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Abstract 

 

 In the age of high-speed digital circuitry, there exists a need for clean, precise clock 

signals.  In generating and distributing clock signals throughout a circuit, unwanted jitter can 

become a serious issue.  A common technique for attenuating jitter uses phase-locked-loops 

to treat the signal, but as the clock frequency increases, so does the cost and complexity of 

the designs.  Following the research completed by Dr. Tina Smilkstein [1], this project 

examines a purely feed-forward technique for attenuating jitter that is low-complexity and 

robust, and aims to design an integrated circuit that implements the technique.   
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I. Introduction 

 

 The need for extremely accurate clock signals continues to grow.  One issue that can 

occur when generating and distributing a clock signal throughout a chip is jitter [3] (variation 

in the periodicity of a signal), and engineers are constantly seeking ways to suppress it.  This 

report proposes and explores an interesting method for removing jitter on clock signals. 

Initial research only discovered one company that seemed to have commercially available 

integrated circuits with jitter-removal functionality.  Silicon Labs has a product family called 

“Jitter Attenuating Clocks” [2] that utilize a DPLL technique to feed a clock signal through 

and remove jitter in the process.  They advertise 100 fs RMS jitter on the output, at an 

output frequency range of 100 to 712.5 MHz Results also came up for small papers 

describing circuits for jitter removal. The only exhaustive resource found was a paper by 

Tina Harriet Smilkstein titled “Jitter Reduction on High-Speed Clock Signals” (on UC 

Berkeley’s publications website). The goal of the project is to use the methods described in 

Dr. Smilkstein’s paper to develop a simple, relatively inexpensive circuit that can clean jitter 

on high-speed clock signals.  The general theory is to generate a finite-width pulse at every 

clock edge, integrate that signal (removing the jitter), and recreating the cleaned clock signal 

for output. 

 The methods for jitter removal as described in Dr. Smilkstein’s paper have not yet 

been explored in the real world, and aim to solve a very important issue in modern circuit 

design.  Ideally, this circuit is able to remove 100% of jitter on any digital signal [1].  The 

theory for this claim is explored in a later section.  The simplicity of the theory makes this 

circuit very attractive as a viable method for cleaning jitter on high-speed digital signals.  Of 

course, when designing a circuit for real-world use, non-idealities come into play.  Because of 

the non-idealities of the circuitry, certain design choices will be taken into consideration and 

analyzed during implementation.  These constraints will be detailed and if possible, resolved 

when implementing the designs. 

 Since this project involves designing the circuit using the proprietary IC design suite 

provided by Cadence [4], some information cannot be disclosed.  Integrated circuit design 

adds a host of possibilities to a circuit design, but also poses new challenges.  Some of the 

design choices will reflect these challenges.   
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II. Requirements and Specifications 

 

 The targeted customer for this design is both commercial and industrial.  Circuit is 

available to be used in hobbyist projects and complex systems to reduce jitter on high-speed 

digital signals. Some engineering specifications arise from analysis of possible customer 

needs.  The circuit should be able to be used in a relatively wide range of applications, so it 

should consume a small amount of power, operate on a range of frequencies, and utilize 

common logic levels.  Furthermore, the circuit should be available in as an integrated circuit 

that may be used in a package such as DIP.  Each marketing requirement translates into an 

engineering specification that meets the IEEE 1233 standards, as described in Table 1.   

 

TABLE 1 

REQUIREMENTS AND SPECIFICATIONS FOR JITTER ATTENUATION CIRCUIT 

 

Marketing 
Requirements 

Engineering 
Specifications 

Justification 

1 Circuit complies with design rules of 
CMHV7SF 180nm process. 

Passing of various software checks such 
as DRC and LVS prove circuit 
complies with process rules. 

2 Circuit attenuates jitter on input signal 
by at least 20%. 

Circuit output attenuates acceptable 
input jitter range by at least 20%. 

3 Circuit consumes no more than 
500uW. 

Across three blocks, the circuit should 
not consume more than 500uW to 
ensure customer can use in wide range 
of applications. 

4 Circuit uses 0V to 1.8V logic levels. Using common logic levels allows 
circuit to be easily interfaced with by 
existing circuitry. 

5 Circuit should operate at a minimum 
frequency of 500MHz. 

The circuit can operate on a range of 
high frequencies to ensure 
interoperability with modern digital 
circuits. 

Marketing Requirements 
1. Circuit is available in integrated form. 
2. Circuit reduces jitter on input signals. 
3. Circuit consumes small amount of power, fit for low-power applications. 
4. Circuit easily interfaces to existing hardware. 
5. Circuit operates at high frequencies. 
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III. Theory 

 

 The central theory from this circuit comes from the thesis work of Dr. Tina 

Smilkstein.  The paper written for the thesis describes a simple method that theoretically 

removes 100% of the jitter on any digital signal; it is broken down and summarized here.  

Refer to the following equation: 

 

tp × m1 − (T − tp) × m2 = 0 ... [1] 

  

 A digital signal with period T can be fed through a pulse generator that produces 

pulses at every falling or rising edge with a constant pulse width.  That is, even with jitter 

present on the input signal (positive or negative), the generator will always produce a pulse 

of the same width tp.  Once there is a pulse train (still containing the jitter), a ramping 

generator creates a rising slope m1 for time tp when the input pulse is high and a falling slope 

m2 for time tp when it is low.  If a comparator creates a high pulse when the ramping 

function reaches a certain level, it will output a pulse train of the original frequency, 

completely free of jitter.  The picture below illustrates this fact. 

 

 

 

Figure 1: Ideal JAC Theory Illustrated 
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 With the system utilizing differential signals, the ramping waveform will cross its 

inverse on the falling or rising edge periodically, with the period being the same as described 

in the equation above, T. 

 This method is not without constraints: the jitter on the input signal must be within a 

certain threshold, or the ramping signals may never cross, and the output block will never 

trigger.  Furthermore, the system is incredibly sensitive to errors that could spread the 

ramping signals out too far, for they might not return to an acceptable level, requiring 

resetting of the system; this situation is illustrated below. 

 

 

 

 

Figure 2: Possible JAC Error 

 

 Ideally, the circuit will be able to remove 100% of jitter on any digital signals.  

However, reality sets in when designing such a circuit, and many non-idealities (intrinsic 

noise, switching noise, parasitic capacitance and inductance, process variation, etc.) make 

achieving this theoretical operation extremely difficult.  Realistic imperfections and 

difficulties during design are discussed below. 
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IV. Functional Decomposition 

 This section provides an overview of the functional blocks that comprise this circuit.  

There are three blocks that provide core functionality that will be detailed, along with any 

sub-blocks that accompany them.  

 

A.  High Level Description 

 

 The circuit proposed takes a jittery digital signal, and outputs the same signal with 

the jitter attenuated.  It will contain three blocks, and will comprise an entirely feed-forward 

system.  First, a monostable multivibrator generates a pulse of a fixed width every time it 

receives an edge from the clock signal.  It outputs a pulse train that will be processed by an 

integrator (the step that removes the jitter).  Finally, the integrated pulse train will be fed to a 

comparator circuit that will recreate the ideally jitter-free clock signal. 

 

B.  A Picture 

 

 

 

Figure 3: System-Level Block Diagram 

 

 This circuit has one input and one output.  A digital signal that has unwanted jitter is 

fed into the circuit, and a signal with the same frequency, logic levels and clean period is 

output.  It should be noted that the design of the internal blocks utilizes differential signaling 

to eliminate issues common to single-ended systems (i.e. noise), so if the input signal does 

not have a readily available inverse, a single-to-differential converter is needed. 
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C. High-Level Block Diagrams of Circuits 

 

 

 

Figure 4: High-Level Block Diagram 

 

 There are three core blocks in the JAC.  Each block plays an important role in 

removing the jitter, and there are certain conditions specific to each block that must be met 

for proper performance.  These conditions are discussed below in sections D and E, and 

affect certain design considerations and decisions when implementing each block in 

hardware. 

 

D. Detailed Block Diagrams 

 

 I. Monostable Block 

 

 

 

Figure 5: Monostable Block Diagram 

 

 Instead of using more sophisticated designs common to commercial monostable 

multivibrators that involve oscillators and other op-amp-reliant circuitry, a simple gate-based 

design is proposed.  It consists of a NAND gate and a chain of inverters to produce a pulse 
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at the output of the block.  The input signal is both fed directly to the NAND gate, as well 

as through the inverter chain to introduce a delay until the signal pulse is seen on both 

NAND inputs, thus producing a pulse of duration equal to the combined propagation delays 

of the inverters.  A system constraint appears in this block: the delay (and thus the pulse 

width) is constant, and will provide different duty cycles at the output for input signals of 

varying frequencies.  For this reason, the system is designed to work most optimally for 

500MHz (for now) input signals.  Furthermore, the output pulse duration must remain 

constant for the circuit to work, so dynamic adjustment of the duty cycle is not possible with 

this current design. 

 

 II. Integrator Block 

 

 

 

Figure 6: Integrator Block Diagram 

  

 The integrator block is the heart of the JAC.  It generates a ramping signal at the 

output: ramping upwards when the input pulse is high, and ramping downwards when the 

pulse is low.  The key of this block is that regardless of the jitter in the pulse train, a 

comparator can analyze the ramping signal and recreate the digital signal free of jitter.  If this 

system were designed to be single-ended, the ramp would have to be compared with the DC 

average of the pulse train.  However, utilizing differential signaling allows for the comparator 

to simply take the crossings of the ramp and it’s inverse as the trigger for the output 

regeneration block. 
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 III.  Comparator Block 

 

 

 

Figure 7: Signal Regeneration Block Diagram 

 

 The comparator is set to trigger its output every time it sees a crossing of the 

differential ramping signal, or that is every time they are equal.  Once the comparator sees a 

crossing, its output goes high, and a pulse is generated at the output of the block.  Because 

the jitter was removed at the integrator stage, this output pulse train should be periodic at 

the intended frequency. 

 

V. Design and Implementation 

 

A. Individual Circuit Schematics 

  

 This section provides information on the implementation of the proposed circuits.  

Certain design choices such as transistor sizing will be highlighted.  Schematics and 

simulation results are both provided from the Virtuoso design suite. 

 

 I. One-Shot 

 

 The one-shot pulse generator consists of an inverter chain that is fed into a NAND 

gate, and the delay of the inverter chain determines the width of the pulse at the output of 

the gate.  Both of these circuits are differentially signaled by design, using MCML (MOS 

Current Mode Logic).  The Virtuoso circuit schematics for these two blocks appear below. 
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Figure 8: Inverter Schematic 

 

 The circuit is a biased differential pair.  The lower NMOS transistors provide inputs 

differential inputs Vin, and the nodes between the NMOS and PMOS provide the inverted 

outputs, Vout.  The current sinking transistor is designed to have larger dimensions to allow 

for more current to be consumed by the switches, and the switching transistors have much 

smaller sizing to reduce capacitance. This allows for the transition speed necessary to operate 

at higher frequencies. 
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Figure 9: Inverter Simulation 

 

 A quick simulation with a pulse input shows the output being inverted properly, with 

a delay of approximately 20-40 ps.  Currently, the rise time seems to be much slower than 

the fall time, and pull the supply lower than ground before transitioning upwards. 

 

 The NAND gate follows the same design logic, utilizing the same biasing circuitry 

and similar transistor sizing to ensure best interfacing to other blocks.  A Virtuoso schematic 

appears below.  
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Figure 10: NAND Gate Schematic 

 

 The NAND get is a differential circuit, and takes inputs A and B and provides both 

NAND and AND outputs (inverted NAND).  A simulation of the gate shows correct 

operation of the outputs. 
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Figure 11: NAND Gate Simulation 

 

 Given a logic high pulse on both inputs, the NAND output goes low.  Similarly to 

the inverter, the rising transitions are slower, and pull the supply low upon reaching the 

threshold voltage.  This is most likely due to sizing of the switching transistors, and is being 

investigated. 

 

 To create the pulse generator block, multiple inverters and connected in series and 

placed in the path of the input to the NAND gate.  A schematic of this circuit appears 

below.  Note that the block labeled ‘Inverter Chain’ is simply eight inverters connected in 

series to reduce clutter on the Virtuoso design screen. 

 

 

 

Figure 12: Monostable Pulse Generator Schematic 
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 The delay of each inverter in series adds together to create at the desired pulse width 

at the output of this block.  The results can be seen in simulation. 

 

 

 

Figure 13: Monostable Simulation 

 

 This simulation depicts a pulse train output from a 500MHz input signal.  The 

output has approximately 50% duty cycle at the same frequency.  The rise time issues from 

the inverter and NAND circuits can be seen in this screen; the falling transitions are quite 

sharp in comparison.  The output swing of this block is well behaved; only sacrificing some 

voltage for the VDS of the conducting transistors. 

 

 II. Ramp Generator (Integrator) 

 

 The ramp generator is responsible for generating a constant sloped sawtooth 

function, so the comparator block can regenerate the cleaned clock signal properly.  The 

circuit utilizes similar design techniques, following the biasing circuitry of the previous stage 

to ensure interfacing.  A schematic of the integrator appears below. 



 18 

 

 

Figure 14: Integrator Schematic 

 

 The two capacitors at the output of the differential pair provide differential ramping 

signal outputs.  A simulation with a pulse train input shows the operation of ramp 

generation.  The current sunk into the two branches may be adjusted to generate different 

slopes. 
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Figure 15: Integrator Simulation 

 

 The simulation shows the two outputs ramping up and down with the pulse train, 

crossing at a constant frequency.  It is vital that the output signals of the integrator cross 

periodically, for the output regeneration relies on this fact. Spikes appear on the transitions 

of the ramping wave; these are due to a very sharp input wave used for the simulation. 

 

Concerning the Output Swing 

 

 In the simulations shown above for the pulse generator block and its various 

components, one will notice that the output swing is almost the full supply range.  Designs 

that utilize MCML generally design for much smaller output ranges; typically in the 200mV 

range.  For testing purposes, we adjusted the various circuits to utilize a much smaller output 

swing, but this had little effect on the overall circuit.  Adjusting the inverter and NAND 

circuits to operate on the smaller range allowed for slightly better switching times, but once 

the output of the monostable block reaches the integrator block, it makes no difference.  

Shown below are two simulations depicting operation of the monostable being fed into the 

integrator; one with full output swing, and one with small output swing.  

 



 20 

 

 

Figure 15.1: Integrator Output with Full Swing Circuitry 

 

 This simulation shows the integrator output after being fed the signal from the pulse 

generator designed with a full supply (~1.6V) output swing.  Notice that the output swing is 

about 300mV, but some curvature appears on the ramping waves. 

 

 

 

 

Figure 15.2: Integrator Output with Small Swing Circuitry 

 

 This simulation shows the output of the integrator after it has been fed the signal 

from the pulse generator designed with 200mV output swing.  Notice the swing of the 
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integrator output is approximately half (150mV), but there is very little curvature of the 

ramp. Ultimately, the designs of the inverter/NAND circuits were left to utilize a large 

output swing because of the extra signal clarity needed to detect the crossings of the 

integrator at the output regeneration stage.  More of this reasoning is discussed in the next 

section. 

 First, notice the DC level of the sawtooth waveform is quite high, almost at the 

positive supply.  The circuitry following this stage needed to be biased close to the center of 

the supply, so a level-shifter, or source-follower, was implemented to bring the level down.  

The schematic for this circuit is seen below, followed by a simple sine wave simulation 

showing the level drop. 

 

 

 

Figure 16: Source Follower Schematic 
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Figure 17: Source Follower Simulation 

 

 The signal drops down by a factor of approximately VGS(ON), or 0.55V.  This turned 

out to be just enough to bring the level down to the right value, seen below.  Notice that the 

signal is mostly preserved, but is now biased around 0.8V. 

 

 

 

Figure 18: Sawtooth Waveform After Level Shifting 
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 III.  Output Regeneration 

 

 Once the first two blocks are working together, the third block must be able to 

regenerate the signal cleanly.  In it’s simplest form, it is a comparator that triggers when its 

inputs are equal, and generates a square pulse on each trigger.  Ideally, the output of the 

integrator will have crossings at the desired output frequency, and the output pulse generator 

will be able to create a perfectly sharp square wave.  In reality, this output wave might have 

some curvature to it, which might not comply with the needs of the following circuitry.  

 Properly comparing the output of the integrator circuit can get complicated.  The 

output range of the integrator circuit is quite small (~150mVp-p), so the comparator circuit 

must have a pretty large gain while constantly operating in the proper range.  To achieve the 

correct output (with sufficient gain), the signal is fed through a differential pair and two 

CMOS inverters. 

 

 

 

Figure 19: Comparator Schematic 
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 To simulate the correct operation of this circuit, and ideal sawtooth wave (one side 

of which is shown below in Figure 15) is input into the differential pair.  The output 

waveform shows the non-inverted sawtooth wave being amplified enough to resemble a 

square wave with sharper transitions.  This should be enough amplification to use the circuit 

as a comparator. 

 

 

 

Figure 20: Comparator Simulation 

  

 Once the ramping waveform has been transformed into digital signal representing 

the crossings by the comparator, the same pulse generator used in the first block is used to 

create the output pulses at the original frequency. 

 

 

F. Complete Circuit 

 

 To complete the project, all three blocks are connected together and tested.  This 

section shows the schematic of the completed circuit, and examines the results of the 

implementation when connected together.  For detailed simulations of the final circuit with 

jittery input signals, refer to section IV. 
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Figure 21: Completed Circuit Schematic 

 

 The circuit, from left to right, consists of the first pulse generator (Monostable), 

which feeds into the ramping waveform generator (Integrator).  Then, the opposing 

differential signals are each fed into the single-ended source followers (Level Shifter) to bring 

the bias down towards the center.  To amplify and compare the signals, there are fed into 

identical but opposing differential pairs (DiffPair+ and DiffPair-).  There needed to be 2 

because of the way they were designed.  Finally, with the crossings properly compared, the 

signals are fed into the pulse generator again to produce the output. Notice that each block 

(or pair of blocks) feeds directly into the following block.  This is the feed-forward design 

philosophy mentioned above.  It makes for a very simple circuit, but introduces some other 

issues, which are discussed at length at the end.   

 To simulate the basic operation of this circuit, an ideal 500MHz square wave is input 

to the circuit (1GHz was proving to be too fast for the design).  The purpose of this test is 

to check for things like connectivity, ensuring that circuits aren’t loading each other, etc.  If 

the output of the JAC is of the same frequency of the input, then the system works at its 

most basic level.  Shown on the next page is an ideal simulation. 
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Figure 22: JAC Simulation (Ideal Input) 

 

 It is difficult to see, but the waveform shown above has a frequency of (almost) 

exactly 500MHz. 

 

Concerning Startup Time 

 

 Because of the nature of the integrator circuit, the system needs some time to charge 

up before the output will appear at the end of the circuit.  This is because the capacitors on 

the integrator need enough time to reach their DC steady state value.  After some testing, the 

minimum startup time required for the system is approximately 4ns.  This result is illustrated 

below. 
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Figure 23: Startup Time of System 

 

 

 

 

VI. Final Testing 

 

 In the previous sections, the circuitry was tested in the Spectre simulation 

environment using jitter-free square wave inputs.  To truly test the operation of the circuit, 

simulations using jittery square wave inputs are detailed below. 

 A simple method for testing jitter in Spectre is to manually create a piecewise-linear 

(PWL) waveform.  To simulate jitter in the system, two pulses were shifted-one to arrive 

earlier than expected, and one to arrive later than expected, by 200 picoseconds. A 

screenshot of the simulated jitter appears below. 
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Figure 24: Simulated Jittery Input 

 

 Since the original period of the input signal is 1 nanosecond, this simulation tested a 

20% positive and negative jitter.  

 

 

 

Figure 25: Simulated Jittery Output 
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 Unfortunately, the system did reproduce the original frequency at the output.  

Instead of producing the output pulse train of the original frequency, the jitter seemed to 

only distort the corresponding output pulse for the shifted input pulse.  Analyzing the rest of 

the circuit shows this pulse distortion appearing on every single block, all the way back to 

the output of the first monostable pulse generator.  For some reason, the monostable is not 

outputting a constant pulse width with the jittery input. 

 Although the output isn’t quite right, the circuit seems to be quite close to working.  

Some of the circuits need to be tweaked and tested further to allow for a more robust 

performance under the condition of periodic jitter.  The amount of jitter simulated on this 

circuit seems to be a bit large (a digital signal that has periodic noise of 20% is a pretty poor 

signal).  If I had more time, I would like to re-evaluate some of the design choices to see if I 

could achieve some more stable circuit performances. 

 

VII. Layout 

 Due to time constraints, and a lack of real benefit from performing layout by hand 

(completely custom layout), the layout of this circuit uses the automatic tools provided by 

Cadence.  The circuit is fairly complex (compared to previous circuits I developed with the 

software-CMOS inverters, etc.) so the automatic place and route tool runs the risk of not 

producing a completely working layout.  The result after running the tool and doing some 

boundary adjustments appears below. 
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Figure 26: Routed Layout 

 

 The automatic P&R tool completed without any errors, but this is farm from an 

optimized layout.  If the circuit were pushed forward towards manufacture, some serious 

adjustment of this layout would be necessary.  Just because a layout doesn’t violate any rules, 

doesn’t mean it could not be improved upon. 

 To move forward with the circuit, one should run DRC (design rules check) and 

LVS (layout versus schematic) tests to ensure that the layout doesn’t violate any strict rules 

of the process, and that the connections match up with those defined in the schematic view.  

After running these checks on this circuit and layout, some DRC errors were encountered 

that would prevent this circuit from being taped out. 
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 To complete the layout process, I/O pads were added to the design, and attached to 

the four inputs and outputs of the final circuit, as well as the power rails.  See below for an 

image displaying the completed layout. 

 

 

 

Figure 27: Layout with I/O Pads, Corners, and Fillers 

 

 Although the layout ended up not being ready for tape-out (if it were to be taped 

out), it was an interesting learning experience to see how difficult it can get to perform layout 

of a circuit with moderate complexity (imagine the layout process of a modern Intel CPU or 

an Nvidia GPU). 



 32 

VIII. Analysis of Results and Conclusion 

 

 The true difficulty in designing a circuit like this lies in the fact that it is completely 

feed-forward, without any kind of control circuitry.  Each stage relies very heavily on the 

accuracy of the preceding stage, and any errors accumulated along the signal path can be 

amplified as they travel through the circuit.  From a designer’s perspective, this means very 

tightly controlled design parameters and finely tuned circuits to ensure that each block 

provides the following block with a signal that is as close to being ideal as possible.  This 

section details some of the more serious issues encountered throughout the design process. 

 First of all, it was very difficult to design discrete transistor circuitry to operate on a 

1.8V supply.  Trying to bias the circuitry in the best operating range proves to be pretty 

difficult when you don’t have much DC voltage to work with.  Coupled with the small 

voltage range is the issue of high-frequency performance.  As transistors begin to switch at 

frequencies upwards of 1GHz, they become much more susceptible to switching noise, and 

the effects parasitic capacitances and inductances become magnified.  To effectively drive a 

circuit at a high frequency, the load capacitance must be sufficiently low. 

 As I stated above, since the circuit is a purely feed-forward system without any 

method of self-correction, any error that gets introduced to the system cascades throughout 

the chain.  To make matters more difficult, the pulse generator utilizes a chain of inverters to 

generate its pulse, so any imperfections of the inverter are amplified at the input to the 

integrator.  Initially, I tried to design the inverter to utilize a small voltage swing of 

approximately 200mV, but for some reason the gain of the inverter was slightly less than 

one, and across the inverter chain that is used by the pulse generator, the signal would thin 

out to be indistinguishable from a DC level.  To remedy this, I utilized a large output swing 

(by sizing the PMOS switching transistors to be larger) on the inverters, and the gain seemed 

to be very close to one.  Since the only control of the duty cycle at the output of the pulse 

generator is the collective propagation delay of the inverter generator (~20ps per inverter), it 

becomes difficult to get a nice 50% duty cycle wave at the input of the integrator.  At this 

point in the circuit, tested at 500MHz, the pulse generator was outputting a wave of closer to 

35% duty cycle. 

 Once the signal reaches the integrator, it begins charging/discharging the capacitors 

at the outputs.  With a duty cycle less than 50%, the integrator waveforms do not align as 
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they do in the ideal case.  This can make it more difficult to detect crossings, thus limiting 

the range of jitter that the circuit can effectively attenuate.  To make the integrator 

waveforms larger, the capacitor was sized to reduce the effective capacitance, allowing for 

more charging/discharging per cycle, until the waveform began to distort. 

 Once at the comparator stage, the duty cycle of the square wave produced is slightly 

reduced as well.  The original frequency is still detectable, but if too much jitter was present 

at the input, this amplified waveform can be too distorted to properly trigger the output 

regeneration monostable.  Switching ripples also show up at the output of the final 

monostable block. 

 Overall, the circuit didn’t live up to the standards set by the theoretical equations.  

Of course, this was expected, but I would have liked to tune the circuit a little finer to 

achieve a more robust performance.  VLSI circuit design is difficult, and requires a particular 

set of skills and a great deal of time.  If I had more time, I would like to expand on some of 

my designs to add feedback to help control the flow of the signal through the circuit. I hope 

that someone else can continue on with this work and design a set of circuits that can get 

closer to the theoretical performance of the research. 
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I. Summary of Functional Requirements 

 The functionality of this circuit is straightforward: Ideally, by feeding a signal with 

well-defined digital levels through the circuit, any periodic noise (jitter) on the signal is 

removed at the output.  In reality, the circuit attenuates positive or negative jitter up to a 

certain threshold, over a finite range of input frequencies. 

 

II. Primary Constraints 

 The most difficult aspect of this project is the context in which it is designed.  Using 

VLSI design software from Cadence Design Systems Inc., an 180nm manufacturing process, 

and a suite of devices compatible with that process adds an entirely different set of design 

constraints to the project.  Students at Cal Poly often design their circuits in ideal simulation 

environments such as LTSpice and implement their designs on circuit boards with discrete 

components.  Working with 1.8V FETs and a limited range of resistors, caps, diodes and 

inductors comes with new challenges.  Furthermore, the learning curve of using the complex 

software suite provided by Cadence eats up a good amount of time, and the software can 

only be accessed by way of virtual machine while on the campus’ secure wireless network.  

Time constraints added some pressure to the project timeline. 

 One key aspect of the circuit that adds great difficulty to the project is the feed-

forward nature of the system.  In many modern circuits, feedback is used to help control the 

behavior of the signals, often times correcting errors that may present themselves.  Having 

only feed-forward circuits connected together allows for error to be amplified in each block, 

making it difficult to have a well-behaved output over a wide range of system conditions. 

 

III. Economics 

 Since this project was completed almost entirely in software (design, simulation, 

layout), so the costs accrued throughout the project lifecycle are small.  The only significant 

monetary cost of the project is the electricity used by both my personal computer and the 

computer infrastructure that holds the software and generates the wireless network that is 

used to access the proprietary software. 

 There are no foreseeable monetary benefits from the execution of this project.  The 

circuit will not be taped out at a fabrication lab, so it will not be sold to consumers.  



 37 

 This project utilizes various kinds of capital.  Obviously, the human capital needed to 

design, simulate and layout the circuit; the real capital consisting of the computers and 

computer software used to access and run the software to design, simulate and layout the 

circuit; and the natural and financial capital involved in generating and providing the 

electrical energy used to run the machines used for this project. 

 

IV. Commercial Concerns 

 If this circuit were to be manufactured on a commercial basis, a deal would have to 

be struck with a fabrication company.  Many companies only take chip orders in very large 

amounts to make the manufacturing of a chip financially beneficial.  If a large enough 

market were found, a deal with a foundry might be made to produce a run of 1,000 units for 

initial testing.  Different foundries have different rates that also depend on the complexity of 

the design, so an initial run could cost anywhere from $5,000 to $15,000. 

 Assuming the product caught on and had a large enough demand, some serious 

capital would be necessary to move forward.  Costs accrue at many different points during 

the lifecycle of an integrated circuit.  After specification, design and development, 

prototyping and testing are all completed, a relatively simple ASIC can cost upwards of 

$250,000.  Once the circuit is moved into production, assuming that the yield of a given 

process is relatively high (~95%), an individual ASIC in a simple kind of packaging can be 

priced around $5 per chip, with a manufacturing cost of around $0.15 for each chip.  A run 

of 100,000 could net approximately $485,000 gross profit. 

 Trying to estimate costs for a commercial integrated circuit without consulting 

foundries is extremely difficult, as there are a huge amount of factors that can affect the end 

finances. 

 

V. Environmental Impacts 

 The most prevalent environmental impacts of this circuit come from the 

manufacturing process used to fabricate the chip.  Foundries use many different kinds of 

chemicals to etch circuits onto wafers, and by law, must dispose of those chemicals without 

damaging the environment.  There are companies that have developed technologies to treat 

wastewater from foundries to help reduce environmental impact and reuse some chemicals, 

but a foundry will always have harmful waste as a byproduct of its manufacturing process. 
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VI. Manufacturability 

 As mentioned previously, the challenges of manufacturing an integrated circuit are 

varied and large in number.  There is an entire suite of costs required in designing, 

developing and prototyping a chip.  If the circuit passes the initial checks, there are separate 

costs of manufacturing the chip on a large scale.  Furthermore, market timing is of the 

utmost importance.  Releasing a product too late can cause the company to miss out on a 

large amount of revenue. Bringing a new integrated circuit from an idea to market requires 

years of time, millions of dollars, and as such carries high risk from a business perspective.  

It is said that semiconductor businesses make their money on improving already existing 

product lines, not on brand new chips. 

 

VII. Sustainability 

 Since this circuit will be used in conjunction with an existing piece of hardware, any 

sustainability concerns for this circuit carry over to the host system.  The only concern in 

maintaining this circuit over time is the actual lifecycle of the part.  Assuming that a given 

part is not defective (not within a margin of expected faulty devices), the effective life span 

of an integrated circuit can realistically be anywhere from 10 to 100 years long.  The only 

significant resources consumed by the operation of this circuit are the various natural energy 

resources consumed in generated electrical energy such as coal or oil.  To improve the 

environmental impact this circuit has, the host system it is used in should utilize some kind 

of clean or renewable energy resource such as wind or solar power. 

 

VIII. Ethical 

 I don’t see any inherent ethical dilemmas in the manufacturing or use of this circuit.  

There is a possibility that the circuit could end up in a larger system that is used to commit 

some kind of crime.  A user cannot directly harm his or herself, nor can they directly harm 

another person with this circuit.   

 If the product were to be manufactured on a large scale, I would select a fabrication 

company that doesn’t make use of unethical business practices or work in unethical 

conditions. 
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IX. Health and Safety 

 The integrated circuit has incredibly small physical dimensions (1.5mm2 area), so it is 

not physically hazardous to a user.  It operates on low-voltage, low power supplies, and only 

consumes microwatts of electrical power, and poses no electric shock risk to the user.  

Whatever system the circuit ends up in might have other unpredictable physical or electrical 

risks. 

 

X. Social and Political 

 This product will not be used by any general population, and will have minimal 

impact on societal or political environments, local, national, or multinational.  The targeted 

customer bases for this circuit are technicians and engineers who might find use in 

improving their circuitry with this device.  There are a few stakeholders in the scope of this 

project: I, the designer; the company who manufactures the chips, the customer who 

purchases the chips, and the consumers who benefit from systems that the chip inhabits. 

 

XI. Development  

 An entire host of new tools from Cadence Design Systems, Inc. needed to be learned 

to complete this project.  Coming in with no previous VLSI design experience, it was an 

interesting experience to see the world through the lens of those who design integrated 

circuits for a living.  To be able to utilize the tools properly, I had to first learn about the 

CMHV7SF 180nm process and the different FETs and passives that are available for that 

particular process. 

 The Virtuoso design environment is a very complex tool, and comes with an 

incredible range options for the user to ensure maximum flexibility in the design process.  

Unfortunately, more flexibility means more complexity, and there was a short learning curve 

to understand the file system of Virtuoso, the schematic entry tool, the symbol creation tool, 

and the library management tool.  Once I learned how to enter and edit schematics and join 

them with other circuit schematics, I encountered the simulation tool that Cadence 

integrates into their software stack, Spectre.  Spectre is an incredibly powerful simulation 

tool that provides the designer with a wide range of options for testing a circuit out, many of 

which I didn’t even get to touch.  This project was completed with their schematic entry tool 



 40 

and Spectre simulator, so I got the most experience with it.  There are various other ways to 

design circuits, such as using a hardware description language to describe a digital circuit, and 

using their synthesis tools to generate logic. 

 Beyond designing and simulating the circuits, I needed to learn how to perform 

circuit layout.  Cadence gives the user a few options for layout, generally falling under three 

categories: full custom layout, semi-custom layout, and automatic layout.  Full custom layout 

involves drawing out the actual physical dimensions of the materials in silicon, and provides 

the most control over the layout, but is very time and labor intensive.  There are other 

methods for laying out a circuit that speed up the process by sacrificing some control to the 

program, which is what this project utilized. 

 Aside from having to learn how to use the tools from Cadence, I had to adapt my 

circuit design skills to a low-voltage, high frequency application.  It’s hard to anticipate how 

difficult it actually is to design transistor circuits to operate on high frequencies (MHz-GHz) 

with such a small supply voltage (1.8V).  This proved to be the most difficult part of the 

entire project, but the most rewarding.  Designing circuits at the transistor level and 

simulating them with the various parasitic effects is a difficult task. 


