
Index Selection for Embedded Control Applications using

Description Logics

Lubomir Stanchev and Grant Weddell

School of Computer Science, University of Waterloo

E-mail: {lp2stanc, gweddell}@uwaterloo.ca

Abstract

We consider the problem of automated index selection for embedded control
programs (ECPs). Such systems have the property that the transaction types,
which can consist of queries and updates, are predefined and can be classified as
either critical or non-critical. In this paper, we focus on the critical part of the
transaction workload for ECPs. More precisely, our problem input consists of a
set of critical transaction types and a database schema. The goal is to find a
minimum number of extended indices that enable every critical operation to be
performed efficiently. The proposed solution is novel in that it entails the use of
a description logic (DL) reasoner to find cases in which extended indices can be
combined or simplified.

1 Introduction

A basic problem in database systems is selecting the best possible set of indices for a
given workload, where a workload is usually abstracted as a set of queries and updates
together with their frequencies. In commercial systems like IBM DB2 UDB [9] and
Microsoft SQL Server [2] the problem is formulated as an optimization problem in
which the execution time of the input queries and updates is minimized subject to
a fixed storage overhead. However, as suggested in [7], an alternative formulation of
the problem is needed for embedded control programs (ECPs). First, since constraints
on execution time can exist, the performance of the critical transaction types needs
to be guaranteed. And second, since most ECP applications are main-memory, it is
important to economize storage and create as few indices as possible. We therefore
formulate the problem of index selection for ECPs (ISECP) as the problem of finding
the smallest number of indices that can be maintained efficiently during updates and
that can be used to efficiently answer each of the given critical queries. We formally
define the ISECP problem and the terms efficiently maintainable index and efficiently
answering a query in Section 2. It turns out that the ISECP problem is NP-Hard and
that this complexity is independent of the complexity of the DL reasoner. We prove
this fact and exhibit an exponential algorithm for solving the problem in Section 3.

In order to understand the challenges associated with the ISECP problem, consider
the following example. Suppose we are given the company database schema depicted
in Figure 1 and the set of OQL queries shown in Table 1. Suppose as well that we know
that no person that is younger than 32 years of age can receive a salary in excess of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/32430814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

90K. Then any index from the family of so called extended indices depicted in Figure
2 can be used to efficiently answer all three queries. The indices depicted in Figure 2
all index the objects in the class PERSON. These indices are first sorted relative to the
attribute name in some order, next relative to the attribute A in ascending order, and
next, the sorting is dependent on the value of A. If A = a1, then the remaining sorting
is relative to the salary attribute in ascending order. If A = a2, then the remaining
sorting is relative to the dep attribute in some order followed by an ordering on the
rank attribute in descending order. If A = a3, then the remaining sorting is arbitrary.
For now, let Ob(C) denote the set of objects that belong to a given class C. Then,
for an object p ∈ Ob(PERSON), attribute A is defined as follows: if p.Age < 30 and
p ∈ Ob(EMPLOYEE) then A = a1, if p.Salary > 100K and p ∈ Ob(MANAGER) then
A = a2, otherwise A = a3. We have used a1, a2 and a3 to denote three distinct
integers. The value for A is well defined because the first two cases are disjoint.

STRING

EMPLOYEE MANAGER DEPARTMENT

INTEGERPERSON CURRENCY
name age

salary

dep

rank

Figure 1: Example Company Schema.

2
asc:salary

1:{name}

3
desc:{dep},rank

C

CC

C1 ≡ PERSON

C2 ≡ EMPLOYEE u ∀age.(λx)(x < 30)
C3 ≡ MANAGER u ∀salary.(λx)(x > 100K)

Figure 2: A Family of Extended Indices that Supports the Example Queries.

1.1 Related Research

This work is based on two previous papers. In [10] a similar problem is described,
but updates are not considered and only enhanced indices that are “paths” rather
than “trees” are examined (i.e. the algorithm from [10] will create two, rather than
one, extended indices when applied to our motivating example). More recently in
[7] updates are considered, but unconventional indices in which the same element can
appear more than once are produced. Although, such indices can save space and speed
up performance, to the best of our knowledge they are not currently supported by any
commercial database vendor.

2 The ISECP Problem

An ISECP problem consists of a database schema formulated as a terminology in a DL
dialect called DLFD [8] and a workload formulated as a set of critical operations. A
DLFD terminology, written as T, corresponds to a set of inclusion dependencies of the

(number) (query)

1
select x

from PERSON as x

where x.name = :P

2

select x

from EMPLOYEE as x

where x.name = :P1 and x.salary ≥ :P2 and x.age < 30
order by x.salary asc

3

select x

from MANAGER as x

where x.name = :P1 and x.salary > 100K and x.dep = :P2

order by x.rank desc

Table 1: Example Critical Queries.

form C v D, with left and right-hand concept descriptions defined by the grammar
in Figure 3. The grammar assumes a set {PC1, PC2, . . .} of primitive concepts and
a set {A1, A2, . . .} ∪ {ID} of features1. As usual, a sequence of features is called a
feature path and is denoted as Pf, possibly subscripted. The semantics is with respect
to a structure (∆,≤, (·)I) in which ∆ is a domain of objects, ≤ is an ordering relation
over ∆ and (·)I is an interpretation that begins by mapping primitive concepts to a
subset of ∆ and features to total functions over ∆ (this function must be the identity
relation in the case of ID). The inclusion dependency C v D holds iff CI ⊆ DI . The
logical implication problems asks T |= C v D; that is, if all all interpretations that
satisfy each inclusion dependency in T must also satisfy C v D.

We use “⊥” as a shorthand for C u¬C, C1 tC2 as a shorthand for ¬(¬C1 u¬C2)
and C1 ≡ C2 as a shorthand for the pair of inclusion dependencies C1 v C2 and
C2 v C1. We also require that the defined functional dependencies (see the last line
in Figure 3) are acyclic (e.g. C |= C{A=} → B= and C |= {B=} → A= cannot both
be a logical consequence of a given terminology.)

Some inclusion dependencies that relate to our example schema are as follows.

EMPLOYEE v PERSON

MANAGER v PERSON

PERSON u ∀Age.(λx)(x < 32) u ∀Salary.(λx)(x > 90K) v ⊥
(λx)(x > 90K) ≡ (λx)(90K < x ≤ 100K) t (λx)(x > 100K)
(λx)(x < 32) ≡ (λx)(30 ≤ x < 32) t (λx)(x < 30)

Note that we have used λ expressions to denote primitive concepts over concrete
domains. Implementation details follow in Section 3.1.

A workload consists of a set of critical queries and updates. Each query has the
form:2

1Hereon, we refer to attributes as features in order to be consistent with DL terminology.
2A formal semantics for such queries is beyond the scope of this paper

Syntax:† DLFD Semantics: Definition of “(·) I”

C ::= PC (PC)I ⊆ ∆
| C1 u C2 (C1)

I ∩ (C2)
I

| ∀A.C {x : (A)I(x) ∈ (C)I}
| ¬C ∆ \ (C)I

D ::= C

| D1 u D2 (D1)
I ∩ (D2)

I

| ∀A.D {x : (A)I(x) ∈ (D)I}
| C{Pf

∼1
1 , ..., Pf

∼k

k } → Pf
∼ {x : ∀ y ∈ (C)I .

∧k

i=1(Pfi)
I(x)∼i(Pfi)

I(y) ⇒ (Pf)I(x)∼(Pf)I(y)}
† k > 0, ∼∈ {<,≤, =,≥, >}

Figure 3: Syntax and Semantics of DLFD.

select x

from C as x

where x.A1 = :P1 and . . . and x.Aa = :Pa and [x.Aa+1 between :Pa+1 and :Pa+2]
order by [x.Aa+1 db+1], x.B1 d1, . . . , x.Bb db.

Note that we use A and B, possibly subscripted, to denote features. In the above query,
{Pi}

a
i=1 are parameters, Pa+1 and Pa+2 are either both parameters, or Pa+1 = −∞ and

Pa+2 is a parameter, or Pa+2 = +∞ and Pa+1 is a parameter. Also, di ∈ {asc, desc}
for i ∈ [1..b+1] and [·] is used to denote an optional component, where we require that if
one of the optional components is present, then so is the other. For example, the second
query from Table 1 is based over the concept description EMPLOYEEu∀Age.(λx)(x < 30)
and Pa+2 = +∞.

A critical update can add or remove an object from a primitive concept or modify
the value of an object’s feature. We will require that every critical update is consistent,
which in turn implies that the database scheme T is acyclic with respect to inclusion
dependencies. For simplicity, we assume that critical updates of all three types are
defined for each primitive concept in T.

The solution of the ISECP problem is a set E = {ei}
m
i=1 of extended indices that

have the following properties: (1) There exists an extended index ei ∈ E that can be
used to efficiently answer every critical query Q. We define this to hold when Q can
be answered using a single search in ei (this will take O(log(|ei|)) time for a balanced
tree index) followed by |Q| pointer chases, where |ei| and |Q| denote, respectively, the
size of the extended index ei and the size of the query result for Q; (2) Every extended
index ei ∈ E is efficiently maintainable, i.e. every critical update can be synchronized
with ei in O(log(|ei|)) time; and (3) There does not exist a set of less than m indices
for which (1) and (2) hold.

Definition 1 (Extended Index) An extended index e is a rooted ordered tree with
nodes Ne and node labels of the form “C : Ad1

1 , . . . , Ada
a ”, where di ∈ {asc, desc}

for i ∈ [1..a]. We use Desc(e), Feat(e) and Order(e) to denote “C”, {Ai}
a
i=1 and

“Ad1
1 , . . . , Ada

a ” respectively, and write re to denote the root node in e. The extended
index e is well formed relative to a terminology T iff each of the following conditions are
satisfied: (1) For any {n1, n2} ⊆ Ne, if n1 is an ancestor of n2 then T |= Desc(n2) v

Desc(n1) and Feat(n1) ∩ Feat(n2) = ∅, and (2) For any {n1, n2} ⊆ Ne, if n1 and n2

have a common parent then T |= Desc(n1) u Desc(n2) v ⊥.
Operationally, an extended index e has an entry for each object o ∈ (Desc(re))

I .
The index is sorted first on Order(re). Suppose 〈n1, . . . , nk〉 are the children of re in
order. Then, the index is next sorted on the feature A in ascending direction, where
o.A = i for some 1 ≤ i ≤ k if o ∈ (Desc(ni))

I and o.A = 0 otherwise. The index is
next sorted depending on the value of the feature A. The objects for which o.A = i

are sorted relative to the labels of the node ni and its descendants, where the order is
defined in the same manner as for re. The objects for which o.A = 0 are sorted in any
order. We will require that an extended index has an efficient “get next” capability,
i.e. once an element is found, then the next element according to the defined index
order can be found in amortized constant time.

Note that an extended index that is well-formed relative to a given terminology
defines a partial order on the objects included in the index. This is a simple conse-
quence of conditions (1) and (2), and our operational definition of ordering within the
index.

We define T to be a label function that maps an (ordered) node-labeled rooted
tree to a string. We will use L(n) to denote the label of the tree with root n. For
a leaf node we define L(n) to be the label of the node n. For a non-leaf node we
define L(n) = Desc(n) : Order(n)[(L(n1)), . . . , (L(nk))], where 〈n1, . . . , nk〉 are the
(ordered) children of n. For a tree t we define T (t) = L(tr), where tr is the root node
of the tree t. Throughout the paper we will sometimes use T (t) to describe the tree t.

Given an extended index e, we will use Q(e) to denote the set of queries that we
expect to be efficiently answerable using e. First, suppose that e contains a single node
with label C : Ad1

1 , . . . , Ada
a . Then Q(e) denotes the set of queries in which the first k

features are fixed (0 ≤ k ≤ a), possibly a range is specified on the k + 1st feature, and

the order A
dk+1

k+1 , . . . , Adm
m is specified on the query result, where k ≤ m ≤ a. Next,

suppose that e is a tree with nodes Ne. For a node n ∈ Ne, let 〈C1 : L1, . . . , Ck : Lk〉
be the labels along the path from the root of e to the node n. Then, we define
Q(n) = Q(e′), where e′ is the index that has a single node labeled Ck : L1, . . . , Lk.
We define Q(e) =

⋃

n∈Ne

Q(n).

3 The Proposed Solution

Our solution to the problem consists of four steps. In the first step, we transform each
input query into a parameterized access requirement type (PART), where a PART
describes a set of extended indices. (Figure 2 depicts the PART C1 : {name}[(C2 :
salaryasc)(C3 : {dep}, rankdesc)].) In the second step, we use the database schema to
simplify a set of PARTs. In Step 3 we merge PARTs in order to save space and in the
final step we build an extended index for each remaining PART.

Definition 2 (PART/PART permutation) A PART P is an unordered rooted
tree with node labels of the form “C : {H1}, V1, . . . , {Hn}, Vn”, where Hi is of the
form “A1, . . . , Aa”, Vi is of the form “Bd1

1 , . . . , B
db

b ” and di ∈ {asc, desc}. A com-
plete permutation π for a PART P converts it into an extended index. It does so
by converting each H component of a node’s label into a V component and by fixing

the tree order. The first task is accomplished by first permutating the features inside
the component, then adding the superscript asc or desc to each feature and finally
removing the curly braces. A PART P is well formed relative a terminology T iff for
every complete permutation π for P, π(P) is a well formed extended index relative to
T. A PART P describes the set of extended indices that can be produced under the
different complete permutations for P. We will use E(P) to describe this set. We also
define Q(P) =

⋂

e∈E(P)

Q(e). This is the set of queries that can be efficiently answered

by any of the extended indices of P. A regular permutation π for a PART P con-
verts into the PART P′ for which E(P′) ⊆ E(P). We will say that the permutation
π for the PART P is more restrictive then the permutation π′ for the same PART iff
E(π(P)) ⊂ E(π′(P)). We will call a PART P a simple PART if it consists of a single
node and a nested PART otherwise.

3.1 Step 1: Converting Critical Queries into PARTs

Suppose we are given a query Q as part of the critical workload (see Section 2 for
the syntax of Q). In this step of the algorithm we will convert Q into the PART
C : {A1, . . . , Aa}, B

d1
1 , . . . , B

db

b if Q does not contain the optional components and into

the PART C : {A1, . . . , Aa}, A
db+1

a+1 , Bd1
1 , . . . , B

db

b otherwise. For example, the queries
from Table 1 will be converted into the PARTs C1 : {name}, C2 : {name}, salaryasc

and C3 : {name, dep}, rankdesc respectively, where {Ci}
3
i=1 are defined in Figure 2.

Note that for each concept term over a concrete domain that is introduced (e.g.
(λx)(x > 100K)), we need to add constraints to the terminology that describe the
relationship between the introduced concept term and the other concept terms over the
same concrete domain. For example (see [5]), suppose we are given the domain of real
numbers and a set of concept terms corresponding to predicates that are built using
the comparisons {>,≥, <,≤, =} and the constants {ai}

n
i=1. We can then partition

the domain into 2n + 1 groups. There will be one group for each of the n constants
and n + 1 groups for the n + 1 intervals defined by them. One then creates 2n + 1
primitive concepts to represent the groups. As a result, each original concept term
can be described using the additional 2n + 1 primitive concepts (see Section 2 for an
example). For a concept term over the domain of integers, a similar procedure can be
applied (see [6]).

Second, note that the created PART for a query Q exactly describes the set of
extended indices that can be used to answer Q efficiently. If Q does not contain the
optional components, then any index on C that is ordered by the features {Ai}

a
i=1

in arbitrary order and direction followed by the ordering Bd1
1 . . . B

db

b can efficiently
support Q. In order to do so, we just need to search for the values {Pi}

a
i=1 of {Ai}

a
i=1

in the extended index and then return the result in the order defined by the index.
Similarly, if Q contains optional components, then we need to search for the values
{Pi}

a
i=1 for {Ai}

a
i=1, followed by a search of the value P ′ for Aa+1 and then return all

objects from the index in order until the value P ′′ for Aa+1 is passed. We have used
P ′ and P ′′ to denote Pa+1 and Pa+2, respectively, when db+1 = asc and Pa+2 and
Pa+1, respectively, when db+1 = desc.

3.2 Step 2: Simplifying PARTs

We can use schema information for simplifying PARTs along the lines suggested in
[3]. For example, consider the third query from Table 1 and the inclusion dependency
MANAGER v MANAGER{name=} → rank=. The PART MANAGER : {name, dep}, rankdesc

for this query can be rewritten as MANAGER : {name, dep}. The reason is that two
managers which have the same name will have the same rank, and consequently there
is no need to sort the managers with the same name according to their rank.

In general, consider a simple PART P = C : {A1, . . . , Aa}, B
d1

1 , . . . , B
db

b produced
by Step 1 of the algorithm. Let 〈A′

1, . . . , A
′

a〉 be a permutation of {A1, . . . , Aa}.
Then, T |= C v C{A′=

1 , . . . , A′=
i } → A′=

j , for 1 ≤ i < j ≤ a, implies that the
feature corresponding to A′

j in {Ai}
a
i=1 can be removed from P. Similarly, T |= C v

C{A′=
1 , . . . , A′=

i } → B=
j , for 1 ≤ i ≤ a and 1 ≤ j ≤ b, implies that Bj can be removed

from P. And finally, T |= C v C{A′=
1 , . . . , A′=

i , B=
1 , . . . , B=

j } → B=
k , for 0 ≤ i ≤ a,

1 ≤ j < k ≤ b, implies that Bk can be removed from P. Again, the reason that this
is possible is that a functional dependency guarantees that, once the features at its
left-hand side are fixed, there can be at most one different value for the right-hand-side
feature. Our assumption of acyclicity of the functional dependencies in the schema
ensures that this process is deterministic.

3.3 Step 3: Merging PARTs

The idea behind PART merging is to combine two or more PARTs into a single PART
that has the same query answering capabilities. PART merging is beneficial because
it saves space and, also, allows updates to be performed faster.

Definition 3 (PART merging) We will use “⊕” to denote the PART merging op-

erator. P = P1 ⊕ . . . ⊕ Pm holds when Q(P) =
m
⋃

i=1
Q(Pi).

There are two cases we will consider when merging simple PARTs P1 = C1 : L1 and
P2 = C2 : L2. The first case occurs when T |= C2 ≡ C1. Failing this, the second case
occurs when T |= C2 v C1. (On notation, since a permutation does not affect the
concept description of a simple PART P = C : L, we will sometimes write π(L) to refer
to the expression π(P) without the concept description part.) In the first case, P1 and
P2 can be merged if there exist permutations π1 and π2 such that π1(L1) is a prefix
of π2(L2). The result of P1 ⊕ P2 will be C2 : π2(L2), where π2 is the least restrictive
permutation such that there exists a permutation π1 for which the merging condition
holds. In the second case, P1 and P2 can be merged when there exist permutations
π1 and π2 such that π1(L1) is a prefix of π2(L

′

2), where we have used L′

2 to denote
the longest prefix of L2 that consists entirely of curly braces components. Let π1 and
π2 be the least restrictive permutations for which the merging condition holds. We
define L3 = π1(L1), and L′′

2 such that L2 = L′

2, L
′′

2. We also define L4 such that
π2(L

′

2) = L3, L4. Then the result of P1 ⊕ P2 will be C1 : L3[(C2 : L4, L
′

2)].
We next examine how a nested PART P1 can be merged with a simple PART

P2 = C : L. The merging condition is that P1 should contain a path K that starts
from the root of the tree and has labels 〈C1 : L1, . . . , Ck : Lk〉 such that (1) the simple
PART P′

1 = Ck : L1, . . . , Lk and the PART P2 are mergable and (2) if T 6|= Ck ≡ C,

then T |= Desc(n) u C v ⊥ should hold for each child n of the end node of the path
K. It is easy to see that if P1 is a well formed PART, then there can be at most one
such path in P1. Suppose the merging condition holds. Let P′ = P′

1 ⊕ P2. If P′ is a
simple PART, then P1 ⊕P2 is constructed from the PART P1 by relabeling the nodes
along the path K using the label from the root node of P′. Alternatively, if P′ is a
complex PART, then P1 ⊕P2 is constructed as in the previous case, with the addition
that the child node in P′ is appended as a child to the end node of the path K.

Our algorithm for merging m PARTs follows. It runs in exponential time and
uses dynamic programming. In the first step, we consider all possible pairs of initial
PARTs and put each pair in a separate configuration. If the two PARTs that are in a
configuration can be merged, then we do so. We will call a configuration that is built
from k initial PARTs a k-configurations. In the second step we create 3-configurations
by examining all possible pairs of a 2-configurations and an initial PART that wasn’t
used in the creation of the 2-configuration. Again, when the initial PART can be
merged with any of the PARTs in the configuration, we do so. After the (m − 1)st

step is applied, a set of m-configurations will be produced. The algorithm next finds
a m-configuration with the smallest number of elements and returns the PARTs in it.

Theorem 1 Our PART merging algorithm finds the fewest number of PARTs that
can be created from the initial PARTs by applying any PART merging strategy.

Proof (Sketch) In order to prove the theorem we will prove the following claims:
(1) The presented PART merging rules are correct relative to Definition 3; (2) If the
preconditions for merging a simple PART and an arbitrary PART are not satisfied,
then the PARTs cannot be merged; (3) If two complex PARTs can be merged, then
the result of merging the two PARTs will be identical to merging the first PART with
the simple PARTs used in the construction of the second PART and (4) The described
PART merging algorithm finds the smallest set of PARTs that can be produced from
the input set by applying the described PART merging rules. Claims (1) and (2) can
be easily verified. Claim (3) is a direct consequence of Definition 3. We next prove
claim (4). Let P̄ = {Pi}

m
i=1 be the input PARTs of the algorithm and P̄′ = {P′

i}
k
i=1

be the set of PARTs in a m-configuration with the smallest number of PARTs. First,
note that the algorithm constructs the set P̄′ by applying the PART merging rules to
the set P̄. Next, note that for every set of PARTs P̄1 ∈ P̄ the algorithm considers any
s-configuration that can be constructed by applying the merge rules to the elements
of P̄1, where s is cardinality of P̄′. This implies that the algorithm is exhaustive, i.e.
it indeed finds a minimal set of PARTs that can be constructed from the input set by
applying the PART merging rules. ¥

We will next show how the PART merging algorithm works on our running ex-
ample. Suppose that we are given as input the PARTs corresponding to the queries
in Table 1 (See Section 3.1). The algorithm will build the following 2-configurations:
{C1 : {name}[(C2 : salaryasc)]}, {C1 : {name}[(C3 : {dep}, rankasc)]} and {C2 :
{name}, salaryasc, C3 : {name, dep}, rankdesc}. From those 2-configurations the al-
gorithm will build several 3 configurations, where one of them will consist of the single
PART depicted in Figure 2.

It is natural to ask if there exists a polynomial time algorithm for solving the
PART merging problem. The answer is no if P 6= NP .

Theorem 2 Suppose we are given a set of PARTs over a database schema T and an
integer K. Suppose as well that we can check whether two PARTs are mergable and
merge them if they are in polynomial time. Then the decision problem of whether the
PARTs can be merged into ≤ K PARTs is NP-Complete.

Proof (Sketch) First, note that the problem is in NP. The reason is that a certificate
that partially fixes the order of the features inside curly braces of the given PARTs and
groups the PARTs that are to be merged can be verified in polynomial time. Next,
we will prove that the problem is NP-Hard by a reduction from minimum-maximal
matching for a bipartite undirected graph, where the later problem is known to be
NP-Complete ([4]). Suppose we are given the undirected bipartite graph G = (V, E).
Then, since the graph is bipartite, its vertices can be split into the sets V ′ = {V ′

i }
a
i=1

and V ′′ = {V ′′

j }b
j=1 in such a way so that there doesn’t exist an edge between two

vertices of the same set. Next, we will label the vertices in V ′ as V ′

i = C : Ai and
the vertices in V ′′ as V ′′

j = C : Bj , Āj , where A ∈ Āj iff there exists a vertex Vk ∈ V ′

that has label C : A and for which (Vk, Vj) ∈ E holds. Next, we ask ourselves if the
a + b simple PARTs that are formed from the node labels of G can be merged into
≤ K PARTs. If the answer is yes, then there exists a maximum matching of G with
≤ K edges. This matching corresponds to the pairs of PARTs that are merged in the
found solution. This is a matching because we have constructed the labels in such a
way so that each PART can be merged with exactly one of its adjacent PARTs in the
graph G. ¥

Corollary 1 Even the simplified version of the ISECP problem in which functional
dependencies are not part of the schema model and DL reasoning is in P is NP-Hard.

Proof(Sketch) There is a straight-forward polynomial time reduction from the PART
merging problem to the described simplified ISECP problem. ¥

3.4 Step 4: Constructing Extended Indices

The final step is to produce an extended index for each remaining PART. Given a
PART P, we first add a child node n′ with label “C ′ : IDasc” to each non-leaf node n for

which T 6|=
k
⊔

i=1
Desc(ni) ≡ Desc(n), where {ni}

k
i=1 are the children of n. We also add

the constraint C ′ ≡ C u¬C1u . . .u¬Ck to T, where C ≡ Desc(n) and Ci ≡ Desc(ni).
This procedure introduces in P an order for the objects that are not explicitly defined
in it. We next convert the PART into an extended index by choosing a complete
permutation for each PART and creating the corresponding extended index. We also
make each extended index e a total order. Let A1 . . . Aa be the features referenced in
the path from the root of e to the node n. Then, we will append a sort on ID ascending
to the label of node n if T 6|= Desc(n) v Desc(n){A=

1 , . . . , A=
a } → ID=. The fact that

the resulting extended indices can efficiently support the input set of critical queries
follows from the correctness of the previous steps of the algorithm. As well, each
update can now be efficiently propagated to each extended index. The reason is that
each extended index consists of the elements in some concept description and that
there is a total order on the elements. The presented reasoning informally shows that
our algorithm for solving the ISECP problem is sound.

Going back to our running example, suppose that no functional dependencies can
be deduced from T. Then the extended index C1 : namedesc[(C2 : salaryasc, IDasc), (C3 :
depasc, rankdesc, IDasc), (C4 : IDasc)] is a possible output of our algorithm, where
C4 ≡ C1 t ¬C2 t ¬C3.

4 Extensions and Conclusion

In this paper we have explored only a limited type of critical queries that are based
on a single concept description. However, those queries are fundamental because
more complex queries can be efficiently answered on top of them. For example, a
join between the concept description C1 and the result of the critical query Q2 that
is based over the concept description C2 can be performed by an index scan of the
extended index for Q2 followed by a set of scans on the extended index for C1 if
there is an inclusion dependency between C1 and C2. Note as well that such a query
can be answered efficiently, i.e. in time O(|Q| + log|I|), where |Q| and |I| represent,
respectively, the size of the query result of Q and the size of the indices that are used
to answer Q. Finally, note the fact that the proposed algorithm runs in exponential
time doesn’t make it impractical because the algorithm is part of a preprocessing
stage, i.e. it only needs to be run once.

5 Acknowledgments

The authors greatfully acknowledge the support of the National Science and Engineer-
ing Research Council of Canada, of the Communications and Information Technology
Ontario and of Nortel Networks Ltd.

References

[1] F. Baader and P. Hanschkle. A scheme for integrating concrete domains into concept languages.
Twelfth International Conference on Artificial Intelligence, pages 425–457, August 1991.

[2] Surajit Chaudhuri and Vivek Narasayya. An Efficient, Cost-Driven Index Selection Tool for
Microsoft SQL Server. Proceedings of the 23rd VLDB Conference, pages 146–155, 1997.

[3] Eugene Shekita David Simmen and Timothy Malkemus. Fundamental Technique for Order
Optimization. ACM SIGMOD, pages 57–67, 1996.

[4] E.L.Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston,
1976.

[5] Jeanne Ferrante and Charles Rackoff. A Decision Procedure for the First Order Theory of Real
Addition with Order. SIAM J. Comput, 4(1):69–76, 1975.

[6] Peter Z. Revesz. A Closed-Form Evaluation for Datalog Queries with Integer (Gap)-Order Con-
straints. TCS, 116(1):117–149, 1993.

[7] L. Stanchev and G. Weddell. Index Selection for Compiled Database Applications in Embedded
Control Programs. Canadian Advance Study Conference (CASCON), pages 156–170, 2002.

[8] David Toman and Grant Weddell. On Attributes, Roles, and Dependencies in Description Logics
and the Ackerman Case of Decision Problem. Proc. Description Logics, 2001.

[9] Gray Valentin, Michael Zulian, Daniel C. Zilio, Guy Lohman, and Alan Skelley. DB2 Advisor: An
Optimizer Smart Enough to Recommend its Own Indexes. Proceedings of the 16th International
Conference on Data Engineering, pages 101–110, February 2000.

[10] G. Weddell. Selection of Indexes to Memory-Resident Entities for Semantic Data Models. IEEE
Transactions on Knowledge and Data Engineering, 1(2):274–284, June 1989.

