m strain rate sensitivity
n loading mode parameter
p hydrostatic stress
Qc activation energy in the power-law creep relationship
R sample current radius
Rg gas constant
S cross-sectional area of the porous specimen
Si initial cross-sectional area of the porous specimen
T absolute temperature
t time
W equivalent strain rate
dij Kronecker�s symbol
_eij components of the strain rate tensor
_e1; _e2; _e3 main elongation rates
_e0 reference strain rate
_er; _ez radial and axial strain rates
_c shape change rate (second invariant of the strain rate tensor deviator)
g0 shear viscosity of the sample�s skeleton material
k perturbation growth rate
h sample porosity
u porous material normalized shear viscosity modulus
w porous material normalized bulk viscosity modulus
hi sample initial porosity
q density of the porous material
r0 reference stress
rij components of the stress tensor
rz axial stress component
r(W) equivalent stress
s second invariant of the deviatoric stress
s0 yield limit of a full-dense material
sF the dimensionless time of loading
t constant cross-head velocity
Stability of material flow and localization phenomena are very important aspects of powder processing.
The analysis of the stability of the deformation of porous and powder materials is a new area represented in
a very limited number of publications, for example, the publications of Zhang and Lee (see Lee and Zhang,
1994, 1996), which are limited to the analysis of cold forging.



This study is a logical continuation of the previous work of Olevsky and Molinari (see Olevsky and
Molinari, 2000). Forging deformation process is considered here. The material behavior is assumed to obey
a power-law creep, and strain hardening is neglected. The continuum theory of sintering (see Olevsky et al.,
1996, 1997; Olevsky, 1998; Olevsky and German, 2000a,b; Olevsky and Molinari, 2000) is used as a basis
for the present work.
2. Constitutive behavior of viscous porous bodies

2.1. Basic constitutive equations of nonlinear viscous porous bodies

The mechanical response of a porous body with power-law creep behavior is described by a rheological
(constitutive) relation that inter-relates the components of a stress tensor rij and a strain rate tensor _eij (see
Olevsky and Molinari, 2000):
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where u and w are the normalized shear and bulk viscosity moduli, which depend on porosity h (for exam-

ple, following Skorohod (see also Table 1), u = (1 � h)2, w ¼ 2
3

ð1�hÞ3
h ); dij is a Kronecker symbol (dij = 1 if

i = j and dij = 0 if i 5 j); _e is the first invariant of the strain rate tensor, i.e. sum of tensor diagonal com-
ponents: _e ¼ _e11 þ _e22 þ _e33. Physically, _e represents the local volume change rate of a porous body.
The porosity h is defined as 1� q

qT
, where q and qT are volumetric mass and theoretical density (volumet-

ric mass of a fully dense material), respectively.
The effective equivalent strain rate W is connected with the current porosity and with the invariants of

the strain rate tensor
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where _c is the second invariant of the strain rate tensor deviator
_c ¼ _eij �
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Physically, _c represents the shape change rate of a porous body.
The energy conservation equation can be written as
qc _T ¼ rðwÞ
w

ðu _c2 þ w _e2Þ ð5Þ
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where q is density, c is heat capacity (both q and c are functions of porosity h) and _T is the time derivative of
temperature T. Heat conduction effects have been neglected in (5).
Let us consider a loading process where the stress tensor has the form
½rij� ¼
rr 0 0

0 rr 0

0 0 rz

0
B@

1
CA ð6Þ
rz and rr are the axial and the radial stresses, respectively.
In this case, the two first stress invariants can be represented as
p ¼ rii

3
; s ¼ ððrij � pdijÞðrij � pdijÞÞ1=2 ð7Þ
When a lateral confinement of the powder specimen is present or isostatic pressing is employed, one can
introduce a loading mode parameter n:
n ¼ s
p

ð8Þ
In the following analysis, loading modes with constant values of n are considered.
The ratio between the rate of shape change and the rate of volume change is
_c
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Hence, the equivalent strain rate assumes the form
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2.2. Application to axisymmetric porous bodies

Let us consider a particular geometry with rotational symmetry with respect to the axis z (see Fig. 1). If _ez
and _er are the axial and radial strain rates respectively then
_e ¼ _ez þ 2_er; _c ¼
ffiffiffi
2
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Eq. (7) can be reduced to
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From Eqs. (7), (11) and (12) one can obtain
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The evolution law of porosity is given by
_e ¼
_h

1� h
ð14Þ
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Fig. 1. Cylindrical porous specimen.
2.3. Kinetics of porosity and evolution of the cross-section area

In view of (1), (3), (13) and (14), the following kinetic expression is valid:
_h ¼ sgnðpÞ jrzj
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The cross-section area of the element is given by
S ¼ pR2 ð16Þ

It can be shown that (see Olevsky and Molinari, 2000):
d½ln S�
dh

¼ 2

u
3
� wffiffi
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3. Temperature-coupled stability analysis

A spatial non-uniformity perturbation can be introduced in the form (i is the imaginary unit):
Y ðz; tÞ ¼ Y ð0ÞðtÞ þ dY ð0Þ expðkðt � t0ÞÞ expðinzÞ ð18Þ

where Y represents the stress, porosity, or shrinkage rate. dY(0) characterizes the amplitude of the pertur-
bation, n is the wave number, t is time, and t0 is the instant when the perturbation is introduced. The real
part of k is the perturbation growth rate. If, for t = t0, Re(k) > 0, the perturbation grows and the problem is
said to be linearly unstable.



One can obtain from Eqs. (1), (5), (11) and (13)
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The relationship between stress and applied force is
F z ¼ rzS ð20Þ

In order to analyze the linear non-uniform temperature-coupled case, Eqs. (15), (17), (19) and (20)

should be perturbed with respect to dT, dh, drz, dS.
Eq. (19) can be written as (assuming that q = q0(1 � h), c = c0(1 � h)):
q0c0 _T ¼ rz-ðhÞ _h ð21Þ
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Perturbing (21), one obtains
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Eq. (15) can be expressed as
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The material constant A in Eq. (24) is a temperature dependent function
A ¼ A0 exp
A1
T

þ A2

� �
ð26Þ
where A0, A1, and A2 are material constants, and
A1 ¼
Qc

Rg
ð27Þ
where Qc is a creep activation energy, Rg is the gas constant.
Eq. (26) can be rewritten in terms of the normalized temperature T , and in terms of the initial temper-

ature Ti
A ¼ A0 exp
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RgT iT
þ A2

� �
ð28Þ
Perturbing (24), we have
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where
X0 ¼ dX
dh
After perturbing Eqs. (17) and (20) the results can be expressed as follows:
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By substituting (22), (25), (31) and (32) into (30) the following equation can be derived:
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If Eq. (33) has non-trivial solution, the determinant of the matrix in (33) should be equal to zero. Thus, we
have
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Fig. 2.
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(a)

Stability map for the temperature-coupled non-uniform mode analysis (Skorohod model) of the forging of a copper powder.
tivation energy Qc = 197 KJ/mol, heat capacity c0 = 384.16 J/K kg: (a) The load is assumed to be 50 MN. Higher temperature
ponds to higher stability region. (b) The temperature is assumed to be 800 K. Lower stress corresponds to higher stability region.
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For forging, the instability occurs if k
_h
< 0. Stability maps for various materials can be constructed through

the assessment of the corresponding values of the coefficients D1, D2, and D3 that can provide only positive
roots of Eq. (34). A numerical solution of this problem in terms of porosity and creep exponent m has been
carried out for a copper powder. The activation energy was assumed to be Qc = 197 KJ/mol, heat capacity

is assumed to be c0 = 384.16 J/K kg (see Ashby, 1990). The threshold value k
_h

��� ��� ¼ 40 is adopted in the com-

putation since only large enough perturbations will lead to loss of stability eventually according to physical
meaning. For the Skorohod model, the results are given in Fig. 2. Fig. 2a shows the stability and the insta-
bility areas for constant axial force equal to 50 MN under various temperatures. The results indicate that
the growth of the stability area when the temperature increases. Fig. 2b represents the stability and the
instability areas for the temperature of 800 K under various axial forces. It can be drawn from the calcu-
lation that lower axial force favors stability.
4. Conclusions

The temperature-coupled stability analysis indicates that as temperature increases, the stability tendency
increases; as pressure decreases, stability region increases. Through the obtained stability maps, the ranges
of pressure and temperature, which ensure the stability of forging of porous bodies, can be determined.
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