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A Control-Chart Based Method for Solder Joint Crack Detection 

Jianbiao Pan 
California Polytechnic State University, San Luis Obispo, CA 93407 

Abstract 

Many researchers have used different failure criteria in the published solder joint reliability studies. Since the reported time-
to-failure would be different if different failure criteria were used, it would be difficult to compare the reported reliability life 
of solder joints from one study to another. The purpose of this study is to evaluate the effect of failure criteria on the reported 
thermal fatigue life and find out which failure criterion can detect failure sooner. First, the application of the control-chart 
based method in a thermal cycling reliability study is described. The reported time-to-failure data were then compared based 
on four different failure criteria: a control-chart based method, a 20% resistance increase from IPC-9701A, a resistance 
threshold of 500Ω, and an infinite resistance. Over 3.5 GB resistance data measured by data loggers from a low-silver solder 
joint reliability study were analyzed. The results show that estimated time-to-failure based on the control-chart method is 
very similar to that when the IPC-9701A failure criterion is used. Both methods detected failure much earlier than the failure 
criterion of a resistance threshold of 500Ω or an infinite resistance. A scientific explanation is made of why the 20% increase 
in IPC-9701A is a reasonable failure criterion and why the IPC-9701A and the control-chart based method produced similar 
results. Three different stages in resistance change were identified: stable, crack, and open. It is recommended that the 
control-chart based method be used as failure criterion because it not only monitors the average of resistance, but also 
monitors the dispersion of resistance in each thermal cycle over time. 

Keywords: failure criterion, solder joint, interconnection, reliability, control chart 

1. Introduction 

One of the challenges in an experimental study of solder joint reliability is to determine when cracks occur in a solder joint. 
The most common way is through resistance measurement of a solder joint or a daisy chain. This method is based on the 
assumption that resistance will increase significantly or an electrical discontinuity will occur if there is a crack or cracks in a 
solder joint. The question is how to define a failure of a solder joint based on measured resistance value? 

The current industry standards for solder joint failure criteria are IPC-9701A for thermal cycling testing, JESD22-B111 for 
drop testing, and IPC/JEDEC-9702 for bend testing. Note that IPC-9701A (released in 2006) is the latest revision of IPC
9701 (released in 2002), which replaces IPC-SM-785 (released in 1992). Failure definition for an event detector and a data 
logger is different. Table 1 lists the detailed failure criteria for each test. However, how the 1000 Ω, 100 Ω, and the 20% 
values were chosen is not documented. 

Table 1. Current Industry’s Failure Definition 
Standard Test Failure definition 

Event detector Data logger 
IPC-9701A 

(2006) 
Temperature 

cycling & 
vibration 

The 1st event of resistance exceeding 
1000 Ω for lasting  >1 µs, followed by 
>9 events within 10% of the cycles to 

initial failure 

20% resistance increase in 5 consecutive 
readings 

JESD22
B111 (2003) 

Drop test The 1st event of resistance > 1000 Ω 
for a period of  >1µs, followed by 3 

additional such events during 5 
subsequent drops. 

1st detection of resistance value of 100 Ω if 
initial resistance is <85 Ω, or 20% increase 
in resistance if initial resistance is >85 Ω, 

followed by 3 additional such events 
during 5 subsequent drops. 

IPC/JEDEC
9702 (2004) 

Bend test 20% resistance increase. A lower or higher threshold may be more appropriate, 
depending upon test equipment capability and specific daisy-chain design scheme. 
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Because it is not clear how these values were chosen, many researchers have used different failure criteria in solder joint 
reliability studies. For example, the following failure criteria are used in the vibration test: a 10% increase in resistance (Kim 
et al. 2006), a 50% increase in daisy chain resistance (Che & Pang, 2009; Yang et al. 2000), a 100% increase in resistance 
(Wong et al. 2007), a resistance threshold of 50 Ω (Qi et al. 2007), and a resistance threshold of 100 Ω (Perkins and 
Sitaraman, 2008). The following failure criteria have been used in the thermal fatigue reliability test: an increase in resistance 
of 5 Ω (Suhling et al. 2004), an increase in resistance of 10 Ω (Farooq et al. 2003), a resistance threshold of 300 Ω (Che and 
Pang, 2013), and a resistance threshold of 450 Ω (Lau et al. 2004). It should also be noted that many reported studies used 
industry standards. 

The reported time-to-failure would be different if different failure criteria were used. The question is how much difference. If 
the reported life were significantly different, it would be difficult to compare the reported reliability life of solder joints from 
one study to another since so many failure criteria are used. There are conflicting results. Henshall et al. (2009) evaluated the 
impact of three failure criteria, a 20% resistance increase, a resistance threshold of 500 Ω, and an infinite resistance (hard 
open). They found that the 20% resistance increase criterion gives typically 200 to 500 cycles less in characteristics life, or 
about 3% to 10% of lifetime, than the 500 Ω or hard open resistance criteria. But Xie et al. (2010) reported no significant 
difference in cycles-to-failure between the 20% resistance increase and over 1000 Ω (hard open) resistance criteria. 

The reason why so many failure criteria are used is that it is still not well understood what is the relationship between the 
crack area of an interconnection and the change in resistance of the interconnection. When a crack is initiated in an 
interconnection, can it be detected by monitoring the change of resistance? One may believe that if a measurement system 
has enough precision, the change in resistance can be measured when a small crack occurs in the interconnection. Due to 
limited resolution of commercial multi-meters, researchers have developed the electrical resistance spectroscopy method for 
detecting early failures in solder joints under thermal fatigue reliability testing [Constable and Lizzul, 1995]. They used a lap 
shear test and measured the resistance change as a function of the applied strain. Lall, et al. [2009] extended this method for 
prognostication under shock and vibration reliability testing. Though both studies reported the success in detecting early 
failure, electrical resistance spectroscopy method has not been popularly used in the industry. 

Pan and Silk (2011) proposed that the failure of an interconnection is defined as the resistance increase in a solder joint 
exceeding a threshold. Instead of setting the threshold as 20% above the initial resistance value, they used X-bar and R 
control charts to determine the threshold. In the drop and vibration tests, they defined the failure as the resistance increase by 
k times the range over the natural variation in resistance measured by a measurement system. 

In this study, the application of the control-chart based method for solder joint failure detection in a thermal fatigue study is 
presented. The time-to-failure data based on this method are compared with the failure-to-failure data based on three other 
failure criteria, a 20% resistance increase, a resistance threshold of 500 Ω, and an infinite resistance (hard open). The 3.5 Gb 
resistance data measured by data loggers from a low-silver BGA thermal fatigue reliability study were analyzed. The purpose 
of this comparison is to evaluate the effect of failure criteria on the reported thermal fatigue life and find out which failure 
criterion can detect failure sooner. The behavior of resistance change will be analyzed as well. 

2. Theoretical Background 
Any measurement data include natural variability or “background noise.” For example, the resistance change due to the 
change of temperature in a thermal fatigue reliability test is part of this natural variability. Figure 1 shows an example of 
resistance change of solder joints in a daisy-chain as the temperature change. Such variability in resistance is inherent 
because the resistivity of metals such as SnAgCu in solder joints and Au in wire bonds changes with temperature. In this 
case, about 1 Ω difference in resistance when the temperature changed from 0°C to 100 °C is observed. This variability due 
to thermal effect is a chance cause of variance, or natural variability. In additional, the natural variability also includes 
variation caused by the measurement system, such as gauge repeatability and reproducibility (GR&R). If the change of 
resistance is significant larger than the variability due to thermal effect and GR&R, it indicates that something else such as 
cracks initiated and propagated in a solder joint may play a role. The resistance change due to the cracks is an assignable 
cause of variation. 



 
 

 
  

   
 

          

           

 

 

       
    

 
      

    
           

       
        

   
 

  
    

    
   

 
 

          
    

     
 

 
        

   
     

Figure 1. Resistance is a function of temperature. 

The Shewhart control chart can be used to detect the assignable cause of variation from the chance cause of variation. The 
formulas for calculating control limits of X-bar and R charts are 

Control limits for X-bar chart are 

Control limits for R chart are 

(1) 

(2) 

The common practice in process control is set k value of 3. To reduce the probability of false failure detection, the k value can 
be set a higher value such as 5 or 10. 

To construct control charts, we need to decide the rational subgroup. Note that the variation within a rational subgroup must 
be only due to chance causes. Since the resistance change within a thermal cycle in an uncracked solder joint is a function of 
temperature as shown in Figure 1, which is a chance cause, it is reasonable to choose each thermal cycle as the rational 
subgroup. Thus, the control chart is used to detect variability from assignable causes by comparing the variation in resistance 
among subgroups (thermal cycles) with the variation within a subgroup (a thermal cycle). Note that variation among 
subgroups is used to evaluate long-term stability of the process. 

Next we need to determine the size of the sample or subgroup. The sample size affects the sensitivity of detecting process 
shift. In the low-silver BGA project [Henshall et al., 2009, 2010, 2011], there are 5 to 6 measurements in each thermal cycle. 
Because the sample size varies in different thermal cycles, the control limits varies as well. To make analysis simple, we use 
the larger control limits. The control limits are established based on the first 40 cycles if the data of the first 40 cycles were in 
control. 

The Xbar chart monitors average resistance in a cycle over time, in which the thermal effect is removed. Any resistance 
increase in the Xbar chart would be due to assignable causes such as cracks. The R chart monitors the variability of resistance 
in a cycle over time. If the range of resistance in the R chart increases, it indicates that the interconnection is not stable, and 
thus, the integrity of solder joints is questionable. 

An example of control charts for one daisy-chain is shown in Figure 2. It shows that the mean of resistance exceeds the upper 
control limit at Cycle 3494 and continues to increase after that. The range of resistance increases exceeds its upper control 
limit at Cycle 3495. The range of resistance in Cycle 3500 reaches over 400. 



 

 

 
 

 
  

  

    
     

   
          

    
      

 
          

   
               

 
    

  
 

          
     

        
      

   
 

Figure 2. An example of control charts for one daisy-chain, Xbar chart (top), R chart (bottom) 

3.  Results 

3.1 Effect of failure criteria on the reported thermal fatigue life 

To investigate the impact of failure criteria on the reported thermal fatigue life, over 3.5 GB resistance data measured by data 
loggers from the low-silver BGA project [Henshall et al., 2010, 2011] were analyzed. The cycles-to-failure data for 1,440 
daisy-chains were calculated based on four different failure criteria: the control-chart method, a 20% resistance increase from 
IPC-9701A, a resistance threshold of 500 Ω, and infinite resistance. Note that a resistance threshold of 500 Ω and infinite 
resistance failure criteria are used for comparison only. The failure definition of these four failure criteria were: 
•	 The control-chart method: the first cycle of resistance exceeding the upper control limits of either the Xbar chart or 

the R chart. 
•	 IPC-9701A: the first cycle of resistance exceeding 120% of the initial resistance value (or a 20% increase) at high 

temperature such as 100°C or 125°C. No consecutive readings were considered. 
•	 Resistance threshold of 500 Ω: the first cycle of resistance reading greater than 500 Ω. No consecutive readings 

were considered. 
•	 Infinite resistance: the first cycle of resistance reading reaches 9.90E+37 or the limit of a data logger. No 

consecutive readings were considered. 

As an example, Figure 3 shows that the control-chart based method detected failure at Cycle 1,811, which is 18 cycles earlier 
than Cycle 1,829 detected by the IPC-9701A failure criterion. Figure 4 shows that the control-chart based reported failure of 
a daisy-chain at Cycle 6,366, while the IPC-9701A failure criterion reported failure at Cycle 6397, and the resistance 
threshold of 500 Ω failure criterion reported failure at Cycle 6,404. However, no failure is reported by the infinite resistance 
criterion because resistance has not reached the limit of the data logger when the test was terminated at Cycle 10,102. 



 
  

 
 

 
         

 
 

       
         

   
   

     
 

    
           

      
     

    
          

Figure 3. Comparison of cycles-to-failure between the control-chart based method and IPC 9701A for one daisy-
chain. 

Figure 4. Comparison of cycles-to-failure between the control-chart based method, IPC 9701A, and the 500 Ω 
resistance threshold for one daisy-chain. 

To understand the differences in reported thermal fatigue life among these failure criteria, paired tests have been conducted 
between IPC9701A and the control-chart based method, between the 500 Ω resistance threshold and the control-chart based 
method, and between the infinite resistance failure criterion and the control-chart based method. In the thermal cycle data 
from 0 to 100°C, there are 678 samples for analysis after excluding right-censored data (no failure). There are 710 samples 
for analysis for the thermal cycle data from -40 to 125°C. 

Figure 5 shows a dot plot of the difference in the reported umber of cycles-to-failure between different failure criteria for the 
thermal cycle from the 0 to 100°C reliability test. The test statistics indicates that the control-chart based method failure 
criterion detected failure slightly sooner than IPC-9701A, with a mean in difference of cycles-to-failure of 2.83 cycles. 
Though 95% confidence interval of the mean between the IPC 9701A and the control-chart based method was between 1.91 
and 3.75, the maximum difference was up to 176 cycles. The mean cycles-to-failure detected by the control-chart based 
method was 356 cycles earlier than the 500 Ω resistance threshold. The 95% confidence interval of the mean cycles-to-failure 



         
               

      
       

 
 

      
  

         
    

      
     

     
  

 
       

    
    

   
         

 
  

     
         

 

 
        

  
 
             

between the 500 Ω resistance threshold and the control-chart based method was between 329 and 384, and the maximum 
difference was 2,459 cycles. The control-chart based method detected 861 cycles earlier in average with 95% confidence 
interval between 778 and 944 cycles than the infinite resistance failure criterion, and the maximum difference was up to 
6,637 cycles. It is clear that the control-chart based method and IPC-9701A failure criteria are more sensitive than the 500 Ω 
resistance threshold and the infinite resistance failure criteria. 

Figure 6 shows a dot plot of the difference in the number of cycles-to-failure between different failure criteria for the thermal 
cycle from -40 to 125°C reliability test. The test statistics indicates that there is almost no difference in the number of cycles-
to-failure between the control-chart based method and IPC-9701A, with a mean of 0.85 cycles and 95% confidence interval 
of the mean between 0.53 and 1.18. Over 60% cases, the IPC-9701A and the control-chart based method reported the same 
number of cycles-to-failure. The mean cycles-to-failure detected by the control-chart based method is 97 cycles earlier than 
the 500 Ω resistance threshold and the maximum difference in reported cycles-to-failure was 1,396 cycles. The control-chart 
based method detected 231 cycles earlier in average than the infinite resistance failure criterion and the maximum difference 
in reported cycles-to-failure was 2,065 cycles. 

Both Figures 5 and 6 show that the difference of the reported cycles-to-failure between the 500 Ω threshold or infinite 
resistance and the Xbar failure criteria are skewed to the right. Thus, the reported cycles-to-failure data based on the 500 Ω 
threshold or infinite resistance vary significantly, some even over 6000 cycles later than the Xbar or IPC9701A method in the 
thermal cycle from 0 to 100°C reliability test. This observation indicates that the slope in Weibull plot would be flatter when 
the 500 Ω threshold or infinite resistance failure criterion is used. 

The above results indicate that the impact of failure criteria on the reported cycles-to-failure depends on the test conditions. 
The difference in the reported cycles-to-failure among different failure criteria is smaller at more severe conditions like 
thermal cycling from -40 to 125°C than less severe conditions such as thermal cycling from 0 to 100°C. 

Figure 5. Dot plot of the difference in the number of cycles-to-failure between different failure criteria for the thermal 
cycle from 0 to 100°C reliability test (sample size of 678). 



 
      

   
 

  

 
   

 
      

  
      

              
      

       
      

   
       

           

   
 

     
               

      
     

 
      

       
  

          
           

     
 

           
               

Figure 6. Dot plot of the difference in the number of cycles-to-failure between different failure criteria for the thermal 
cycle from -40 to 125°C reliability test (sample size of 710). 

3.2 Characteristics of resistance change 

To understand the above results on the effect of failure criteria on the reported thermal fatigue life, the resistance behavior 
was studied. Three stages of resistance behavior are identified: stable, crack, and open. An example of stable-crack-open is 
shown in Figure 7. 
1) Stable stage. In this stage, both mean and range of resistance are in control. Before Cycle 3,555 in this example is the 

stable stage. 
2)	 Crack stage. In this stage, mean and/or range of resistance exceed its upper control limit. Typically resistance has 
increased by more than 10% of initial resistance, but well below 100 Ω. As shown in Figure 7, the mean of resistance 
exceeds the upper control limit at around Cycle 3,560. The range of resistance increases as well, but may not reach its 
upper control limit. The increase in variability is a clear indication of cracks occurring in the solder joints. The crack 
stage could last several hundred cycles. In this example, the crack stage lasts 530 cycles from Cycle 3,560 to Cycle 
4,090. From the stable stage to the crack stage, resistance could increase gradually as shown in Figure 8. 

3)	 Open stage. In this stage, the resistance is over 1000 Ω. Examples are shown in Figure 7 (bottom) and Figure 9. During 
this period, resistance may flickeringly swing between very high resistance (over 1000 Ω to infinite) and just above the 
upper control limit for some time before it stays at infinite resistance. In this example, the flickering resistance (an on 
and off connection) lasts another 200 cycles. 

In the stable stage, all these four failure criteria would report no failure. In the open stage, all failure criteria would detect 
failure. However, only the control-chart method and the IPC-9701A can detect failure in the crack stage in this example, 
while the 500 Ω resistance threshold and the infinite resistance failure criteria would report no failure because resistance is 
below their limit. Thus, the difference in the reported cycles-to-failure mainly depends on how long the crack stage is. 

It is found that the duration of the crack stage depends on the severity of the test conditions. In severe test conditions like the 
-40°C to 125°C thermal cycling, the resistance behavior would often skip the crack stage or only have a few cycles during the 
crack stage. Figure 9 shows a case that resistance suddenly increases from the stable stage to the open stage. From resistance 
behavior of 80 daisy chains, it is found that the stable – crack – open trend occurred 95% of the time in the 0°C to 100°C 
thermal profile, a mild test condition, while the stable – open trend occurred 55% of the time in the -40°C to 125°C thermal 
profile, a severe test condition. Table 2 summarizes the results. 

The small and gradual increase in resistance in a mild test condition suggested much later crack detection by the 500 Ω 
resistance threshold and the infinite resistance failure criteria. The characteristics of resistance behavior could explain the 
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Figure 8. Resistance behavior of Channel 154, (top) mean of resistance from Cycle 1650 to Cycle 1770, (bottom) range 
of resistance from Cycle 1650 to Cycle 1770. 

Table 2. Resistance behavior depending on the severity of test conditions 
Resistance pattern 

Stable – Crack – Open Stable - Open 
Thermal cycling from 0 to 100°C 95% 5% 

Thermal cycling from -40 to 125°C 45% 55% 



 
 

 

 
   

  

 
 

   
    

    
  

 
   

           
               

 

 
    

  
   

 

Figure 9. Resistance behavior of Channel 268, (top) mean of resistance from Cycle 1650 to Cycle 1750, (bottom) range 
of resistance from Cycle 1650 to Cycle 1750. 

4. Discussion 

4.1 The control-chart based failure criteria vs. a 20% increase in IPC-9701A 
In the control-chart based method for solder joint failure detection, the failure of solder joints is defined as the resistance 
increase exceeding k times the natural variation. In thermal fatigue reliability tests, the natural variation is the variation in 
resistance due to temperature change. 

Based on the physics of the temperature dependence of resistivity of metals such as gold (Au), tin (Sn), and copper (Cu), a 
change in resistance is proportional to the temperature change. 

(3) 

In a package with wire bonds, the resistance of a daisy-chain is mainly determined by the wire bonds, not the solder joints 
due to wire bonds’ geometry of the long length and small diameter. Typical resistance value of a daisy-chain is a few ohms. 
The temperature coefficient of resistance of gold in wire bonds is about 0.0034/ºC. 



  
       

   
 

  
       

   
 

    
    

        
     

 

  

   

 

        
        

       
     
    

          
   

 
    

       
  

      

    
 

 

 
 

 

Note in the flip chip case, the resistance of a daisy-chain is determined by the solder joints (SnAgCu), on-die wire resistance, 
and on-board wire resistance (Cu). Typical value is less than 1 Ω. The temperature coefficient of resistance of lead-free 
solder (SnAgCu) is about 0.0042/ºC and that of Cu is about 0.0039/ºC. 

Figure 10 shows the relationship of the resistance and temperature for one daisy-chain having wire bonds inside the package. 
The data fits a linear regression line well as indicated by the coefficient of determination R2 of 99%. The slope of 0.0143 Ω 
/ºC indicates that the resistance will increase by 0.0143 Ω when the temperature increases by 1 degree C. 

From equation , we know theoretically the range of resistance purely due to thermal effect in the wire bonding 
case would be 34% (0.0034/ºC x 100ºC) of initial resistance at 0°C, or 29% (34%/(1+0.34/2)) of average resistance for the 
temperature cycling from 0 to 100°C. The range of resistance due to thermal effect would be 56% (0.0034/ºC x 165ºC) of 
initial resistance at -40°C, or 44% (56%/(1+0.56/2)) of average resistance for the temperature cycling from -40°C to 125°C. 

The range of resistance is 

The upper control limit of mean of resistance control chart is 

In this study, the sample size n is 5, so d 2 is 2.326. Given the temperature coefficient of resistance of 0.0034/ºC, the 3-sigma 
upper control limit of mean of resistance control chart is a 17% increase from the average resistance for the 0°C to 100°C 
thermal profile, and a 25% resistance increase from the average resistance for the -40°C to 125°C profile. This is why the 
reported cycles-to-failure data using the control-chart failure criterion is almost identical to that using a 20% increase failure 
criterion from the IPC-9701A. Note that we set the resistance threshold of IPC-971A as a 20% resistance increase from the 
resistance at high temperature such as at 100°C or 125°C. This analysis gives the number 20% in the IPC 9701A standard a 
scientific explanation. 

4.2 Theoretical range of resistance purely due to thermal effects 
Table 3 lists both theoretical and experimental values of range of resistance as a percentage of average resistance in a good 
solder joint due to thermal effects. Note that the theoretical range of resistance as a percentage of average resistance is 

calculated using equation . One could conclude that an interconnection may have failed if the range is 

significantly larger than the theoretical range. The control-chart based method is able to monitor the dispersion in resistance 
for each thermal cycle over time. 

Figure 10. Resistance is a function of temperature 



   
   

     
    

     
      
      

  
  

  
 

   
   

   
      

                
   

   

 

   
    

    
 

    
     

   
   

                
    

    
 

   
   

 
   

  
 

        

       
    

 
          

 
       

     
  

 
     

 
 

 
  

     
          

    
  

Table 3. Range of resistance due to thermal effects as a percentage of average resistance 
Range of resistance as a percentage of average resistance 

Thermal profile range Wire bonding, Flip Chip, 
Theoretical value Experimental data Theoretical value Experimental data 

100°C (0°C to 100°C) 29% 25%* 33% 31%** 
-40°C to 125°C 44% 43%* 50% 54%*** 
-55°C to 150°C 52% 58% 

* Data from the low-silver BGA project (Henshall et al. 2011) 
** Data from Filho et al. 2006 
*** Data from Stepniak, 2002 

4.3 Relationship between the crack area and the resistance increase 
To understand the relationship between the crack area of an interconnection and the change in resistance of the 
interconnection, a simple example is given. Assume the initial solder joint can be modeled as a simple cylinder with a 
diameter of 200 µm and a height of 120 µm. Given the electrical resistivity of Sn at 20ºC is about 1.09 x 10-7 Ωm, the 
resistance of the initial good solder joint is about 0.4 mΩ. Assume a crack occurs after the reliability testing and the cross-
sectional area of the contact becomes a circle with a diameter of 20 µm and the gap of the crack is 1 µm. Thus, the increase in 
resistance due to the reduction of the contact area from the diameter of 200 µm to 20 µm will be 

If the crack continues to increase and leaves the contact area as small as a cylinder with a diameter of 1 µm and a height of 1 
µm, the increase in resistance will be just 0.14 Ω. When the contact area is only a cylinder with a diameter of 1 µm, a crack 
has propagated to become almost a full-crack. 

Thus, in the stable stage where both mean and range of resistance are in control, cracks could have initiated and propagated 
but have not reached a full crack yet. In the crack stage where there is only a small increase in resistance (typically less than 1 
Ω), at least one solder joint has propagated to almost a complete crack, or a full-crack has occurred but the failed solder joint 
was compressed by the surrounding good solder joints in a daisy-chain. Filho et al. (2006) verified the solder joint integrity 
after the first event that resistance increased from 32 mΩ to around 1 Ω and they observed a total-length crack in that solder 
joint after cross sectioning. Stepniak (2002) also observed heavily damaged solder joints with only small resistance increase. 
In the open stage, a complete crack has occurred and the gap of the crack is large. 

4.4 Errors from different failure criteria 
There are two types of errors that can occur in defining failure criterion. A Type I error is false detection, meaning an 
increase in resistance exceeds a threshold defined in a failure criterion but the truth is there is no crack in the solder joint. A 
Type II error is false pass, which happens when a crack occurs in the solder joint but the change in resistance does not reach 
the threshold defined in the failure criteria. 

Using an event detector for failure detection can cause both errors. The event detector with high sampling rate is sensitive to 
electrical noise as acknowledged in IPC-9701. Qi et al. (2008) captured the resistance spikes due to noise using an 
oscilloscope. Thus, the event detector is prone to false detection, a Type I error. The resistance threshold of 1000 Ω defined 
in IPC-9701A for an event detector is too high to identify the crack stage, which leads to a false pass, a Type II error. 

The author argues that the fixed resistance threshold such as 5 Ω, 450 Ω, or 1000 Ω is not a good failure criterion because the 
initial resistance value of a daisy-chain varies among different setups. For example, the initial resistance value could be from 
32 mΩ in one study (Filho et al. 2006) to 15.74 Ω in another study (Wang et al., 1999). Since the theoretical range of 
resistance due to thermal effects is proportional to initial resistance, using percentage increase from the initial resistance as 
the failure criterion is recommended. 

When resistance increase is small and gradual as shown in Figure 8, the cumulative sum control chart may detect failure 
earlier than traditional Shewhart control charts. 

Conclusions 
In this study, the application of the control-chart based method to detect solder joint failure in a thermal cycling reliability 
study is presented. In the control-chart based method, the thermal fatigue failure of solder joints is defined as the mean or 
range of resistance when the thermal cycle increases significantly, measured by k sigma of the natural variation purely due to 
thermal effects. Note that the variation from gauge repeatability and reproducibility is not considered here because it is 
typically much smaller than the variation due to thermal effects. 



     
       

   
      

 
    

   
        

 
    

     
    

   
      

    
 

    
     

    
   

   
 

 
      

   
     

    
 

 
              

  
    

   
 

  

        
 

      
    

    
    

   
  

   
   

  
   

     

     

  
        

  

The reported cycles-to-failure data based on different failure criteria were compared. The results show that the reported 
cycles-to-failure from the control-chart method is very similar to that when the IPC-9701A failure criterion is used. Both 
IPC-9701A and the control-chart based method can detect failure much earlier than the failure criterion of a resistance 
threshold of 500 Ω or an infinite resistance. 

A scientific explanation is made of why the 20% increase in IPC-9701A is a reasonable failure criterion and why the IPC
9701A and the control-chart based method produced similar results. From the physics of the metal’s temperature dependence 
of resistance, the range of resistance purely due to thermal effects is calculated as the percentage of average resistance. 

Three stages of resistance behavior are identified: stable, crack, and open. In the stable stage, cracks could have initiated and 
propagated but have not reached a full crack. In the crack stage where the increase in resistance is small (typically less than 1 
Ω), at least one solder joint has propagated to almost a complete crack, or a full-crack has occurred but the failed solder joint 
was compressed by the surrounding good solder joints in a daisy-chain. In the open stage, a complete crack has occurred and 
the gap of the crack is large. Partial cracks are difficult to be detected by the electrical continuity measurement method due to 
limited resolution of commercial equipment. The duration of the crack stage depends on the severity of the test conditions. 

It is recommended that the control-chart based method be used as failure criterion because it not only monitors the average of 
resistance, but also monitors the dispersion of resistance in each thermal cycle over time. 4 to 6 readings are suggested to be 
collected per thermal cycle. In addition to monitoring the resistance value, one could conclude that an interconnection may 
have failed if the range of resistance is significant larger than the theoretical range in a thermal fatigue reliability study. 
Monitoring the dispersion of resistance over time gives another way to detect failure of solder joints. 
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