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Executive Summary 
 
The goal of this senior project was to come up with a structural-engineering-related schematic 
design for a roller coaster to be installed in Disneyland called TRON 2.0: The Experience. This 
involved looking at both design processes that we had already learned through our curriculum as 
well as researching concepts that were previously foreign to us, namely dynamic application of 
loads and the effects of fatigue stresses. 
 
A story was established based on the source material: the TRON movies produced by Walt 
Disney Studios. Thematic elements from the story were used as the basis for design implications 
that would become necessary as the process continued. These design implication influenced the 
design of the Ride System, Track Layout, and Ride Vehicle Design. These factors would end up 
influencing applicable loads, which would be utilized in the design of the Track Layout  
 
The site was chosen to be constructed on Disneyland proper so that realistic site parameters and 
dimensions would give a sense of scale to the project and eliminate ambiguity. However, 
existing elements on the site would cause challenges for us to work around. 
 
Once the site was chosen, Queue and Show buildings were designated simple designs to tie back 
to story-driven implications and reinforce the standards set by the Walt Disney Imagineering 
process model. In addition, we gained more information such as crowd capacity to dictate further 
mechanical design and dynamic applications. 
 
The mechanical side of the process saw the development of a ride system used to propel the Ride 
Vehicles, all designed by the Mechanical Engineers on the project. The Ride Vehicle weights 
became relevant for the design of the track. A Track Layout was created and inputted into 
simulation software so that dynamic accelerations could be developed as new loading conditions 
for Track Design. 
 
Finally, all of the preceding elements of design were culminated into a schematic design of a 
roller coaster track making sure to account for subjects such as dynamic applications, torsion, 
and fatigue. 
 
All designs were replicated in modeling software to confirm constructability and viability of the 
resulting schematic design. 
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Background & Project Overview 
 
For this senior project we aimed to pursue an aspect of Architectural Engineering (ARCE) that 
we hadn’t experienced before. We decided that our knowledge of dynamic load applications and 
repeated impact loading in particular were viable subjects to expand on. In addition, we knew 
that we needed to approach the project with some form of interdisciplinary interaction. Lastly, 
we understood that our interest in the projects of Walt Disney Imagineering (WDI) and the 
possibility of obtaining positions within the company were important factors to consider; thus, 
we hoped to establish a project that could serve as material for supplementing our respective 
project portfolios. The answer, it seemed, to accomplish all of this was to conceptually design a 
roller coaster attraction to be installed at a Disney theme park.  
 
Firstly, we felt that it was important to emulate the WDI process in a way that would still meet 
project requirements, considering that WDI was a primary influence on the project. To do this, 
we began by formulating our own outline of how the project would be carried out. The way we 
established this process was as follows: 
 
The Idea – It is crucial to the WDI process that an idea be established at the forefront of the 
project in order to place restrictions on design. These restrictions, in a sense, grounded us to a 
specific focus and gave us real-world constraints. Recognizing these constraints allowed us to 
imagine the attraction in an existing space and gave us explicit requirements to meet, further 
honing our conceptual design to a product for theoretical installation.  
 
The idea we chose to theme our project around was based on the franchise of TRON. The TRON 
films are a pair of video-game-themed action-adventure movies that were produced by the Walt 
Disney Company in the years 1982 (TRON) and 2010 (TRON: Legacy). Elements and 
terminology from the films were applied to the project and are referenced at various times in the 
process of the design. These terms were not created for this project and are property of the Walt 
Disney Company. 
 
The idea was chosen on the mentality that the theme of TRON could work as a functioning 
attraction in a Disney theme park. The attraction ElecTRONica which premiered in 2010, lasted 
until 2012 and was the inspiration for the project, essentially confirming that TRON would work 
as a viable and visually interesting subject for an attraction design. In addition, the plans for a 
TRON-themed roller coaster were announced during the summer of 2015 in preparation of the 
new Disneyland Shanghai theme park. This further confirmed the notion that TRON could work 
as a marketable subject for WDI to install seamlessly into one of its theme parks. 
 
The Story – The second half of the idea portion of the project was to develop an actual story for 
the guests to experience. An element like the story further established the aforementioned design 
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constraints and helped us in later decisions to be made on crowd capacity, ride systems, and 
necessary building space.  
 
The Site – The site was one of the first aspects to be considered for the building process, and 
choosing the site was directly correlated to the idea and story in terms of theming. For instance, 
an attraction that simulates space travel would feel out of place in an area themed to a jungle 
environment. Once the site was chosen, several requirements were made aware of in the form of 
soil conditions, available space, and existing elements.  
 
The Queue – The queue was imperative in determining crowd capacity. From crowd capacity we 
established elements like Ride Vehicle Design, ride cycles, and Track Design. The queue is most 
effective when placed within a building as it allows for more opportunities to keep guests 
entertained and protects them from environmental exposure. For this reason, it was decided that a  
Queue Building would be necessary. However, the Queue Building was given a simplistic design 
for this project so that we could continue to remain focused on the areas of design that were 
related to aspects beyond our standard curriculum.   
 
The Show Building – The Show Building, in essence, houses the track. This was decided to be 
necessary as a part of the theming of the ride as a part of the story that was established early on. 
We knew that the ride would not work if built outdoors. The Show Building must fit within the 
site constraints and should be designed to encompass the Track Layout within. Like the Queue 
Building, the Show Building was given a relatively simple conceptual design.  
 
The remainder of the process was the crucial focus of the project. Our next steps took us past our 
comfort level and exposed us to resources utilized by our Mechanical Engineering (ME) 
teammates in tandem with exploring areas of design that weren’t covered in our ARCE courses.  
 
The Ride System – The Ride System was essential for determining the “feel” of the ride and 
more importantly, the points of additional accelerations to be applied to the Track Design. With 
the ride system chosen, a simulation was ran to figure out the maximum loading points to 
consider for conservative design decisions. Knowledge of ME-related materials was required to 
research the ideal models for ride system installation.  
 
The Ride Vehicle – Choosing the proper Ride Vehicle can have a tremendous effect on the 
service loads to be applied to the Track Design. It has a secondary relationship to crowd capacity 
in terms of the amount of guests that can board the vehicle at one time. These two aspects are 
interlocked in their significance when inputted into the ride simulation for the sake of retrieved 
accelerations. Again, ME participation was required to accurately represent the Ride Vehicle as a 
digital model. 
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The Track Layout – Track Layout was established on the parameters set by available space and 
safety concerns. A certain ride envelope was evoked as to prevent guest interaction with the 
surrounding structural elements. In addition, required geometries were applied to turn radii and 
elevation changes to ensure that a healthy level of g-forces will be experienced by any guest at 
one time. The track layout was modeled in the same way as the Ride Vehicle and served as the 
project’s final point of sole application of ME-related concepts. 
 
The Track Design – The bulk of this project focused on the design of the track. This is mainly 
because Track Design was the ultimate merging of the two sides of the process: ME and ARCE. 
The design considerations as applied in the Ride System, Ride Vehicle, and Track Layout 
culminated into outputted accelerations. These accelerations were then applied to a designated 
Track Configuration that carried load through each element and ended with the foundation 
supports at the base. The track was designed in a way that worked conceptually and is a 
conservative simplicity of what an actual roller coaster track may be. Connections and 
maintenance access were not taken into account.  
 
Each part of our WDI-inspired process has been outlined here but can be found explained in 
more detail in its respective section within this report. We would like to recognize and emphasize 
that the design of this attraction is purely conceptual and was done so to grasp at a general 
understanding of what goes into the design of such structures.  
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Story Development 
 
One of the crucial elements of the WDI process, story development was applied in the context of 
this project as a way of retrieving constraints on design. Our period of Story Development was 
kept necessarily brief as to maintain the true focus of the project. In our approach, we set up a 
sequence of two pitch meetings where we iteratively evolved the story to its best form. When a 
story element met the favor of the group, it was advanced to the next level. Conversely, any story 
elements that were deemed too unrealistic or costly were cut from the project.  
 
To enhance this storytelling process, sketches and storyboarding were helpful in attaching 
visuals from which design developments could be made.  
 

 
Left to Right - Top to Bottom - An example of interior space within the Queue Building, an 
example of a bank turn and incorporation of projection effects, an example of overlapping track 
levels and side-by-side Ride Vehicle orientation 
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Storyboard for concept of ride - show elements listed in order of guest experience 
 
This step of the process, although not immediately evident, had large impacts on the design 
process later on. This development gave us the bases for design, such as ride duration and Track 
Layout. This sense of realism simulated many of the architectural and aesthetic requirements and 
served as a guide for the remainder of the design process.  
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Geotechnical Information 
 
The decision to build on a real-world site allowed for existing geotechnical information to be 
accessed. However, site information within Disneyland itself was not available for use on this 
project due to confidentiality restrictions. Instead, information for typical soil in Anaheim was 
researched through the Anaheim City Website, and a specific site approximately 5 miles 
southeast of Disneyland was researched through the USDA-NRCS Official Soil Series. All the 
data retrieved from this research is referenced in the Geotechnical Information section of the 
report Appendix. 
 
The most useful piece of information to be taken away from this research, as it was essential for 
the Foundation Design, was the type of soil found on the site: Poorly Graded Sand. Information 
concerning this type of soil was researched through the Geotechnical Info Website. This 
information included Soil Unit Weight, the Lateral Earth Pressure Coefficient, the Angle of 
Internal Friction, and the Factor of Safety. A further description of these factors is referenced on 
the Soil Parameter portion of the report Appendix. 
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Existing Conditions 
 
The site chosen for analysis was the current site for the Autopia attraction at Disneyland Park. In 
terms of size, the site makes up for a large portion of the park as can be seen in the picture 
below: 
 

 
Map of Disneyland Park - Red represents the area occupied by Autopia - Google Maps 
 
The reason that a real-world site was selected was so that it would present us with realistic 
parameters and eliminate any unnecessary ambiguity in design. However, this also brought about 
some new issues to work around. One of the challenges that arose from selecting this site was the 
characteristic of existing conditions.  
 
Sharing the same space as the Autopia attraction are two structures that cause limitations for 
building and track placement. These structures are the Peoplemover track and the Monorail 
track. The Peoplemover track has been defunct for over 20 years and contributes no real purpose 
to the park. Therefore, we proposed to simulate its demolition to allow for more space for design. 
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The Monorail, on the other hand, is a key transportation element of the park and would not be 
able to be removed. Therefore, the Monorail track became an element to be worked around.  
 
The first step taken into consideration was the placement of all three buildings within the 
parameters of the Monorail. It was decided that the two Show Buildings would need to be 
dimensioned as 160’ x 150’ and that one building would be a 90° rotation of the other. These 
buildings would also need to be built into subterranean space to account for easy-to-
accommodate architectural aesthetics (particularly keeping in mind the point of view of 
passengers on the nearby Monorail). 
 
For further information on the design of the Show Buildings see Show Building Design. 

 
Placement of Queue and Show Buildings within chosen site to include established dimensions. 
Blue Line - Monorail track  
Red Line - Proposed layout of TRON 2.0: The Experience track 
Modeled with information from Google Maps 
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The next aspect of design considered was the location of the columns that supported the 
Monorail. Information concerning the placement of these columns was not made available for 
this project and so alternative measures were taken. In order to mark the theoretical placement of 
the Monorail track, certain areas of the Autopia track were considered. It was deemed that in 
places where the Autopia track intersected with the Monorail track, placement of new track 
would be acceptable. 
 

  
Diagram corresponding to areas of Monorail and Autopia track intersections. The hexagon 
shapes mark areas where these intersections occur. Modeled with info from Google Maps. 
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Ride Vehicle Design 
 
Concept Generation  
 
The first step in the Ride Vehicle design was to generate multiple concepts based on the Story 
Development. Potential Ride Vehicle designs were pitched and eventually narrowed down to 
three basic concepts as listed below: 

 
Light Plane - One of the major vehicles depicted in TRON: Legacy was a Light Plane. This 
concept would allow for a large Ride Vehicle with a very high passenger capacity. 
 
Light Car - This Ride Vehicle accounted for a more immersive experience through depicted 
locations within the attraction. The idea was based on the “Light Cycle” model as it appears in 
the film, but was altered to increase passenger capacity. 
 
Suspended Rail - The Suspended Rail concept was designed to give a unique experience to 
Disneyland guests. In this concept, passengers would be suspended from a rail with rotational 
capabilities to allow easy-to-view access to show scenes.  

 
To enforce an unbiased decision-making process, a decision matrix was created to weigh the 
three Ride Vehicle designs. The first step of the decision matrix was to come up with critical 
criteria for the Ride Vehicle. The most important factors in this design were: cost, 
time/complexity, safety, space required, audience/draw, story applicability, high capacity, 
comfort, and weight. Each factor was rated with a level of importance based on a scale from one 
(least important) to ten (most important). The ratings for each criteria were averaged to give each 
criteria a scale factor (see Table 1).  
 
Each Ride Vehicle was evaluated using a second decision matrix and rated on a scale of one 
(easiest to achieve) to ten (hardest to achieve). The rating was then scaled by the scale factor and 
the scaled totals were summed for each of the concepts to give a final score (see Table 2). This 
method proved to be too biased but was rectified by reevaluating each Ride Vehicle on a one to 
three scale (one was easily achievable, two was moderately achievable, and three was difficult to 
achieve). The process was repeated to produce more concrete results (see Table 3). Based on the 
results of the decision matrices, the Light Car concept was chosen for design development.  
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Table 1 - Individual Criteria Ratings 
 

 
Table 2 - Decision Matrix Trial 1 
 

 
Table 3 - Decision Matrix Trial 2 
 
 
 



Fall 2015  TRON 2.0: The Experience 

15 
 

Design Development 
 
Nomenclature  
Vehicle Shell - the structural framing of the Ride Vehicle. The vehicle shell functions as a barrier 
to keep passengers within the Ride Vehicle during the course of the ride. 

Wheel Carriage - element of the Ride Vehicle that is composed of three different types of wheels 
and the components that hold them together and connect them to the Vehicle Shell. 

 

An example of the Wheel Carriage as modeled in SOLIDWORKS 

Up-stop Wheels – wheels that hug the bottom of the Guide Rail* – resist uplift 

Tractor / Running Wheels – wheels that hug top of the Guide Rail* – resist gravity  

Side Friction Wheels – wheels that hug the side of the Guide Rail* – resist lateral movement 

Guide Bar - structural bar that holds the two adjacent Wheel Carriages together one either side of 
the Ride Vehicle. 

LIM - acronym for linear induction motor; a magnetic system that provides propulsion to and 
causes acceleration of the ride vehicle. 

Safety Envelope - theoretical space surrounding the Ride Vehicle that shall not coincide with any 
structural members (or any other obstructions). A safety envelope is crucial to prevent 
passengers from making contact with said obstructions. 

*for Guide Rail definition see Track Design Overview - Nomenclature 
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The Ride Vehicle design was broken up into two parts: Vehicle Shell Design and Wheel 
Carriage Design. A factor of safety of five was used during the initial design because of the high 
chance of death or severe injury in the event of failure. In a second phase of design, the factor of 
safety could be reduced to lower the overall weight and construction costs of the Ride Vehicle. 
The Ride Vehicle was designed in a program called SOLIDWORKS, a computer-aided 
engineering software program and solid modeler that utilizes a parametric feature-based 
approach to create models and assemblies. 
 
Vehicle Shell Design 
The primary goal of the Vehicle Shell (See Nomenclature) Design was to develop a comfortable 
Ride Vehicle that was simultaneously lightweight and strong. The Ride Vehicle was modeled 
after the “Light Cycle” in TRON: Legacy and thus consisted of two parts: a nose and a body. 
The nose was purely aesthetic and thus was designed to be hollow. The body was lengthened to 
provide enough space for two rows of three people in order to maximize passenger capacity.  
The total dimensions of the car (including exterior aesthetic elements) were around 10’ x 5’ x 
16’, and the size of the seats was designed based on Anthropometric Data (see Figure 10 - 
Appendix). The seats themselves were composed of black leather and filled with high-strength 
foam to provide comfort for the passengers while maintaining durability. A racecar style seat belt 
was used to keep passengers firmly locked into their seats while maintaining comfort. The seats 
were mounted to a metal frame that attached directly to the Wheel Carriage to ensure that if the 
plastic frame of the Ride Vehicle failed, the seats would remain attached to the Wheel Carriage. 
 
Wheel Carriage Design 
The Wheel Carriage (See Nomenclature) followed a traditional design: it consisted of two pairs 
of Running Wheels (to carry the downward forces), two pairs of Side Friction Wheels (to carry 
the lateral forces), and two pairs of Up-Stop wheels (to carry the upward forces). Each Wheel 
Carriage pair was connected with a Guide Bar (see Nomenclature). The Wheel Carriage was 
created in SOLIDWORKS, and each component was assigned a material so the weight of the 
Wheel Carriage could be calculated. Once the Wheel Carriage and Vehicle Shell were 
completed, they were combined in an assembly so that total weight of the Ride Vehicle could be 
calculated. The thickness and dimensions of the Wheel Carriage were sized based on the 
simulated weight, and it was assumed that the top 95th percentile of the population would be 
able to board the Ride Vehicle (see Figure 10 - Appendix). Critical points, such as the connection 
points in the wheels and Guide Bar, were checked for shear and bending failure. The locations 
where the Wheel Carriage was attached to the Vehicle Shell were spaced such that the weight of 
the passengers was evenly distributed amongst the two wheel carriages. 
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Completed Ride Vehicle Design as modeled in SOLIDWORKS 
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Track Layout Design 
 
Column Placement 
The largest limiting criteria for the track design was the column placement. Coordination 
between the ME and ARCE teams allowed the column placement to be large enough to fit two 
cars side-by-side while maintaining the 3’ Safety Envelope (see Nomenclature) around each Ride 
Vehicle. To minimize column placement, certain design requirements were enforced for the 
Show Building (see Show Building Design).  
 
Multi-Story Elevations 
To simulate the story element of a multi-level arena experience as seen in TRON: Legacy, the 
Track Layout was designed to fluidly move between two stories that were located 20’ apart in 
elevation. 
 
Turn Radius 
To ensure that the ride would be safe for small children (ages 10-12 depending on their weight), 
the turn radii of the Track Layout were kept as large as Show Building geometries would allow. 
When it was necessary for the turn radius to be small, the speed of the Ride Vehicle was limited 
to minimize the gravitational forces experienced by the passengers. 
  
LIM Placement 
It was decided that the Ride System would utilize a combination of linear induction motors 
(LIMs) and gravity for the propulsion of the ride vehicle. Due to the placement of the Monorail 
supports and track, the designed Track Layout had to remain low to the ground (see Site 
Analysis - Existing Conditions). The height and space limitations imposed by the Monorail made 
it problematic to use solely gravity because there was no substantial source of potential energy. 
LIMs were chosen as the alternative because they allowed the Ride Vehicles to remain low to the 
ground and had the added bonus of simulating the smooth acceleration of a “Light Cycle.”  
 
Safety Envelope 
A Safety Envelope (see Nomenclature) of 3’ around each of the Ride Vehicles was maintained to 
ensure that passengers could extend their arms upward or outward and not hit anything. This 
Safety Envelope was critical in column placement and was the determining factor for bay 
spacing in the Show Building.  
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Safety Envelope as defined by ASTM F2291 – 13 Standard for Amusement Ride Design 
 
Simulation 
Once the SOLIDWORKS track design was completed, a Track Layout was modeled in the roller 
coaster simulation software, NoLimits 2. NoLimits Rollercoaster Simulation 2 (NoLimits 2) is a 
rollercoaster simulation software package for Microsoft Windows. NoLimits 2 is a cost-effective 
alternative that outputted all necessary information for dynamic analysis. 
 
From here, the maximum gravitational force of the ride was determined to be 2.5 Gs (2.5 times 
the force of gravity). However, the NoLimits 2 could not model banked turns, which would have 
significantly reduced the gravitational forces.  The maximum speed was found to be 
approximately 28 mph. 
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Completed Track Layout as modeled in SOLIDWORKS - includes Queue and Show Buildings 
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Queue Building Design Overview 
 
The term queue refers mainly to the area encompassing the formation of passengers as they 
prepare to board the Ride Vehicles. Whereas the term line indicates the passengers themselves, 
the queue is in actuality what envelops the line.  A typical queue serves multiple purposes. First 
and foremost, it is meant to establish a sense of crowd control. A well-designed queue guides 
guests in an orderly manner whilst covering maximum space in order to maximize the number of 
people that can be loaded onto the attraction as quickly as possible. In this respect, a queue 
should also be diverse and have many changing directions to remain interesting, rather than 
remain in one continuous orientation as this makes the line seem longer than it is. 
 
A factor that is important to WDI but not especially relevant to this project is that the queue also 
portrays some aspect of the story. For this project, we chose a building shape and aesthetic that 
most accurately represents one of the main buildings seen in both versions of the source material; 
this way, the building appears relevant to guests but also gives us some design parameters to 
consider. For instance, the building as it appears in both films has a brick finish on the exterior; 
so, when developing gravity loads for the exterior members, we took into account a brick veneer 
as additional weight to the structure. In addition, linoleum floors, as they appear in both films, 
were considered for floor weights. 
 

 
Concept art of Queue Building- Used to dictate design decisions 
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The final design element worth mentioning is the choice to build in subterranean space. With the 
dimension constraints defined in the site design (See Existing Conditions), we knew that there 
was a limited amount of space to work with. In order to maximize ride occupancy and to allow 
for separate loading / unloading locations, it seemed necessary to develop an underground space. 
By establishing a basement level portion of the queue, we could space the line out further and 
help regulate the amount of passengers boarding the ride at one period of time. For further 
information on the layout of the Queue Building, see Revit Modeling.  
 
General Assumptions 
1. All design was in accordance with Load and Resistance Factor Design (LRFD) Loading 

Configuration. 

2. Live loading conditions were based on the ASCE 7-10. 

3. The roof materials (vapor barrier, insulation, and fireproofing) selected for the roof design 

were based on standard roof materials (see Fig. 1 & 2 - Appendix). 

4. All decking was chosen to be Verco brand due to our easy accessibility to said catalog. 

5. The weight of Mechanical, Electrical, & Plumbing (MEP) Systems was assumed to be 5 psf. 

6. A suspended T-Bar ceiling was selected to allow space for HVAC and MEP components. 

7. A brick veneer was included to simulate the texture as reflected in the architectural concept. 

8. Miscellaneous loads were taken as 2-5% of the total load. 

9. Linoleum was chosen as a floor finishing material to simulate texture as defined in 

architectural concept. 

10. All columns were designed to be pinned-pinned connections for simplicity of design.  

11. Walls at the basement level are considered to be concrete retaining walls and were not 

designed due to not being within scope of project.  

12. Foundations and connections were not designed due to not being within scope of project.  

13. Seismic Design Considerations were based on the ASCE 7-10. 

14. The lateral force resisting system chosen for the ground floor of the structure is a braced 

frame configuration due it being a cost effective solutions and coincided with architectural 

considerations. 

15. Due to the slope of the roof being slightly sloped for rainwater considerations, the total roof 

height was conservatively considered 24’ in all locations. Braced frames were modeled as 20’ 

high to account for the 4’ parapet on the south / west orientation. 
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Queue Building Design 
 
Gravity Loading Components - Roof 
Firestone V-Force Waterproofing Membrane 

1” Rigid Insulation 

Vapor Liner Sheet 

Spray Fireproofing 

For selection of these materials, see Assumption 3. 

18” Verco Decking - PLB-36 / HSB-36 

The live and dead loads up to the deck were combined to retrieve an applied gravity load. 

Typical deck span was also observed. With this information, a 22 Gauge PLB-36 Verco Deck 

was selected from the Verco Catalog (See Assumption 4). 

MEP (See Assumption 5) 

Suspended T-bar ceiling (See Assumption 6) 

Brick Veneer Finish – Exterior Walls  

Brick veneer walls have an interior composed of a frame of steel channels attached to a layer of 

drywall (See Assumption 7). Weights of the channels, drywall, and brick veneer were totaled. 

 
Gravity Loading Components - Floor 
Linoleum Floor Finish (See Assumption 9) 

Normal Weight Concrete Fill 

Verco 20 Gage PLW2 or W2 Formlock Deck 

The live and dead loads up to the deck were combined to retrieve an applied gravity load. 

Typical deck span was also observed. With this information, a Verco 20 Gage PLW2 or W2 

Formlock Deck was selected from the Verco Catalog (See Assumption 4). 

  
Design Process – Gravity Systems 
Materiality was the first aspect of design established. Steel was chosen for its ease of use in 
creating open environments and creating thematic parallels to the source material.  
 
The design for the gravity-resisting systems was split into several categories. 
 
First, a system was designed for the roof level and the floor level (over the basement space). 
Then, in each system, structural elements were divided into interior and exterior members. Of 
these members there were three types: beams, girders, and columns. Beams spanned longer 
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distances than the girders. Columns varied in height between floors and extended to the 
basement level. Foundations and connections were not designed (See Assumption 12). 
 
To begin the process, all loads (dead and live) over the tributary area were applied as a 
distributed load to the first structural member (roof beam). The loads were factored for LRFD 
conditions (See Assumption 1). Live load was analyzed for roof reduction according to the 
ASCE 7-10 (See Assumption 2). 
 
The applied loads were analyzed for bending and shear demands according to the specified 
equations (see Gravity System Design - Queue Building - Appendix). Deflection demand was 
also calculated for maximum controlling live load conditions. 
 
An initial steel member was selected from the AISC Steel Construction Manual to be evaluated 
for capacity. Using the given equation for plastic moment (Mp) based on yield stress (Fy) and 
section modulus (Z) and multiplied by a reduction factor (φ), bending capacity was determined. 
Using the given equation for shear (Vn) based on Fy and the area of the section and multiplied 
by φ, shear capacity was determined. Lastly, a controlling live load deflection was calculated 
using the equation specified for a simple span beam (see Gravity System Design - Queue 
Building - Appendix).  
 
All capacities were compared with demands to confirm that the selected member would work for 
design. An additional check was performed to establish whether or not a camber of the member 
was required. 
 
The maximum shear force was taken from the beam analysis and added to the self-weight of the 
beam to be used as the demand load for roof girders. These girders were designed using the same 
process used for beam design, with differences occurring in the loads inputted and the length of 
the members. 
 
All floor members were designed with the same methodology used for roof members with the 
exceptions of weights applied (See Gravity Loading Components - Floor). 
 
Columns spanning from the roof to the ground floor were then sized. Dead and live loads were 
based on the tributary area of the columns and factored based on LRFD; live load reductions 
were also considered (see Assumptions 1 & 2). An effective length factor (K) of 1.0 was chosen 
(Assumption 10) to determine the effective length of the column. Based on these criteria, 
columns were sized using Table 4-1 in the AISC Steel Construction Manual. 
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Design Process – Lateral Systems 
 
In order to design the lateral system, base shear was first determined. Seismic lateral loads were 
considered the governing case over potential wind conditions based on the seismic conditions of 
the area. The latitude and longitude for our chosen site was inputted into the USGS Website. 
From this database, we retrieved seismic design response spectra accelerations (see Fig. 5 - 
Appendix). Factors of Response Modification (R), Importance (I), and Risk Category were 
retrieved from the ASCE 7-10 based on the parameters outlined in our site location and 
materiality of design. Next, period and the seismic response coefficient were calculated from the 
aforementioned factors retrieved from ASCE 7-10. Seismic weight was taken as the weights of 
the roof and wall cladding multiplied over the respective area of coverage. Lastly, base shear (V) 
was calculated as the multiplication of our seismic weights with the selected governing seismic 
response coefficient.  
 
Even though only two braced frames were required in each direction, a total of four braced 
frames was used in each direction to increase redundancy, and were used to divide up the base 
shear into corresponding lateral loads. The frames were modeled in RISA with applied 
distributed loads and point loads taken from the gravity calculation load take-offs. The braced 
frames were modeled as 20’ in height (see Assumption 15). Using the yield stress (Fy) associated 
with HSS members, a limiting width-thickness ratio was determined and compared with the 
actual width to thickness ratio of the selected HSS section. Allowable deflection was likewise 
checked, but with consideration of the height of the frame. Story drift was checked by using the 
retrieved story drift from RISA and, amplified based on the criteria set by ASCE 7-10, was 
compared to the allowable story drift, also set by ASCE 7-10. 
 
Selected Size: HSS 6x6x1/2 - Weight = 35.2 plf & φPn = 58.6 k & b/t = 9.9 
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Show Building Design Overview  
 
While the space dedicated to pre-ride boarding and unloading is referred to as the Queue 
Building, the area that encompasses the actual attraction is called the Show Building. Since we 
decided early in our story process that the only way to simulate the world of TRON for our 
guests was to build indoors, we found it necessary to design several Show Buildings to cover our 
Track Layout. However, the elements of design involved with building these structures were not 
considered the focus of the project and so it was decided that a relatively simple design was 
adequate for acquiring the information needed for the development of other aspects of the 
project.  
 
Due to the constraints established from Existing Conditions, we found that in order to cover the 
total amount of track that we expected, in addition to avoiding the Monorail track, two separate 
buildings would be required to be installed. This also limited the building height, and therefore it 
became necessary to have the Show Buildings utilize subterranean space. However, because we 
desired to keep design as simple as possible, both buildings were identical in structure and 
dimension, with one oriented at a 90° rotation of the other (so that it could fit within our site 
parameters - see Existing Conditions). In addition, the roof design of these structures used many 
of the same systems and elements of the Queue Building that was already designed.  
 
Since our Track Layout would need to fit within the Show Buildings it was deemed crucial that 
they essentially be designed as “hangar-like” structures, meaning that a minimal amount of 
columns would be necessary. Our solution to this problem was to create a steel truss system that 
would serve as girders for our roof beams to frame into. For ease of design, they were modeled 
in RISA in order to retrieve axial and moment demands. 
 
General Assumptions 
 
1. All design was in accordance with Load and Resistance Factor Design (LRFD) Loading 
Configuration. 

2. Live loading conditions were based on the ASCE 7-10. 

3. All assumptions about roof materials and weights made for the Queue Building Design also 
applied to the Show Building Design (Assumptions 3-8 for Queue Building Design). 

4. All beam sizes that were used in the Queue Building roof design were applied to the Show 
Building roof design. 

5. All column sizes that were used in the Queue Building design were also applied to the Show 
Building design. 

6. Foundations, connections, and lateral systems were not designed due to not being within scope 
of project.  
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7. Walls for the underground portion are considered to be concrete retaining walls and were not 
designed due to not being within scope of project. 

8. All connections between truss members are assumed to be pinned-pinned connections for 
simplicity of design. 

9. The trusses were designed to be 8’ deep to allow for reasonable member sizes as well as 
provide adequate space for the track and Anthropometric considerations.   

 

Show Building Design  

For simplicity of design and to stay within the scope of the project, the beams and columns 
designed for the Queue Building were applied to the Show Buildings (See Assumptions 3-5). In 
addition, foundations, connections, and lateral systems were not designed (See Assumption 6). 

In place of girders, trusses were designed for the beams to frame into. This was done to minimize 
the amount of columns used so that the Track Layout would fit within the structure.  

A single truss design was duplicated for all trusses used in the structure. The truss was modeled 
in RISA to obtain a maximum demand axial force. Bay width was modeled as 10’. Height was 
modeled as 8’ to account for two levels of track configuration and Anthropometric requirements 
(see Assumption 9). Point loads from beams were placed at the location of vertical web members 
with their values corresponding to the maximum shear values of the roof beams designed for the 
Queue Building. 

The truss system was first modeled in RISA in order to obtain axial values from which to size 
members. Then a simple span beam equivalent was used to confirm the axial analysis of the 
truss. A simple span beam with the same loads and application points was modeled in RISA. A 
maximum moment demand was retrieved and divided by the height of the truss. The resulting 
axial value was compared to the axial demand retrieved from the initial RISA analysis of the 
truss to confirm the accuracy of the design.  

Based on the axial demand, an HSS section was chosen with a sufficient capacity (φPn) based on 
effective length (KL) from the AISC Steel Construction Manual. 

 

Truss Members Selected Size: HSS 4.4x4.5x3/16 - Weight = 10.7 plf & φPn = 88.4 k 

All other structural member sizes replicated from Queue Building Design 
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Track Design Overview 
 
The term Track Design refers to the conceptual design of the structural members composing the 
Track Layout to which the Ride Vehicle is attached. For organizational purposes, Track Design 
has been divided into two categories with their components defined as follows:  
Rail System – Guide Rails, Gusset Plates, and Core Rail 
Support System – Short Columns, Tall Columns, Struts, Moment Frame, and Foundations 

 
Schematic of Track Configuration to define track elements 
 
Nomenclature 
 
Guide Rails – small continuous round HSS sections that directly support the Ride Vehicle. The 
wheel assembly fits around the diameter of the Guide Rails. The Guide Rails are supported at 2’ 
on center by Gusset Plates connected to the Core Rail. 
Gusset Plates – steel plates that connect the Guide Rails to the Core Rail. They are trapezoidal in 
shape and are doubly cantilevered to support each Guide Rail on either side of the Core Rail. 
Core Rail - jumbo square HSS section that supports the Gusset Plates and Guide Rails. The Core 
Rail sits directly on the columns (either tall or short) and spans a maximum of 20’ for 
transportation and maintenance purposes.  
Short Columns – squat round HSS sections that support the portions of the Rail System that are 
on the lowermost levels of the Track Configuration and that are connected to the Moment Frame. 
Short Columns are 2’ in height. 
Tall Column - round HSS sections that support the portions of the Rail System that are on the 
uppermost levels of the Track Configuration. They are supported laterally by a Strut. Tall 
Columns are 17’ in height. 
Strut – round HSS sections that provide lateral support for the Tall Columns in the direction 
perpendicular to the Rail System. Struts are approximately 17.72’ in length. 
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Moment Frame - wide flange sections that form a moment frame with two bays. Each bay is 14’ 
in length, and the height of the frame is 15’. The Moment Frame is used as a vertical and lateral 
support system for the Rail System when Tall Column placement was made otherwise 
impossible. 
Foundation - HP sections that serve as steel driven piles. Foundations support the Short Column, 
Tall Column and Moment Frame where they occur along the Ride System.  
 
General Assumptions 
 
1. All design was in accordance with Allowable Strength Design (ASD) Loading Configuration. 
2. The factor of safety (Ω) was used in accordance with ASD load combinations as laid out in 
AISC Steel Construction Manual. 
3. The forces due to earthquake loading did not govern for the design and therefore were not 
analyzed as part of this conceptual design. Preliminary calculations determined that the dynamic 
forces generated by the motions of the Ride Vehicle will govern over seismic loading patterns. 
These dynamic forces were accounted for by applying maximum accelerations to the design 
weights. Maximum accelerations were observed from a ride simulation ran by the program 
NoLimits 2. More information on this program can be found in the section on Track Layout 
within Mechanical Design.  
4. Live loading conditions were based on Anthropometric Reference Data for Children and 
Adults: United States, 2007–2010 (See Fig 10 - Appendix). 
5. Due to the dynamic and repetitive loading, the yield stress of the steel (Fy) is based on Fatigue 
Stress (Fsr) – Eq. A-3-1 AISC Steel Construction Manual. Fatigue will control for repeated 
loading conditions.  
For the calculation of Fsr, the number of stress range fluctuations in design life (Nsr) is based on 
the number of ride vehicles that will pass a given portion of track per operational day. The 
assumptions and observations that were made in accordance with this design consideration are as 
follows: 
6. A typical operational day for Disneyland is 16 hours long according to the listed park hours on 
the official Disneyland Website.  
7. In order to cycle passengers through the ride efficiently, six sets of two ride vehicles need be 
simultaneously on the track during one ride cycle. 
8. The duration of a typical ride cycle is approximately 3 mins as reported by the NoLimits 2 ride 
simulation. 
9. According to the ASTM F2291 – 13 Standard for Amusement Ride Design, the design life of 
a standard amusement park ride is 35000 operational hours (approximately 6 years). At this 
point, inspection and/or refurbishment of structural components is required. 
With these assumptions and observations made, it was determined that approximately 1,920 ride 
vehicles will pass a given portion of track per operational day. The number of stress fluctuations 
was determined to be 4,200,000 in design life. 
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Rail System Design 
 
Guide Rail Design 
Design Assumptions 
 
1. Lateral forces were applied to one set of the Wheel Carriage on the interior side of the Guide 
Rail since the centrifugal force from ride motion places the full weight of the car on the side 
friction wheels on the outermost Guide Rail on a given turn (see Fig. 14 - Appendix). 
 
2. The unrestrained length of the Guide Rail is determined by the segments in between the points 
where the Gusset Plates connect with the Guide Rail. These segments are assumed straight due to 
the small unrestrained length (2’ on center) and to allow for application of a simple span beam 
analysis. Thus, the restraints are considered under pin condition. 
 
Design Process 
 
This section highlights the process involved when calculating the conceptual design of the Guide 
Rails (see Nomenclature - Track Design Overview). The forces that are applied to the Guide Rail 
fall into two broad categories: self-weight of the structure and dynamic loads generated by the 
movements of the fully-loaded Ride Vehicles with passengers. 
 
The design weight of the Ride Vehicle with passengers was approximately 19,000 lbs. The 
weights were generated from the SOLIDWORKS outputted mass properties (see Fig. 9 - 
Appendix), and the weight of the passengers is as stated in the Anthropometric Reference Data 
for Children and Adults: United States, 2007–2010 (See General Assumption 4). These weights 
were converted into vertical and lateral components. The vertical components are equally 
distributed over all four Running Wheels. The horizontal components are assumed to be 
distributed over two Side Friction Wheels (See Design Assumption 1). The weights were 
adjusted for dynamic movement with the accelerations retrieved from the NoLimits 2 simulation 
at points of extreme behavior (i.e. maximum accelerations). 
 
The moment demand was developed based on a conservative assumption of a point load applied 
to the center of a simple span beam (See Design Assumption 2). The moment demand was 
related to moment capacity with a factor of safety (Ω). Since round HSS sections are compact in 
bending, the moment capacity is a function of the plastic moment. This allowed for the 
determination of a required section modulus (Z) using yield stress (Fy). However, stress due to 
fatigue (Fsr) was considered instead of Fy (See General Assumption 5). Using the determined 
section modulus, a round HSS size was chosen from the AISC Steel Construction Manual.  
 
Selected Size: HSS6x0.500 – Weight = 29 plf & Z = 14.3 in^3 
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Gusset Plate Design  
 
Design Assumptions  
 
1. Each Gusset Plate is spaced 2’on center along the length of the Core Rail. This estimation is 
based on the observation of real-world representations of roller coaster track. 
 
2. Only vertical acceleration is taken into consideration. The application of lateral acceleration 
causes an eccentricity in the Gusset Plate that reduces the moment demand due to the vertical 
acceleration. It is more conservative therefore to consider only vertical acceleration, as it 
increases moment demand.  
 
3. The distance between the two Guide Rails is 5’ based on the distance of the wheel assemblies 
as developed in the design of the Ride Vehicle in SOLIDWORKS. 
 
4. A minimum value of 1’ is considered for the width of the Core Rail in order to estimate a 
reasonable value for the eccentricity of the Gusset Plate. This was chosen based on the 
observation that most Core Rails used in roller coaster design are at least 1’ in width or diameter. 
Using a minimum width maximizes the eccentricity which in turn conservatively maximizes 
moment demand (see Fig. 16 - Appendix). 
 
5. The height of the Gussets is estimated to be four times the thickness. This estimated ratio is 
based on the observation of real-world representations of roller coaster track in addition to the 
material properties of steel. 
 
Design Process 
 
This section highlights the process involved when calculating the conceptual design of the 
Gusset Plates (see Nomenclature - Track Design Overview). The forces that are applied to the 
Gusset Plates fall into two broad categories: self-weight of the structure and dynamic loads 
generated by the movements of the fully-loaded Ride Vehicles with passengers. 
 
The design weight of the Ride Vehicle with passengers was approximately 19,000 lbs. The 
weights were generated from the SOLIDWORKS outputted mass properties (see Fig. 9 - 
Appendix), and the weight of the passengers is as stated in the Anthropometric Reference Data 
for Children and Adults: United States, 2007–2010 (See General Assumption 4). Self-weight of 
the Guide Rail was included. These weights were converted into a vertical component. The 
lateral component was not taken into consideration (See Design Assumption 2). The weights 
were adjusted for dynamic movement with the accelerations retrieved from the NoLimits 2 
simulation at points of extreme behavior (i.e. maximum accelerations).  
 
In addition, the design weight of the Guide Rails above the Gusset Plates was accounted for by 
multiplying the weight of a single Guide Rail over its span between each Gusset Plate. When 
added to the design weight of the Ride Vehicle with passengers, total design weight in the 
vertical component became approximately 12,000 lbs. 
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In order to find moment demand, an analysis of the eccentricity in the gusset was conducted. 
Only the vertical eccentricity in the gusset is considered (see Design Assumption 2). The vertical 
eccentricity is the estimated distance from the edge of the Core Rail to the center of the Guide 
Rail. The distance between the two Guide Rails is 5’ and the assumed minimum width of the 
Core Rail is 1’ (See Design Assumptions 3 & 4). 
 
The moment demand was related to moment capacity with a factor of safety (Ω). Moment 
capacity is directly related to bending stress, which is a factor of the moment of inertia for the 
steel cross-section (I) and the distance of the neutral axis to the outermost dimension of the 
section (c). Both moment of inertia and neutral axis distance are calculated from the height of the 
section (h). By substituting the value of the factored moment demand (Mu) for moment capacity 
(Mn) and the value of stress based on fatigue (Fsr) for bending stress (σb) (See General 
Assumption 4), both moment of inertia and neutral axis length can be equated. Once equated, the 
height of the cross section can be determined based on the assumption that the thickness of the 
section is four times the height (see Design Assumption 5). The derived height of the section can 
be related back to width using the same assumption. The retrieved data was adjusted to whole 
numbers for ease of design.  
 
Buckling of the Gusset Plate was checked using the parameters outlined in section E7-4 of the 
AISC Steel Construction Manual. Required thickness was determined and compared to the 
thickness sized based on moment capacity. 
 
Selected Size: 2.5 in x 9.5 in Gusset Plate– Weight = 266 lbs. 
 
 
  



Fall 2015  TRON 2.0: The Experience 

33 
 

 
Core Rail Design  
 
Design Assumptions 
 
1. The maximum span of the Core Rail is 20’. This was done so that the Core Rail can be 
transported in a reasonable fashion and uninstalled in a way that allows for ease of maintenance 
access.  
 
2. Axial Stresses were ignored to account for placement of LIMs. A characteristic effect of LIMs 
is a kickback force that applies an acceleration in the orientation of the ride vehicles’ course of 
movement. 
 
3. Due to the square section properties and the fact that horizontal accelerations were less than 
vertical accelerations, analysis for the horizontal orientation of the Core Rail was assumed to be 
valid for the selected design. 
 
4. When designing for combined bending stresses, it was important to look at the area of track 
where the resultant accelerations were highest, resulting from both vertical and lateral 
accelerations (2.6 g - vertical and 1.3 g - lateral).  
 
5. When designing for torsion, it was more conservative to maximize the accelerations 
individually, so a location with the maximum lateral acceleration was chosen (1.8 g).  
 
Design Process 
 
This section highlights the process involved when calculating the conceptual design of the Core 
Rail (see Nomenclature - Track Design Overview). The forces that are applied to the Core Rail 
fall into two broad categories: self-weight of the structure and dynamic loads generated by the 
movements of the fully-loaded Ride Vehicles with passengers. 
 
The design weight of the Ride Vehicle with passengers was approximately 19,000 lbs. The 
weights were generated from the SOLIDWORKS outputted mass properties (see Fig. 9 - 
Appendix), and the weight of the passengers is as stated in the Anthropometric Reference Data 
for Children and Adults: United States, 2007–2010 (See General Assumption 4). These weights 
were converted into a vertical and lateral component. The weights were adjusted for dynamic 
movement with the accelerations retrieved from the NoLimits 2 simulation at points of extreme 
behavior (i.e. maximum accelerations).  
 
In addition, the design weights of the Guide Rails and Gusset Plates above the Core Rail were 
accounted for. For the Guide Rails, the self-weight of two Guide Rails was multiplied by the 
maximum span of the Core Rail. For the Gusset Plates, the self-weight of each was multiplied by 
the maximum span of the Core Rail and divided by their spacing. When added to the design 
weight of the Ride Vehicle with passengers, total design weight in the vertical component 
became approximately 53,000 lbs. 
 



Fall 2015  TRON 2.0: The Experience 

34 
 

The shear and moment demand was developed by applying the total design weight to the 
maximum span of the Core Rail (See Design Assumption 1). The moment demand was related to 
moment capacity with a factor of safety (Ω). Since square HSS sections are compact in bending, 
the moment capacity is a function of the plastic moment. This allowed for the determination of a 
required section modulus (Z). Using the determined section modulus, a jumbo square HSS size 
was chosen from the AISC Website. 
 
To account for self-weight of the Core Rail total moment demand was increased by the moment 
demand from the self-weight of the Core Rail. Section modulus was re-evaluated and it was 
determined that the selected design remained valid.  
 
Due to the square section properties and the fact that horizontal accelerations were less than 
vertical accelerations, analysis for the horizontal orientation of the Core Rail was assumed to be 
valid for the selected design (See Design Assumption 3). 
 
Combined bending stress was analyzed by relating the moment demands in both orientations to a 
stress value (fx and fy). Each demand stress was related with a ratio to fatigue stress (Fsr) to 
confirm that combination of the bending stresses remained lower than the governing value of Fsr 
(See General Assumption 5).  
 
Effects from torsion were also analyzed. To account for torsion in the horizontal direction the 
factored weight was multiplied by the distance from the Guide Rail to the center of the Core 
Rail. To account for torsion in the vertical direction the applied weight was multiplied by the 
moment arm (b). Moment arm was defined by factors outlined in the torsion section of Design of 
Welded Structures. These factors included: radius of the turn (r) and the angle between supports 
(α). The addition of these torsional values were applied to an equation to develop shear stress 
from Design of Welded Structures. This equation also took into account the area enclosed and 
thickness of the selected HSS section. The determined shear stress was compared to fatigue 
stress to confirm that the section was valid. 
 
Finally, combined shear stress was analyzed, accounting for self-weight of the Core Rail. The 
shear demands in both orientations were related to a stress value (fvx and fvy). Each demand 
stress was related with a ratio to fatigue stress Fsr to confirm that combination of the shear 
stresses remained lower than the governing value of Fsr.  
 
Selected Size: HSS20x20x7/8 - Weight = 221 plf & Z = 14.3 in^3 
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Support System Design 
 
Short Column Design  
 
Design Assumptions  
 
1. Buckling was not analyzed due to the short length of the column. 
 
2. There is full fixity at the base of the column due to the use of a moment-carrying foundation design. 
 
3. All instances along the track where there are negative vertical accelerations are less than 1.0g and 
therefore tension in the column does not have to be considered. 
 
Design Process 
 
This section highlights the process involved when calculating the conceptual design of the Short Columns 
(see Nomenclature - Track Design Overview). The forces that are applied to the Short Columns fall into 
two broad categories: self-weight of the structure and dynamic loads generated by the movements of the 
fully-loaded Ride Vehicles with passengers. These forces were analyzed as axial loads applied vertically 
on the Short Column and as bending loads determined from lateral movement.  
 
The design weight of the Ride Vehicle with passengers was approximately 19,000 lbs. The weights were 
generated from the SOLIDWORKS outputted mass properties (See Fig. 9 - Appendix), and the weight of 
the passengers is as stated in the Anthropometric Reference Data for Children and Adults: United States, 
2007–2010 (See General Assumption 4). These weights were converted into a vertical and lateral 
component. The weights were adjusted for dynamic movement with the accelerations retrieved from the 
NoLimits 2 simulation at points of extreme behavior (i.e. maximum accelerations).  
 
In addition, the design weights of the entire Rail System above the Short Columns needed to be 
considered. For the Guide Rails, self-weight was multiplied by the maximum span of the Core Rail and 
twice multiplied per rail. For the Gusset Plates, the self-weight of each was multiplied by the maximum 
span of the Core Rail and divided by their spacing. For the Core Rail, self-weight was multiplied by the 
maximum span of the Core Rail. When added to the design weight of the Ride Vehicle with passengers, 
total design weight in the vertical component became approximately 41,000 lbs. 
 
To design for axial forces, a demand axial force was determined from the vertical component design 
weight. The demand axial force was related to axial capacity with a factor of safety (Ω). Capacity was 
related to fatigue stress (Fsr) with section area. The required area was determined, and a minimum section 
size was selected from the AISC Steel Construction Manual.  
 
To design for bending forces, a demand moment was determined by multiplying the lateral component 
design weight by the height of the Short Column. The moment demand was related to moment capacity 
with a factor of safety (Ω). Since round HSS sections are compact in bending, the moment capacity is a 
function of the plastic moment. This allowed for the determination of a required section modulus (Z). 
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Using the determined section modulus, a round HSS size was chosen from the AISC Steel Construction 
Manual. 
 
Combined bending and axial stress was checked by adding the stresses determined from bending and 
axial and comparing the total with fatigue stress (Fsr).  
 
Selected Size: HSS 16x0.625 - Weight = 103.0 plf - Z = 138.0 in^2 

NOTE: Size Re-evaluated to account for Steel Driven Piles (See Foundation Design) 

Selected Size: HSS 18x0.500 - Weight = 93.54 plf - Z = 143.0 in^2 
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Tall Column and Strut Design  
 
Design Assumptions  
 
1. The column and strut were assumed to not have moment resisting fixity at the base (pinned condition). 
 
Design Process 
 
This section highlights the process involved when calculating the conceptual design of the Tall Columns 
and Struts (see Nomenclature - Track Design Overview). The forces that are applied to the Tall Columns 
and Struts fall into two broad categories: self-weight of the structure and dynamic loads generated by the 
movements of the fully-loaded Ride Vehicles with passengers. Tall Columns and Struts were analyzed for 
axial forces caused by lateral and vertical accelerations. 
 
The design weight of the Ride Vehicle with passengers was approximately 19,000 lbs. The weights were 
generated from the SOLIDWORKS outputted mass properties (see Fig. 9 - Appendix), and the weight of 
the passengers is as stated in the Anthropometric Reference Data for Children and Adults: United States, 
2007–2010 (See General Assumption 4). These weights were converted into a vertical and lateral 
component. The weights were adjusted for dynamic movement with the accelerations retrieved from the 
No Limits 2 simulation at points of extreme behavior (i.e. maximum accelerations).  
 
In addition, the design weights of the entire Rail System above the Tall Columns and Struts needed to be 
considered. For the Guide Rails, self-weight was multiplied by the maximum span of the Core Rail and 
twice multiplied per rail. For the Gusset Plates, the self-weight of each was multiplied by the maximum 
span of the Core Rail and divided by their spacing. For the Core Rail, self-weight was multiplied by its 
maximum span. When added to the design weight of the Ride Vehicle with passengers, total design 
weight in the vertical component became approximately 57,000 lbs.  
 
Axial demand for the Strut was determined by finding the maximum lateral force on the tall column from 
the adjusted design weight (developed with maximum lateral accelerations). The maximum lateral force 
was converted into an axial resultant by multiplying the maximum lateral force by the ratio of the 
diagonal length of the Strut with its lateral distance from the Tall Column. 
 
An initial round HSS section was selected to begin design. The parameters outlined for determining Fcr 
(critical stress) were observed which included an analysis of kL/r (unrestrained length and radius of 
gyration) and Fe, the elastic buckling stress. An axial capacity was determined by multiplying Fcr by the 
gross area (A) of the section selected. Axial capacity was related to axial demand with a factor of safety 
(Ω) to verify that the capacity determined with the selected section was greater than the demand. The 
addition of self-weight of the Strut on demand was verified as well.  
 
Axial demand on the Tall Column took into consideration both lateral and vertical accelerations. The total 
design weight on the Tall Column (developed with maximum vertical accelerations) was taken as 
compressive force. To determine the tensile force on the Tall Column, the maximum lateral force 
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(developed with maximum lateral accelerations) was converted into an axial resultant by multiplying the 
maximum lateral force by the ratio of the height of the Tall Column with its lateral distance from the base 
of the Strut. Compressive and tensile forces were combined to develop a singular axial compression force 
on the Tall Column.  
 
An axial capacity was determined by multiplying Fcr by the gross area of the section selected. Axial 
capacity was related to axial demand with a factor of safety (Ω) to verify that the capacity determined 
with the selected section was greater than the demand. 
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Moment Frame Design  
 
Design Assumptions  
 
1. The height of the Moment Frames as analyzed in RISA was modeled as 20’ tall to account for the 5’ 
height of track sitting on top of the 15’ tall Moment Frames. This simplified analysis of the frame while 
still being conservative at the critical locations of design (see Fig. 20 & 21 - Appendix)  
 
2. The Moment Frames were only necessary in areas of the Track Layout that had maximum accelerations 
of 1.0 g in both the vertical and horizontal directions. Therefore, the design weights applied to the 
Moment Frame remained the same after accounting for dynamic movement. 
 

 
Track overlay - Moment Frame placement is drawn in red 
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Design Process 
 
This section highlights the process involved when calculating the conceptual design of the Moment 
Frames (see Nomenclature). The forces that are applied to the Moment Frames include self-weight of the 
structure and the fully-loaded Ride Vehicles with passengers. The Moment Frame was designed to 
consider forces due to buckling and combined bending and axial applications. 
 
The design weight of the Ride Vehicle with passengers was approximately 19,000 lbs. The weights were 
generated from the SOLIDWORKS outputted mass properties (See Fig. 9 - Appendix), and the weight of 
the passengers is as stated in the Anthropometric Reference Data for Children and Adults: United States, 
2007–2010 (See General Assumption 4). These weights were converted into a vertical and lateral 
component.  
 
In addition, the design weights of the entire Rail System and Short Columns on the Moment Frame 
needed to be considered. For the Guide Rails, self-weight was multiplied by the maximum span of the 
Core Rail and twice multiplied per rail. For the Gusset Plates, the self-weight of each was multiplied by 
the maximum span of the Core Rail and divided by their spacing. For the Core Rail, the self-weight was 
multiplied by the maximum span of the Core Rail. For the Short Column, the self-weight was multiplied 
by the height of the Short Column. When added to the design weight of the Ride Vehicle with passengers, 
total design weight in the vertical component became approximately 26,000 lbs. 
 
Moment and axial demand were observed from an analysis of the Moment Frame as modeled in RISA 
(See Design Assumptions 1 & 2). These demands were multiplied by a factor of safety (Ω) to determine 
required flexural and axial strengths (Mr & Pr). 
 
An initial wide flange section was selected to begin design. The parameters outlined for determining Fcr 
(critical stress) were observed which included an analysis of kL/r (unrestrained length and radius of 
gyration) and Fe, the elastic buckling stress. To determine moment capacity (Mc), Fcr was multiplied by 
the section modulus of the selected section (Z). To determine axial capacity (Pc), Fcr was multiplied by 
the gross area of the selected section (Ag). 
 
Combined axial and bending forces were checked within the parameters outlined in section H1-1b of the 
AISC Steel Construction Manual using the determined capacities and required strengths.  
 
 
Selected Size: W18x175 - Weight = 175 plf & Z = 398 in^3 & A = 51.4 in^2 
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Foundation Design 
 
Design Assumptions 
 
1. For simplicity of design, calculations were made to only consider the required depth of the selected 
steel driven piles.  
 
2. Soil pressure normally increases as depth increases, however, in the special case of piles driven in sand 
(see Geotechnical Information) it was determined that Effective Vertical Overburden Pressure (Pv) 
increased as depth increased until a certain depth of penetration was reached, known as critical depth (dc), 
after which it remained constant.  
 
3. Tests as outlined in Soils and Foundations indicate that critical depth (dc) is 10 pile diameters for loose 
sand (see Geotechnical Information). 
 
4. Since the axial demand from the Tall Column design was less than that of the Short Column design, it 
was established that the selected size would be adequate for the Tall Column Foundation. 
 
5. Soil assumed to be poorly graded sand for the continuous depth analyzed.  Soil unit weight (γ), lateral 
earth pressure coefficient (K), angle of internal friction (φ), and factor of safety (FS), were all based on 
assumptions for typical poorly graded sand from the Geotechnical Info Website. 
 
Design Process 
 
This section highlights the process involved when calculating the conceptual design of the Foundations 
(see Nomenclature - Track Design Overview). The design of the Foundations was split up into 3 different 
categories based on the element that the corresponding Foundations were supporting. These categories 
were Short Column Foundations, Tall Column Foundations, and Moment Frame Foundations. An 
analysis of the required Foundation depth was performed for each category (See Design Assumption 1). 
 
For each element of Foundation design, an initial HP size and depth was selected.  
 
The height of the cross section (d) of the selected HP size was used to calculate the critical depth (dc) 
(See Design Assumption 3). To determine the Effective Vertical Overburden Pressure (Pv), dc was 
multiplied by the Unit Weight of Soil (γ) (See Geotechnical Information - Soil Parameters - Appendix). 
The area of soil pressure adjacent to the selected pile (PvL) was determined based on the geometries 
defined by the selected depth and dc (See Design Assumption 2).  
 
The value for bearing from the friction between the soil and the pile (qfric) was determined by 
multiplying PvL by the coefficient of lateral earth pressure (K), the coefficient of friction between sand 
and pile surface (tanδ), and the surface area of the pile (SA). K and tanδ were retrieved from the 
Geotechnical Info Website and SA was determined from the selected diameter (d).  
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The value for bearing within the area beneath pile’s tip (qtip) was determined by multiplying Pv by the 
bearing capacity factor (Nq*) by the area of the pile’s tip (Atip). Nq* was retrieved from a graph in Soils 
Foundations based on the angle of internal friction (φ) (See Geotechnical Information) and Atip was 
retrieved from the AISC Steel Construction Manual based on the selected HP size. 
 
The axial demand from the Short Column design was compared to the ultimate bearing capacity of a 
single pile (qult) which is the combination of qfric and qtip divided by a Factor of Safety. This Factor of 
Safety was retrieved from the Geotechnical Info Website. 
 
Since the axial demand from the Tall Column design was less than that of the Short Column design, it 
was established that the selected size would be adequate for the Tall Column Foundation (See Design 
Assumption 4). 
 
The Foundations underneath the Moment Frame were sized based on the tension demand caused from 
uplift, as it was the more conservative case as it applies to driven pile design. Tensile forces were 
retrieved from an analysis of the Moment Frame as modeled in RISA (See Moment Frame Design). The 
self-weight of the Moment Frame was also determined and applied as a compressive force. Tensile and 
compressive forces were combined to produce an axial tension demand to be applied to the Moment 
Frame Foundation. The process performed for the Moment Frame Foundations is very similar to the 
process used in designing the Short Column Foundations, with the only difference being that qtip is not 
taken into account since the foundation is considered to be in tension and end bearing pressure provides 
no capacity.  
 
The axial demand determined was compared to qult which is equal to qfric divided by a Factor of Safety. 
This Factor of Safety was retrieved from the Geotechnical Info Website. 
 
Lastly, lateral accelerations due to the placement of LIMs was taken into account, since the propulsion 
force of the LIM caused a force to be applied at the top of the columns. A demand moment (Ms) was 
determined by applying maximum lateral acceleration to the design weight of the Ride Vehicle with 
passengers and multiplying over the design height of the Moment Frame. A process as outlined in section 
18-12 of the IBC 2012 was used to calculate a design depth to be compared with the selected depth. This 
process included the demand moment (Ms), the lateral bearing pressure of the soil (S), and the width of 
the member (b). 
 
Based on the separate criteria established, it was decided to use an HP 18x181 and a depth of 33 feet be 
applied to all columns supporting the track, as different depths could cause errors during the construction 
process. 
 
Selected Size: HP18x181 - 33 ft deep Steel Driven Pile 
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Conclusion 
As stated in the Background of this report, our goal was to come up with a conceptual / 
schematic design that could be further developed into an attraction at a Disneyland park. Even 
though it wasn’t designed so it could be signed off immediately by WDI and slated for 
installation, we still hoped to deliver a safe and viable design. As a result of the design 
assumptions inferred within this report, we feel that we have accomplished this task.  
Our process took us through a wide range of design processes involved on a typical WDI project 
and gave us exposure to the dependency that each element has on one another. Story drafting, 
storyboarding, aesthetic considerations, geotechnical research, mechanical design, and schematic 
design were all skills that needed to be accessed while completing this project. We also came 
into contact with such programs as Revit, SOLIDWORKS, and NoLimits 2. As a result we have 
broadened our skill set and made ourselves more comfortable with software and engineering 
processes that would have otherwise not have been included in our curriculum.  
This project also furthered our understanding to us on concepts relating to the ARCE curriculum 
that we had not previously been exposed to before. Dynamic forces, other than earthquake and 
wind forces, had to be researched and applied. We also had to look further into to the 
implications of these loads, including additional torsional and fatigue stresses on the structure, 
with which we had previously had been unfamiliar.  
Furthermore, we were able to reach out to other disciplines and resources. Our project 
encouraged us to make contact with departmental professionals (i.e. Melinda Keller - an ME 
professor with professional experience in the amusement park industry) and extracurricular on-
campus associations (i.e. Cal Poly Amusement Park Engineers and Designers or CAPED - a club 
who has interviewed and worked with professionals in the amusement park industry).  
Specifically we’d like to give credit to Robert Cory Molloy (the current president of CAPED) 
who helped give us access to SOLIDWORKS and the ASTM F2291. Likewise, ME team 
member Kelly Rorden (ex-president of CAPED) used her own access to materials such as 
SOLIDWORKS and NoLimits 2 alongside her knowledge of industry standards to aid in the 
development of Ride Vehicle Design and Track Layout.  
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Next Steps 
With the completion of this senior project, we would appreciate the opportunity to show our 
project to representatives of WDI in order to gain a professional opinion on the work performed.  
The easiest way for this to be accomplished would be to possibly enter the Imaginations 
Competition that WDI puts on every year. The rules regarding the theme of the competition are 
generally strict, but as long as the competition requirements are met by our project, we feel that it 
would be beneficial to enter and a fun experience as well. 
It would be likewise beneficial, given the time, to further our design development, advancing 
from a simple schematic design to a more detailed analysis. Since the goal of our project dictated 
a complete overview of the design process, assumptions were made in place of a detailed design 
where we felt it was appropriate.  
One of these ignored components was the design of connection details - specifically welds. If 
continued further, the project would become more viable if such elements were considered 
within the design process. Other efforts made in the pursuit of realism could include the 
designing of maintenance access for the Track Design in addition to elements such as safety 
protocol.    
Overall, TRON 2.0: The Experience was an excellent albeit tiny glance into the immense 
capacity of projects by WDI.  
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Geotechnical Information 

 

Anaheim Soil Information retrieved from  

Anaheim City Website and the USDA-NRCS Official Soil Series  
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Soil Parameters - Poorly Graded Sand 

NOTE: These are the factors used in Foundation Design that were not retrieved from Soils and 
Foundations text - for values retrieved from the text See Foundation Design 

 

γ = 90 pcf - Soil Unit Weight - Loose Sand 

K = 0.6 - Lateral Earth Pressure Coefficient - Silty Sand 

φ = 30 - Angle of Internal Friction - Loose Sand 
 
FS = 1.7 - Factor of Safety Considered for Uplift 
 

Information retrieved from Geotechnical Info Website 
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Standard Roof Materials - Queue Building 

 

Fig. 1 - Typical Roof Materials - Cross-Section - Tegral Building Products  

 

Fig. 2 - Typical Roof Materials - Standard Weights - Boise Cascade 
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Fig. 3 - Firestone Vapor Barrier - Technical Info 

 



Fall 2015  TRON 2.0: The Experience 
 

A-5 
 

 

Fig. 4 - Sika Sarnafil Waterproofing Membrane - Technical Info 
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Gravity System Design - Queue Building 
 
Gravity calculations for the Queue Building were performed by hand at the beginning of the 
project. For this reason, their page numbers do not coincide with the page numbers assigned to 
this Appendix. The regular page number references will continue after the insertion of the 
following gravity calculations. 
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Base Shear Calculation 

Description: Northeast Disneyland Park - Anaheim, CA 

Latitude: 33.813° N 

Longitude: 117.917° W 

 

 

Fig. 5 - USGS Seismic Design Maps and Response Spectra 

 

R = 3.25 - T.12.2-1 - ASCE 7-10 

I = 1.25 - T.1.5-2 - ASCE 7-10 

Risk Cateogory - III - T.1.5-1 - ASCE 7-10 
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Period 

hn = 24’ 

Ct = 0.02  

x = 0.75 

T = Ct*hn^x - T.12.8-2 - ASCE 7-10 

    = 0.02*24^0.75 = 0.217 

 

Seismic Response Coefficient  

Cs = SDS / (R/I) = 1.0 / (3.25/1.25) = 0.385 - Eq 12.8-2 - ASCE 7-10 

Csmax = SD1 / (T*(R/I)) - Eq 12.8-3 - ASCE 7-10 

           = 0.554 / (0.217*(3.25/1.25)) = 0.983 > 0.385 → Good 

Csmin = 0.044*SDS*I - Eq 12.8-5 

           = 0.044*1.0*1.25 = 0.055 < 0.385 → Good  

 

Seismic Weight 

Aroof = 30’*20’*20 + 20’*20”*4 = 13600 ft^2  

Perimeter of Cladding = (30’*5 + 20’)*2 + 20’*4*2 = 500’ 

Droof = 26 psf - See Roof Load Take-Off 

Wcladding = 8.5 psf - See Brick Veneer Wall Calculation 

Wx = Droof*Aroof + Wcladding*(hn/2)*Perimeter of Cladding 

      = 26 psf*13600ft^2 + 8.5 psf*(24’/2)*(500ft) = 404.6 k  

 

V = Cs*Wx - Eq.12.8-1 - ASCE 7-10  

    = 0.385*(404.6 k) = 156 k  

  

Use Base Shear - V = 156 k 
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Lateral System Design – Queue Building 

V = 156 k (See Base Shear Calculation) 
 

Select Ordinary Single Braced Frame –  
2 Frames per line of action (4 Frames total) 
 

 
Fig. 6 - Braced Frame Geometries 
 
RISA Analysis – Axial Forces & Deflections 
 
Lateral loads = 156 k /4 = 39 k 
Distributed loads on Beam retrieved from Load Take Off  
Point loads on Girder from Load Take Off 

 
Results: 

20’ x 20’ → Axial Load for Brace 1 = 55.2 k 

20’ x 30’ → Axial Load for Brace 2 = 46.9 k  

 
fy =  46 ksi (for HSS size members) 
E = 29000 ksi 
λr = 1.40*sqrt(E/fy) =1.40*sqrt(29000ksi / 46ksi) = 35.15  - T. B4.1a – AISC Steel Manual 
 
Choose HSS6x6x12  
 
T.4-4 - AISC Steel Manual  
 
At effective length KL = 36’ → ΦPn = 58.6 k 
Weight = 35.2 plf 
b/t = 9.9 < 35.15 → Good 
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0.020 hsx - assumed allowable deflection - T.12.12-1 - ASCE 7-10  
0.020*20’*12 = 4.8 in  
 
Story Drift (Lateral System) = 0.155 in - RISA Analysis  
Cd = 2.0 - Ordinary Braced Frame - T.12.2-1 - ASCE 7-10  
δx = δxe *Cd / I - Eq 12.8-15 - ASCE 7-10  
    = 0.155in*(2.0)/1.25 = 0.248 in < 4.8 in 
 
Selected Size: HSS 6x6x1/2 - Weight = 35.2 plf & φPn = 58.6 k & b/t = 9.9 
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Truss System Design – Show Building 

Modeled with a pinned base at each side  

 

Applied Loads - 8.1 k (See roof interior beam gravity calcs) 

  6.23 k (See roof exterior beam gravity calcs)  

 

Truss Geometries 

Height of Truss = 8’ 

Width of Typical Truss Bay = 10’ 

 

Fig. 7 - RISA Output for Axial Force Diagram of Truss 

 

Output: 

Pmax = 81 k (Axial Force Compression) 
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Truss Modeled as Simple Span Beam 

 

Fig. 8 - RISA Output for Moment Diagram of Simple Span Beam 

 

Output: 

Mmax = 648 k-ft  

 

Check Truss – M / htruss = 648 k-ft / 8 ft = 81 k → Good 

  

Choose HSS 4.4x4.5x3/16 - φPn = 88.4 k > 81 k  

T.4-1 - AISC Steel Manual – Compression Capacities based on KL 

 

Selected Size: HSS 4.4x4.5x3/16 - Weight = 10.7 plf & φPn = 88.4 k 
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Service Loads 

Weight of ride vehicle = 7,860,760 g = 17,330 lbs = 17.33 k  

Weight of passengers = 0.3 k per person * 6 passengers per ride vehicle = 1.8 k - (See 
Anthropometric Reference Data) 

 

Factored Loads 

Weight of ride vehicle = 17.33 k * 1.5 = 26 k – Impact Load Factor - 4.6.3 - ASCE 7-10 

Weight of passengers = 1.8 k * 1.6 = 2.88 k - Assume as Live Load - 2.3.2 - ASCE 7-10 

 

Fig. 9 - SOLIDWORKS Mass Properties 
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Fig. 10 - Anthropometric Reference Data for Children and Adults: United States, 2007–2010  
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Operational Hours 

 

Fig. 11 - ASTM F2291 – 13 Standard for Amusement Ride Design 

 

Operational Hours per day = 16 hrs (Disneyland typical park hours - Disneyland Website) 

Ride Duration = 3 mins = 180 s (No Limits 2 Simulation) 

 

6 pairs of ride vehicles (12 total ride vehicles) on the track at one time  

180 s / 6 = 30 s difference between each set of ride vehicles 

12 ride vehicles * 6 passenger per ride vehicle = 72 passenger on-ride at one time (per 3 min 
interval) 

72 passenger per interval x 20 interval / hr = 1440 passenger per hr 

1440 passenger per hr x 16 hrs / day = 23,040 passenger per day 

 

Per Individual Track 

Every 30 s a ride vehicle will go over a certain point - (2) 30 s intervals per min  

In one hr 120 ride vehicles will pass over a point 

In one day, 120*16 hr = 1920 ride vehicles will pass a given point on the track  
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Fatigue Stresses 

Fy = Fsr = (Cf / Nsr )^0.333 - Eq. A-3-1 – AISC Steel Manual 

➔ Cf = 120*10^8 per T.A-3.1  
➔ Nsr = number of stress range fluctuations in design life  

(35,000 operational hours - ASTM F2291) 
Nsr = 1920 ride vehicles per day * 1 day / 16 hours * 35,000 hours = 4,200,000 

Fy = Fsr = (120*10^8 / 4,200,000)^0.333 = 14.15 ksi  

 

Wheel Distances 

Horizontal distance between wheel carriages = 60 in (SOLIDWORKS) 

Vertical distance between wheels = 6 in (SOLIDWORKS) 
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Dynamic Applications 

The accelerations retrieved from NoLimits 2 were plotted onto images of the Track Layout for 
the sake of easy accessibility. Elements circled in blue represent points of acceleration 
considered for the project. 

 

Fig. 12 - Upper portion of the Track Layout as modeled in SOLIDWORKS 
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Fig. 13 - Upper portion of the Track Layout as modeled in SOLIDWORKS 
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Design of Guide Rails 

Controlling Vertical acceleration = 1.8 g (No Limits 2 Simulation) 

Controlling Lateral acceleration = 1.8 g (No Limits 2 Simulation) 

Self-Weight (See Service Loads) = 17.33 k + 1.8 k = 19.13 k 

Vertical Weight per Wheel = 19.13 k / 4 = 4.78 k per g (resisted by all four wheels) 

Lateral Weight per Wheel = 19.13 k / 2 = 9.57 k per g (resisted by two outermost wheels) 

 

Fig. 14 - Distribution of weights on wheel assembly 

 

Max Force per wheel (Vert. Comp.) = 1.8 g * 4.78 k = 8.61 k 

Max Force per wheel (Lat. Comp.) = 1.8 g* 9.57 k = 17.22 k 

Max Resultant Force per wheel = sqrt (8.61^2 + 17.22^2) = 19.25 k 
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Fig. 15 - Analysis of Guide Rail as Simple Span Beam with corresponding Moment Demands 

 

Mu = P*L/4 = 19.25 k * 2’/4 = 9.62 k-ft = 115.50 k-in  

Mu < Mn / Ω  - Eq 2-2 - AISC Steel Manual 

➔ Mn = Mp = Fy*Z - Eq F8-1 - AISC Steel Manual 
➔ Assume Round HSS Compact Section - T.B4.1b - AISC Steel Manual 
➔ Ω = 1.67 –  General Requirements 16.1-46 - AISC Steel Manual 
 

Fy = Fsr = 14.15 ksi 

Z = Mu * Ω / Fy = 115.50 k-in * 1.67 / 14.15 ksi = 13.63 in^3 - Eq F2-1 - AISC Steel Manual 

 
Based on Z – Select HSS6x0.5 -> Z = 14.3 in^3 > 13.63 in^3 → Good 

  

Selected Size: HSS6x0.500 – Weight = 29 plf   Z = 14.3 in^3 
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Design of Gusset Plates 

Weight of Guide Rail = 0.029 klf * 2’ = 0.058 k 

Self-Weight (ASD) = 19.13 k 

Controlling Vertical acceleration = 2.6 g 

 

Max Force per wheel (Vert. Comp.) = 2.6 g * (19.13 k) / 4 + 0.058 k = 12.49 k  

Lat. Comp. application will cause an eccentricity opposite of the eccentricity caused by the Vert. 
Comp. which reduces it. It is more conservative therefore to only consider the Vert. Comp.  

Assume min 1’ wide HSS Core Rail (to maximize length of Gusset) 

Creates eccentricity = 5’/2 – 1’/2 = 2’ 

 

Fig. 16 - Effect of vertical and horizontal eccentricities on Gusset Plate 

 

Mu = P*L = 12.49 k * 2’ = 24.98 k-ft = 299.76 k-in 

σb = Mn*c / I  

➔ σb = Fy = Fsr = 14.15 ksi  

➔ Mu < Mn / Ω      Mn = 299.76 k-in *1.67 = 500.6 k-in 

➔ c = h / 2 

I = Mu*c / σb = (500.6 k-in * h/2) / 14.15 ksi = 17.70*h  

I = b*h^3 / 12 = 17.70*h → b*h^2 = 212.27  
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Assume h = 4*b  

16*b^3 = 212.27 → b = 2.34 in  

        h = 9.47 in  

 

Use a Gusset Plate with Cross Section of 2.5 in x 9.5 in @ 2’ o.c. 

Weight = 40 in * 9.5 in * 2.5 in * 0.28 pci = 266 lbs. 

 

Check Buckling of Flange 

Qs = 1.0 – Not Slender when b/t < 0.56*sqrt (E/Fy) - Eq E7-4 - AISC Steel Manual 

b = sqrt(9.5”^2 + 24”^2) = 25.81 in 

t = 25.81 in / 0.56*sqrt(29000 ksi /36 ksi) = 1.62 in < 2.5 in  → Good 

 
Selected Size: 2.5 in x 9.5 in Gusset Plate – Weight = 266 lbs 
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Design of Core Rail – Vertical Bending 

Weight of Gussets = 266 lbs * 20’ / (2’ o.c.) = 2.66 k  

Weight of Guide Rails = 0.029 klf * 20’ * 2 rails = 1.16 k 

Self-Weight (ASD) = 19.13 k 

Controlling Vertical acceleration = 2.6 g 

 

Total Point Load = 1.16 k + 2.66 k + (2.6 g * 19.13 k) = 53.56 k 

Vx = P / 2 = 53.56 k / 2 = 26.78 k 

Mx = PL / 4 = 53.56 k * 20’/ 4 = 267.79 k-ft = 3213.48 k-in 

 

Mu < Mn / Ω  - Eq 2-2 - AISC Steel Manual  

➔ Mn = Mp = Fy*Z – Eq F7-1 – AISC Steel Manual 
➔ Assume square HSS Compact Section – T.B4.1b - AISC Steel Manual 
➔ Ω = 1.67 –  General Requirements 16.1-46 - AISC Steel Manual 
 

Fy = Fsr = 14.15 ksi  

Z = M * Ω / Fy = 3213.48 k-in * 1.67 / 14.15 ksi = 379.26 in^3 - Eq F2-1 - AISC Steel Manual 

Based on Z – Select HSS20x20x7/8 -> Z = 433 in^3 in > 379.26 in^3 → Good 

Weight of Core Rail = 0.221 klf 

 

Account for Self-Weight of Core Rail 

Mself = wl^2 / 8 = 0.221 klf * (20’)^2 / 8 = 11.05 k-ft = 132.6 k-in 

Mx = 3213.48 k-in + 132.6 k-in = 3346.08 k-in 

Z = Mx * Ω / Fy = 3349.08 k-in * 1.67 / 14.15 ksi = 394.91 in^3 - Eq F2-1 - AISC Steel Manual 

Z = 433 in^3 in > 394.91 in^3 → Good 

 

Design of Core Rail – Horizontal Bending 

Core Rails sized as square section 

Horizontal accelerations are less than Vertical accelerations – 1.8 g < 2.6 g 

To simplify, assume capacity will check in the horizontal direction  
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Design of Core Rail – Combined Bending Stress 

Mx = 3294 k-in 

My = P*L / 4 = (19.13 k * 1.3 g) * 20’ / 4 = 124.35 k-ft = 1492.14 k-in  

 

fx = Mx / Z =  3214 k-in / 433 in^3 = 7.609 ksi  

fy = My / Z = 1492.14 k-in / 433 in^3 = 3.446 ksi 

 

Ignore Axial Stress to account for placement of LIMs which generate kick back force 

(Mrx / Mcr) + (Mry / Mcy) < 1.0 - Eq H1-1b - AISC Steel Manual 

Equation altered to analyze for stress instead of moment 

➔ (fx / Fy) + (fy / Fy)  

      (7.609 ksi / 14.15 ksi) + (3.446 ksi / 14.15 ksi) = 0.7183  < 1.0 → Good 

 

Design of Core Rail – Torsion 

b = 2*r*sin^2(α/4) – Fig. 18.2-2 - Design of Welded Structures  

➔ b- moment arm of torsional application 
➔ r- radius of turn = 16’ - SOLIDWORKS observed geometries 
➔ α - angle between supports = 71.62° 
b = 2*16’*sin^2(71.62/4) = 3.025’ 

 

Fig. 17 - Torsional Geometries applied to Core Rail 
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Torsion due to Horizontal accel. = 1.8 g * 19.13 k * (10 in + 20 in /2) = 688.68 k-in 

Torsion due to Vertical accel. = 53.56 k * b = 53.56 k * 3.025’ = 162.02 k-ft = 1944.23 k-in 

Total Torsion = 688.68 k-in + 1944.23 k-in = 2632.91 k-in  

 

Shear stress at midpoint of the cross section 

τ = T / (2*A*t) – T.2 – 2.10-4 - Design of Welded Structures 

➔ A - area enclosed by section = (20 - 0.75 in * 20 - 0.75 in) = 370.56 in ^2  
➔ t - thickness of section = 0.698 in - Jumbo HSS Dimension Table - AISC Website 
τ = 2601.33 k-in / (2*370.56 in^2*0.698in) = 5.03 ksi 

 

Fy = Fsr = 14.15 ksi  

14.15 ksi > 5.03 ksi → Good 

 

Design of Core Rail – Combined Shear Stress 

Account for self weight of Core Rail 

Vx = 26.53 + 0.221 klf * 20’/2 = 28.56 k  

Vy = 19.13 k * 1.3 g / 2= 12.43 k  

 

τx = Vx / A = 28.56 k / 60.8 in^2 = 0.470 ksi 

τy = Vy / A = 12.43 k / 60.8 in^2 = 0.204 ksi 

 

τ = τx + τy = 0.470 ksi + 0.204 ksi = 0.674 ksi < 14.15 ksi → Good 

 

Selected Size: HSS20x20x7/8 - Weight = 221 plf & Z = 14.3 in^3 

 

  



Fall 2015  TRON 2.0: The Experience 
 

B - 20 
 

Design of Short Column - Axial 

Weight of Core Rail = 0.221klf * 20’ = 4.42 k  

Weight of Gussets = 1.79 k  

Weight of Guide Rail = 1.16 k 

Self-Weight (ASD) = 19.13 k 

Controlling Vertical acceleration = 1.8 g 

 

Total Point Load = 4.42k + 1.16 k + 1.79 k + 1.8 g * 19.13 k = 41.8 k 

 

Buckling not analyzed due to short length considered for column 

Pu = Pn / Ω  -> Pn = Pu* Ω = 41.8 k * 1.67 = 69.81 k 

fy = Pn / A =  69.81 k / A < Fsr = 14.15 ksi 

A = 4.93 in^2 → HSS 5x0.375 (initial min size based on Compression) 

 

Design of Short Column - Bending 

Max Lateral Force at Short Column = 19.13 k * 1.8 g = 34.43 k 

Mu = 34.43 k * 2’ = 68.86 k-ft = 826.42 k-in 

Mu > Mn / Ω - Eq 2-2 - AISC Steel Manual 

 

Fy = Fsr  = 14.15 ksi  

Z = Mu * Ω / Fy = 826.42 k-in * 1.67 / 14.15 ksi = 97.54 in^3 - Eq F2-1 - AISC Steel Manual 

Based on Z – Select HSS 16x0.625 -> Z = 138.0 in^3 > 97.54 in^3 → Good 

A = 28.1 in^2  

 

σb = (826.42 k-in * 1.67 / 138 in^3) + (68.14 k / 28.1 in^2) = 12.43 ksi < 14.15 ksi → Good 

 

Selected Size: HSS 16x0.625 - Weight = 0.103 klf - Z = 138.0 in^2 

NOTE: Size Re-evaluated to account for Steel Driven Piles (See Foundation Design) 

Selected Size: HSS 18x0.500 - Weight = 0.093 klf - Z = 143 in^3 - A = 25.6 in^2 
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Design of Tall Column Strut – Axial  

Self-Weight (ASD) = 19.13 k 

Controlling Lateral Acceleration = 1.3 g 

 

Max Lateral Force at Tall Column = 19.13 k * 1.3 g = 24.87 k 

Axial Force in Strut = 24.87 k*(17.72’ / 5’) = 88.16 k  

 

 

Fig. 18 - Dimensions of Tall Column and Strut to analyze component forces 
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Try HSS 8.625x0.5  

A = 11.9 in^2 

r = 2.89 in – T.1-13 - AISC Steel Manual 

E = 29000 ksi 

k = 1.0 – Pinned-Pinned Condition – T.C-A-7.1 - AISC Steel Manual 

L = 17.72’*12 = 212.64 in 

kL/r = 1.0*212.64 in /2.89 in = 73.58 

 

Fe = (π^2 * E) / (kL/r)^2   

     = (π^2 * 29000ksi) / (73.58)^2  = 52.87 ksi – Eq E 3-4 - AISC Steel Manual 

Fsr = 14.15 ksi 

 

4.71*sqrt(E/Fsr) = 4.71*sqrt(29000ksi / 14.15 ksi) = 213.23 > kL/r = 73.58 

Fcr = [0.658^(Fsr / Fe)]*Fsr  - Eq E 3-2 - AISC Steel Manual 

      = [0.658^(14.15 ksi / 52.87 ksi)]*14.15 ksi = 12.65 ksi  

 

Pn = Fcr*A / Ω  

     = 12.65 ksi * 11.9 in^2 / 1.67 = 90.14 k > 88.16 k → Good Eq E 3-1 - AISC Steel Manual 

 

Select HSS 8.625x0.5 

 

Check addition of self-weight 

Weight = 0.043 klf 

0.043 klf * 17.72’ = 0.76 k  

88.16 k + 0.76 k = 88.92 k < 90.14 k → Good 

 

  



Fall 2015  TRON 2.0: The Experience 
 

B - 23 
 

Design of Tall Column – Axial  

Weight of Core Rail = 4.42 k  

Weight of Gussets = 1.79 k 

Weight of Guide Rail = 1.16 k 

Self-Weight (ASD) = 19.13 k 

Controlling Vertical acceleration = 2.6 g 

 

Axial Force - Tall Column (Compressive) = 4.42k +  1.79 k + 1.16 k + 2.6 g * 19.13 k = 57.11 k  

 

Max Lateral Force at Tall Column = 19.13 k * 1.3 g = 24.87 k 

Axial Force in Tall Column (Tensile) = 24.87 k*(17’ / 5’) = 87.95 k  

 

Pu = 87.95 k – 56.11 k = 31.84 k  

 

Pn = Fcr*A / Ω  

     = 12.65 ksi * 11.9 in^2 / 1.67 = 90.14 k > 31.84 k → Good Eq E 3-1 - AISC Steel Manual 

 

Selected Size: HSS 8.625x0.5 - Weight = 0.043 klf - A = 11.9 in^2 

 

NOTE: Size Re-evaluated to account for Steel Driven Piles (See Foundation Design) 

Selected Size: HSS 18x0.500 - Weight = 0.093 klf - Z = 143 in^3 - A = 25.6 in^2  
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Moment Frame Design 

Weight of Core Rail = 4.42 k  

Weight of Guide Rail = 1.16 k 

Weight of Gussets = 1.79 k  

Self-Weight (ASD) = 19.13 k 

Controlling Vertical and Lateral acceleration = 1.0 g 

 

Vertical Force = 4.42k +  1.79 k + 1.16 k + 1.0 g * 19.13 k = 26.65 k  

Lateral Force = 1.0 g * 19.13 k = 19.13 k  

 

Fig. 19 - Forces applied and dimensions of Moment Frame 
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Fig. 20 - RISA Analysis Model - Bending Moment Diagram - Lateral Load Case 

 

Fig. 21 - RISA Analysis Model - Axial Force Diagram - Lateral Load Case 
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Demand from RISA Analysis 

Mu = 308.2 k-ft = 3698.4 k-in  

Pu = 31.2 k 

 

Choose W18x211 

Z = 490 in^3 

A = 62.3 in^2  

r = 8.35 in – T.1-13 - AISC Steel Manual 

 

E = 29000 ksi 

k = 1.0 – Pinned-Pinned Condition – T.C-A-7.1 AISC Steel Manual 

L = 15’*12 = 180 in 

kL/r = 1.0*180 in /8.35 in = 21.56 

 

Fe = (π^2 * E) / (kL/r)^2   

     = (π^2 * 29000ksi) / (21.56)^2  = 615.92 ksi – Eq E 3-4 - AISC Steel Manual 

Fsr = 14.15 ksi 

 

4.71*sqrt(E/Fsr) = 4.71*sqrt(29000ksi / 14.15 ksi) = 213.23 > kL/r = 21.56 

Fcr = [0.658^(Fsr / Fe)]*Fsr - Eq E 3-2 - AISC Steel Manual  

      = [0.658^(14.15 ksi / 615.92 ksi)]*14.15 ksi = 14.01 ksi 
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Mr = Mu * Ω = 3698.4 k-in * 1.67 = 6176.3 k-in  

Pr = Pu * Ω = 31.2 k * 1.67 = 52.1 k  

 

Mc = Fy*Z = 14.15 ksi * 490 in^3 = 6933.5 k-in - Eq F 2-1 - AISC Steel Manual 

Pc = Fcr*Ag = 14.01 ksi * 62.3 in^2 = 873.11 k - Eq E 3-1 - AISC Steel Manual 

 

 

Combined Bending and Axial  

Pr / (2*Pc) + Mr / Mc < 1.0 – H1-1b - AISC – Pr / Pc = 52.1 k / 873.11 k = 0.06 < 0.2 

52.1 k / (2*873.11 k) + 6176.3 k-in / 6933.5 k-in = 0.92 < 1.0 → Good 

 

Selected Size: W18x175 - Weight = 175 plf & Z = 398 in^3 & A = 51.4 in^2  
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Foundation Design 

Short Column Foundations 

Axial Demand = 41.8 k (From Short Column Design) 

 

Use HP18 x 181 

r = 18 in / 2 = 9 in = 0.75 ft 

d = 18 in = 1.5 ft 

Surface Area = SA = 4*d = 4*1.5 ft = 6 ft 

dc = 10*d = 10*1.5 ft = 15 ft 

 

Use Pile Depth L = 20 ft 

Pv = γ* dc = 90 pcf * 15 ft = 1350 psf 

PvL = 0.5*Pv*L + Pv*(L-dc) = 0.5*1350psf*20ft + 1350psf*(20ft – 15ft) = 16875 plf 

 

Fig. 22 - Figure from Soils and Foundations (10-1) 

 

qult = (qfric + qtip) / FS  
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qfric = PvL*K*tanδ*SA = 16875 plf * 0.6 * 0.2 * 6ft = 12.15k  

 
Fig. 23 - Table 10-5 from Soils and Foundations  

 

qtip = Pv*Nq*A tip = 1350 psf* 20 * 2.25ft^2 = 60.75k 

 

Fig. 24 - Figure from Soils and Foundations (10-2) 

 

qult = (12.15 k + 60.75 k) / 1.7 = 42.88 k > 41.8 k → Good  

Required depth: 22 ft 

Selected Size: HP18x181 - 33 ft deep Steel Driven Pile (for constructability) 
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Tall Column Foundations  

P = 31.84 k < 41.8 k  - Foundation chosen for Short Column will account for Axial Force applied 

Selected Size: HP18x181 - 33 ft deep Steel Driven Pile (for constructability) 

 

Moment Frame Foundations 

Demand  

Tension = 17.7 k  

Compression = 157 pcf* (15’ + 7’) = 3.45 k  

Pu = 17.7 k – 3.45 k = 14.25 k  

 

Use HP18 x 181 

r = 18 in / 2 = 9 in = 0.75 ft 

d = 18 in = 1.5 ft 

Surface Area = SA = 4*d = 4*1.5 ft = 6 ft 

dc = 10*d = 10*1.5 ft = 15 ft 

 

Use Pile Length L = 33 ft 

Pv = γ* dc = 90 pcf * 15 ft = 1350 psf 

PvL = 0.5*Pv*L + Pv*(L-dc) = 0.5*1350psf*33ft + 1350psf*(33ft – 15ft) = 34425 plf 

qult = qfric / FS  

 

qfric = PvL*K*tanδ*SA = 34425 plf * 0.6 * 0.2 * 6ft = 24.79 k  

 

qult = 24.79 k / 1.7 = 14.58 k > 14.25 k → Good 

  

Selected Size: HP18x181 - 33 ft deep Steel Driven Pile 
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Check for Lateral Design 

Based on an alteration of Eq 18-2 - IBC 2012 

 

Fig. 25 - Eq 18-2 from IBC 2012 

 

Demand – Max Acceleration = 1.5 g (Account for LIMs) 

Ms = 19.13 k * 1.5 g * 20ft = 573900 lb-ft 

S = 150 – T.1806.2 - IBC 2012 

b = 1.5 ft - width of pile 

L = (4.25*Ms) / (S*b) = (4.25*573900) / (150*1.5) = 22.13 ft < 33 ft → Good 

 

Chosen Moment Frame Foundation adequate for Lateral Application 
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Revit Modeling 
 
Autodesk Revit (or Revit) is a building information modeling software programed for the use of 
architects, structural engineers, and contractors. It allows users to design a building and structure 
and its components in 3D, annotate the model with 2D drafting elements, and access building 
information from the building model's database. 
 
Revit was crucial in analyzing the designs of this project in 3D and 2D space. Revit was applied 
to the Queue Building, the Show Building, and the Track Layout portions of the design process. 
 
For the Queue Building, Revit was helpful in accounting for areas where guests would line up 
while maintaining space for elements that guests expect to see at a Disney theme park (i.e. Gift 
Shop, interactive Queue elements, disability access, Fastpass service, etc.). Determining crowd 
capacity was an important factor to take into account for the sake of Ride Vehicle weight 
considerations and stress range fluctuations for fatigue design.  
 
For the Track Layout, Revit was utilized in displaying visually how elements of the Track 
Configuration would fit together and ultimately confirmed constructability of the schematic 
design of this project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://en.wikipedia.org/wiki/3D_modeling
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Fig. 26 - Queue Building - Isometric View  
Reflective of Flynn’s Arcade architectural considerations from Story Development 
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Fig. 27 - Queue Building - 3D Section of Ground Floor - Shows line space and room divisions  

 

                                                                             
 
Fig. 28 - Queue Building - 3D Section of Basement Floor -Shows line space and room divisions  
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Fig. 29 - Queue Building - Annotated Ground Floor Plan  
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 Fig. 30 - Queue Building - Annotated Basement Floor Plan  
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 Fig. 31 - Show Building - Isometric View 

Shows Truss System used to minimize column placement 
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 Fig. 32 - Show Building - Track Configuration - Isometric View 
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Fig. 33 - Show Building - Ground Level Track Placement 
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 Fig. 34 - Show Building - Basement Level Track Placement 
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 Fig. 35 - Show Building - Overview of Track Layout 
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