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Abstract 

This report explores the necessity for increased cyclist safety in urban settings, leading to the 

birth of a product which aims to drastically reduce the risk of accidents while heightening the 

sense of safety overall. The project outlines and details the product development process of a 

consumer-friendly vehicle detection system, with a holistic scope which includes technical rapid 

prototyping and coding, team dynamics, decision making process, and change management. Two 

formal prototypes were developed before a functional final product was identified and 

constructed, each iteration drastically improving practicality and efficiency of detection. The 

final product underwent extensive testing in both simulated and natural environments with a 

maximum range of 45 meters, with a field of view of 1.28 degrees. These parameters were 

critical in defining the positional angle of the sensor on the bicycle frame. Paired with an LED 

strip along the top tube of the bicycle frame, the sensor system accurately detects vehicles 

approaching from the cyclist’s blind spot, and feeds back via the lighting and color of the LED’s 

to both the cyclist and driver, in both light and dim settings. 
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Introduction 

This report centers around the development of the Firework Cycling Sensor. Currently, the 

dangerous conditions of a cyclist commute in an urban environment demands safety protocols 

that are not easily available. The amount of safety gear a cyclist must wear in order to comply 

with traffic law, or further more traffic safety, can still be ineffective at promoting safety. More 

specifically, cyclists often struggle with car recognition when making turns into preceding lanes. 

This device acts as an indicator to cyclist and cars of each other’s presence through the use of a 

large LED strip, attached to the body of the bicycle which reacts similarly to a stoplight. For the 

cyclist, green indicates that it is safe to maneuver into a lane, yellow indicates an approaching 

vehicle and that safety should be advised, and red indicates that maneuvering into a lane will 

cause harm. The report travels through a Literature Review, focused on bicycle safety; Design 

considerations, reasoning, and prototypes; Methods of testing, to validating the effectiveness of 

the prototypes; Results, explicitly stating the findings from the Methods; and Conclusions for the 

final ability of the Firework to perform according to our specifications. These specifications 

centered on the improvement of safety for a commuting cyclist and a reliability of our robust 

design. The project was completed through the Industrial Engineering Department at California 

Polytechnic State University in the Interdisciplinary Senior Project Course, IME 471, IME 481, 

and IME 482 

Background and Literature Review 

The literature review involves four sections in an attempt to gain understanding concerning 

cycling safety product development. The first section of the literature review explores the 

concept of systems engineering and how it helps to establish project parameters. The second 
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section of the literature review list and explains the steps and strategies involved with new 

product development. The third section of the literature review discusses the importance of 

bicycle safety. The fourth section of the literature review covers team dynamics in a product 

development process and its relation to cycling safety. 

Systems Engineering 

A system, according to document EIA/IS-632, incorporates “an integrated composite of people, 

products, and processes that provide a capability to satisfy a stated need or object” (Blanchard, 

2008, p.3). In this section we will discuss the application of Systems engineering to a complex 

development process.  

Scope 

The boundaries of the cycling safety procedures and equipment system must be defined for 

understanding. For this project the Scope does venture beyond the components. All physical 

parts of the bicycle itself are included. Even attachment and casings are integral to the system as 

a whole. The systems approach follows a consumer minded methodology, concerned with the 

design integrity almost as much as the functional integrity. As in any system within the scope, 

feedback must be included, and must reach either the cyclist effectively as defined, or it must 

reach the environment as targeted. In the case of this project, the environment and cyclist are not 

necessarily part of the system, but are considered to be on the threshold of the system boundary. 

The comparison can be made to a slot machine that has just produced a winning sequence and is 

producing money or tokens. The party involved who “won” this prize is not required to take it or 

to stop playing. The machine alone can be placed into a category as a system. While one would 

expect the winner to make one decision, but a slot machine does not succeed or fail dependent on 

the uses decision. It succeeds when it receives input or command, produces a sequence and 
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responds correctly. In this manner, cycling safety procedure and equipment will succeed as a 

system when it produces the correct output, and when that output can be interpreted correctly by 

the cyclist or environment involved as needed. 

The failure of the system must also be included, because the scope does not limit itself to only 

success, but all observed results. These undesired events are necessary to a degree, because in 

order to attain complete quality control, one must accept hardware, or external error, as a 

building block to failure (Sage 2011, et al). The failure here is a significant part of research and 

development, in order to eradicate it when the system is in the hands of the consumer. 

Resources 

The constituent resources define the project's complexity in the form of “human beings, 

materials, equipment, software, facilities, data, money and so on” (Blanchard 2008, p. 3). The 

human beings involved include the stakeholders and those effective in an environment with 

cycling traffic. Stakeholders may include the developers of procedures and equipment applicable 

to cycling safety, consumers and users of the procedures and equipment, those providing 

financial capital for these projects, and those who must respond to these projects as they become 

present in the environment. While a cyclist appears to be the top priority, their affected 

surrounding and those who bring these projects to fruition need to be equally concerned with its 

quality and effectiveness. Materials and equipment make tangible as otherwise conceptual 

design. The microcontroller, sensor, casing, and other components make up the physical parts of 

the system. Software drives the safety systems such as lights and other activated hardware with a 

sense of logic, producing the desired goal much as a puppeteer to his show. The less “visible” 

this component of the system, the more accomplished it will be. In this case, facilities are 

marginal, and progress occurs among university halls and garages. Data may be the most 
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important piece of the system since it will ultimately constitute accuracy and produce results that 

meet all goals. Feedback must be driven by extremely accurate data, and special attention is 

brought to the topic in the following paragraph. Money is an overarching factor because the 

system can be labeled as a consumer product. As a resource, it pervades the life cycle. Capital 

drives the initial stages of the research and system development, revenue sustains the 

organization producing the system. These resources, in the form of human beings, materials, 

equipment, software, facilities, data, and money must be succinctly organized in order to 

succeed. 

Reaction as a System Parameter 

Cognitive and physical overload by maintaining high levels of awareness while on a bicycle 

means that any alert method cannot add to the strain of the cyclist. For instance, another visual 

signal may detract from the user’s focus on surroundings, thereby defeating the purpose of 

increased safety. With this consideration, method of establishing non-intrusive feedback must be 

determined. 

The theory of mental reaction times, translating to physical reaction times involves variables 

similar to line balancing with independent events. In order for the environment to remain safe, 

meaning that neither the cyclist nor the vehicle involved feels as if a dangerous situation has 

been initiated, both parties involved must have enough time to react after notification. The 

reactions therein may be as significant a factor in avoiding a dangerous situation as a feedback 

method. “One of the most investigated factors affecting reaction time is 'arousal' or state of 

attention, including muscular tension. Reaction time is fastest with an intermediate level of 

arousal, and deteriorates when the subject is either too relaxed or too tense. That is, reaction time 

response to arousal is as follows:” (Kosinski 2013, p. 2). 
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Figure 1: Degree of Arousal Compared to Reaction time (Kosinski, 2013, p. 2). 

This curve follows the same reasoning presented in the Yerkes-Dodson Law. “As the level of 

arousal is increased, it will reach an optimum level in which performance will decrease even 

though arousal level is high. This is known as the ‘Knee’ in the curve, a second characteristic in 

the Yerkes-Dodson Law. However, optimum level of arousal and performance varies for 

different task. Complex task will have a lower level of arousal and performance compared to 

simple task. This is because complex task involves greater demands and greater memory loads, 

hence it is more vulnerable to breakdowns in the process” (Athanasiou 2010, p. 143). 
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Figure 2: Degree of Arousal Compared to Performance Ability (Athanasiou, page 143, 2010)  

The optimal degree becomes somewhat difficult to clearly define because do to so many factors. 

The study of this arousal may produce conjecture, but the basis for cycling safety systems 

assumes a state with an appropriate level of sensory input and physical exertion. Forrmal Arousal 

Theorist Theodore Millon expresses how many people in urban environments exhibit, “high 

stimulation levels due to environmental conditions such as excessive noise or crowding” (Millon 

2003, p. 429). A commuting cyclist in these conditions, especially with factors such as noise and 

vibration, is a candidate for this high arousal state.     

The reaction involved is categorized as a choice reaction. “In choice reaction time experiments, 

the user must give a response that corresponds to the stimulus, such as pressing a key 

corresponding to a letter if the letter appears on the screen. In a pure choice reaction time, the 

sequence of stimuli types is random” (Kosinski 2013, p. 1). The sequence involved is the 

feedback methodology of the cycling system. Typically, this includes visual awareness of a 
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vehicle. The choice for the cyclist involves either proceeding into a traffic lane, remaining in the 

current lane, and others. 

Speed Disparity 

The speed at which the cyclist and vehicle are traveling is also a consideration in systems design. 

The disparity in speed between the parties involved must be noted, and in urban environments 

especially, pedestrian traffic plays a factor. During work commutes, “a trip speed of 25 mph as 

the probable US average for cars” (Tranter 2004, p. 74), with a +/- 5 mph range to capture a 95% 

CI. While, “A more average cyclist can travel 12 miles an hour,” (Forester 1994, p. 360), with a 

+/- 4 mph range to capture a 95% CI in a situations where strong acuity is needed. These 

commuting speeds occur where the trip length measures less than 10 miles, capturing at least 

74% of the commute length for vehicles and 85% of commute length for bicycles. With this data 

vehicles may have a 22 mph advantage in speed over cyclists in a commuting situation. 

Pedestrians present the least aroused party using the Yerkes-Dodson curve. An average walking 

pace ranges from 3 to 5 mph. The ideal environment would not present any interaction between 

cyclists and pedestrians or vehicles and pedestrians. They would breach the system in head on 

situations, as a pedestrian overcoming a cyclists or car is unheard of. Also, difference in speed 

between pedestrian and cyclist is less than between a vehicle and a cyclist. Cycling safety 

systems typically must confront vehicles, so as to consider them a higher priority. There are also 

the special cases of a non-moving party, such as urban structures and opening car doors; and 

other cyclists who are the cause of danger by improperly following traffic laws. 

Drivers 

Driver reaction times are a factor, which must be addressed almost as a design limit. It is 

practical to use a “time standard reaction time number, such as 1.5 seconds, when analyzing a 
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case” (Green 2013, p. 458) in a system with a driver and a vehicle. This standard, from Doctor 

Green, is quite long because it is applied to “Surprise Expectations”, in which the driver 

encounters very unusual circumstances. Green addresses how “‘standard human reaction time’ of 

0.75 seconds for response often is not applicable in non-laboratory settings and tasks” (Green 

2013, p. 458). The fact remains that many cyclists place themselves into dangerous situations. 

The Uniform Motor Vehicle Code has set visibility standards for cyclists to be seen at a 

minimum 600 feet to the rear. Many manufacturers state “they were not aware of the UMV 

Code” (Green, James 2001, p. 164). Without the use of fluorescent clothing, cyclists with a rear 

light are perceived by vehicles at roughly 150 feet at night. Coupling this statements and data 

establishes the need to better alert vehicles of cyclists. 

Cyclist 

Several factors are involved with the cyclist, those which hinder and those that aid in decreasing 

the choice reaction time. An analysis of the head movements of 2,112 cyclists found an 

association between more frequent head movements and greater caution (Räsänen 1998 et al.). 

While these cyclists demonstrate simple methods of environmental safety checks, many do not 

utilize the technique while observing traffic laws. “In 52% of urban and 67% or rural car-bike 

collisions the collision type itself shows that the cyclist was disobeying a rule of the road” and 

“populations of college and young adult cyclists score between 50% and 80%” in a competency 

test (Forester 1994, p. 59). At night, even more problems arise. 

“Night cycling looks very dangerous on paper. About half of cyclist traffic fatalities 

occur between six o'clock in the evening and six o’clock in the morning. This amazing 

stat is even more impressive when you consider that relatively few cyclists ride at night. 

Many of these night victims are run down from behind...Some of these victims, 
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however...are riding irresponsibly and erratically, without proper equipment, and only 

have themselves to blame.” (Hurst 2014, p. 163). 

One study, focused on collision types and frequency found, “the most common collision type… 

is a rear end collision. Approximately 40% of fatalities in our data with reported collision types 

were rear end collisions” (League of American Cyclists 2013, et al). The factors contribute to the 

idea that commuter cyclists should take steps to improve their responsibility on the road, as 

studies show the clear correlation with safe practice and accident-situation reduction. 

There is also some debate over the “ride-ability” of cities for cyclists. For example, while 

Phoenix and Scottsdale, Arizona boast the highest percentage of bike riders of all its cities, 

Arizona itself ranks fourth highest in bicycle related accidents per million residents. These high 

percentages of riders result from the reputation of a city that facilitates cycling. Compare these 

statistics with Florida, whose cyclist’s death per million almost double Arizona, or California, 

North Carolina, Michigan, Texas, and New York; whose death percentage is lower than Arizona, 

but still who experience more average annual deaths. These observations present the correlation 

that the higher number of cyclists in an environment, the more cyclists would unfortunately 

experience a fatality. Florida, especially Miami, has been improving its bicycle infrastructure, 

and only with significant programs do cities in the United States begin to commute with an 

environment meant to consistently provide safety. These programs and public developments still 

fall behind the standards set in most large, urban European cities. 

Scaling 

Systems engineering demands a clear scaling method.  This method addresses what the system 

effects when it is active. In a rudimentary Newtonian point physics lesson, systems include no 
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less than a dot with a force, moving in imaginary space. There is no consideration for other dots 

or forces. Presenting the system into the physical world adds a confounding set of variables, 

some of which must be addressed. Cyclists must follow laws based on location. The laws and 

reactions must be noted, as a study performed for the Association for the Advancement of 

Automotive Medicine found prior to situations out of normal traffic condition, “88.9% of cyclists 

travelled in a safe/legal manner” (Johnson 2010, p. 85). Physical motions from the cyclist are 

tangible, meaning they do effect the environment eventually, but the cyclist is considered to be 

on the system boundary. This boundary must be defined to consider outside forces negligible. 

Also, the cyclist, the person on the bicycle, exists on a boundary because they do not affect the 

safety system, but the system affects the person. In order to achieve success, the equipment must 

inhibit a safer situation that the cyclist may accept or reject. This follows the slot machine 

example of accepting the reward or not. For this reason focus is drawn to the equipment. The 

equipment considered for cycling safety often involves a man-made, physical, dynamic system 

(Blanchard 2008, et al). The system consists of plastics, metals, and other components wholly 

processed and designed by man. The system is a culmination, engineered to be more the sum of 

its parts. Components of the equipment occupy physical space, as opposed to traffic laws that 

facilitate safety as an idea. The final products can be held and secured to a bicycle. It can 

feedback, succeed, break, and fail. The cyclist, environment, and any other party involved must 

accept the output or feedback of equipment to a degree of which they cannot control. 

Meeting Objectives 

Blanchard prefers his own definition of systems engineering: 

“The application of scientific and engineering efforts to: (1) transform as 

operational need into a description of system performance parameters and a 
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system configuration through the use of an iterative process of definition, 

synthesis, analysis, design, test and evaluation, and validation; (2) integrate 

related technical parameters and ensure the compatibility of all physical, 

functional, and program interfaces in a manner that optimizes the total 

definition and design; and (3) integrate reliability, maintainability, usability 

(human factors), safety producibility, supportability (serviceability), 

disposability, and other such factors into a total engineering effort to meet 

cost, schedule, and technical performance objectives.” 

The operational need, or pain of the system in this case, is that cyclists run the risk of 

encountering many dangerous situations, no matter the environment. Performance parameters 

can be developed through Quality Function Deployment drafted into a House of Quality. When 

these are met in tangent, a system, focused on cycling safety, can be deemed successful. From an 

entrepreneurial view, this translates loosely into the development of a target market. 

The steps in Figure 3 can expand this idea. Step 1 establishes the “Customer Requirements” 

involved in a cycling safety system, the first of which would most likely to be increase safety in 

a situation where it would be otherwise compromised. It is essentially that the “what” needs to be 

in the system to succeed, not the “how”. Step 2 lists the “Product Engineering and Design 

Requirements” of the system, the first of which would most likely be to create a reliable system 

that operates as advertised. It is essentially the “how” the design will attain those system goals 

defined by the customer’s needs, “what”. In each case, the requirements are situational-ly 

dependent. In theory, the first requirement of system could be cost, size, or  
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Figure 3: QFD Chart Displaying Ordered Steps (Blanchard 2003, p. 26) 

weight, both from a customer and engineering perspective. The design cycle using the QFD chart 

produces a definite iterative process. Step 3 relates these requirements in relation to each other 

requirement. A higher ranking shows a heavier influence between requirements, with discrete 

scores typically of 0, 1, 3, and 9. A + (plus) and - (minus) system is also used as a representation 

of these common integers. The relationship between size and weight can represent a simple 

example of this ranking. As an example, if customers place a heavy desire to bathe in large 

bathtubs, the design requirement of the weight of those large tubs may become a heavy 

dependency. The two requirements correlate strongly. Step 4 evaluates the effectiveness of a 

competitor to meet the previously mentioned Customer Requirements. A scale is defined and 

each competitor is placed according to how effectively they achieve each Customer 

Requirement. This is another way to break down equipment as a system into more addressable 
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component pieces. Step 5, from the weighted ranking system, produces a ranked importance of 

each Engineering Requirement in order to achieve the targeted design from the customer 

standpoint. Step 6 correlates the design requirements with respect to themselves. Here the 

ranking ranges from a strong negative correlation to a strong positive correlation, using a 

symbolic system of dots and crosses (Madu 2006, et al). This QFD Chart is typically an effective 

way to integrate technical parameters and system interface with performance parameters. 

Blanchard’s (2008) final step of integration pulls all aspects of a system life cycle together, from 

why and how the system forms to how it is intentionally terminated. The engineering of the 

system encapsulates more than “software, nor even hardware; people and procedures are and will 

remain important” (Alexander p. 21, 2005). From this is it important to consider the dynamics of 

the system beyond the formation. A system can interact with the world, and its effects must be 

considered and designed until it is gone completely. 

New Product Development 

This project has a large dependence on topics, which revolve around new product development. 

Clayton Christensen and Michael Raynor’s book called The Innovator’s Solution (2003) 

exemplifies many methodologies and strategies involved with product development. 

First, Christensen and Raynor identify two different strategies in formulating new ideas and 

innovation. The first of which is the Deliberate Strategy, which is a highly thorough and 

cognizant approach (Christensen, 2003). This strategy incorporates the evaluation of market, 

growth trends, customer needs and technological considerations. The book emphasizes that three 

conditions are necessary in order for the proper implementation of the Deliberate Strategy: 

1. Strategic plan for implementation must be clearly identified and understood. 
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2. The strategy must be fully understood from the employees of the organization from their 

view of their own context. 

3. All aggregate intentions must be comprehended with minimal influence from outside 

sources. 

When these three requirements are all satisfied, the Deliberate Strategy becomes the optimal 

approach. However, Christensen and Raynor mention that it is often difficult to completely 

achieve these three conditions. For this reason, the book also outlines a second approach, the 

Emergent Strategy, defined as the result of the day-to-day effort in observations and analysis 

(Christensen, 2003). This is somewhat of a non-conscious exercise. In circumstances in which 

the future of technology, or changing markets is unclear, this strategy should be used almost 

exclusively. In all other situations it is recommended to utilize a combination of both strategies. 

The book identifies the three different paths to new-growth innovations: 

Sustaining Innovation: Sustaining innovation introduces a higher-performing product to a pre-

existing market. Sustaining innovation is often described as “building a better mousetrap”. Some 

sustainable innovations are simply regular or semi-regular upgrades, while others may be 

relatively large incremental steps improving the technology, interface, etc. 

Low-End Disruptions: This approach provides Innovations that target existing, mature markets 

that have lower profitability. Established companies will usually dominate in this area and can 

easily compete with smaller companies attempting to gain space in the market. These smaller 

companies often struggle to gain traction in these markets mainly due to a lack of resources. 
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New-Market Disruptions: This type of innovation targets a population segment called “non-

consumers”. Non-consumers have an unfulfilled need that cannot be fully satiated by existing 

products available. New-market disruptions offer very simple and affordable products that enable 

the population of non-consumers to begin to acquire these products at will. These innovations 

must be sufficiently capable to pull customers away from other mainstream markets because 

“these customers [will] find it more convenient to use the new product”(Christensen, 2003, p. 

97). 

As CEO of IDEO, Tim Brown is widely considered an expert in design thinking and new-

product development. His book Change by Design offers extensive knowledge on best practices 

for innovation. Brown places heavy emphasis on the utilization of prototyping and indicates the 

benefits which go far beyond the incremental step of ensuring the product works as intended. 

Contrary to popular belief, prototyping brings about results in less time than proceeding without 

this critical step. The assessed results serve not only to test the functionality of the product, but 

also analyze customer feedback. It is an invaluable opportunity to detect the onset of issues, test 

different manufacturing processes, and eliminate any ambiguities among potential customers and 

team members (Brown, 2009). Prototypes should require as little time, effort, and expense 

necessary to provoke beneficial feedback. It is entirely unnecessary to develop an elaborate, full-

fledged prototype-- any break from this can possibly lead to instinctively augmenting the 

prototype too far for meaningful use, or neglecting the opportunity to encounter potential 

improvements at minimal cost (Brown, 2009). 

An abundant number of ideas will spur from prototyping, but its important to note that building 

on the ideas of others can further develop successful in a collaborative setting. In doing this, the 
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development team excels significantly further in terms of refining and improving upon every 

iteration of the product. 

Bike Safety 

With the onset of green initiatives and sustainability requirements imposed by governing bodies, 

the number of hobby and commuter cyclists in traffic is on a gradual rise (cite). However, 

bicycle safety has not received due attention, since traffic regulations and safety has largely 

focused only on motorized vehicles—for example, with the growing population, there is an equal 

or greater growth in the cyclist population (League of American Bicyclists). Consequently, there 

is a severe lack of cyclist products, which can mitigate the risk of sharing the road with 

automobiles, the most perceivably dangerous situation being an approaching or overtaking 

vehicle from behind the cyclist. Most available products involve mitigating damage upon impact 

rather than mitigating the risk itself, such as helmets and body armor. Moreover, the performance 

of these protective gears is unclear when a motor vehicle is involved, intended to protect the 

cyclist from collision with non-mobile objects (Smaldone: 2010). With over 700 bicyclists dying 

annually in accidents with automobiles and over 44,000 annually reported cases of injuries due 

to bicycle-automobile accidents (Smaldone: 2010), there is a necessity for a safety-enhancing 

product. Furthermore, during a single year, “33 million Americans used their bicycles, in an 

average of six times per month for 1 hour of cycling...assuming that 85% of cyclists will develop 

one or more injuries during their lifetime, approximately 23 million cyclists will get injured at 

some point.” (Bini and Carpes year, p. 55). This article aims to identify the need and current 

developments toward this initiative and to present a necessity for further product development. 

An average cyclist is on highly loaded sensually. Visually, the scenery, path, and traffic are 

constantly being monitored. Physically, the arms and legs are in constant, repetitive, strenuous 
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motion. All of this translates to an overloaded mental state, one which only occasionally 

remembers to peer to the left or right to check the rear for possible threats or dangers. However, 

this movement poses two serious risks in itself. First, an inexperienced rider will steer in the 

direction of peering, whether into the car lane or into the shoulder, due to the complex forces that 

act on a moving bicycle. Second, the cyclist loses the ability to track activity in the front. If an 

automated sensor could replace this highly risky act and alert the rider through a feedback 

mechanism, the average cyclist can focus full mental and physical capacity on activity up ahead 

in direction of motion (Smaldone: 2010). 

 

 

Figure 4: Prototype Bike Sensing Mechanism (Smaldone: 2010) 

Above diagram is a theoretical model of detecting an approaching vehicle in rear. A normal 

bicycle is augmented with sensors (audio and video), CPU, wireless networking, and GPS to 

create a Cyber-Physical bicycle system. Alerts and related data collected by the system are 
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transmitted to a centralized service where they are logged and stored. This design has not been 

fully implemented to date owing much to the complexity and accuracy of all its components. For 

the sole purpose of properly detecting a vehicle, the larger number of components may lead to 

greater accuracy and reliability, but also to increased complexity and malfunctioning. 

Furthermore, as a viable consumer product, the detection system should not be overbearing on 

the cyclist or the bicycle, compromising its performance in any significant manner. 

Team Dynamics 

Because this project is a year-long and we will be working as a team all year, we wanted a focus 

of our project to be developing our abilities to work in a team setting. The topics we will focus 

on in this section of the literature review are dynamic leadership, decision-making, and team 

communication. 

Dynamic Leadership 

      Because this project group was formed organically and there was no hierarchy, 

there will be no single leader for the entirety of the project. While we will not assign a leader to 

the project, leadership is very important to getting tasks done in a timely manner and we will 

rotate leadership for each section of the project. Leadership is the key to allowing a group of 

diverse people to work together toward a common goal. In our case we will examine leadership 

at the individual and group levels. Leadership is the process by which the individual influences 

the group to deeply influence members of the group in the development of a common mission. 

Effective leadership relies heavily on the interpersonal processes. While leadership is commonly 

believed to be an inborn trait, it can in fact be learned (Hogan, pg. 495) . There is a difference 

between leadership and management. Management is important when the process being carried 

out by the group are familiar, but in an innovative situation like our senior project, leadership 
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will be more important than management. Managers carry out responsibilities, exercise authority, 

and how about how things get done, whereas leaders attempt to understand people’s beliefs and 

gain their commitment to work for the common mission. Leaders trust the abilities of the group 

members (Hogan, pg. 495) and this is something we would like to maintain as the leadership 

roles shift throughout the project. Leaders challenge the status quo, and this is how we would 

like to lead in our project; we will lay all of our assumptions on the table to be challenged by 

other group members. By challenging our deeply held assumptions about how a project should 

be carried out, we will learn to let go of our assumptions and take calculated risks in creatively 

completing the project (Hogan, pg. 495). 

      Because the members of our team come from different educational backgrounds, 

it is important for the leaders to develop a vision and set an explicit direction for the group’s 

work. Due to the technical nature of this project, the vision should be explicit with objective 

numbers to ensure that the achievement of our goals is measurable. Next, leader should develop 

strategies for producing change toward their vision. Because of the scope of this project, there 

will be a lot of failure along the way and it is up to the leader to motivate the team to try new 

actions that may seem likely to fail. While the vision may make sense logically, the leader should 

monitor the actions of the team members as they carry out the vision. It is probable that the team 

members will fall into their typical tendencies when new processes are necessary. In order to be 

an effective leader for this senior project, interpersonal and technical communication are the 

most important skills. While the vision and the strategies may be excellent, the leader should put 

significant stake in helping the team members understand the vision and the plan. The process of 

communicating with a group of engineers could be the biggest lesson we take away from the 

project. When the vision and the strategies for carrying out the vision have been communicated 
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to the group, the final step for the leader is motivating and inspiring the team members to carry 

out the vision. This final step will also rely heavily on communication. In the communication 

section below, barriers and gateways to communication will be defined. We will rotate the 

position of leadership depending on the task we are working on. There can be multiple leaders 

for each task, but we would like it if every member of the group got the opportunity to practice 

their leadership skills. Some of us may have had experience with team leadership and we will 

want to practice the role of follower to understand what motivates people as subordinates 

(Hogan, pg. 495). 

Decision Making 

      Due to the lack to hierarchy and defined roles in our group, we could benefit from 

understanding the different ways of making decisions. In order to coordinate meetings and 

effectively work through the project, we will want to practice our decision-making skills. 

Decision-making often stems from the group problem solving process. In the group problem 

solving process, it is important for the group to come to an agreement on the goals of the process. 

In packaging a device, some of the group members may be focused on the functionality, while 

the rest of the members may be focused on aesthetics. Both goals are equally important and the 

group will want to address both the goals when they are designing the packaging. 

      In this case, we are attempting to solve the problems of bike safety. First, we will 

begin by brainstorming our goals in this project. Hopefully we can establish many goals and 

work to edit our goals to a few that are commonly held among the group members. Next, we will 

establish a shared understanding of the problems we are attempting to solve. For a bike safety 

product, a problem may be reliability in the evening. We will use diagrams and collaboration to 

create a shared understanding of how reliability at night can be an issue. Once the problems have 
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been explicitly stated to the group, we will establish ground rules for how we will work as a 

team. These ground rules include how we will plan meetings, how we will communicate between 

meetings, and how we will make decisions. After creating the ground rules of our team culture, 

we establish a shared understanding of basic assumptions and priority issues in solving the 

problem. In the case of bike safety, we will test our assumptions the safety for bicyclists can be 

improved with current technology and we will choose the aspects of bike safety that are the most 

important (Edmondson, pg. 67[LS1] ). 

      Because three of our group members are avid bike commuters, we may approach 

this problem with strong ideas of how we can improve bike safety. While those assumptions are 

important to consider incorporating into our goals, we will also take into consideration the 

alternative solutions. Testing our assumptions and considering alternatives will be difficult, but it 

is important to consider even impossible solutions when looking for the solution to the problem 

of bike safety. Considering all the alternatives, even if they are risky or illogical, can help expand 

our creativity in reasonably solving the problem. Next, we will develop criteria for evaluating all 

of our alternatives. The criteria should include our experience, time constraints, and resources. 

Each part of the design process will include the consideration of the criterion for evaluating our 

alternatives. With our other classes and the locked in end date, our decisions should be calculated 

to ensure we can finish the project. While failures are welcomed for learning, it is important for 

the whole team to be on board for the directions we decide to go with the project.  Once the 

alternative has been chosen, this plan will be compared to the problem statement to show that we 

are working within our scope (Edmondson, 68). 

      When the group makes decisions, we will use the consensus process to be sure 

that all of the group can live with our decisions. While it is common to vote on issues in group 



27 
 

settings, we will use the consensus process because it accounts for the reasoning behind 

everyone’s opinion. In the consensus process, each member will give his opinion on a decision. 

If everyone can live with the decision, it will pass and we will go in that direction. If a member 

will not allow a decision to pass, the plans must be revised so that every member feels like his 

needs are being met. While the consensus process can be time consuming, we want the opinions 

of the whole group to be valued and voting tends alienate the members with the dissenting views 

(Edmondson, 73).  

Barriers and Gateways to Communication 

      In the process of meeting and discussing actions to be taken by the team, effective 

communication is the key to teamwork. With an interdisciplinary project where the scope is not 

fully defined and the group is inexperienced with the design processes, barriers to effective 

communication can often arise. The tendency to evaluate, judge, and approve or disapprove of 

the statement of another group member is a natural tendency. The instant evaluation of another’s 

statement will cause a misunderstanding of the point of view of another and block interpersonal 

communication (Rogers, 104). 

      In order to avoid the pitfalls on evaluative listening, it is important to dig deeper 

into the position of another and identify their interests in making that statement. While one 

member may have a strong background in solid modeling, another member may have never used 

a solid modeling program and it is tough for this person to admit they are not comfortable using 

solid modeling to design a prototype. While the member with solid modeling experience could 

get fed up with the other team member and lash out over a step that seems simple and 

worthwhile, it is important to address these conflicts with the goal of understanding why there is 

a disagreement in the next steps without offending anyone. It is important to ask questions with 
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the intent of understanding the position of another person. The goal of this questioning is to help 

the group feel like it can share their interests. According to psychologist Carl R. Rogers (1991) , 

it is important to restate the ideas of the other people involved in a conflict. This can help ensure 

that the members of the group are all talking about the same thing. Fully understanding the other 

party’s point of view does not mean there is an agreement between the two parties, but it does 

mean that communication has been achieved and communication is the most important aspect of 

effective teamwork. While Cal Poly does provide its engineering students with a relatively sound 

technical education, the institution does not train most of the students in effective interpersonal 

communication. In a year-long project with many hours of meeting weekly, our abilities to 

combine technical and interpersonal communication techniques invaluable to the success of our 

senior project. While listening with understanding may seem like common sense, it is rarely 

practiced in organizational settings for the following reasons: lack of courage and heightened 

emotions (Rogers, pg. 105). 

      Because listening with understanding can change a person’s mind about the best 

way to go about a project, there is very often a lack of courage to withhold judgments and see 

things from another’s point of view. We identify with our deeply held beliefs about effectiveness 

and productivity and it is therefore too risky to question our own beliefs. This shift in perspective 

will not happen immediately and we are prepared to fail in order to learn to work more 

effectively as a team (Rogers, pg. 105). 

      Because conflict creates heated emotions among group members, this is the 

hardest time to listen with understanding and it is time when effective listening is the most 

necessary. When the members of the group are unable to come to a shared understanding during 

conflict situations, it can be effective to involve a neutral third party in the dispute to bring 
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clarity to the situation. In the case of our senior project group, we will involve Kurt, Liz, and Jim 

in our unresolved conflicts to help us develop a shared understanding of our point of view. 

Because this project is a brand new idea and involves a process that we are unfamiliar with, we 

are prepared to speak with Kurt, Liz, and Jim early and often to resolve our disputes. Mediation 

by a third party can lead to improved communication, to greater acceptance of each other, and to 

attitudes that are more positive and more problem solving in nature. The presence of a third party 

can cause a decrease in defensiveness, in exaggerated statements, in evaluative and critical 

statements. Because we are working with this group all year, we would like our conflict to 

productive and avoid alienating any group members (Rogers, pg. 106). 

Conclusion of Literary Review 

Having a focus on systems engineering, new product development, bicycle safety, and team 

dynamics has assisted in identifying studies, models, and methodologies to support our topic. 

Clearly, there is seemingly an unlimited amount of information regarding these areas, however, 

the team must keep in mind what has been taught through this research in order to have the 

highest means of success. 

Design 

For the Interdisciplinary Senior project this year, we formed as a group interested in 

exploring an entrepreneurial venture. All of the group members had taken an introductory 

entrepreneurship course at Cal Poly and we liked the idea of creating a start-up as part of our 

senior project. We met weekly during the initial quarter to discuss ideas and get to know each 

other. Some people from our class showed interest, but ultimately we ended up with the four 

group members we have today. During our meetings to discuss ideas, we would use the “Points 
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of Pain” exercise to come up with ideas of problems in our daily lives. The “Points of Pain” 

exercise was done individually and shared with the group. It was fun to create lists of ideas for 

problems that we deal with regularly and typically filter out. Sharing the points of pain exercise 

was comical and many of our ideas were similar.  

Unfortunately, it felt like we were reluctant to share all of our ideas and it could have 

been more effective to post all the ideas anonymously on a public forum (lots of research to 

support that ideation is done better virtually… we have an unconscious reluctance to say our true 

ideas in a public setting, and these are my personal feelings) . After our first time sharing our 

points of pain, we realized that we spend much of our day at a desk working on school and 

internet surfing. An issue that we all faced from hours in front of a computer was back pain and 

excessive slouching. While we are young and our bodies account for the negative effects of poor 

posture, we are aware of the long term effects that slouching can have on the human body and 

we would like to avoid these effects (any studies or actual medical issues to mention??). With the 

current popularity of standing desks for people in all occupations, we wanted to explore the 

possibility of designing and producing our own standing desk. Because standing desks tend to be 

our of the price range of college students, our initial idea for entering the market would be 

creating an inexpensive.  

Professor of Entrepreneurship at Cal Poly, Jon York, met with us and reminded us that it 

is impossible to enter a market with the lowest price. In the case of the standing, large furniture 

companies such as IKEA would quickly make our product for cheaper and sell it for cheaper. 

They would quickly take over our market niche and we would go out of business. Instead of our 

initial idea to enter the standing desk market, we decided to explore the idea of creating luxury 

standing desks. These stylish desks would different design styles, beautiful patterns, and luxury 
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branding. When we decided on high-quality, expensive standing desks, we started doing the 

customer development process.  

With customer development, we decided to start with potential customer interviews. 

First, we spoke with a kinesiology professor at Cal Poly. Because of her recent pregnancy, this 

professor was experiencing back and knee pain and she was committed to trying a standing desk 

to give her more range of motion for her joints. We went to her office and spoke with her about 

her requirements for the decision to purchase a standing desk.  

After this customer interview, we worked on some team building. With this team 

building, we shared our backgrounds and interests on a Google Document. In this forming stage 

of the team, sharing our backgrounds gave us the comfort with each other to express that we 

were no longer interested in the standing desk or doing a entrepreneurial venture with our senior 

project. First, we decided against the standing desk because it was a boring product to work on 

and we thought a lot of customer development would need to be done before we could start 

creating a luxury standing desk. Next, we decided against doing an entrepreneurial venture. 

While we are all still interested in entrepreneurship and we used many of our entrepreneurial 

skills in developing our senior project, we decided against focusing on creating a start-up 

because of the time commitment necessary to do proper customer development. Now we had no 

idea what we were going to work on for senior project and it was the beginning of November.  

We went back to the drawing board and did another points of pain exercise. From this 

exercise, we found that 3 of the 4 of us had issues with bike safety. Because we commuted to Cal 

Poly daily and we enjoyed cycling for recreation, we decided that bike safety was an issue that 

we had on a regular basis. When we discussed our issues with bike safety, it boiled down to two 
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main concerns of blind spot monitoring and visibility at night. When we bike on busy roads, we 

are anxious about the cars passing us at high speeds. In order to feel more secure about our 

situations as sitting ducks on the busy roads, we peek over our shoulders to check when cars are 

passing and how close they are passing us riding in the bike lane. This peeking over our 

shoulders can often put us off course and we risk veering into the curb or the bike lane. While we 

all use reflective vests and lights when riding at night, these measures are only so effective and 

more visibility could help our chances of getting home safe. After looking at the current options 

for bicyclist safety, we realized that there was not a well-known product that could monitor the 

blind spot and maintain a high level of visibility at all hours. We decided we wanted to create a 

sensor system that could monitor the blind spot for the rider.  

Because we did not have experience with sensor systems, we decided to research the 

components to go into a sensor system. First, we looked into sensor options. Our initial criterion 

for picking a sensor was keeping it under $100. Our options for a sensor for under $100 were 

ultrasonic sensors, passive infrared (PIR) sensors, and the LIDAR-Lite sensor. The ultrasonic 

sensor is commonly used in DIY robotics and it only cost $4 a piece. Because this sensor was 

cheap and there was tons of info online about how to use the sensor, we decided we would start 

the prototyping process with an ultrasonic sensor. The ultrasonic sensor’s maximum theoretical 

range is 5 meters. This range would give us a distance that could measure a dangerous proximity 

for a car in a passing situation. An issue with the ultrasonic sensor is the inconsistent field of 

view. As the range of the sensor increases out to 5 meters, the field of view angle decreases from 

30 degrees down to 0 degrees at 5 meters. 

Next, we decided what kind of microcontroller we would use to process the proximity 

data from the ultrasonic sensor. Microcontrollers are essentially small computers on an 
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integrated circuit that can be programmed to carry out various simple tasks. We ultimately chose 

the Arduino because it was easier to use than the Raspberry Pi for beginners and it could handle 

analog signal from our sensors. Because we were unsure of the functionality of the Arduino and 

all the components we would need for our project, we each decided to each order a kit that 

included servo motors, LEDs, temperature sensors, and a breadboard.  Then, we acquired 

ultrasonic sensors for each group member. From there we created our initial prototypes. This first 

prototype was composed of an ultrasonic sensor, an Arduino board, a breadboard, a feedback 

mechanism, and a 9V battery. We tried two different types of feedback: a piezoelectric buzzer 

speaker and colored LEDs. With these prototypes, we were able to understand coding in Arduino 

and interfacing components with the Arduino. Because Arduino uses a C-based programming 

language and some of us had experience with this language, our coding went smoothly for this 

prototype. Arduino is also an open source application with many users posting codes online. For 

much of our code, we modified code we found on the open source coding resources. Because we 

are relatively inexperienced in programing, this boost gave us a chance to learn and move 

forward in the project at a steady pace.  

For our prototype with the piezoelectric speaker, the various proximity values picked up 

by the ultrasonic sensor would change the pitch of the speaker. While this prototype was 

effective in showing us we could successfully work with the ultrasonic sensor and the Arduino, 

the speaker’s high pitch was annoying and we decided to discontinue using it in our prototyping 

process. For our prototype with the colored LEDs, the various proximity values picked up by the 

ultrasonic sensors would cause each LED to brighten for each different range of distances. There 

was a green LED, a yellow LED, and a red LED. For measured distances between 0 meters and 1 

meter, the red LED would brighten and flash. For measured distances between 1 meter and 3 
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meters, the yellow LED would brighten and flash. For measured distances greater than 3 meters, 

the red LED would brighten and flash. While the colored LEDs worked well for a prototype, we 

decided this feedback mechanism was too small to effectively alert a cyclist of the proximity of a 

passing car. If we kept the three LEDs, the cyclist would have to constantly be looking down at 

the feedback mechanism and taking his eyes off the road. In order to help the cyclist refrain from 

taking his eyes off the road, we decided to increase the surface area of the feedback mechanism 

for our second prototype. Before we found a larger feedback mechanism, we decided to test the 

accuracy of the ultrasonic sensor outdoors for monitoring moving objects. While the ultrasonic 

sensor gave us accurate distance measurements indoors, the measurements were far less than our 

expected values when we moved the sensor system outdoors. This was disappointing because 

these sensors cost only $4 apiece. While we initially did not understand why the sensors were 

inaccurate outdoors, we learned that ultrasonic sensors are highly sensitive to noise. Noise is the 

random fluctuation of an electrical signal due to other electrical signals in the environment. In 

our case, the sources of noise affecting our sensor were likely cell phone signals, electrical 

towers, and naturally occurring environmental sources.  

While we could have used filtering to delete the noise signals, we are inexperienced with 

Electrical Engineering and we decided to try a different sensor that would handle noise better 

than the ultrasonic sensor. Our options were a passive infrared (PIR) sensor or a LASER sensor. 

While the PIR sensor had a 120 degree field of view and maximum range of 7 meters, our 

research of the device showed us that the PIR sensor is susceptible to same noise issues as the 

ultrasonic sensor. When we researched LASER sensors, we found a brand new sensor called the 

LIDAR-Lite from PulsedLight3D. While we were unfamiliar with using this sensor and there 

was very little info online about other people’s experiences, we chose to try this sensor because it 
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used a special optical signature system that eliminated the noise problem. The sensor emits a 

unique optical signature that matches to a stored template. When the sensor receives its signal, 

the signature is matched to the template and the distance is calculated from the location of this 

match. This sensor costs $90, which is highly competitive in comparison to similar products. its 

accuracy and filtering mechanism made it worthwhile for our needs and experience with sensors. 

This sensor had a field of view angle of 3 degrees and a theoretical maximum range of 40 

meters. When the team had acquired the LIDAR sensor, its functionality was tested with the 

Arduino and colored LED feedback mechanism. Two exciting aspects of the LIDAR’s 

functionality were the acquisition rate that got as low as 5 ms and an experimental maximum 

range of 40 meters. This testing also confirmed PulsedLight3D’s claims that the LIDAR was 

impervious to noise. Because of the accuracy of the LIDAR, more testing was planned to check 

to complete functionality of the sensor. Before testing the LIDAR’s field of view angle and its 

accuracy with moving objects, the team researched a feedback mechanism with a larger surface 

area. Ultimately, the individual colored LEDs were replaced with a one meter long strip of 32 

colored LEDs. Because of the increased surface area of the new feedback mechanism, the cyclist 

could theoretically be able to keep his eyes on the road and notice the LED’s color changes out 

of his peripheral vision. It is important for the cyclist to keep his eyes on the road to avoid 

veering into the curb or into the driving lane. Though the team had set out to create a device that 

alerted the cyclist of a dangerous passing situation, the illuminated, meter long LED strip could 

be used to alert the passing drivers of the cyclist’s presence. With the addition of the LED strip 

and LIDAR-Lite, the prototype could accurately alert the cyclist and the driver of a dangerous 

passing situation. With this new prototype, a battery of tests were performed to ensure the 

functionality of the cyclist safety sensor. Because of the bursts of light emitted by the LED strip, 
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the team decided to call the device the Firework Cycling Sensor. For the first test, the team 

established the maximum range for the LIDAR. Next, the field of view angle was determined for 

the LIDAR. Finally, the accuracy of the device was tested on moving vehicles. The results of 

these tests will be explained in the Methodology section.  

In order to effectively monitor the cyclist’s blind spot, the LIDAR was attached to the 

seat post of the bike. The 3D printed case enclosed the LIDAR, the Arduino, and the 9V battery. 

The attachment piece allows the case to rotate vertically and aim at the cars depending on the 

height of the bike. The LED strip was attached to the top tube of the bike with double-sided tape. 

The final design for the Firework Cycling Sensor incorporated the LIDAR-Lite sensor, an 

Arduino UNO, a 3D printed case, a 9V battery, and a meter-long strip of 32 LEDs.  

Feedback Methodology 

Consumer Feedback Methodology 

It is worth noting the methods of consumer products currently available. Backtracker, a product 

from iKuba, who, based out of South African, developed a “low-energy bike radar, a device that 

provides unparalleled situational awareness by giving the cyclist the speed and distance of 

vehicles that are approaching from behind” (Garmin 2015 Their radar system focuses on distance 

location and low visibility situations during the day. iKubu argues these situations are dangerous 

for cyclists, and that determining the speed of an approaching vehicle is too difficult even with 

perfect visibility. Therefore, a visual aid provides the right information, and leads to the solution 

of these oncoming vehicles from the rear.  
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Feedback Justification 

The 5050 RGB LED strip alternative involved in the current iteration produces 432 lumens per 1 

meter, 32 count LED strip (Dreamland, 2015). Each LED therein produced 13.5 lumens. A 

practical example of a bicycle lamp emits approximately 10 lumens (Vandenburg et al page 325, 

2008).  

 

Table 1: Technical Data Sheet for the 5050 RGB LED Strip 

This produces the luminescence required by California State Legislation, which says “(1) A lamp 

emitting a white light that, while the bicycle is in motion, illuminates the highway, sidewalk, or 

bikeway in front of the bicyclist and is visible from a distance of 300 feet in front and from the 

sides of the bicycle. (2) A red reflector on the rear that shall be visible from a distance of 500 

feet to the rear when directly in front of lawful upper beams of headlamps on a motor vehicle” 

(DMV, 2015).  
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Traffic control familiarity 

The use of lights to control traffic has been a staple for roadways. The first traffic light in the 

United States to feature what is called a “staggered” or “progressive” system. “General Electric 

installed the first of these… light systems on prestigious Sixteenth Street in Washington D.C., in 

1926” (McShane page 388, 1999). The established system of these color changing indicators 

possibly produces an automatic association when circles of red, yellow, and green are seen. The 

age of comparable traffic light technology should seem relevant to a citizen of the United States 

who is at least 79 years old or younger, as it is what they have grown up with as a traffic 

standard. This age group comprises 96.5% of the population in the United States. Citizens even 

older than this would certainly recognize the three color traffic system as well. Traffic lights are 

used worldwide, and therefore, the consideration of misunderstanding from non-US citizen can 

be marginalized to an insignificantly low percentage. There is some evidence that, “Through our 

evolutionary development as a species we have inherited reaction to color that we cannot 

control” (Mahnke, page 87, 1997). Mahnke even states boldly, “Color is essential to life”. These 

indicators legitimize the use of the current color scheme. 

Methods  

Experiment 1: Stationary Range Limit Under Optimal Conditions 

The main goals for the first experiment was to determine the maximum range of detection of the 

LIDAR-Lite, a PulsedLight product. The null hypothesis states the “Max Range Under Optimal 

Conditions” is 40 meters. The alternate hypothesis states the range of detection will not be 40 

meters, but perhaps greater or less than 40 meters. The experiment was completed by detecting 

30 distances, with the Lidar-Lite at the entrance of Bishop’s Peak Elementary School in San Luis 

Obispo, outside on a partly cloudy day with minimal wind. The team aimed the LIDAR-Lite 
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down a constant line of sight, marked off by chalked distance indicators, and attempted to gain a 

distance reading from the threshold of the sensor’s detection angle. All data was taken to the 

nearest centimeter, as this is approximately the tolerance provided by PulsedLight, with the 

output recorded to a serial monitor on the computer. The serial monitor is a data collection 

method used by Arduino software, where these values are interpreted digitally through the 

system the team used. On a computer the serial monitor runs as a continuous stream of data 

points as seen in Figure 5. 

 

Figure 5: Representation of the Arduino software serial monitor 

To determine the maximum range of the LIDAR-Lite, the team moved a 4’ x 6’ whiteboard in 5 

meter increments from 5 meters from the stationary prototype. The rest of the prototype included 

the LIDAR-Lite distance sensor, Arduino Uno, a computer, and the necessary wiring and code, a 

small table, chair and a device to secure the sensor to a height of 1 meter. The prototype was 

secured to the top of a 1 meter tall 4” x 4” wooden post, with the computer placed on a table 
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beside the post. The prototype was placed at a height of 1 meter to simulate the height of the 

device attached to the seat post of a bike. The whiteboard was placed at 5 meter increments, in 

the view of the LIDAR-Lite. The team observed the serial monitor in order to determine if the 

sensor could stabilize a reading. This stabilization was confirmed when the serial monitor 

presented distances within 70 centimeters of the target distance with a 95 percent confidence 

interval. Because these distance were set, the task of data observation and confirmation became 

relatively simple. The team would move the whiteboard 5 meters further from the LIDAR-Lite, 

record, and confirm the data using the same method. This procedure was performed until the 

sensor could not detect the whiteboard within the above mentioned tolerance. When the limit 

was reached, the Stationary Range Limit Under Optimal Conditions was complete. 

Experiment 2: Field of View Limits and Accuracy 

The main goals for the second experiment was to determine and the field of view angle The 

measurement was needed to determine if the proposed performance by PulsedLight was 

accurate. The null hypothesis states the detection angle of the LIDAR-Lite is 3°. The alternate 

hypothesis states the field will not be 3°, but perhaps greater or less than 3°. 

The experiment was completed by detecting 30 distances, with the LIDAR-Lite at the entrance 

of Bishop’s Peak Elementary School in San Luis Obispo. The team aimed the LIDAR-Lite down 

a constant line of sight, and attempted to gain a distance reading from the threshold of the 

sensor’s detection angle. All data was taken to the nearest centimeter, as this is approximately 

the tolerance provided by PulsedLight, with the output recorded to serial monitor on the 

computer.  

To determine the field of view of the LIDAR-Lite, the team moved an object large enough for 
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the LIDAR-Lite to easily detect, in this experiment a 4’ x 6’ whiteboard, in 5 meter increments 

from 5 meters from the stationary prototype. The prototype included the LIDAR-Lite, Arduino 

Uno, a computer, the necessary wiring and code, a table, chair and a device to secure the sensor 

to a height of 1 meter. The prototype was secured to the top of a 1 meter tall 4” x 4” wooden 

post, with the computer placed on a table beside the post. The prototype was placed at a height of 

1 meter to simulate the height of the device attached to the seat post of a bike. The whiteboard 

was placed at 5 meter increments, initially out of view of the LIDAR-Lite. The whiteboard was 

then moved from one side of the sensor into the center of the viewing angle until the computer 

recorded its distance at least 50% accurately. This accuracy was easily determined because the 

sensor and the object were both stationary, and the distances were marked on the ground using 

tape. The same procedure was performed from the other side if the sensor. The team performed 6 

trials and recorded 6 data points at each side of each distance in order to obtain an average. Once 

the team recorded data at multiple distances, a connecting line through the markers was drawn, 

useable viewing angle. The team would move the whiteboard 5 meters further from the LIDAR-

Lite and take data using the same method. This procedure was performed until the sensor could 

not accurately read the whiteboard. When the angle was drawn from the average of the data 

points, the range test and field of view test was complete. 
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Figure 6: Experiment 2 Setup 

Experiment 3: Detection Rate Comparison to Light Conditions 

The main goal for the third experiment was to determine the detection rate of the LIDAR-Lite 

under multiple light conditions. The measurement was needed to ensure the effectiveness of the 

LIDAR-Lite as a detection sensor. PulsedLight, the engineers behind the LIDAR-Lite, express 

the need to calibrate the LIDAR in low light conditions. The test hypothesis states that the 

LIDAR-Lite will detect the same percentage of the desires passing objects in direct sunlight and 

low light conditions. The alternate hypothesis states the percentage of detection of the desired 

passing objects will be different to a level of statistically significance.  
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The experiment was completed by detecting desired passing objects. These objects included cars, 

other cyclists, and other vehicles that can pass a cyclist in a commute through an urbane setting. 

The experiment was conducted at California Polytechnic State University, San Luis Obispo, near 

the east end of Engineering IV. The team aimed the LIDAR-Lite down a major exit of the 

university from the bike lane in order to test if it read passing objects using the code delivered by 

the microcontroller. Data was taken as a binary factor, evaluating if the sensor detected a vehicle 

by viewing the results of the serial monitor. Approximately 5 or greater data points within the 

viewing angle of the stable sensor was declared a reading. Less than 5 points was not declared as 

a reading.  

 

Figure 7: Experiment 3 Setup 
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As seen in Figure 7 setup included the LIDAR-Lite, Arduino Uno, a computer, and the necessary 

wiring and code. The prototype was secured to the top of a 1 meter tall 4” x 4” wooden post, 

with the computer placed on a table beside the post. The prototype was placed at a height of 1 

meter to simulate the height of the device attached to the seat post. The serial monitor was started 

on the computer in order to monitor the data sent from the LIDAR-Lite back to the Arduino. 

Before the data collection began, initial readings were taken in order to establish a sense of 

where a passing object should be detected. At time 0, the serial monitor read 0 cm, as expected, 

as the sensor was set to a location beyond its accuracy range, beyond 45 meters, sending a null 

value to the Arduino, interpreting the value as a 0 in the serial monitor. Once at least 50 objects 

passed the LIDAR-Lite, the experiment was complete. 

Future Development 

The team feels the need to discuss possible development of the Firework Cycling Sensor in the 

future if given the opportunity. This discussion can be found in Appendix B. The Firework is 

treated as a consumer product, and so a flow process of its production may be useful. The flow 

process creates a viable starting point for production planning and begins to develop control over 

the entire system.  

The team chose an iterative process of completing the proposed production planning. Appendix 

B presents the benefits of a phantomized facility layout, specializing in Just in Time production 

and control. The key metrics to note are the Net Present Worth of $349,842, a Return on 

Investment of $429,200, and a Payback Period of 0.43 years. Upon completion of this aggregate 

plan, the team has not only demonstrated the usefulness of production planning but the core 

concept of continuous improvement. 
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 Original Phantomized Difference 

Distance 367’ 228’ 139’  (-38%) 

Lead Time (Days) 10.1 8.1 2  (-20%) 

Return on Investment $403,780 $429,200 +$25,420 

Net Present Worth $324,423 $349,842 +$25,419 

Payback Period 0.4616 years 0.4277 years -0.0336 years 

Table 2: General improvements and final layout 

Improving upon the Sensor’s Capabilities 

The results noted in the aforementioned section were not as successful as we had hoped. 

As such, there is a significant opportunity to improve upon them through two different means. 

The first method incorporates a diffractive beam splitter into the LIDAR-Lite. A diffractive beam 

splitter is a lens that is used to split a single laser into several beams, effectively increasing the 

sensor’s FOV. Both the receiver and the transmitter would require this lens. In order to attain the 

optimal solution it's necessary to match the laser’s wavelength from the LIDAR-lite, which is 

904nm. This lens, unfortunately, has many drawbacks. It would decrease the sensitivity of the 

LIDAR-Lite, which essentially decreases the sensor’s effective range. Additionally, the 

accessibility of the diffractive beam splitters is quite unknown. Through extensive research, it 

appears that the availability for such small quantities as well as requiring such a specific 

wavelength is quite lacking. With this in place and the lack of remaining time the team was 

unable to continue and explore this option.  

Another alternative to improving the device was to utilize one or more additional sensors. 

The Arduino is capable of utilizing multiple LIDAR-Lite modules in unison by using a 

multiplexer (a device that selects a single analog or digital signals and sends it through a single 
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line). In order for this to work, each sensor need to be positioned with an offset angle to the 

adjacent LIDAR-Lite. For instance, if we were to include four of these sensors in the design, 

each one would be placed next to one another but angled but each one has a two degree angle 

offset to effectively increase the field of view. From a software standpoint, this would likely be 

difficult to implement due to the system logic required in determining how the distance should 

be calculated between all four LIDAR-Lite devices. Additional cost would also be an issue. At 

roughly $90 per module, costs would add up quickly with the risk of being unable to resolve the 

complicated logic.  

Results  

The data from Experiment One concludes the LIDAR-Lite laser sensor can successfully 

detect an object under ideal conditions up to 45 meters, causing the team to reject the null 

hypothesis that the sensor can detect an object under ideal conditions up to 40 meters. This result 

can add functionality to the use of the LIDAR-Lite. The effect may have come from the excellent 

stability of the test. The uses of the LIDAR-Lite as provided by PulsedLight typically involve 

either the sensor or the desired object moving. In any case, the rejection of the null hypothesis is 

welcome as it may only increase the ability of the LIDAR-Lite to detect desired objects.  

DISTANCE (centimeters) 

Trial 5  10 15 20 25 30 35 40 45 50 

1 507 1010 1520 2018 2510 3012 3506 4016 4508 0 

2 504 1015 1516 2033 2498 3068 3507 4000 4514 0 

3 505 1014 1502 2007 2529 3010 3515 4009 4515 0 

4 505 1010 1498 2014 2515 3006 3521 4012 4513 0 

5 505 1018 1514 2012 2517 3006 3516 4014 4481 0 
 

Table 3: Sample from output data from Experiment 1 
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The 70 centimeter interval was given as a result of the code developed by the team. The ranges 

of distance are seen in 500 centimeter intervals, as seen in Figure 12. These 500 centimeter 

intervals equate 8 feet, or to approximately 2 car lengths. Observing the output results of the 

serial monitor gave the team easy recognition of the output data.
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Figure 8: Sample of Code to show logic on distance ranges 

The results from Experiment Two also show the detection angle for the LIDAR-Lite is 1.28°, 

causing the team to reject the null hypothesis. This result is up for speculation as to the addition 

or restriction to the LIDAR-Lite’s functionality. In one sense, the focused field of view may not 

detect objects in a large enough range, thus restricting its use. In another sense, the focused field 

of view will not detect as many obstructive objects, including undesired vehicles or structures. 

Distance  

(cm) 

Width  

(inches) 

Width     

(cm) 

Angles 

(radians) 

Angles 

(degrees)   

500 6 15.24 0.015 1.747   

500 5.25 13.335 0.013 1.528  
 

500 5.75 14.605 0.015 1.674   

500 5.375 13.6525 0.0137 1.565   

500 5.75 14.605 0.015 1.674   

 

500 5.875 14.9225 0.015 1.710 AVE 14.224 

3000 22.75 57.785 0.010 1.104   

3000 24 60.96 0.010 1.164   

3000 20 50.8 0.008 0.970   

3000 20.75 52.705 0.009 1.007   

3000 22.625 57.4675 0.010 1.098   

 

3000 22.375 56.8325 0.010 1.085 AVE 56.092 

   AVE 1.281   

   

 

StdDEV 0.331   

   3SD 0.99276216   

 

Table 4: Sample from output data from Experiment 2 
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The independent variable was the passing objects, which arrived at a rate of approximately 2 

objects/minute. The dependent variable was the confirmation or failure-of-confirmation of 

detection from the LIDAR-Lite. 

The team investigated the reliability of a proposed field of view based on distance. The 

independent variable was the distance of the detection object to the sensor. This distance was 

considered along the parallel axis to the detection sight of the sensor. The distance was not 

recorded from the detected edge of the whiteboard to the sensor. 

A probability plot run through Minitab confirms the goodness of fit to the detection angle. The 

mean recorded field of view was 1.28°, with a standard deviation of 0.331° (Table 4). The 

resulting p-value of 0.038 provides confidence in order to reject the null hypothesis that the 

detection angle of 3°. 

 

Figure 9: Probability Plot to determine field of view of the LIDAR-Lite 
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The independent variable for Experiment 3 was the desired passing objects, which arrived at a 

rate of approximately 2 objects/minute. The dependent variable was the confirmation or failure-

of-confirmation of detection from the LIDAR-Lite. 

This eye-ball of the point at which a passing vehicle should be detected helped the team in 

analyzing the data as it was occurring on the serial monitor. 

  

Figure 10: Detection rate of passing objects compared to light conditions 

Figure 10 above displays the results of outdoor testing of the sensor setup. The sensor was 

directed at a specific location and angle facing oncoming traffic, while the monitor read specific 

distances at which the sensor detected motion. The sensor adequately tracked the approaching 

vehicles, and the LED subsequently lit up according to the reported measurements. Sunlight was 

a confounding variable which may have affected our data, as test 2 was performed in a dimmer 
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setting. In summary, in light conditions, the sensor detected 98% of all cars, and under dim 

lighting, 93%. 

Based on the three tests performed with the LIDAR prototype, the team concluded that our 

device did not meet the initial requirements. While the accuracies found in Test 3 were 

promising, the experimental field of view angle was too small to effectively monitor the blind 

spot of the cyclist. In order to increase the accuracy of the prototype, the field of view angle shall 

be increased by testing with a second LIDAR-Lite or a diffractive beam splitter. 
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Conclusion 

From Experiment One, we found the max range of the LIDAR-Lite to be 45 meters. From our 

research in the Literature Review, the speed disparity between a commuting cyclist and 

commuting vehicle is 22 mph. Also, the useable reaction time when considering the aroused state 

of both parties is approximately 1.5 seconds. The 45 meters translates to 72.42 feet. These 

metrics equates to a maximum of 1.50reactions for the cyclist or car. The distance for 1 reaction 

at this 22 mph disparity is 48.4 feet, or 30.07 meters which is well within the accurate range of 

the LIDAR-Lite.  

In order to increase the detection angle to the proposed angle from PulsedLight, the mean would 

have to increase by more than 5 standard deviations, which equates to essentially a 0 probability. 

The resulting mean of 1.28°, 95% confidence interval, and p-value of 0.038 suggest the detection 

angle is significantly less than proposed. These results can be attributed to two factors. 

PulsedLight may provide inflated information in order to increase the viability of the LIDAR-

Lite as a proximity sensor. Perhaps the specification 3° is more marketable than 1.28°. The 

experiment also may contain confounding variables that decreased the field of view. PulsedLight 

does express a need to calibrate the LIDAR-Lite before official use, and while the team feels 

confident in its ability to perform the calibration, errors can always exist. Also the change in 

distance that results from moving the detection object out to the limit of the field of view could 

result in a change of mean, but to consider it as an error the resultant mean would have been 

significantly closer to 3°. One to two standard deviations from 3° would result in this 

consideration. The team will use the detection angle of 1.28° in further development of the 

Firework Cycling Sensor.  
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Figure 11: Front view of the final design for the Firework Cycling Sensor 

 

Figure 12: ISO view from the left for the Firework Cycling Sensor 
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Figure 13: ISO view from the right for the Firework Cycling Sensor 

There is much research and development to be completed moving forward. Automated detection 

and safety are a highly trendy and necessary industry. However, as we’ve discovered through 

some of the more painstaking moments in our project, bringing an affordable and effective 

product which meets all user requirements is highly impractical. Compromises are inevitable in 

balancing functionality/quality and cost--but when essential needs are fulfilled the project and 

product can be deemed a “success.” This project can be labeled as such. 

 

Furthermore, this project has shed important light on matters beyond technical aspects of product 

development. Even with carefully determined requirements, forethought, and highly developed 

processes, change management and team dynamics have a more than subtle impact throughout 
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the development process and the end product. Having initially been inspired by the open-

workspace and inspiration-based rapid prototyping approach, this project threatened to derail 

each instance of rigidity and structure, as required by, for instance, the testing phase. As 

previously recommended, balancing creativity with structure seems to be key not just for 

successful product development, but also in the broader realm of project and people 

management. This project certainly warrants further research into discovering new insights on 

project management and team dynamics. 

Recommendations 

Systems-Level Requirements 

In creating complex systems, it is a common mistake for a project team to refrain from 

creating objective, systems-level requirements. Systems-level requirements are technical 

explanations of the user requirements. While the user in the case of the cycling sensor would 

want an accurate, inexpensive, lightweight, and easy-to-use device, it is up to the engineers to 

create explicit requirements. Because terms like “accurate” and “inexpensive” are subjective, 

explicit numbers shall be created to give the design team objective values to refer to during the 

design process. Instead of creating objective parameters to test against and work toward, we all 

had different ideas of an effective field of view for our sensor and how it should pick up cars. 

Because the team was inexperienced in designing and synthesizing complex systems, it was 

difficult to nail down explicit values to work toward after the initial testing phase. Examples of 

these parameters are the field of view of our sensor, the range of our sensor, and the percentage 

of cars detected on both stationary and moving bicycles. While these parameters were important 

to our design process and we considered them throughout the year, we did not have explicit 

values to refer to during our design and test process. This lack of explicit requirements created 
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confusion for the team about the success of the testing. When the test for the field of view angle 

yielded a value much more narrow than expected, the team scrambled to add a new component 

that would increase the field of view angle of the sensor system. At the advice of Kurt and Liz, 

the team decided to respect the fast approaching deadline and finished the development process 

with the narrow field of view angle. If the requirements had been defined early in the design 

process, the team may have had time to explore using multiple LIDAR Lite sensors to maximize 

accuracy and field of view.  

Passing or Veering Vehicles 

We did not consider if there should be different feedback to the cyclist for passing cars 

and cars that are veering into the bike lane. While this would have taken extensive coding logic 

in Arduino to identify the possibility of a car moving too close to a cyclist, we did not carry this 

need through the design process. Although some cars pass cyclists at too close a distance, the 

sensor would have been more effective if it alerted the rider of a car passing at a safe distance. 

This option would likely need multiple sensors and a more complex code.  

Completing Tasks and Working on Tasks 

 While meetings can be effective for working of the project, completing tasks are the key 

to finishing the project in a timely manner. Though the team met to work about three times per 

week, meeting for completion could have given the team small victories to boost morale. This 

can be accomplished by splitting up tasks into subtasks to ensure completion in each three hour 

session.  
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Milestones 

 Because this project allowed each team to create its own schedule, it was important for 

the team to set its own milestones and hold the team to completing these tasks. With this project, 

tasks often got close to completion by the projected date and then were completed in the next 

week. While mistakes can happen and tasks can get pushed back, extending tasks for an extra 

week can get confusing and stressful for the team.  

Balancing Collaboration and Delegation 

 Because of the complexity of this project, collaboration was key to making sound design 

decisions. Meetings were focused on communicating design options and testing prototypes. 

Unfortunately, meetings were not always convenient and the project would get left alone for a 

week at a time. This could have been solved with delegation of tasks between meetings.  

Scheduling Fun Activities 

 Because senior project can become stressful and task conflicts can happen, it is important 

to schedule fun activities to take the team’s mind off the project. Play time is important at all 

ages to improve morale in group situations. The team used bowling and video games to keep the 

mood light during stressful times in the project.  
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Appendix A: Figures and Tables 

Distance 

(cm) 

Width 

(inches) Width(cm)  

Angles 

degrees   

500 6 15.24 

0.01524117

998 

1.74651057

7  

 

500 5.25 13.335 

0.01333579

048 

1.52816902

3  

 

500 5.75 14.605 

0.01460603

853 

1.67372872

9  

 

500 5.375 13.6525 

0.01365334

83 

1.56455846

9  

 

500 5.75 14.605 

0.01460603

853 

1.67372872

9  

 

500 5.875 14.9225 

0.01492360

775 1.71011948 AVE 14.224 

1000 10.75 27.305 

0.01365334

83 

1.56455846

9  

 

1000 11.375 28.8925 

0.01444725

503 1.65553348  

 

1000 11.375 28.8925 

0.01444725

503 1.65553348  

 

1000 11 27.94 

0.01397090

887 1.60094823  

 

1000 10.875 27.6225 

0.01381212

824 1.58275331  

 

1000 11.875 30.1625 

0.01508239

348 

1.72831498

5 AVE 28.702 

1500 12.875 32.7025 

0.01090126

513 

1.24919296

8  

 

1500 13.5 34.29 

0.01143049

778 

1.30983856

3  

 

1500 14.375 36.5125 

0.01217143

432 

1.39474363

6  

 

1500 13.625 34.6075 0.01153634 1.32196776   
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507 9 

1500 14.75 37.465 

0.01248898

259 

1.43113198

8  

 

1500 14.75 37.465 

0.01248898

259 

1.43113198

8 AVE 36.068 

2000 17.25 43.815 

0.01095418

811 

1.25525749

5  

 

2000 17.675 44.8945 

0.01122409

63 

1.28618669

5  

 

2000 17.25 43.815 

0.01095418

811 

1.25525749

5  

 

2000 16.875 42.8625 

0.01071603

516 

1.22796717

7  

 

2000 17.25 43.815 

0.01095418

811 

1.25525749

5  

 

2000 17.375 44.1325 

0.01103357

271 1.2643543 AVE 43.9039 

2500 12.25 31.115 

0.00622308

0331 

0.71311247

79  

 

2500 12.625 32.0675 

0.00641358

7937 

0.73494304

15  

 

2500 12.625 32.0675 

0.00641358

7937 

0.73494304

15  

 

2500 12.475 31.6865 

0.00633738

484 

0.72621080

97  

 

2500 12 30.48 

0.00609607

5513 

0.69855879

77  

 

2500 12.5 31.75 

0.00635008

5351 

0.72766618

11 AVE 31.52775 

3000 22.75 57.785 

0.00963113

1107 1.10364633  

 

3000 24 60.96 

0.01016034

961 

1.16429030

3  

 

3000 20 50.8 0.00846686 0.97023171   
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8982 78 

3000 20.75 52.705 

0.00878439

2607 

1.00661724

5  

 

3000 22.625 57.4675 

0.00957820

9559 

1.09758196

7  

 

3000 22.375 56.8325 

0.00947236

6623 1.08545326 AVE 56.0916667 

  

 

AVE 

1.28138888

1 

  

   StdDEV 

0.33092072

02   

  

 

3SD 

0.99276216

06 

  

 

Table 5: Complete Output Data from Experiment 2 

 

Figure 14: Histogram of Detection Angle to determine field of view of the LIDAR-Lite 
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Figure 15: Ultrasonic Sensor Prototype 
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Figure 16: Design Iteration 2 of the Firework Cycling Sensor 
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Figure 17: LED Strip emitting red color due to no desired object 

 

Figure 18: LED Strip emitting yellow color due to approaching desired object 



67 
 

 

Figure 19: LED Strip emitting red color due to desired object in dangerous zone 

 

Figure 20: Side shot showing confirmation of desired object in dangerous zone 
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Appendix B: Facilities Planning 

Figure 21 shows a possible product structure for an initial revision of the Firework Cycling 

Sensor. This structure combines the use of purchased parts, assembled parts and manufactured 

parts. From this a phantomized structure, seen in Figure 22, was developed in order to add 

control to the manufacturing system. To achieve the final product the parts are assembled from 

bottom to top, following the path of the arrows. In this case for the product structure, the cover 

cannot be completed before the sensor subassembly. This subassembly cannot be completed 

before the circuit board has been soldered. The phantomization of the assembly allows for parts 

to be in constant flow in order to reduce material handling cost, inventory, and cumulative lead 

time. This phantomization, if scheduled before production begins, may lead to higher initial 

investment. The technique forces parts to move constantly, with no downtime while in process. 

The largest reduction from this technique is the required storage effort, including monetary, 

spatial, and organizational. The reduction in these metrics can possibly lead to a more 

competitive product as the production cost is reduced. 
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Figure 21: Product Structure for the Firework Cycling Sensor 

 

Figure 22: Phantomized Structure for the Firework Cycling Sensor 

Figure 22 details a phantomized indented bill of materials for the Firework Cycling Sensor. The 

IBOM includes part numbers, level within the IBOM, quantity per parent, UM, procurement 
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status, phantomization confirmation, lead time, cumulative lead time, and the product phase 

included in its life cycle. The IBOM’s standard times are approximations based on the proposed 

equipment in the facility layout. The parts included in the design include the LED strip, battery, 

plastic resin, battery cover, case bottom, case top, LIDAR-Lite sensor, wiring, and 

microcontroller. The circuit board, sensor subassembly, and final assembly are a result of the 

manufacturing operations inside the facility.  

Eventually, the team would personalize its circuit board for the specific needs of the Firework 

Cycling Sensor. The current assembly utilizes an Arduino Uno, which provides a great stepping 

stone into the realm of microcontroller technology. Even other Arduino models, such as the 

Arduino Nano, present alternatives to the comparatively large Uno. As the team considers its 

customer requirements for the Firework Cycling Sensor to be lightweight and aerodynamic. 

These consideration will push the development of the microcontroller into an extremely 

personalized model, which perhaps is already in development and can be placed into the IBOM 

as a purchased part. If the team had the means, and if it presented a more financially viable 

option, a microcontroller would be fabricated and not purchased. The same technique applies to 

every part of the Firework Cycling Sensor.   



71 
 

 

Table 5: Phantomized IBOM for the Firework Cycling Sensor 

 

The Phantomized Facility Design is below in 3 dimensions in Figure 23 and 2 dimensions in 

Figure 24. This facility includes the path of the Firework Cycling Sensor from the time when it is 

handled from inventory until a part comes off of the line. In this manner the system is contained 

within the manufacturing floor.  

All parts flow through the Receiving Area and are immediately converted to work in process if 

possible. Incoming parts may also be added to safety stock or inventory as a last measure. The 

microcontroller and wiring travel from the raw material storage area to the Soldering Station, 

where they are joined by a Nordson EFD Robot Dispenser, an automatic soldering robot. The 

joined part travels by conveyor to the Sensor Sub Assembly station, where the LIDAR-Lite is 

attached. While this process occurs, plastic resin is injection molded through a 1600T Injection 

Mold. Parts travel on separate conveyors and meet at Final Assembly. Past Final Assembly, the 

Firework Cycling Sensor travels straight to shipping ideally. When it cannot be shipped 

immediately, the sensor is stored in Finished Goods Inventory. If actuated, the team would 

implement a JIT design. This design relies on historical data as well as forecasting techniques. 
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While it is common for JIT to be costly to implement, the reward in doing so can mean a 

successful manufacturing operation. 

 
Figure 23: 3D Phantomized Facility Design for the Firework Cycling Sensor 
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Figure 24: 2D Phantomized Facility Design for the Firework Cycling Sensor 

Storage 

Facilities 

Cost Storage Facilities Costs 

Shelving 

Units (6) 

 

Total Square Feet  

= 182 sq. ft. 
Shelving Units (3) Total Square Feet  

= 80 sqft 

Rent 
Detailed Rent   

= $0.65 / sq. ft. / 

month + $1000 

= $1118.30 

Rent Detailed Rent   

= $0.65 / sq. ft. / month + 

$1000 

= $1052.00  

 

Table 6: Initial and Phantomized Storage Facility Costs 

Table 6 breaks down the cost structure for tools used in production. The team used a minimal 

approach to the facility design, considering the economy of scale as an overarching factor. As 

seen, the team created an initial design and then chose to phantomize the tools in the name of 
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process improvement. The two columns on the left detail the initial design. The significant tool 

not represented is the use of human energy. The two columns on the right, including the 

phantomized tools, replaces the actions of transporting parts by hand with automatic conveyors. 

The addition of three conveyor belts to transport the work in process and the subtraction of one 

forklift reduced the total overall cost of tools.  

Tools Costs  Phantomized Tools Costs 

Forklift (3) 3 Forklifts x $14,900   = 

$44,700 

Forklift (2) 2 Forklifts x $14,900   

= $29,800 

Hand Cart (2) 2 Hand Carts x $50  

= $100 

16-ft.Conveyor Belt 

(3) 

 

3 Conveyor Belt x 

$3,100 

=  $9,300 

  Hand Cart (2) 

 

2 Hand Carts x $50  

= $100 

 

Table 7: Initial and Phantomized Material Handling Technology 

 

Table 7 shows the monetary benefits to phantomized production. The total cost of material 

handling equipment is reduced, largely due to the reduction in forklift use. The difference in cost 

results in a savings of $5,600.The storage cost reduction of $795.60 is a result of the final 

shipment method. Instead of a final assembly storage space, which simply increases inventory. 

The phantomized process pulls a batch directly from the point of completion to the shipping area.  
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 Original Phantomized Difference 

Material Handling 

Equipment (total cost) 

$44,800 $39,200 -$5,600 

Storage (per year) $1,419.60 $624.00 -$795.60 

Monetary Savings $46,219.6 $39,824 +$6,395.60 

 

Table 8: Cost Savings Analysis on Phantomization of Manufacturing Process 

Table 8 details more general original design and improvements to the final layout for production. 

Distance refers to the complete travel of an order of one Firework cycling sensor. The proposed 

manufacturing facility allows for all parts to travel closely together from the initial receiving 

dock to final assembly. While some parts are assembled at different stations, which could 

increase distance when considering backtracking, setup methods, etc., the use of hand carts and 

batching easily eliminates this obvious waste in motion. Referring to Figure 23 and 24, the 

manufacturing floor resembles a U-Shape Assembly line creating a simple loop through each 

station. 
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 Original Phantomized Difference 

Distance 367’ 228’ 139’  (-38%) 

Lead Time (Days) 10.1 8.1 2  (-20%) 

Return on Investment $403,780 $429,200 +$25,420 

Net Present Worth $324,423 $349,842 +$25,419 

Payback Period 0.4616 years 0.4277 years -0.0336 years 

 

Table 9: General Improvements and Final Layout 

The monetary figures included in the general improvements are based off of a 500 units per 

month sales estimate. Raw material cost for the Firework Cycling Sensor total $105. If the 

Firework sells for $230 MSRP, yearly profit from sales yields $750,000. The phantomized layout 

returns a net present worth of $349,842. This return stems from a yearly investment of $320,800, 

which includes material handling, production, and salary costs. The resulting return on 

investment is $429,200. Using a discount rate of 12%, produces a net present worth of $349,842, 

a $25,419 improvement to the initial design using the same demand and discount rate.  The 

reduction in the payback period would be a very useful metric to present to possible investors 

when the Firework Cycling Sensor is applied to the consumer market. The general lean 

approach, focused on production planning and control systems, makes the plan competitive. 
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Appendix C: Final Code Development Through Arduino Software 

 

 

Figure 25: Code block 1 through Arduino Software 
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Figure 26: Code block 2 through Arduino Software 
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Figure 27: Code block 3 through Arduino Software 
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Figure 28: Code block 4 through Arduino Software 
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Figure 29: Code block 5 through Arduino Software 
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