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Abstract: Isostatic response of the Earth’s crust as a consequence of the fluctuating extent of ice-sheet masses
was accompanied by earthquakes probably due to local reactivation of pre-existing faults. Our study
of a glacilacustrine and glacifluvial succession exposed on Rügen Island (SW Baltic Sea) indicates
that some of the soft-sediment deformation structures within the succession must have formed shortly
before the front of the Pleistocene Scandinavian Ice Sheet reached the study area (during the Last
Glacial Maximum), thus during a stage of ice advance. Based on analysis of the textural and struc-
tural features of the soft-sediment deformation structures, the deformed layers under investigation are
interpreted as seismites which formed as a result of seismically induced liquefaction and fluidisation.
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1 Introduction

Bending of the Earth’s lithosphere and mantle displacement
can be induced by loading–unloading cycles resulting from
alternating advances and retreats of an ice sheet (see, e.g.
Mörner, 1990). Such glacial isostatic adjustment (GIA) may
well induce earthquakes in the Earth’s crust that leave traces
in the form of layers with soft-sediment deformation struc-
tures (SSDSs) called “seismites” (van Loon, 2009). The
link between deglaciation and neotectonics was described
by many authors, e.g. Johnston (1996), Muir-Wood (2000),
Kaufmann et al. (2005), Brandes et al. (2012), Hoffmann and
Reicherter (2012), van Loon and Pisarska-Jamroży (2014),
and van Loon et al. (2016). In contrast, there is only little evi-
dence that the ice-sheet advance could cause earthquakes, too
(Brandes et al., 2011; Pisarska-Jamroży et al., 2018a, 2019),
and that corresponding SSDSs of seismic origin have been
formed.

Pisarska-Jamroży et al. (2018a) documented two layers
with abundant SSDSs in a glacilacustrine silty-sandy succes-
sion, in a coastal cliff near Dwasieden on Jasmund Peninsula
of Rügen Island (Fig. 1a; 54◦30′1.86′′ N, 13◦36′49.94′′ E),
which have been interpreted as seismites. The location un-
der study is situated at the southernmost rim of the Trans-
European Suture Zone (TESZ). The TESZ is a zone of
crustal weakness and is characterised by numerous faults
activated and reactivated during several late Palaeozoic and
Mesozoic tectonic phases. The NW-trending faults (Fig. 1b,
c) of the Tornquist Zone (Berthelsen, 1992), subdivided
into the Sorgenfrei-Tornquist Zone (STZ) and the Tornquist-
Teisseyre Zone (TTZ), and of the Tornquist Fan, occur in the
area between Rügen and Bornholm (Thybo, 2000). Meso-
zoic transtension above the TESZ led to the formation of
the Western Pomeranian Fault System (Krauss and Mayer,
2004). Compressional tectonics during the Late Cretaceous
and the early Tertiary caused fault reactivation and anti-
cline formation. Tertiary sediments are only locally pre-
served in graben structures bordered by WNW–ESE- to NW–
SE-trending faults of the Western Pomeranian Fault System.
This suggests reactivation of this fault system during the
Cainozoic (particularly during the Oligocene–Miocene) due
to changes in the stress field (compression) from NE to NW
(Seidel et al., 2018).

2 Soft-sediment deformation structures interpreted
as seismites

The succession of the cliff in Dwasieden, with an overall
height of 20 m, is composed of Late Cretaceous (Early Maas-
trichtian) limestone overlain by five late Pleistocene units:
three glacial diamict layers (M1–M3), separated from each
other by glacifluvial and glacilacustrine silts, sands and grav-
els (see Brumme et al., 2019). Within the sandy silts, three
deformed layers comprising SSDSs have been described
(Fig. 2) by Pisarska-Jamroży et al. (2018a). The lowermost

deformed level takes irregular positions; the SSDSs within
it are concentrated in a few places, without any obvious lat-
eral or vertical alignment. The top of this layer was exposed
to periglacial conditions, which is indicated by the presence
of an ice-wedge cast (Fig. 2c). Two deformed levels higher
up show entirely different characteristics regarding both their
distribution (laterally continuous over 150 m and vertically
restricted to relatively thin levels) and structural nature; most
SSDSs are relatively simple load casts and pseudonodules,
with genetically related flame and fluid-escape structures
(Fig. 2). A critical feature is that the two deformed levels
are interbedded between undeformed layers. This excludes
an origin of the deformations as a direct result of endogenic
tectonics, periglacial processes or glacitectonics. A seismi-
cally induced origin of the SSDSs due to a GIA is therefore
the only feasible explanation.

Some metres west of the main investigated profile, dump-
stones and dropstones up to 0.8 m in size occur in the
silty-sandy late Weichselian glacilacustrine succession. The
dumping events are linked to iceberg rafting in a glacial lake
(see Pisarska-Jamroży et al., 2018b).

3 Age and origin of the seismites

Based on their stratigraphic position and optically stimulated
luminescence (OSL) dating, the two layers with SSDSs in-
terpreted as seismites (Pisarska-Jamroży et al., 2018a) were
deposited between 22.7±1.9 ka and 19.0±1.8 ka, and were
formed in front of the Scandinavian Ice Sheet (SIS) (Heine
et al., 2009; Kenzler et al., 2015, 2017). Kenzler et al. (2017)
concluded that the first late Weichselian ice advance reached
the Jasmund Peninsula at 22± 2 ka (Fig. 3a). This time
roughly coincides with the maximum extent of the SIS in the
SW Baltic Sea area during the Brandenburg Phase of the We-
ichselian glaciation (Houmark-Nielsen, 2010; Hughes et al.,
2016). The lowermost till (M1) is interpreted to have formed
during the Saalian glaciation during MIS 6, whereas the rest
of the succession accumulated during the Weichselian glacia-
tion (MIS 4–2; Panzig, 1995; Kenzler et al., 2015).

The study area is situated in a low-seismicity intraplate set-
ting, which raises the question of which type of faulting may
have resulted in the earthquakes that caused the formation
of the seismites. Among the faults on Rügen Island, which
are most likely to have been (re)activated by GIA during the
Pleistocene, the NW-trending Schaabe fault (Fig. 1c) is situ-
ated only 2 km away from the studied cliff section. The fault
strikes parallel to the ice margin of the advancing SIS at a dis-
tance of a few tens of kilometres and could easily have been
(re)activated because of considerable slip variations in the
moat area (Fig. 3b), as suggested by numerical model results
of Hampel and Hetzel (2006). However, other nearby faults
like the Parchow, Lietzow or Nord-Jasmund, Boldewitz, and
Wiek faults (Fig. 1c) could also be related to GIA.
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Figure 1. Location of the study area (modified from Pisarska-Jamroży, 2018a). (a) Position of Rügen Island within NW Europe. (b) Faults
of the Tornquist Zone and Tornquist Fan recognised on Rügen Island and its vicinity (red lines); CDF: Caledonian Deformation Front (green
dashed line); TTZ: Tornquist-Teisseyre Zone. (c) Rügen Island with main deep-rooted faults (Seidel et al., 2018, and references therein).

The GIA influence on the reactivation of the Schaabe
fault has been tested with a three-dimensional finite-element
model. As an ice load history model, the latest version of
ANU-ICE was used (Lambeck et al., 2010), while several
Earth model setups suggested for Fennoscandia (see Bran-
des et al., 2018) were tested. We analysed the Coulomb fail-
ure stress (δCFS) of each GIA model, which, put simply,
shows for values above zero that fault (re)activation is possi-
ble, while below zero earthquakes solely due to GIA can be
excluded (see Brandes et al., 2012, 2018). We assume opti-
mal conditions, i.e. that the fault parameters including fric-
tional behaviour are ideally placed in a given tectonic stress
regime. In the case of northern Germany, a compressional
regime (thrust faulting) is suggested in the World Stress Map
(Heidbach et al., 2018).

At Dwasieden, fault instability is indicated after 16 ka
(Fig. 4a), depending on the Earth model setup. However,
in view of OSL dating results, the seismites could not be
linked to stress changes induced by GIA – at ca. 23 ka, about
2 MPa difference in δCFS must be overcome to reach the
instability zone. Changes in pore-fluid pressure in the up-
per crust during that time (not tested here), e.g. due to in-
creased meltwater, may decrease this difference, but likely

not completely. Hence, we also investigated a strike-slip tec-
tonic stress regime, which cannot be completely excluded ac-
cording to the World Stress Map (Heidbach et al., 2018) and
because the regional geology is complex so that the overall
stress field could be locally altered. For a strike-slip regime
all tested models reach the instability zone between 24.5 and
23.5 ka (Fig. 4b), which supports a glacially induced origin
of the seismites. We note though that these results are pre-
liminary and subject to many assumptions and model uncer-
tainties. The ice model has, for instance, no uncertainty as-
signed and has coarse 1000-year time steps during our period
of interest. Further, the δCFS calculation does not yet allow
the analysis of oblique-slip faults. The δCFS of such fault-
ing could be found in between those for thrust and strike-slip
faulting. Hence, thoroughly investigated and dated seismites
such as at Dwasieden can help in GIA modelling by exclud-
ing or supporting certain GIA model setups, in historic ice-
sheet development and in regional stress-field investigations.

Data availability. No data sets were used in this article.
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Figure 2. Details of the cliff section near the castle of Dwasieden. (a) The lateral extent of the soft-sediment deformation structures. (b) Ver-
tical succession of the sediments below the till (M2) deposited during the Frankfurt/Brandenburgian advance of the SIS. The lowermost part
contains glacilacustrine sediments with two dropstones; the upper part contains periglacially deformed sediments and deformations caused
by seismic shocks. (c) Ice-wedge cast (white arrow) in the irregularly deformed sediments below the seismites. (d) Details of soft-sediment
deformation structures. The yellowish sediments consist of silty fine-sandy material; the brownish sediments consist of silty clay and clayey
silt. Sandy load casts and silty flame structures occur in the lower part of deformed layer. (e–f) Evolution of load structures in 3-D view using
horizontal slicing of deformed layers.
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Figure 3. Palaeogeographical and lithostratigraphical reconstruction (modified from Pisarska-Jamroży, 2018a). (a) Luminescence ages of
glacifluvial and glacilacustrine deposits below and above the first late Weichselian till (M2) on the Jasmund Peninsula in comparison to
advances of the SIS. (b) Palaeogeographical map of the southwestern Baltic Sea area with the most likely extent of the SIS at 25 ka (based
on Hughes et al., 2016), and reconstructed positions of the moat and the forebulge (based on the Peltier et al., 2015 model).

Figure 4. Changes in Coulomb failure stress (δCFS) at Dwasieden for (a) thrust and (b) strike-slip faulting over time for the last 26 kyr. The
coloured curves represent eight different rheology models suitable for Fennoscandia (Brandes et al., 2018). δCFS values above zero indicate
fault instability.
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