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ABSTRACT

Adrenic acid (ADA) and»-3 docosapentaenoic acid-8 DPA), anw-
6 and o-3 polyunsaturated fatty acids (PUFAS), respecfivélas attracted much
interest due to their pharmaceutical potential. |I&tipg the wealth of information
currently available irplanta oil biosynthesis, and coupling this informationtiwthe
tool of genetic engineering, it is now feasible deliberately alter fatty acid
biosynthetic pathways to generate unique oils mmodity crops. In this study, 4-
elongase gene from the algRaviova sp. CCMP459 related to the biosynthesis of
C,-PUFAs was targeted to enable production of ADA an8 DPA in the moss
Physcomitrella patens. Heterologous expression of this gene under tmgraoof a
tandemly duplicate 35S promoter i patens resulted in the production of,&
PUFA, ADA (0.15+0.04 to 6.97+0.74 mg/l) from endages arachidonic acid
(ARA). In an attempt to maximize ADA production transgenicP. patens C6,
medium optimization by the response surface metloggo(RSM), resulted in a
significant elevation of ADA (4.48 mg/l) productionnder optimum conditions,
which was 10.6-fold higher, respectively, than pdn rates in the non-
optimization study (0.42 mg/l ADA). Therefore, medéic engineering with a gene
from a marine alga®aviova sp. encoding\®>-elongase together with vegetable oil
supplementation successfully activated both ADA anr8 DPA in P. patens. The
accumulation of ADA andv-3 DPA were dramatically increased to 24.3 and 11.7
mg/l, respectively, and accounted for 2.3 and 1df%otal fatty acids, respectively.
To the best of our knowledge, this is the firstapon producingwm-3 DPA,

docosahexaenoic acid (DHA) precursorPirpatens.
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CHAPTER 1

INTRODUCTION

1.1 General introduction

Long-chain (G&20) polyunsaturated fatty acids (LC-PUFAS) inclglin
the omega-3d{-3) eicosapentaenoic acid (EPA, 283511} and docosahexaenoic
acid (DHA, 22:6A* 71913185 are essential to human health and developmenéer&le
studies have indicated that deficiencies in thesty facids increase the risk of
cardiovascular disease (vonSchacky, 2006), hypgden(Ueshimaet al., 2007),
inflammatory diseases, rheumatoid arthritis (Simops, 2002) and neuropsychiatric
disorders including dementia and depression (Freeghal., 2006; Schaefeet al.,
2006). DHA is anw-3 PUFA found in fish and certain algae, makes Ofo ®f the
fatty acid in human neuronal cell membranes, angaicularly concentrated in
synaptic membranes (Bazan and Scott, 1990) andyelimsheaths (Ansari and
Shoeman, 1990). DHA is essential for prenatalnbdavelopment as well as normal
healthy brain functioning. Supplemental DHA hasoalseen shown to have a
protective effect against cognitive decline or Adirher’'s disease (AD) which may
involve triacylglycerols (TAGs) lowering (Kellegt al., 2007; Cunnanet al., 2009).
Furthermore, DHA has strong medical benefit imglaas since it has been
positively linked to the prevention of numerous lamafflictions including cancer
and heart disease (Stilwell and Wassall, 2003).

Humans, particularly infants, are unable to syn#e®HA and other
LC-PUFAs to any great extent and must thereforainlithem through their diet. The
human consumption of LC-PUFAs is steadily incregsiout the production of fish
oil, the main source of LC-PUFAs for human consuaomtis declining (Takeuchi,
2001). Generally, the cost of the commercial prsicgs refining, and stabilizing the
fish oils is very high, and the decline in prodantidue to over-fishing continues to
drive up the cost of fish oils (Sargent and Taci#99). The recent finding of toxic
compounds in fish oil has further raised safetyceons on the consumption of fish
oils (Guallaret al., 2002).



Increasing demand has consequently raised an shtereobtaining
these PUFAs from alternative sources that are mooeomical and sustainable. Plant
oils could be a sustainable alternative sourceatif facids. However, plants do not
synthesize LC-PUFAs owing to the lack Af- and A>-position-specific desaturase
and the absence of an elongase. Plant oils areftherrich in Ge-PUFAS, linoleic
acid (LA, 18:2A%%9), o-linolenic acid (ALA, 18:3A%**13 andy-linolenic acid (GLA,
18:3A%%13, but not in LC-PUFAs, EPA and DHA (Walle al., 2002). An attractive
possibility is to genetically engineer plants toguce LC-PUFAs.

In algae, DHA can be synthesized from EPA in a si&p process that
involves: (a) the elongation of EPA by-elongase to generaie3 docosapenaenoic
acid -3 DPA, A"1%131818: and (b) the desaturation ef3 DPA by aA*-desaturase
to generate DHA (Pereir al., 2004b). A number of elongases have been idedtifi
from mammals, zebra fish, marine and fresh wateos fish that can recognize and
elongate multiple chain-length PUFASs, such ag, 0 and G»-PUFAS (Leonaradt
al., 2000; Agabat al., 2004; Agabeet al., 2006). Recently, elongases specific for
C,o-PUFAs have been identified from algae and dematestrto function in the
production of DHA (Meyegt al., 2004; Pereirat al., 2004b).

In addition, the mosPhyscomitrella patens produces several PUFASs,
especially arachidonic acid (ARA, 20M%% and EPA (Kaewsuwaet al., 2006)
which are Gy-PUFAs required for the synthesis of the LC-PUFAdrenic acid
(ADA, A"1%1§ andw-3 DPA, respectively by\*-elongase (Pereiret al., 2004b).
Although ADA is a minor fatty acid in the brain, i suggested to be an important
component for myelination of neural tissue (O’'Briend Sampson, 1965) and also
serves as an eicosanoid precursor in tissue (VénRet al., 1985). Moreoverp-3
DPA is a precursor of DHA which has attracted muoterest due to its
pharmaceutical potential mentioned above.

Development of transgenic oil plants capable ofipping G>-PUFAS,
ADA and o-3 DPA is therefore an attractive route to impreeenmercial-scale DHA
production. In this study the primary step for aation of G-PUFAs, ADA ando-3
DPA, from G¢PUFAs, ARA and EPA, respectively . patens is carried out by
heterologous expression of the marine alBadova sp. A>-elongase and vegetable

oil supplementation.



1.2 Objectives

1.2.1 To clone the algd®aviova sp.A°-elongase gene

1.2.2 To construct the plant expression vector abiin the stable transgenit
patens producing G-PUFAs,»-6 ADA andw-3 DPA

1.2.3 To determine the polyunsaturated fatty acidipcts ofPaviova sp.A°-elongase
gene inP. patens

1.2.4 To optimize the medium composition for higbduction ofw-6 ADA and®-3
DPA in transgeni®. patens



CHAPTER 2

LITERATURE REVIEW

2.1 Physcomitrella patens (Hedw.) B.S.G.

The mossPhyscomitrella patens, non-vascular and multicellular
organism, is a monoecious land plant belongindi¢éoRunariaceae (Bryophyte). Both
sexual organs, male (antheridia) and female (aarhiay are produced on the same
gametophore (Cove, 2005; Fraek al, 2005). P. patens is widely distributed in
temporal zones. Its isolate is available from Japarstralia, Africa, North America
and Europe (Cove, 2005; McDanietl al., 2010). It's an ephemeral moss that
develops in late summer from overwintered spored @giows on banks of ponds,
lakes and rivers that have been exposed by lowesiatgr levels (Cove, 2005).
However, it develops sexual organs in the falygered by lowered temperatures and
shortened days (Hohet al., 2002a). Recentlyp. patens the first bryophyte and the
fourth land plant genome of which has been comlyletequenced (Rensing al.,
2008) afterArabidopsis, rice and poplar (Reski, 2005). The haploid gensine ofP.
patens is estimated to be around 511 Mbp (Schweteal., 2003) distributed among
27 chromosomes (Resk al., 1994), which is about three fold bigger than the
Arabidopsis genome (Cheat al., 2007).

Interestingly, P. patens was originally chosen as a model system to
study a variety of plant gene functions (Table 2Ahong thenP. patens emerged as
a powerful model species for molecular geneticstdu@rigge and Bezanilla, 2010):
First, this moss has a dominant haploid gametopinyits life cycle and a very high
frequency of integrate transformed DNA moleculeshimmologous recombination,
enabling gene targeting studies to be performedntlyze gene function (Schaefer
and Zryd, 1997; Schaefer, 2001; Cove, 2005; Kamistigal., 2006). Secondp.
patens is easily propagated vegetatively. At any develeptal stage, ifP. patens
tissues, such as protonemata, gametophores or piiypes, are mechanically
disrupted, then the cells in the disrupted areanghanto chloronemal apical cells
producing a new filamentous network. As a consegeilemutant strains with a wide

range of developmental defects can be maintaingeffimtely. Additionally, tissues



Table 2.1 Various gene functional studie®impatens.

Functional characterization

Gene

Reference

Auxin homeostasis

Cellulose biosynthesis

Chloroplast division, chloroplast shaping,
cell patterning, plant development and
gravity sensing

Fatty acid biosynthesis

Favonoid biosynthesis

Hexose metabolism

Jasmonic acid (JA) and (9S, 13S)-12-
oxo-phytodienoic acidc{s-(+)-OPDA)
biosynthesis

N-glycosylation

Sulfate assimilation

GH3-like proteins
Cellulose synthase

Filamentous temperature-sensitive Z (ftsZ)

A®-desaturase
A®-elongase
A>-desaturase
Chalcone synthase
C9-aldehydes
Hexokinases

Allene oxide cyclases

N-acetylglucosaminyl-transferase I,
al,3-fucosyl-transferase and
B1,2-xylosyltransferase

Adenosine 5’-phosphosulfate reductase

Sulfate reductase

Bierfreundet al., (2004); Ludwig-Mulleret al., (2009)
Roberts and Bushoven, (2007); Wesal., (2011)
Gremillon et al., (2007); Suppanet al., (2007); Martinet
al., (2009a); Martiret al., (2009b)

Girkeet al., (1998)

Zanket al., (2002)

Kaewsuwaret al., (2006)

Jianget al., (2006); Kodurkt al., (2010)
Stumpeset al., (2006)

Nilssonet al., (2011)

Stumpest al., (2010)

Koprivovaet al., (2003)

Koprivovaet al., (2002)
Wiedemanret al., (2010)




can be disrupted by cell wall-digesting enzymesdpcing a suspension of single
cells known as protoplasts. Given osmotically colied medium, protoplasts rebuild
their cell walls and then regenerate into protorietisaue. Third, transformation of
DNA is routine inP. patens. It is generally performed by polyethylene-gly¢BEG)-
mediated transformation of protoplasts (Schaefed., 1991). Stable transformants,
with the transformed DNA integrated into the genpmen be selected within 4-6
weeks, which is remarkably fast compared with atheo plant system. DNA can
integrate by homologous recombination or randorhithe transformed DNA lacks
any sequences homologous to the genome. Howewereffitiency of generating
non-targeted stable transformants is one-tenthhaf &chieved when mediated by

homologous recombination (Schaefer, 2001).

2.1.1 The life cycle of P. patens (Cove, 2000; Franket al., 2005;
Prigge and Bezanilla, 2010)

The life cycle ofP. patens is characterized by an alternation of two
generations, the haploid gametophyte and the dipkporophyte (Figure 2.1).
However, this moss has a dominant haploid gametepinyits life cycle. In the
sporophyte stage, a large number of haploid spofeR. patens are produced by
meiosis from the diploid generatiof. patens germinates from a haploid spore,
producing a linear array of cells that branch amshegate a filamentous, two-
dimensional, network known as protonemal tissue Jtem cell for this network is at
the apex of each filament, and each filament grémyspolarized growth, or tip
growth, secreting necessary cell wall componentthatapex. The first cell type to
emerge from the spore is the chloronema cells.&hells can be easily recognized as
they contain 50-100 fully developed chloroplasts] &ell plates that form between
dividing cells are transverse to the axis of thé Sbsequent tissue differentiation is
dependent on phytohormone levels (Deddta., 2006).

As the plant continues to grow, apical cells traosi from
chloronemata to caulonemata in an auxin-dependeamner (Ashtoret al., 1979).
Caulonemata are faster growing cells that contewmef less-developed plastids and
cell plates that are positioned at an oblique angléhe long axis of the cell. The
branching of protonemal tissue occurs at subapumlls, producing another
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Figure 2.1 The life cycle dP. patens (modified from Cove, 1992). Scale of the bars:
50 pum for pictures 1, 2, 9 and 10; 0.5 mm for pesu4, 5, 6 and 7; 1.0 mm for
pictures 8 and 11; 1.0 cm for picture 3.



chloronemal cell. Further development proceedshieyformation of buds which are
initially composed of a three-faced apical cellt{ansition from two-dimensional

filament growth to three-dimensional shoot develepth This bud forms the initial

meristem for development of the leafy adult gamieytg and then the formation of
the sexual organs at the top of a single gametephidiale gametes, known as
spermatozoids are produced in the antheridia ama swfertilize the female gametes
(oogonia or egg cells) within an archegonium.

After fertilization, the zygote develops into thipldid generation, the
sporophyte, which is composed of a short seta thppth a spore capsule. Within the
capsule, meiosis occurs and at maturity, about 4@@oid spores are produced and
released into the environment (Engel, 1968). The dycle of P. patens can be
completed in culture in about 8-12 weeks (Figufg.2.

2.1.2 Culture conditions of P. patens (Cove, 2000; Frankt al., 2005)

The nutritional requirements dP. patens are simple. It can be
cultivated either on solid or in liquid media cdntag only inorganic salts (Figure
2.2a and 2.2b). It is routinely grown on agar-geleedium in Petri dishes or in liquid
medium in Erlenmeyer flask as well as bioreactagyfe 2.2c).

Upon cultivation on solid medium, the plant undegonormal
developmental progression resulting in the forrmatd leafy gametophores. Starting
from protonema tissue, gametophore developmenitiated by the formation of bud
consisting of a three-faced cell. Plant tissue utat of gametophores can be
maintained by sub-culturing the gametophores atthipmtervals.

Liquid cultures can be started either from pretoal tissue or
gametophores, by inoculating liquid medium with thepective tissue. HoweveR,
patens also shown a high capacity for regeneration anerefore mechanical
disruption of the tissue leads to predominant gnowft protonemal tissue in liquid
medium, providing a routine method for sub-cultgri@Grimsleyet al., 1977). Liquid
cultures can be maintained in Erlenmeyer flasknrals volumes or plants can be
grown in semi-continuous bioreactor cultures forgéascale production of moss
material (Hohe and Reski, 2002). At any stage, maa®rial from liquid cultures can
be used to set up cultures on solid medium. Protaneultures may also be



maintained by inoculating protonemal filaments owk&llophane sheets overlying
solid medium. For routine use Bf patens, it is recommended that plant cultures are
kept on solid medium as a backup system or sparegept which can be used to
initiate new culture lines.

In addition, medium-term storage & patens can be achieved by
cultivating plant on solid medium at low temperasr(4-15C) and low light
conditions (20umol/m?/s'). Long-term storage d®. patens was shown to be reliably

working via cryopreservation (Schulte and Resk4)0

Figure 2.2P. patens is routinely grown on agar-gelled medium in Pdishes (a) or in

liquid medium in Erlenmeyer flask (b) as well asreiactor (c).
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2.1.3 Cultivation of P. patensin Petri dishes and Erlenmeyer flask
for small-scale production (Franket al., 2005)

P. patens can be grown on agar-containing medium in Pesihel on
basal mineral media devoid of any organic compoyRdgure 2.2a). The media used
by different researcher groups only vary in minonstituents. Two media which are
most commonly used for standard growtHPopatens are BCD medium (Ashton and
Cove, 1977) and Knop medium (Reski and Abel, 1986)id cultures may be started
with inocula from young protonemal tissue or angngsophytic tissue. This obtained
tissue can be disrupted with a sterilized blenaer iaoculated the tissue homogenate
into fresh medium. Growth into the agar medium lbarprevented by overlaying the
medium with cellophane, simplifying the subsequeantvesting of tissue and then the
plants are cultured in a growth chamber at 28+lnder a 16/8 h light/dark
photoperiod with a light intensity of 50-Fmol/m?/s*. Tissue obtained in this way
and harvested 1 week after inoculation is compa@séarge number of chloronemal
filaments and is excellent moss material for pri@sts, DNA, RNA or proteins
isolation. In addition, maintenance of the planachieved by monthly sub-culturing
of the plant tissue onto fresh medium.

For small-scale propagation of moss materil, patens can be
cultivated in liquid medium in Erlenmeyer flask gbre 2.2b). When initiating a
primary liquid culture, a small flask is inoculatedth two or three gametophores of
P. patens, followed by disruption of the plant material ugia suitable blender. To
promote fast growth of the moss material, 3% (v8wrose can be added (Choaibk
al., 2010). Cultivation of plant in the presence wérese for long time periods should
be avoided as the cultures show deviating difféméoh compared to growth in basal
mineral medium. At regular disintegration of thetenemal filaments, these cultures

can be kept as long-term suspension cultures.

2.1.4 Cultivation of P. patens in a bioreactor for large-scale
production (Franket al., 2005)

P. patens bioreactor cultures are useful for scale-up aneédtablish
highly standardized growth conditions, as environtake parameters may affect
growth kinetics, gene expression patterns and réifiteation. The cultivation oP.
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patens in bioreactors has been reported previously (Reattd Reski, 1996; Cowat

al., 1997). For long-term cultivation d?. patens on a laboratory scale, a semi-
continuous bioreactor has also been establishetthifee reasons (Holet al., 2002a)
(Figure 2.2c): (1) Protonema suspensions are use@rbtoplast isolation for large
scale transformation (Hohet al., 2001; Hohe and Reski, 2002a). (2) Bioreactor
cultures represent a contained environment for pheduction of heterologous
compounds (Reutter and Reski, 1996) and (3) Bitoeatulture offers a unique
possibility for studying the effect of environmenteonditions on growth and
development (Hohet al., 2002b).

Standard Knop medium is appropriate for the growft. patens in
bioreactors. The cultures are grown in stirredgtask bioreactors (Figure 2.3c) with
working volumes up to 12 |, equipped with a maimeeller. The cultures are aerated
and growth at Z& under a photoperiod regime of 16/8 h light/day&le with light
supplied at the surface of the vessels. The cdltca@ be run semi-continuously, i.e.,
the suspension has to be harvested and replacad égual amount of fresh medium
daily. The density of the cultures is controlled digtermining the dry weight. For
long-term cultivation ofP. patens suspension cultures, the cell density in the
bioreactor should be maintained between approxigndi®0 and 200 mg/l dry cell
weight. The growth rate of the suspension culteass be increased by aeration with
air that is enriched with CQHoheet al., 2002a). Under these conditions, the growth
rate can be doubled but, under non-controlled philitimns, the pH of the culture
may decrease markedly. The growth rate of liquituces is not affected within a pH
ranging from 4.5 to 7.0, while the development aitpnemal filaments is influenced
by other pH value. Generally, cultures grown at |g# mainly consist of chloronema
filaments, while increased pH values favor cauloaetevelopment (Hohet al.,
2002a).

2.2 Long chain-polyunsaturated fatty acids (L C-PUFAS)

2.2.1 Definition and classification

LC-PUFAs have a carbon backbone of at least 20ocarln length
and contain multiple double-bond desaturations. AlFAs can be grouped into
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either an omega-@¢3) or anw-6 category based on the position of the first deub
bond from the methyl, an, fatty acid terminus (Table 2.2) (Petrie and SirgfhiL1).

2.2.2 Nomenclature
2.2.2.1 Trivial (common) nomenclature
A PUFA containingm carbon atoms and double bonds, in
which the final double bond is located X carbomafoom the methyl end of the fatty
acid chain is named as Gmx PUFA orm:n (o-x) PUFA.

2.2.2.2 Systematic nomenclature
A PUFA containingm carbon atoms and double bonds, with
superscripts aZ, bZ, etc. indicating the positiohshe double bonds (carbon atoms

are numbered from the carboxyl end), @s) configuration will be named as

As an example, 22:471%131%refers to the long-chain-6 ADA
which contains 22 carbons and four double bondslesaturations, at the 7, 10, 13
and 16 carbon positions from the carboxyl terminlise structure of LC-PUFAs,

their trivial (common) and systematic nomenclatwesshown in Table 2.2.

2.3 LC-PUFAs sources

2.3.1 Commercial sourcesof LC-PUFAS

Currently, the richest sources @f3-LC-PUFAs, such as EPA and
DHA are oils extracted from marine fish such as keael, herring, salmon and
sardines. These fish obtain their LC-PUFAs by cariag the LC-PUFA-rich
microalgae and phytoplankton. Commercially, fisls @re available in the form of
gelatin capsules or oily preparations, which conta0% to 30% EPA and DHA
(Trautwein, 2001) (Table 2.3).

However, the production @-3 LC-PUFA from fish oil is hindered by
limitation such as the steady declining fish popafain oceans, taste, offensive odor,
stability problems and high purification cost. lantrast, marine microalgae are the

primary producer of-3 LC-PUFA in the ocean environment and marine tishally



Table 2.2 List of»-3 andw-6 LC-PUFASs.
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Common nhame

Systematic name

Chemical structure

-3 LC-PUFAs

Eicosatetraenoic acid (ETA)

AB, All, Al4, Al7-

Eicosatetraenoic acid

OH

Eicosapentaenoic acid (EPA

AS AS All A14 A17-

Eicosapentaenoic acid

-3 docosapentaenoic acid
(o-3 DPA)

A7 AlO AlS AlG Alg_

Docosapentaenoic acid

Docosahexaenoic acid (DHA]

A4, A7, Al(]' AlE' Ale, Alg-

Docosahexaenoic acid 0
-6 LC-PUFAs
Di-homo«-linolenic acid A A AM- ?

OH

(DHGLA) Eicosatrienoic acid .
Arachidonic acid (ARA) A, A8 AT AT 0

Eicosatetraenoic acid B H
Adrenic acid (ADA) A" AT AT AT 0

Docosatetraenoic acid

-6 docosapentaenoic acid
(w-6 DPA)

A4 A7 AlG AlS AlG_

Docosapentaenoic acid
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LC-PUFA  Source Product Company
ARA Single-cell oll ROPUFA Hoffmann-La Roche Ltd,
Switzerland
Fermentation ARASCO Gist-brocades, Holland
M. alpina Martek Biosciences Co.
EPA Fish oil Incromega Croda Oleochemicals,
England
Hi-EPA QOil Scotia Lipids, Scotland
Dry n-3° BASF, Denmark
EPAX 0626 TG PRONOVA, Norway
DHA Tuna MilkarraTM Clover Co., Australia
Hoffmann-La Roche
Fish oll ROPUFA Ltd., Switzerland
Fish oll Incromega Croda Oleochemicals,
England
Hi-DHA QOil Scotia Lipids, Scotland
Crypthecodinium DHASCO Martek Biosciences Co.
cohnii
Fish oil Dry n-3° BASF, Denmark
Fish oil EPAX 0626 TG PRONOVA, Norway

Source: Alonso and Maroto (2000).
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obtain EPA via bioaccumulation in the food chaiAEand DHA oils can also be
obtained from single cell organisms like microalga®d fungi. Diatoms such as
Nitzschia, are good producers of EPA and dinoflagellate$ sagCrypthecodinium
cohnii are used for commercial production of DHA (Barcéhgl., 1994).

Recently, only a few microalgae species have detraied industrial
production ofn-3 LC-PUFA due to the low specific growth rate doa cell density
of the microalgae grown under conventional photo@ophic process. This mode is
often limited by insufficiency of light caused byutoal shading of cells (Chen, 1996).
Marine protists such as thkhraustochytrids can also make large amounts of DHA
and are a potential source of DHA for human condionp(Barclayet al., 1994;
Bajpai et al., 1991b). Whilew-6-LC-PUFAs such as ARA can be found animal
viscera, particularly porcine liver, adrenal glaraisd egg yolk (Gill and Valivety,
1997). However, the ARA yield obtained is very loand therefore difficult to
industrialize. The production of ARA by microorgamis has therefore been gaining
more interest. ARA is commercially produced by fenmation of oleaginous fungi
such asMortierella alpina, which contains approximately 40% (by wt.) of ARA
their oils (Kendrick and Ratledge, 1992; Streekste®97).

2.3.2 Alternative sour ces of L C-PUFAs

The increasing demand has raised the interest tainohg these LC-
PUFAs from alternate sources that are more ecoran@nd sustainable. Some
microorganisms, including bacteria, fungi, and madgae, are considered alternative
sources of LC-PUFAs (Table 2.4).

2.4 Biosynthesis of L C-PUFASs

In aerobic pathway, initial fatty acid biosynthesgisglants is catalyzed
by multisubunit fatty acid synthase (FAS) complexest are present in the plastids.
The final product of FAS is palmitoyl (16:0)-acyrcier protein (ACP). Most of this
palmitoyl-ACP is then elongated to stearoyl (18A@DP by successive additions of
two carbon atoms from acetyl-CoA. Still in the pids most of stearoyl-ACP is
desaturated by the soluble plastidial stearoyl-ACRlesaturase to oleoyl (1845)-
ACP, which is the main product of the plastidigtyfaacid synthesis and is exported



Table 2.4 Alternative sources ©f3 andw-6 LC-PUFAs.
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Microorganism LC-PUFA Reference

Bacteria

Antarctic bacteria strain 651 ARA, EPA Nicholset al., (1997)
Aureispira maritima TISTR1715 ARA Saelacet al., (2011)
Schizochytrium limacinum OUC88 DHA Songet al., (2007)
Schizochytrium sp. S31 DHA Wu and Lin, (2003)
Fungi

Achlya sp. ma-2801 ARA Aki et al., (1998)
Mortierella alpina ARA Zhuet al., (2003)

M. alpina ARA Zhuet al., (2006)

M. alpina ATCC32222 ARA, EPA, DHA Janget al., (2005)

M. alpina l49-N1g ARA Yuanet al., (2002)

M. alpina Mg ARA Yu et al., (2003)

M. alpina ME-1 ARA Jinetal., (2009)

M. alpina 1S-4 ARA Higashiyameet al., (1998)
Pythiumirregulare ATCC1095 ARA, EPA Chenget al., (1999)

P. ultimum strain #144 ARA, EPA Gandhi and Weet, (1991)
Microalgae

Chromonas sp. EPA, DHA Renaudet al., (1999)
Cryptomonas sp. EPA, DHA Yongmanitchai and Ward, (1989)
Isochrysis galbana EPA, DHA Molina et al., (1992)
Monodus subterraneus EPA Qianget al., (1997)
Rhodomonas sp. EPA, DHA Renaudket al., (1999)
Diatom

Amphora coffeaformis ARA, EPA, DHA  Renaucket al., (1999)
Chaetoceros sp. ARA, EPA, DHA  Renauctt al., (1999)

Fragilaria pinnata
Navicula saprophila
Nitzschia laevis
Phaeodactylum tricornutum
Non-seed lower plant

Mar chantia polymorpha

Physcomitrella patens

ARA, EPA, DHA
ARA, EPA
EPA
EPA

ARA, EPA
ARA, EPA

Renaudket al., (1999)

Kitanoet al., (1997)

Wen and Chen, (2000)
Yongmanitchai and Ward, (1991)

Shinmenet al., (1991)
Kaewsuwaret al., (2006)
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into the cytosol for oil synthesis in the endoplasmeticulum (ER) (Browse and
Somerville, 1991). Subsequently, oleic acid (OA;118% is then incorporated into
phosphatidylcholine (PC) by the de novo pathwaynfieely, 1961) or an acyl
exchange mechanism known as “acyl editing” (Bates., 2009).

OA is first A% fatty acid desaturated to produce LA, which isgtim
A'-desaturated to produce ALA (Figure 2.3). Essertiatary fatty acids, LA and
ALA are the respective substrates for th® andw-3 LC-PUFA pathways, with the
first committed step in both pathways being\&desaturation, which introduces a
double bond between carbons sixth and seventh dndhALA, to produce GLA and
stearidonic acid (SDA), respectively. All of the§ggfatty acids can be found
naturally in angiosperms, although GLA and SDA r@latively rare and efforts have
been made to engineer these short chain-PUFAs @ildeed species. The;&fatty
acids GLA and SDA are furthe®-elongated to the long-chain £ fatty acids
DHGLA and ETA, respectively. This elongation noripalconsists of four
consecutive enzymatic steps (condensation, ketotiedh) dehydration and
enoylreduction), although the transgenic introductof the condensing enzyme or
‘elongase’ is sufficient to confer specificity tbet entire elongation with the other
elongation reaction components being supplied byhthst organism. The products of
the A®-elongation, DHGLA and ETA, are thef’-desaturated to ARA and EPA,
respectively. ARA marks the end of the traditiopalepresenteds-6 LC-PUFA
pathway, although ARA can h#-elongated to docosatetraenoic acid or adrenic acid
(ADA) which can finally beA*-desaturated te-6 docosapentaenoic acid-6 DPA).
Similarly, EPA can beA®-elongated tow-3 DPA which is themA’-desaturated to
produce DHA. ThisA®-pathway is the most commonly found aerobic pathway
however, an alternativ&®-pathway also exists. In this pathway, LA and AL A°-
elongated to eicosadienoic acid (EDA) and eicomadic acid (ETrA), respectively,
which are them®-desaturated to DHGLA and ETA. At this point, th& and A%
pathways merge and subsequent desaturations amgh&tms continue as described
above (Petrie and Singh, 2011). However, all treesgymes have been isolated from

various organisms (Table 2.5).
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Figure 2.3 A simplified scheme of LC-PUFAs biosyegls pathways in lower eukaryotes (modified frorakBaet al., 2006).
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Enzyme Type of Specie Substrate Product Reference
organism
A fatty acid Fungi Mucor rouxii, Rhizopus arrhizus OA LA Passorret al., (1999); Weiet al., (2004)
desaturase Diatom Phaeodactylum tricornutum PA, OA HAD, LA Domergueet al., (2003)
Plant Camelina sativa, Gossypium OA LA Kanget al., (2011); Zhangt al., (2009);
hirsutum, Olea europaea Hernandezt al., (2005)
Glycin max, G. hirsutum PA, OA HDA, LA Li et al., (2007); Pirtlest al., (2001)
Animal Caenorhabditis elegans PA, OA HDA, LA Peyou-Ndiet al., (2000)
Insect Acheta domesticus, Tribolium PA, OA HDA, LA Zhouet al., (2008)
castaneum
A®-desaturase Fungi Conidiobolus obscures, M. rouxii, LA, ALA GLA, SDA Tanet al., (2011); Laotengt al., (2005);
R. nigricans Na-Ranonget al., (2005); Luet al., (2009)
Diatom Glossomastix chrysoplasta, LA, ALA GLA, SDA Hsiaoet al., (2007); Iskandarost al.,
Parietochlorisincise, P. (2010); Domerguet al., (2002); Tonoret
tricornutum, Thalassiosira al., (2005)
pseudonana
Plant Marchantia polymorpha, LA, ALA GLA, SDA Kajikawaet al., (2004); Girket al., (1998);
Physcomitrella patens, Ribes Songet al., (2010)
nigrum
Fish Common carp, Gilthead sea bream, LA, ALA GLA, SDA Zhenget al., (2004)

Rainbow trout, Turbot




Table 2.5 Functional PUFA biosynthesizing enzynas their sources (Continued).
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Enzyme Type of Specie Substrate Product Reference
organism
A®-elongase Fungi C. obscures, Mortierella alpina GLA, SDA DHGLA, ETA Tanet al., (2011); Parker-Barnes
al., (2000)
Plant M. polymorpha, P. patens GLA, SDA DHGLA, ETA Kajikawaet al., (2004); Zanlet al.,
(2002)
Animal C. elegans GLA, SDA DHGLA, ETA Beaudoiret al., (2000)
A’-desaturase Algae Paviova salina DHGLA, ETA ARA, EPA Zhouet al., (2007)
Diatom P. incise, P. tricornutum, T. DHGLA, ETA ARA, EPA Iskandarowt al., (2010); Domergue
pseudonana etal., (2002); Tonoret al., (2005)
Phytoplankton  Emiliania huxleyi DHGLA, ETA ARA, EPA Sayanovat al., (2011)
Plant M. polymorpha, P. patens DHGLA, ETA ARA, EPA Kajikawaet al., (2004); Kaewsuwan
etal., (2006)
A%-elongase Algae Pavliova sp. ARA, EPA ADA, -3 DPA Pereiraet al., (2004b)
Phytoplankton  E. huxleyi ARA, EPA ADA, -3 DPA  Sayanovatal., (2011)
Plant M. polymorpha ARA, EPA ADA, o-3 DPA Kajikawaet al., (2006)
A*-desaturase Algae Isochrysis galbana, P. salina ADA, o-3 DPA ®-6 DPA, DHA Pereiraet al., (2004b); Zhowet al.,
(2007)
Diatom T. pseudonana ADA, -3 DPA ®-6 DPA, DHA  Tononet al., (2005)
Phytoplankton  E. huxleyi ADA, -3 DPA ®-6 DPA, DHA  Sayanovat al., (2011)
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Enzyme Type of Specie Substrate Product Reference
organism
Bifunctional Protozoa Acanthamoeba Castellanii PA, OA, HDA, LA HDA, LA, 16:3, Sayanovat al., (2006a)
AP A ALA
desaturase Basidiomycetes Coprinus cinereus PA, OA, HDA, LA HDA, LA, 16:3, Zhanget al., (2007)
ALA
Bifunctional Fungi Fusarium graminearum, PA, OA, HDA, LA, HDA, LA, 16:3, Damudest al., (2006)
A¥03- F. moniliforme, GLA, DHGLA ALA, SDA, ETA
desaturase Magna porthegrisea
A®-elongase Phytoplankton  E. huxleyi LA, ALA EDA, ETrA Sayanovat al., (2011)
A®-desaturase Protozoa A. castellanii EDA, ETrA DHGLA, ETA Sayanovat al., (2006b)
Algae P. salina EDA, ETrA DHGLA, ETA Zhouet al., (2007)
Phytoplankton  E. huxleyi EDA, ETrA DHGLA, ETA Sayanovat al., (2011)
AY-desaturase  Fungi Saprolegnia diclina ARA EPA Pereiraet al., (2004a)

16:3, Hexadecatrienoic acid.
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2.5 Pharmacological activitiesof L C-PUFAs

25.1 ARA and EPA

ARA and EPA are LC-PUFAs that belong to the6 and -3,
respectively. In recent years, an interest in ARW &PA has significantly increased
due to their recognition as being beneficial fomam health. They have been reported
to play important functions as not only structumponents of membrane
phospholipids but also precursors of the eicosanoidignaling molecules including
prostaglandins, thromboxanes and leukotrienes imimmels.

ARA is a biogenetic precursor of eicosanoids whak important
modulators and mediators of a variety of esseptigisiological activities (Gill and
Valivety, 1997). Eicosanoids derived from ARA penfpa key role in modulating
inflammation, cytokine release, immune responseatefdt aggregation, vascular
reactivity, thrombosis, and allergic phenomenonuiat al., 2000). As a component
of mature human milk, ARA is necessary for the n&agical and neurophysiological
development of both term (Carlsehal., 1993) and infants (Brickt al., 2000). It is
therefore served as an important component in infatrition (Bougleet al., 1999;
Nordoy, 1991).

In addition, EPA plays an important role in higlaaimals and humans
as a precursor of a group of eicosanoids whicltiargal in regulating developmental
and regulatory physiology. The eicosanoids are boevike substances including
prostaglandins (PG), thromboxanes (TX) and leukng&s (LT). EPA is precursors of
eicosanoid compounds. However, the eicosanoids fiteese two fatty acids are
different both structurally and functionally andeaometimes even antagonistic in
their effects. A balanced uptake of EPA/ARA canvprég eicosanoid dysfunctions
and may be effective in treating a number of ilfessand metabolic disorders (Gill
and Valivety, 1997). There is evidence that EPA otential anticachexia and anti-
inflammatory agent (Calder, 1997; Babcoek al., 2000). EPA also possesses
therapeutic activity against cardiovascular diseag®r example, EPA can prevent
atherosclerosis by decreasing the level of low idetipoproteins (LDL) (Bonaaet
al., 1992). EPA appears to affect the electrical biena rhythms and chemical
responses of the heart and, thus, reduces thénbkel of heart attack and arrhythmias
(abnormalities of the heartbeat). EPA is capableedliucing the tendency toward
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thrombosis by reducing the level of fibrinogen,amivation factor in the occurrence
of thrombosis (Hostmarét al., 1988).

2.5.2ADA

In humans, ADA is the third most abundant fattydaai the brain and
it is particularly enriched in myelin lipid (O’'Bneand Sampson, 1965; Martinez,
1992; Wilson and Sargent, 1993). Rapid accumulatioADA in brain, comparable
to ARA accretion levels, occurs during the earlystpatal period of brain growth
spurt in human infants (Martinez, 1992). Human natlntains a small amount (-3
mg/dl) of ADA (Jensen, 1996). While the specifiadtions of ADA are not yet clear,
it is suggested to play an important role in myagiion in neural tissues (O’Brien and
Sampson, 1965; Martinez and Mougan, 1998), its abality being implicated in the
pathogenesis of Alzheimer's disease (Corrigaml., 1998), and evidence from in
vitro studies indicates that it serves as a sulesfia@ dihomoeicosanoid formation
tissues (Campbelét al., 1985; VanRollinset al., 1985). In addition, ADA is an
abundant fatty acid in the vasculature that caaadsthelium-dependent relaxation in
bovine coronary arteries (M al., 2007). ADA has also been found to significantly
enhance tissue factor (TF) activity of thrombinvsilated endothelial cells, and it is

therefore a potential prothrombotic agent (Taedlgd., 1992).

2.5.3DHA

DHA, an ®-3 LC-PUFA, is well known to be a major structural
component of photoreceptors. DHA accounts for axprately 50% of the fatty acids
found in photoreceptor rod outer segments (Fliestet Anderson, 1983). This fatty
acid is required for the satisfactory developmeéntision (Uauyet al., 2001) and its
deficiency causes a loss of visual acuity (Bietlal., 1992b). Furthermore, DHA is
reported to play a neuroprotective role againsdatwe stress in photoreceptors
(Germanet al.,, 2006a, Germaret al., 2006b; Rotsteiret al., 2003) and to be
important both for the maturation of retinal pheieptors and for preventing
photoreceptor apoptosis (Birehal., 1992a) in the developing retina (Rotsteiral .,
1997). Dietary studies om-3 LCPUFAs have demonstrated that DHA deficiency
results in delayed retinal development, visual impant, retinal function



24

abnormalities, and disruption of rod outer segmer@mbrane renewal in rats
(Benolken et al., 1973; Rotsteinet al., 1996; Wheeleret al., 1975), monkeys
(Neuringeret al., 1984; Neuringert al., 1986), and human infants (Birch al.,

1992a; Uauyet al., 1990). Thus, dietary deficiencies in DHA is wietlown to have
adverse effects on retinal development and phatptec function. However, the

effects of dietary DHA on inner retinal functionveanot yet been fully investigated.

2.6 Fatty acid chain elongation enzymes

The terms such as elongase system, elongase, tgrafatl chain
elongation system (FACES) all refer to the enzyrtiest are responsible for the
addition of two carbon units to the carboxyl endadfatty acid chain. Elongation of
fatty acid, whether saturated, monounsaturatedpadyunsaturated, involves four
enzyme activities: the keto-acyl-CoA synthase, Wetoacyl-CoA reductase, the

hydroxyacyl-CoA dehydratase and the enoyl-CoA rémkes (Figure 2.4).

C20:40-6~CQA "==s=s=sssssssssnnnnnnnnns » (C22:4m-6~CoA
C20:50-3~C0oA "=======sssssssssnnannns > CZZ:AS(D-3~C0A
NADP¢
Step 4 Reductase
malonyl~CoA .
+ ATP NADPH +

Step 1 Elongase

CO, + CoA 2,3 enoyl~CoA
A
—>H 0
Step 3 Dehydrase
NADPH+H'  NADP'
v
B-keto(C,, ,, )~CoA »B-hydroxy(C,,,,, )~CoA
Step 2 Reductase
B-ketO(sz:Sm_:;)"COA > B-hydroxy(CZZ:Sm-3)~C0A

NADPH+H' NADP'

Figure 2.4 Microsomal elongation of PUFAs. PUFAngation is a multistep process. Stepl, which
affects chain elongation through the condensatibma datty acyl-CoA with malonyl-CoA, is rate-
limiting and substrate-specific as directed by #hengase polypeptide. Steps 2, 3 and 4 are acyl-
reductive processes (Modified from Ciatial., 1992).
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Fatty acid elongation is initiated by the condeiosabf malonyl-CoA
with a long chain acyl-CoA, yielding @&ketoacyl-CoA in which the acyl moiety has
been elongated by two carbon atoms and it is cersidto be rate limiting and
specificity controlling with regard to chain lengéimd pattern of double bonds. The
formed p-ketoacyl-CoA is then reduced brketoacyl CoA reductase to the
hydroxyacyl-CoA, which is dehydrated by dehydraseah enoyl-CoA, and further
reduced by enoyl reductase to yield the elongatgld@oA (Cintiet al., 1992).

Elongase-type sequences involved in LC-PUFA bidssis were
cloned from several organisms (Table 2.6). Thenatignt revealed that the predicted
amino acid sequence of LC-PUFA elongase includex fhur conserved motifs
KxXExxDT (Box 1), QxxFLHxYHH (Box 2) the extendedishdine-rich box,
suggested to be functionally important for PUFA nglation (Qi et al., 2002),
NXXXHXXMYXYY (Box 3), and TxxQxxQ (Box 4), which arcommonly of PUFA
elongases (Meyeat al. 2004; Jakobssoa al. 2006).

However, these conserved motifs were not foundtireroclasses of
plant microsomal elongaseg;ketoacyl CoA synthases, and fatty acid elongases
(FAE) involved in extraplastidial elongation of gedted and monounsaturated fatty
acids. Jacksost al. (1990) reported that the dilysine residues an@ -5 positioned
from the C-terminus gave these PUFA elongase pptypes probable localized in
the endplasmic reticulum (ER). However, based eir tpecificity to substrate fatty
acids, elongase-like enzymes can be classifie@lhargto three groups (Mayet al.,
2004): one is specific to saturated and monounrsttdifatty acids (SFA and MUFA),
another to PUFA of fixed chain-length (single-stegmd the other is to PUFA with
variable chain-lengths (multi-step) (Table 2.6).

2.7 Gateway cloning for plant transformation (Nakagaweet al., 2009)

Gateway cloning technology is an application bé tsite specific
reversible recombination reactions occurring duringphage integration into and
excision from Escherichia coli DNA (Figure 2.5) (Walhoutet al., 2000). In the
integration, theattP site (242 bp) ol phage and thattB site (25 bp) ofE. coli
recombine and thke phage genome is integrated into Bhecoli genome. As a result,
L phage genome is flanked by th#L (100 bp) andattR (168 bp) sites (the BP
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Group Sour ces Protein Conversion Reference
SFA and MUFA MortierellaalpinalS-4 M. alpina fatty acid elongase Coo-, Coom, and G4-SFA Sakuradanét al., (2008)
Saccharomyces Yeast fatty acid elongase 1 Ciusto G Ohet al., (1997); Dittrichet
cerevisiae Yeast fatty acid elongase 2 Up to G4 SFA/IMUFA al., (1998); Schneitest al.,
Yeast fatty acid elongase 3 Broad SFA/MUFA, essential for g (2000)
to Cye
Mouse Mouse long-chain fatty acid elongase Broad SFA/MUFA up to & Tvrdik et al., (2000)
Rat Rat fatty acid elongase 1 C16Co0 MUFA/PUFA Inagakiet al., (2000)
Rat fatty acid elongase 2 Cis and Gg SFA/MUFA
Single-step M. alpina M. alpina y-linolenic acid elongase GLA, SDA Parker-Barnest al., (2000)
M. alpina 1S-4 M. alpina fatty acid elongase HDA, LA, ALA Sakuradanét al., (2009)
Conidiobolus obscurus C. obscurus A®-elongase GLA, SDA Tanetal., (2011)
Isochrysis galbana I. galbana elongase LA, ALA Qietal., (2002)
I. galbana H29 |. galbana A%-elongase LA, ALA Li etal., (2011)
Pyramimonas cordata P. cordata A°-elongase GLA, SDA Petrieet al., (2010a)
P. cordata A*-elongase ARA, EPA
Paviova viridis P. viridis A*>-elongase EPA Niu et al., (2009)
P. salina P. salina A°fatty acid elongase EPA Robertet al., (2009)
Paviova sp. CCMP459 Paviova sp.A>fatty acid elongase ARA, EPA Pereireet al., (2004b)
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Group Sour ces Protein Conversion References

Single-step Parietochlorisincisa P. incisa A®-elongase GLA, SDA Iskandarowet al., (2009)
Physcomitrella patens P. patens elongase GLA, SDA Zanket al., (2002)

Multi-step Thraustochytrium T. aureum A9-elongase OA, LA, ALA, GLA, EPA Leeetal., (2008)

aureum

T. aureum
Caenorhabditis elegans
Zebrafish Danio rerio)

Atlantic salmon

Atlantic salmon

Mouse

T. aureum elongase

C. elegans fatty acid elongase
Zebrafish multifunctional fatty acid
elongase

Salmon fatty acyl elongase 5a

Salmon fatty acyl elongase 5b

Salmon fatty acyl elongase 2

LA, ALA, GLA, SDA
Cis MUFA/C,5 PUFA
SDA, EPA,»-3 DPA

GLA, SDA, ARA, EPA, ADA,»-3
DPA
GLA, SDA, ARA, EPA, ADA,»-3
DPA
GLA, SDA, ARA, EPA, ADA,»-3
DPA

Mouse long-chain fatty acid elongase Z,, and G, PUFAs

Kanget al., (2008)
Beaudoiret al., (2000)
Agabaet al., (2004)

Hastingset al., (2005)

Moraiset al., (2009)

Tvrdik et al., (2000)
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reaction). In the reverse reaction, the phage DdAxcised from th&. coli genome
by recombination between tlatL andattR sites (the LR reaction). The BP reaction
needs two proteins, the phage integrase (Int) hadEt coli integration host factor
(IHF). The mixture of these two proteins is cal#@ clonase in the Gateway system.
In the LR reaction, Int, IHF and one more phagetginp excisionase (Xis) are
required, and this mixture is called LR clonasee Tdateway cloning method uses
theseatt sites and clonases for construction of plasmiditro (Hartleyet al., 2000;
Walhoutet al., 2000).

A phage

‘l

a
N
N\

- ——— attB = =mwm s E. coli genome

BP reactionT 1LR reaction

= =~ —

BP reaction
attB + attP g attL + atiR

LR reaction

Figure 2.5 Integration and excision’phage into and from the. coli genome. The
attP site (242 bp) ok phage recombines with tlretB site (25 bp) ofE. coli (BP
reaction), resulting in generation attL (100 bp) andattR (168 bp) located at each
end of theA phage genome. The BP and LR reactions are relersactions
(Nakagaweet al., 2009).

In the early version of the Gateway system, fourspaf modifiedatt
sites were generated for directional cloning. They attB1 and attB2, attP1 and

attP2,attL1 andattL2, attR1 andattR2, and a recombination reaction can occur only
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in combination ofattB1 andattP1, attB2 andattP2, attL1 and attR1, orattL2 and
attR2, since this recombination strictly dependstirsequences (Hartleg al., 2000;
Walhout et al., 2000). In addition to thesatt sites,ccdB whose protein product
inhibits DNA gyrase and a chloramphenicol resistaf€ni) marker are used for
selection and maintenance of Gateway vectors. Yswll is located at the 5-end
of the open reading frame (ORF) aaitR is located at the 3’-end. This orientation is
maintained in all cloning steps. Figure 2.6 shohs $cheme of Gateway cloning.
First, theattB1 andattB2 sequences are added to the 5- and 3’-endseofORF,
respectively, by adapter PCR. The prodwattB1-ORFattB2) is subjected to a BP
reaction with a Donor vector, which possess ai?1- ccdB-Cm'-attP2 cassette.
Because of the existence of the negative selectiarkerccdB betweenattP1 and
attP2, only the transformants harboring the recombiettors carryingttL1-ORF-
attL2 (the entry clone) can grow on the selectionepl&nce the entry clone is in
hand, the ORF is rapidly transferred to a desirestidation vector that possesses an
attR1-Cn-ccdB-attR2 cassette. Since destination vectors also contd® between
attR1 andattR2, and have a resistance marker that is diffdrent that carried by the
entry clone, only the recombined destination vextmarryingattB1-ORFattB2 (the
expression clone) will be selected. The Gatewayiotp is designed so that the
smallestatt site, attB (25 bp), appears in the final product (the exgims clone) to
minimize the length of cloning junctions after ¢lenase reaction.

Many destination vectors have been developed fiferdnt purposes
such as vectors for expression in plants, vectrgusion with reporter and epitope
tags and vectors for RNAI (Curtis and Grossnikla2@03; Earleyet al., 2006). In
fusion constructs, the ORF is linked to a tag veitijht or more amino acids encoded
by theattB1 orattB2 sites. Because the reading framattB1 andattB2 is unified in
the Gateway system, any entry clone incorporatdd Bn destination vector is
correctly fused to the tag sequence. As describedea Gateway cloning has great
advantages: it is free from the need for restncti@estion, has a simple and uniform
protocol, and offers high efficiency and relialyiliof cloning, easy manipulation of
fusion constructs, and the existence of a varidtylestination vectors for many
purposes. The use of Gateway cloning has expandedany fields of biological

research in recent years.
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Figure 2.6 Schematic illustration of Gateway clgnirmhe open reading frame (ORF) region is
amplified by adapter PCR and the resultati3 1-ORFattB2 fragment is cloned into pDONR221 by a
BP reaction to generate an entry clone contaiattigl-ORF-attL2. Subsequently, the ORF is cloned
into desired destination vectors by an LR reactmigenerate expression clones including tag fusion
constructs. BlattB1; B2,attB2; P1,attP1; P2attP2; L1,attL1; L2, attL2; R1, attR1; R2,attR2; Pro,
promoter; Ter, terminator (Modified form Nakagaetal., 2009).
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2.8 Plant genetic engineering for improved L C-PUFASs production

There are several technical or scientific challesngen be engineered
to accumulate adequate levels of LC-PUFAs in odsemps. These challenges are
mainly focused on increasing the conversion ofrtagve plant fatty acid substrates
through to the LC-PUFAs of interest with as fewemnmediate fatty acids as possible.
In theory, this simply requires the use of transgesnzymes which have high
conversion efficiencies. However, in practice, t@nversion efficiencies of LC-
PUFA biosynthesis enzymes are not affected onlgdiyal enzyme activity but also
by factors such as substrate dichotomy, the reopgné of some enzymes to use
substrates from certain metabolic pools (Petrie@indgh, 2011).

The biosynthesis ob-6 andw-3 LC-PUFAs in land plants was first
reported in 2004 with publications describing thedduction of both thé®- andA®
pathways. Qet al. (2004) demonstrated the production of 3% EPA@&B&o ARA in
A. thaliana leaf tissue by a\-pathway consisting of thé galbana A°-elongase,
Euglena gracilis A®-desaturase antl. alpina A>-desaturase with constitutive 35S
promoters. This study demonstrated that produationC-PUFAS in land plants was
feasible, albeit in leaf tissue.

Shortly after, Abbadiet al. (2004) published the production of LC-
PUFA in the seeds of tobacco and linseed byAthpathway. In this pathway, SDA
(11.4%) and GLA (16.8%) were produced in linsedthoaigh these fatty acids were
not effectivelyA®-elongated with only 0.8% EPA and 1.0% ARA beingdurced. A
number of studies that proofed the concept for WE-R production in various plants

was achievable and summarized in Table 2.7.

2.9 Response surface methodology (RSM)

Since the production of LC-PUFAs by microorganisiasstrongly
influenced by various chemical parameters, sucltaabon and nitrogen sources,
growth factors, and metallic ions and physical peeters such as temperature, culture
pH and aeration. It is crucial to search for thg kdluencing factors among many
related ones. There are two ways by which the probbdf fermentation parameters
may be addressed: classical and statistical metAdasclassical method is based on
the “one-factor-at-a-time” method in which one ipdedent variable is studied while
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Plant host Target gene New fatty acid production Reference
(% of total fatty acid)
Arabidopsisthaliana Isochrysis galbana A°-elongaseEuglena gracilis A®*- EDA (2.6%), ETrA (4.6%), DHGLA Qietal., (2004)

A. thaliana

Brassica juncea

B. napus

desaturaseMlortierella alpina A°-desaturase

Danto rerio A% A°-desaturaseCaenorhabditis elegans A°-
elongasePaviova salina A*-elongaseP. salina A*-

desaturase

Pythium irregulare A®-desaturasélhraustochytrium sp.A°-
desaturasePhyscomitrella patens A®-elongase,

Calendula officinalis A**-desaturaselhraustochytrium sp.
A®-elongaseP. irregulare w3-desaturaséhraustochytrium
sp. A*-desaturasencorhynchus mykiss elongase,
Thraustochytrium sp. lysophosphatidyl acyltransferase

P. salina A®-desaturasd, galbana A%-elongaseP. salina

A%-desaturase

(1.3%), ETA (1.2%), ARA (6.6%),
EPA (3.0%)

GLA (0.4%), SDA (1.5%), DHGLA
(1.5%), ETA (0.8%), ARA (1.0%), EPA
(2.4%),»-3 DPA (0.1%), DHA (0.5%)

Robertet al., (2005)

GLA (27.3%), SDA (2.2%), DHGLA
(1.9%), ETA (1.1%), ARA (4.0%), EPA
(8.1%), DPA (0.1%), DHA (0.2%)

Wu et al., (2005a)

EDA (3.8%), ETrA (0.3%), DHGLA
(1.0%), ARA (20.7%), EPA (0.8%)

Petrieet al., (2010a)
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Plant host

Target gene

New fatty acid production
(% of total fatty acid)

Reference

B. carinata line C90-

1163 (High erucic acid)

B. juncea line 1424

(Zero erucic acid)

B. carinata line 10H3

(Zero erucic acid)

Glycine max

Linum usitatissimum

P. irregulare A°-desaturaselhraustochytrium sp.A°>-

desaturaseThalassiosira pseudonana elongase

P. irregulare A°-desaturaselhraustochytrium sp.A°-

desaturaseT. pseudonana elongase

P. irregulare A°-desaturaselhraustochytrium sp.A>-

desaturaseT. pseudonana elongase

M. alpina A®-,A°-desaturases and GLELO elongase

Phaeodactylum tricornutum A°-desaturase?. patens A°-

elongaseP. tricornutum A*-desaturase

GLA (18.2%), SDA (3.2%), DHGLA (0.9%),
ETA (1.0%), ARA (2.8%), EPA (9.3%}-3
DPA (1.4%)

GLA (19.9%), SDA (2.2%), DHGLA (1.8%),
ETA (0.5%), ARA (4.3%), EPA (5.0%}-3
DPA (0.4%)

GLA (26.9%), SDA (5.4%), DHGLA (2.2%),
ETA (2.5%), ARA (5.7%), EPA (20.4%-3
DPA (4.0%)

GLA, EDA, DHGLA, ARA
(11%) in somatic embryos

(8.4%) in mature seeds

GLA (16.8%), SDA (11.4%), DHGLA (1.2%),
ETA (1.0%), ARA (0.9%), EPA (0.8%)

Chenget al., (2010)

Chenget al., (2010)

Chenget al., (2010)

Chenet al., (2006)

Abbadiet al., (2004)
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Plant host

Target gene

New fatty acid production Reference
(% of total fatty acid)

Nicotiana benthamiana

N. benthamiana

N. benthamiana

N. benthamiana

Micromonas pusilla A®-desaturasePyramimonas cordata

A®-elongaseP. salina A°-desaturase

Echium plantagineum A®-desaturase?. cordata A°-
elongase,

P. salina A*-desaturase
Ostreococcus tauri A®-desaturaseP. cordata A%-elongase,

P. salina A°-desaturase

P. salina A%-elongaseA®-desaturase,

A’-desaturase)’-elongase and*-desaturase

GLA (2.1%), ARA (0.6%), SDA (1.5%), Petrieetal., (2010c)
ETA (0.6%), EPA (10.7%),
©-3 DPA (0.3%)

GLA (4.4%), ARA (1.3%), SDA (2.4%), Petrieet al., (2010c)
ETA (0.1%), EPA (3.4%),
©-3 DPA (0.2%)

GLA (5.8%), ARA (1.2%), SDA (1.1%), Petrieetal., (2010c)
ETA (0.4%), EPA (9.6%),
©-3 DPA (0.2%)

EDA (1.7%), DHGLA (0.5%), ARA Petrieet al., (2010b)
(2.4%), ADA (1.2%), ETrA (1.5%),

ETA (0.2%), EPA (1.2%)p-3 DPA

(0.6%), DHA (0.7%)
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maintaining all the other factors at a fixed levihis method is extremely laborious
and time-consuming, especially for large numbevarfables. Moreover, it does not
guarantee the determination of optimal conditi@ams] is unable to detect the frequent
interactions occurring between two or more fac{@koudhari and Singhal, 2008).
These limitations of a single factor optimizatiorogess can be overcome by using
statistical methods. RSM, the statistical basedagmhes, is a collection of statistical
techniques for designing experiments, building ngdevaluating the effects of
factors and analyzing optimum conditions of factiaisdesirable responses (Kadl
al., 2000).

The main advantage of RSM is the reduced numbexpérimental
runs needed to evaluate multiple factors and timaractions. Also, study of the
individual and interactive effects of these factai be helpful in efforts to find the
target value. Hence, RSM provides an effective tiool investigating the aspects
affecting desired response if there are many fa@ad interactions in the experiment
(Yin et al., 2010). In addition, RSM has been successfulllizetl to optimize
compositions of fermentation media for productid.G-PUFAs by microorganisms
(Table 2.8).

2.10 Factor s affecting for L C-PUFASs production

2.10.1 Carbon and nitrogen sour ces

A variety of carbon sources including mono-, didgvlysaccharides
such as glucose, fructose, sucrose, starch, acetassol and vegetable oils including
linseed, corn and canola oils have been reporteafféat LC-PUFAs production in
various kinds of microorganisms (Table 2.9). Thesebon sources are generally
metabolized via the Embden—Meyerhoff or Krebs cyidéhways to generate acetyl-
CoA used for fatty acids synthesis and provide taatthl reducing power, NADPH,
for the various desaturation enzyme needed to PUFéduction.

For instances, Jiret al. (2008) studied the influence of ethanol
concentration on ARA production and found that ethaould be converted directly
to acetyl-CoA used for the synthesis of fatty acahel might generate additional
reducing power, NADPH, for th&>-desaturases needed to produce ARAMnN
alpina. Zhu et al. (2003) studied the influence of maize starch blydate
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Table 2.8 Optimized culture conditions for LC-PUProduction in various microorganisms by RSM.

Microorganism  Optimized variable LC-PUFA LC-PUFA Reference
production
(mall)
Aureispira Tryptone (9 g/l), pH (7.9), ARA 43.43 Saelacet al.,
maritima agitation speed (170 rpm), (2011)
TISTR1715 temperature (17°€)
Mortierella Fermentation time (5.6 days), ARA 1,902 Jinetal.,
alpina ME-1 temperature (13°C), (2009)
ethanol (42.44 g/l), KN©
(2.62 g/l)
M. alpina Glucose (10.0 g/l), corn solids ARA 1,390 Nishaet al.,
(5.0 g/l), KH,PO, (1.0 g/l), (2011)
KNO; (1.0 g/l)
Nitzschia laevis  NaCl (14 g/l), CaGl(0.1 g/l), pH EPA 280 Wen and Chen,
(8.5), temperature (28) (2001a)
Schizochytrium  Glucose (27.98 g/l), yeast DHA 516 Wu and Li,
sp. S31 extraction (4.52 g/l), (2003)
NacCl (24.82 g/l), pH (6.96),
temperature (3C)
S. limacinum Temperature (&), aeration rate DHA 4,700 Songet al.,
oucCss (1.48 I/min/l), (2007)
agitation speed (250 rpm),
inoculum age (mid-
exponential phase)
S. limacinum P1 (30 mi/l), NH,CI (0.04 g/l), DHA 4,910 Chietal.,
SR21 ammonium acetate (2007)

(1.0 g/l), temperature (19Q)




Table 2.9 Effects of carbon sources and conceotratn LC-PUFA production in various microorganisms.

Organism Carbon source Carbon LC-PUFA LC-PUFA Reference
concentration production
9/ (mg/l)
Aurantiochytrium limacinum SR21 Glucose 20 DHA 4,200 Yokochiet al., (1998)
A. mangrovei KF6 Glucose 60 DHA 3,100 Fanet al., (2001)
A. mangrovei SK2 Glucose 75 DHA 4,700 Unagulet al., (2005)
A. mangrovei MP2 Glucose 90 DHA 800 Wonget al., (2008)
Mortierella alpina ATCC 16266 Glycerol 20 ARA 910 Bajpaiet al., (1991a)
M. alpine Glucose (maize starch 100 ARA 1,470 Zhuet al., (2003)
hydrolysate)
M. alpina ATCC32222 Glucose 60 ARA 2,424.7 Janget al., (2005)
Starch 100 ARA 2,636.9
M. alpina NRRL 6302 Glycerol 60 ARA 24.83 (%TFA) Hou, (2008)
M. alpina CBS528.72 Rhamnose 20 ARA 40.41 (%TFA) Nischa and Venkateswaran,
(2011)
Pythium acanthicum ATCC 18660 Glycerol 20 -3 DPA 69.5 Singh and Ward, (1998)
Schizochytrium sp.S31 Glucose 40 DHA (in lipid) 13.64 (%ow/w) Wuetal., (2005b)
S limacinum SR21 Biodiesel-waste glycerol 75 DHA 3,005 Chiet al., (2007)
Thraustochytrium roseum ATCC 2821 Starch 25 DHA 650 Li and Ward, (1994)

Thraustochytrium sp. ONC-T18 Soy 100 DHA 4,030 Burjaet al., (2006)
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concentration on ARA production in the cultureMf alpina and found that a high
initial glucose concentration of starch hydrolysafel00 g/l led to a high ARA
accumulation (1.47 g/l). Wt al. (2005b) indicated that glucose was the most
effective carbon source for biomass, lipid and DptAduction and demonstrated that
the production of DHA increased with an increasedncentration of glucose from 5-
10 g/I. Janget al. (2005) revealed that glucose and soluble staerie Whe best carbon
sources for ARA production by. alpina. The production of ARA enhanced with an
increase of glucose and soluble starch increased @ to 60 g/l and from 0 to 100
g/l, respectively, whereas higher than that ram@snished ARA production.

Simple nitrogen sources such as nitrate and premote ARA and
EPA production inM. alpina (Jin et al., 2009) andPhaeodactylum tricornutum
(Yongmanitchai and Ward, 1991), respectively (TaBld0). Potassium nitrate,
KNOg, is essential for the production of LC-PUFAs besait plays a crucial function
in maintaining high activity of malic enzyme whighays an important role in the
provision of NADPH for fatty acid biosynthesis atidis regulates the extent of LC-
PUFAs accumulation inM. alpina, especially ARA (Wynnet al., 1999). The
concentration of nitrogen source must be controlgthin a relative low level
because a high concentration of nitrogen souragsléae flux of carbon to the citric
acid cycle with little carbon used for synthesidaify acids (Wynret al., 2001). Jang
et al. (2005) indicated that KNfwas the best nitrogen source for ARA production by
M. alpina. In addition, complex nitrogen sources such astyeatract, tryptone and
corn steep liquor also performed the beneficiaba# for LC-PUFA production by
individual microorganisms (Table 2.10). Such complatrogen sources provide
amino acids, vitamins and growth factors (Aaseal., 2000; Wen and Chen, 2001b).
Tryptone is widely used as a complex nitrogen ssumcvarious cell cultures. It has
been reported that the PUFA content of the diabitmschia laevis increased when
concentration of tryptone was doubled from 0.5.@odll (Wen and Chen, 2001b).

Glutamate was demonstrated to have a role in dictgyacetyl-CoA
carboxylase (ACC; EC 6.4.1.2). ACC catalyzes thenfdion of malonyl-CoA, an
essential substrate for fatty acid synthase andatty acyl chain elongation systems
(Kowluru et al., 2001). Furthermore, glutamate can be utilizeddty acid synthesis,
either directly through the generation of keto aca acetyl-CoA (Alberst al.,
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Organism Nitrogen source Nitrogen LC- LC-PUFA Reference
concentration PUFA production
D) (mg/)
Aurantiochytrium limacinum SR21  Corn steep liquor 20 DHA 4,200 Yokochiet al., (1998)
A. mangrovei KF6 Yeast extract 10 DHA 3,100 Fanet al., (2001)
A. mangrovei SK2 Yeast extract 10 DHA 4,700 Unagulet al., (2005)
A. mangrovei MP2 Yeast extract 10 DHA 800 Wonget al., (2008)
Mortierella alpina ATCC32222 KNO; : yeast extract 1.0 % ARA 51.62 g/g substrate carbonJanget al., (2000)
(2:1, wiw) 7.5% EPA 16.88 g/g substrate carbon
M. alpina ZQ9998 Glutamate 0.8 ARA 1,400 Lanet al., (2002)
M. alpina Mg Glutamate 0.8 ARA 1,410 Yu et al., (2003)
M. alpina ATCC32222 KNO; : yeast extract (2:1, wiw) ARA 826.3 Janget al., (2005)
M. alpina CBS528.72 Yeast extract 10.0 ARA 35.28 (%TFA) Nischa and Venkateswaran,
(2011)
Phaeodactylum tricornutum Urea 1.4 EPA 117.5 Yongmanitchai and Ward,
(1991)
Pythium acanthicum ATCC 18660 Glutamate 2.0 -3 DPA 43.1 Singh and Ward, (1998)
Schizochytrium limacinum SR21 Corn steep liquor 1.0 DHA 1,700 Yokochiet al., (1998)
Schizochytrium sp.S31 Yeast extract 4.0 DHA 328 Wu et al., (2005b)
Thraustochytrium sp. ONC-T18 Yeast extract 2.0 DHA 4,470 Burjaet al., (2006)
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1996). Yuet al. (2003) studied the influence of glutamate coneioin on total lipids
and ARA production and found that supplementatibtess than 0.8 g/l glutamate
could increase total lipids and ARA production. Hwer, supplementation of greater
than 0.8 g/l glutamate led to a decrease in thal igiids in biomass and ARA
production compared with the response to 0.8 gitaghate. Similarly, Singh and
Ward (1998) suggested that glutamate was the besgen sources fow-3 DPA
production byP. acanthicum. Certik et al. (1999) reported that glutamate was one of
the potentially available nitrogen sources for @asing G6PDH activities and
enhancing PUFA biosynthesis. However, when glutancancentration is too high,
glutamate will be converted to proline accompani®d NADPH consumption

(Andarwulan and Shetty, 1999), which is necessaryARA biosynthesis.

2.10.2 Metal ions

CaCh and MgSQ are known to play important roles in various
enzyme reactions. For example, in the synthesibpafs and PUFAs, acetyl-CoA
carboxylase catalyzing the initial step of fattydasynthesis requires bivalent ions as
cofactors (Singh and Ward, 1997). One reason fesdlphenomena is that acetyl-
CoA carboxylase, which catalyzes the conversiomaagtyl-CoA into malonyl-CoA,
requires bivalent metal ions as the cofactors (Baitlet al., 1974). In addition, Mg
ion has affected to malic enzyme and ATP citratesdyactivity influencing on the
production of acetyl-CoA and NADPH for synthesis fafty acid (Muhidet al.,
2008). Added minerals may act as cofactors of éhzyme system, which catalyzes
the initial step of fatty acid synthesis (Higasimnzeet al., 1999).

However, the concentrations of the ions in the mn@dneeds to be at
appropriate levels for maximizing yields. Chietal. (2001) found that ferrous (E¢
ions increased the production of ARA and EPA intungls of the bryophyteM.
polymorpha, whereas there was no notable change in PUFA ptioduby additional
Mg?*, Mn** and C@*. Enhancement of PUFA vyield by ¥eesulted in an increase of
intracellular lipid content, rather than select@ehancement of certain fatty acids
(Chiouet al., 2001). On the other hand, Sajbidbal. (1992) studied the influence of
cd*, Mg**, Mn?** and Fé' on ARA production in the culture dflortierella sp. and
indicated that a low concentration (2 mg/l) of Mnwas beneficial for ARA



41

production, whereas a higher concentration repdepa accumulation. However,
these three metal ions (€aMg** and F&" still influenced LA production (Sajbidor
et al., 1992).

2.10.3 Effect of oil supplementation

Various studies have also indicated that vegetableddition was
beneficial to enhance LC-PUFAs yield (Table 2.Mggetable oils generally contain
high levels of Gg-fatty acid, precursors for LC-PUFA biosynthesisr Example, LA
is the major fatty acid in soybean oil, corn ogagput oil and sunflower oil (56—-85%),
ALA is the major fatty acid in linseed oil (58%)afiget al., 2005), and OA is rich in
palm oil (30—-45%) (Mhanhmaet al., 2011).

Utilization of oils by microorganisms is accompahigith production
of extracellular lipases, which cleave fatty ackdidues from glycerol, and the fatty
acids produced can either be incorporated to Igtrdctures or degraded to basic
skeletons serving the biomass synthesis (Esfaaal., 1981; Akhtaret al., 1983).
Shinmenet al. (1989) showed that olive oil and soybean oil addiincreased the
accumulation of ARA inMortierella fungi and supplementation of oils stimulates
EPA, DHA and total PUFA production irM. alpina (Jang et al., 2005).
Jareokitmongkoét al. (1993) suggested that 3% of linseed oil amendmpetuced 1
g/l of EPA inM. alpina (20% of total fatty acid).

2.10.4 Temperature

Temperature is thought to be one of the most ingpbrénvironmental
factors that affect all aspects of the growth amel flatty acid composition of most
microorganisms (Table 2.12). It also influence thazymatic reactions, cell
membrane transport system, and some other celthi@racters. A low-temperature
growth condition will lead to a spontaneous respow$ strain, which aims at
maintaining proper membrane lipid fluidity and ftioas. This reaction will increase
the proportion of unsaturated fatty acids, espgcRIUFAs. This evidence may cause
by the more availability of dissolved oxygen at &viemperatures (Harris and James,
1969) which lead to enhance fatty acid synthesiadipbic desaturase and elongase
enzymes (Singh and Ward, 1997; Higashiyaanal., 1999). Jangt al. (2005) also
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Organism Oil type Qil LC-PUFA LC-PUFA Reference
concentration production (mg/l)
(Yow,w)

Mortierella alpina ATCC32222 Soybean oil 1.0 ARA 57.02 g/g substrate carbon Janget al., (2000)
EPA 29.45 g/g substrate carbon

M. alpina ATCC32222 Linseed oil 1.0 ARA 1923.3 Janget al., (2005)
EPA 524.6

Sunflower oil 1.0 DHA 36.3
Pythium acanthicum ATCC 18660 Linseed oil 1.0 ®-3 DPA

110.8 Singh and Ward, (1998)
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Table 2.12 Effect of temperature and temperatuifen LC-PUFA production in various microorganisms

Organism Temperature LC-PUFA LC-PUFA Reference
(°C) production (mg/l)
Aurantiochytrium sp. mh0186 15 DHA ~800 Taokaet al., (2009)
Crypthecodinium cohnii ATCC Shift from 25C (48 h) to 18C (24 h) DHA 105.84 Jiang and Chen, (2000a)
30556
Mortierella alpina ATCC32222 Shift from 20C (5 days) to ARA 49.78 g/g substrate carbonJanget al., (2000)
12°C (5 days)
Shift from 20C (5 days) to
12°C (5 days) EPA 26.93 g/g substrate carbon
M. alpina ATCC32222 12 ARA 882.4 Janget al., (2005)
12 EPA 34.4
M. alpina NRRL 6302 30 ARA 23.31 (%TFA) Hou, (2008)
M. zychae NRRL 2592 20 ARA 22.81 (%TFA)
M. alpina CBS528.72 25 ARA 38.70 (%TFA) Nischa and Venkateswaran,
(2011)
Phaeodactylum tricornutum Shift from 25C (6 days) to 1T (12 h) EPA 6.6 Jiang and Gao, (2004)
Pythium acanthicum ATCC 18660 20 ®-3 DPA 40.8 Singh and Ward, (1998)
P. ultimum 25 ARA 220 Gandhi and Weet, (1991)
25 EPA 170
Schizochytrium sp. HX-308 Shift from 30 °C (32 h) to 20 °C DHA 51.98 (%TFA) Zenget al., (2011)
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reported that ARA and EPA productionMf alpina ATCC 32222 was the highest at
12°C (Janget al., 2005). Similarly, both ARA and EPA yields bf. alpina cultures
were enhanced at low culture temperature (1°%G18Janget al., 2000).

The two-stage cultivation for PUFA production hagi conducted by
Yuan et al. (2002). The obtained results showed that the dnigamperature was
favorable for an increase in biomass and lipids,tbe lower temperature was more
suitable for the accumulation of ARA iNl. alpina lsg-Nis. A temperature shift
strategy has also employed to enhance the ovdtdtAR(including ARA, EPA and
DHA) production because the optimal temperaturecérgrowth is often higher than
that for PUFAs formation (Jiang and Chen, 2000a).

2.10.5 Initial pH of the culture medium

The media pH is a significant factor that inflaea the physiology of a
microorganism by affecting nutrient solubility angtake, enzyme activity, cell
membrane morphology, by-product formation and axea reductive reactions
(Cromwick et al., 1996), and therefore it is a parameter thatriglemanipulates
PUFA production (Table 2.13). However, the effetpbl on production of PUFAs
depends on the species of microorganism used.

For example, the yield of EPA by the diat&tricornutum reaches its
maximum when the pH is 7.6 (Yongmanitchai and Wdr@Q1). Jiang and Chen
(2000b) also found that a neutral pH (7.2) wasmpin in terms of degree of fatty
acid unsaturation, and the proportion @3PUFAs produced b¥rypthecodinium
cohnii. Whereas the percentage of EPA in the total lipid¢he culture of another
diatom, |. galbana, increased with decreasing the pH from pH 8.0.6 (#olina et
al., 1992). Yuaret al. (2002) reported that higher pH values (8.0-8.Bjenfavorable
for the production of ARA in lipids and in media b¥. alpine l4o-N1s. However,
Nuutila et al. (1997) reported that lowering the pH to 5.0 cduske ARA
concentrations to increase, whereas the optimunfopHEPA production was 7.6 in

the cultivation of the red aldg@orphyridium cruentum.
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Organism Intitial pH LC-PUFA L C-PUFA production Reference
(mg/l)

Mortierella alpina ATCC32222 6.0 ARA 54.07 g/g substrate carbon Janget al., (2000)

7.0 EPA 18.2 g/g substrate carbon
M. alpina NRRL 6302 6.0 ARA 21.05 (%TFA) Hou, (2008)
M. zychae NRRL 2592 6.0 ARA 23.38 (%TFA) Hou, (2008)
M. alpina CBS528.72 6.5 ARA 34.72 (%TFA) Nischa and Venkateswaran, (2011)
Phaeodactylum tricornutum 7.6 EPA 93.1 Yongmanitchai and Ward, (1991)
Schizochytrium sp.S31 7.0 DHA 314 Wu et al., (2005b)
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2.10.6 Agitation speed and aeration (Oy)

Agitation speed level is always an important faciar aerobic
biological systems, since when the supply of oxyigelimited, both cell growth and
product formation can be severely affected (WardyZ&mong, 2007). Higher agitation
rates result in an increase in oxygen supply fomn, and can lead to an increase in
the availability of intracellular molecular oxygehhis ensures optimum activities of
the oxygen-dependent enzymes in PUFA biosynthésibb§é and Seviour, 1996;
Singh and Ward, 1997; Higashiyareaal., 1999). However, the optimal dissolved
oxygen concentration may vary with different spices

For example, the fungus$. aureum ATCC34304 showed maximum
biomass production with an agitation speed of 1090, rand the highest PUFA content
in total lipids at 150 rpm, under optimal cultuenditions. However, agitation speeds
higher than 250 rpm physically disrupted the caltsthat the morphology was found
to be severely changed and the PUFA content wasgatsatly reduced (Huet al.,
2002). Higashiyamat al. (1999) also found that a dissolved oxygen (D@geaof
10-15 ppm was optimum for maximum ARA vyield M. alpina cultures, but high
levels of oxygen (average DO, 20-50 ppm) decreadRA production due to cell
adaptation by-oxidation of the fatty acid.
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CHAPTER 3
MATERIALSAND METHODS
3.1 Materials

3.1.1 Marine algae and plant materials and culture conditions
Paviova sp. CCMP459 was purchased from Provasoli-Guillard

National Center for Culture of Marine Phytoplankt¢6CMP, West Boothbay
Harbor, ME, USA). The Gransden strainRifyscomitrella patens (Ashton and Cove,
1977) supplied by Prof. Ralph S. Quatrano (Wasbimginiversity, St. Louis, USA)
was used throughout these studies. Protonematdajtéid) were grown in liquid
BCD basal medium to which di-ammonium tartrate wdded to 5 mM and cultured
at 25C under continuous light provided by fluoresceries (Knightet al., 2002)

unless indicated otherwise.

3.1.2Materials
Materials used for cloning, expressionReviova sp. A>-elongase and

fatty acid analysis were purchased from the follgwcompanies.

Materials Company
- Biodyné® B (0.4 um) Pall Life Sciences, Mexico
- 1,000 pl Blue Traditional Shaped Tip Biotix, Mexico
- 5 ml Castof Stripett& Corning, USA
- 10 ml Castd? Stripett& Corning, USA
- 10 pl Extended Length Tip (Neptune) Biotix, Mexico
- 0.2 ml Flat Cap PCR Tubes Axygen, Mexico
- GC vial (1.5 ml) Agilent Technologies, USA
- Glass Insert (0.1 ml) Agilent Technologies, USA
-0.25 mm x 30 m x 0.25 pum HP-INNOWax Agilent Technologies, USA
capillary column
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- 1.5 ml Microcentrifuge Tube
- Omni Tip™ Plastic Probes
- Pipet Aid (ROTA-Filler 3008)

- 14 ml Polypropylene Round-Bottom Tube

Biomed, Thailand

Omni International, USA
Heathrow Scienctific, Chinal
BD Biosciences, USA

- 15 ml Screw Cap Conical Bottom Centrifuge Tube&Sorning, USA

- 50 ml Screw Cap Conical Bottom Centrifuge Tube&Sorning, USA

- Sterilized-Disposable Plastic Petri-dishes

(90x15 mm)
- 0.2 um Syringe filter

- 200 pl Universal Tip

Biomed, Thailand

Sartorius Stedim Biotech,
Germany
Biotix, Mexico

3.1.3 Chemicals

3.1.3.1 Chemicals used for cloning and expressfoRaslova sp. A°-

elongase were purchased from the following comganie

Chemicals

Company

- Agarose
- Ammonium tartrate
- Ampicillin

- Anti-digoxigenin-AP Fab Fragments
- Blocking reagent
-5-Bromo-4-chloro-3-indolyl-beta-D-
galactopyranoside (X-Gal)

- Casein Enzyme Hydrolysate, Type-1

- Chemi-luminescent substrate (CSPD)

- DIG Easy Hyb

Bio Basic, Canada
Fluka, Germany

Bio Basic, Canada
Roche Applied Sciences,
Germany

Roche Applied Sciences,
Germany

Sigma-Aldrich, USA

Himedia, India

Roche Applied Sciences,
Germany

Roche Applied Sciences,
Germany
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- DL-maleic acid

Bio Basic, Canada

- DNA Molecular Weight Marker 1l DIG labeled Roche Applied Sciences,

0.12-23.1 kbp
- Ethanol, AR grade

- Ethylenediaminetetraacetic acid tetrasodium

salt dihydrate

- Geneaid Plasmid Maxi Kit

- Glutamic acid

- High-Speed Plasmid Mini Kit

- Hygromycin B

- Isopropyl thiogalactoside (IPTG)

- Kanamycin

- 1 kb DNA Ladder

- Lithium chloride

- Manganess (ll) chloride

- Mannitol

- MES monohydrate

- Nickel chloride

- Nucleord™ PhytoPur&" Genomic DNA
Extraction Kit

- Orange G (molecular biology tested)
- PCR Dig Probe Synthesis Kit

- Polyethylene glycol 6000

- Potassium nitrate

- Potassium phosphate

- Propan-2-ol, AR grade

- QIAquick Gel Extraction Kit
- RNeasy Plant Mini Kit

- Seakerfi LE agarose gel

Germany
RCI Labscan, Thailand

Fluka, Germany

Geneaid Biotech, Taiwan
Univar, New Zealand
Geneaid Biotech, Taiwan
Sigma-Aldrich, Germany
Sigma-Aldrich, USA

Bio Basic, Canada
Promega, Germany

Ajax Finechem, New Zealand
Univar, New Zealand
Univar, New Zealand
Fluka, Germany

Univar, New Zealand

GE Healthcare, USA

Sigma-Aldrich, Germany
Roche Applied Sciences,
Germany

Fluka, Germany

Univar, New Zealand
J.T. Baker, USA

RCI Labscan, Thailand
Qiagen, USA

Qiagen, USA

Cambrex Bio Science Rockland
USA
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- Sodium chloride RCI Labscan, Thailand

- Sodium dodecyl sulphate Ajax Finechem, New Zealand
- Spectinomycin Bio Basic, Canada

- SYBR® Safe DNA gel stain Invitrogen, USA

- Tris-hydrochloride Bio Basic, Canada

-Tris (hydroxymethyl) aminomethane Research Organics, USA
(molecular biology grade)

- Tri-sodium citrate Ajax Finechem, New Zealand
- Yeast extract Himedia, India

3.1.3.2 Chemicals used for fatty acid analysis vpemehased from the

following companies.

Chemicals Company
- Fatty acid standard Nu-Check-Prep, USA
- Heptane, AR grade Lab Scan, Thailand
- Methanol, AR grade Lab Scan, Thailand
- Sulfuric acid, AR grade Lab Scan, Thailand

3.1.4 Bacterial strains
Two strains oE. coli were used in this study were purchased from the

Invitrogen.

Strain Genotype
E. coli DB3.1 F gyrA462 endAl D(sr1-recA) mcrB mrr hsdS20(k", mg)
supE44ara-14 galK2 lacY1 proA2 rpsL20(Sni) xyl-5 A" leu
mtl™1
E. coli TOP10 F mcrA A(mrr-hsdRMS-mcrBC) ®80lacZAM15 AlacX74
recAl araD139A(ara-leu)7697galU galK rpsL (StrY) endAl
nupG
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3.1.5 Enzymes
Restriction enzymes, polymerases and DNA modifgngymes were

purchased from the following companies.

Enzyme Company
- Apal TaKaRa Bio, Japan
- Driselase fronBasidiomycetes sp. Sigma-Aldrich, Japan
- EcoRI TaKaRa Bio, Japan
- ECORV TaKaRa Bio, Japan
- Gateway LR Clonas&" Il Enzyme Mix Invitrogen, USA
- Hindlll TaKaRa Bio, Japan
- Ncol TaKaRa Bio, Japan
- Tag DNA Polymerase Invitrogen, USA
- ThermoScript" RT-PCR System Invitrogen, USA

3.1.6 Plasmid vectors
Cloning vector (pCR2.1-TOPQ), gateway entry vector
(pCR®8/GW/TOPO) were purchased from Invitrogen (Carlst@#, USA) and plant
gateway destination vectors (pMDC32 and pMDCA43) ewgurchased from
Arabidopsis Biological Resource Center (ABRC) (Goiy OH, USA). The maps of
the vectors pCB.1-TOPQ, pCR’8/GW/TOPO, pMDC32 and pMDC43 are shown
in Figures 3.1, 3.2, 3.3 and 3.4, respectively.

pUC ori

HindIII
Kpnl
Sacl
T BamHI
Am Spel
BstXI

® ® EcoRI
pCR®2.1-TOPO® 4.7 M _|
EcoRI

3,931 bp EcoRV
BstXI
Notl
Xhol
Nsil

fl ori [ Xbal
Apal

Figure 3.1 Map of cloning vector pER.1-TOPQ (Invitrogen).
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Figure 3.2 Map of gateway cloning vector pCRBW/TOPJ (Invitrogen).
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EcoRY (2,520)
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EcoRV (8,579)
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pvsi

Figure 3.3 Map of gateway plant destination veptdDC32 (ABRC).

EcoRI (1)
Nos ter

EcoRV (1 1,5§§)

ccdB  Neol (1,270)

— EcoRI (1,571)

(/‘Sgg/NcoI (2,584)
pMDC43 EcoRV (2,883)
12,460 bp 2x35S pro

/
EcoRYV (8,942)
pBR322 ori

HindIII (8,942)

pVS1

Figure 3.4 Map of gateway plant destination veptdDC43 (ABRC).
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3.1.7 Apparatuses used for cloning, expression of Paviova sp. A°-elongase and

fatty acid analysis

Apparatus Company

- Agilent 6890N Gas chromatograph (GC) Agilent technologies, USA
- Bioharzard Safety Cabinet Class Il (Safe 2010)Thermo electron, USA
- Freezer (-2fC) Sanyo, Japan
- Gas chromatograph-Mass spectrometry (GC-
MS)

- GC: Hewlett Packard 5890 Series Il Hewlett Packard, USA

- MS: Hewlett Packard 5972A Hewlett Packard, USA
- Gel documentation (Bio-Rad Gel Doc 1000) Bio-Rad, USA
- GyroSpin Centrifuge Gyrozen, Korea
- Hermle Z323K universal refrigerated centrifugeHermle Labortechnik,

Germany

- Hot air oven Memmert, Germany

- New Brunswick Scientific Innova 2100 PlatfornrNew Brunswick Scientific,

Shaker USA

- New Brunswick Scientific Innova 4230 New Brunswick Scientific,
Refrigerated Benchtop Incubator Shaker USA

- Omni THQ - Digital Tissue Homogenizer Omni International, USA

- pH meter (420A) Orion Research, USA

- Refrigerator Toshiba, Japan

- SL SHEL LAB Laboratory Incubators Sheldon Manufacturing, USA
- TaKaRa PCR Thermal Cycler Dice TP600 TaKaRa Bio, Japan

- Thermomixer Comfort Lab Mark, Czech Republic

- Ultra Low Temperature Freezer (“86Freezer) Shenyang Faith Trading, Chin
- UV-spectrophotometer Gensys 6 Thermo Scientific, USA

- Water bath Memmert, Germany

[s)
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3.2.1 Cloning of Paviova sp. A>-elongase gene

3.2.1.1 RNA extraction
Approximately 20 mg fresh weight dfaviova sp. CCMP 459 was

ground to a fine powder under liquid nitrogen usangre-cooled mortar and pestle.

Total RNA was extracted fromaviova sp. CCMP 459 using the RNeasy Plant Mini

Kit (Qiagen) and determine the total RNA concemratsing UV-spectrophotometer

(Table 3.1).

Table 3.1 Total RNA extraction (RNeasy Plant Mini,KQiagen).

Step

Action

1. Breaking the cell wall

- Approximately 20 mg fresh weight &aviova sp.
- Grind to a fine powder using lig..Nh a mortar
and pestle

- Transfer the powder to RNase-free, ligiN

1.5 ml microcentrifuge tube

2. Cell lysis

- Add 45@l of buffer RTL
- Mix vigorously
- Incubate at 5& for 30 min

3. Centrifugation

- Pipet the lysate onto a QIA shredder spin colum
placed in 2 ml collection tube

- Centrifuge at 12,500 rpm

- Transfer the supernatant of the flow-through to

a new microcentrifuge tube

4. Wash

- Add 0.5 volumn of 100% ethanol
- Mix immediately
- Apply all sample to an RNeasy mini column
placed in a 2 ml microcentrifuge tube

n
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Table 3.1 Total RNA extraction (RNeasy Plant Mini, KQiagen) (continued).

Step Action
4. Wash (continued) - Centrifuge at 12,500 rpm3@isec
- Discard the flow-through liquid
5. Wash - Add 700ul of buffer RW1 to the RNeasy column

- Centrifuge at 12,500 rpm for 30 sec

- Discard the flow-through liquid

- Transfer the RNeasy column into a new 2 ml
microcentrifuge tube

6. Wash - Add 70@l of buffer RPE to the RNeasy column
- Centrifuge at 12,500 rpm for 30 sec

- Discard the flow-through liquid
7. Wash - Add another 50Ql of buffer RPE to

the RNeasy column

- Centrifuge at 12,500 rpm for 5 min

- Discard the flow-through liquid

- Transfer the RNeasy column into a new 1.5 ml
collection tube

8. Elution - Add 5Qul of RNase-free water directly onto

the RNeasy silica gel membrane
- Centrifuge at 12,500 rpm for 2 min
- Collect the flow-through liquid

9. Determination - Determine the total RNA concentration using

UV-spectrophotometer

3.2.1.2 cDNA synthesis

Oneypl of Oligo (dTh4 primer (RACE 32: 5-GAC TCG AGT CGA
CAT CGATTT TTT TTT TTT TT-3") (Frohmaret al., 1988) and 2 pl of 10 mM
dNTPs were added to 5 pug of total RNA in a 12 pglune reaction, incubated at

65°C for 5 min and placed on ice. The cDNA synthesis containing 4 pl of 5x first
strand buffer, 1 ul of 0.1 M DTT and 15 units/ul efmoScript” Il Reverse
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Transcriptase (Invitrogen) was then added to thevipus reaction on ice. After
incubation at 2C for 10 min, followed by 60 min at 80 and finally, the reaction
was terminated by incubating at°@Sfor 5 min. The cDNA was subsequently used as
a template for PCR amplification with primers.

3.2.1.3 DNA cloning

Single strand cDNA oPaviova sp. CCMP459 was used as a template
for PCR amplification with specific primers. Thenf@ard and reverse primers were
PSELO5-For, 5-ATGATG TTG GCC GCA G-3' (underlined sequence is atstar
codon) and PSELO5-Rev, 5-TTBTC CGC CTT GAC CG-3’ (underlined sequence
is a stop codon), respectively (Peradtal., 2004b).

The PCR was carried out in a total volume of 5@qitaining 2 pl of
10 uM each primers, 5 ul of 10x PCR buffer, 1 p10fmM dNTPs, 1 ul of cDNA as
a template, 1.5 pl of 50 mM Mgg£land 0.5 pl of 5 U/ulfag DNA polymerase
(Invitrogen). After initial denaturation at 9@ for 4 min, amplification was
performed in 35 cycles of 1 min at % 0.5 min at 4% and 2.5 min at 72,
followed by a final extension at @2 for another 10 min. The amplified products
were separated on 1.0% (w/v) agarose gels andguubly QIAquick Gel Extraction
(Table 3.2).

Aliquot of 1 pl was directly cloned into pCR.1-TOP@ (Invitrogen)
(Figure 3.1) in a total volume of 6 pl atGtovernight. Three microliters of the
ligation reaction were then transformed into Onet8AOP10 Chemically competent
E. coli cells (Invitrogen) and cultured on solid Luria-Bem (LB) medium containing
100 pg/ml ampicillin, surface spread by 50 pl 0® XOM IPTG and 50 mg/ml X-Gal.
Plasmids DNA were purified from transformdel coli cultures by High-Speed
Plasmid Mini Kit (Geneaid) (Table 3.3).

The resulting plasmids were verified by digestiothwEcoRI for 60
min at 37C and analyzed by 1.0% agarose gel electrophorekismid DNA was
purified and sequenced in both directions with M&Bvard and reverse primers,
resulting in the plasmid named p&R1-TOPG-PsELOS.
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Table 3.2 DNA gel purification (QIAquick Gel Extrigan, Qiagen).

Step

Action

1. Excise

- Excise the DNA fragment form the agarose gel
- Weigh the gel slice in a 1.5 ml microcentrifuge
tube

2. Dissolve gel

- Add 3 volumes of buffer QG todlume of gel

- Incubate at 5 for 15 min and mix

3. Centrifugation

- Pipet the sample onto the QIAquick column
- Centrifuge at 12,500 rpm for 1 min
- Discard the flow-through

4. Binding DNA

- Add 50Qul of buffer QG to QIAquick column
- Centrifuge at 12,500 rpm for 1 min
- Discard the flow-through

5. Wash the DNA pellet

- Add 750ul of Buffer PE to QIAquick column
- Stand for 2 min

- Centrifuge at 12,500 rpm for 1 min twice

- Discard the flow-through

6. Elution

- Place QIAquick columnto aclean 1.6 m
microcentrifuge tube

- Add 32l of Buffer EB to QIAquick membrane
- Centrifuge at 12,500 rpm for 1 min twice

- Collect the purified DNA

- Store at -28C until used
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Table 3.3 Plasmid DNA isolation (High-Speed PlasMidi Kit, Geneaid).

Step

Action

1. Harvesting

- Harvest 5 ml of bacterial culture by centrifugati
at 12,500 rpm for 6 min
- Pour off supernatant

2. Cell lysis

- Add 20Qul of Cell Resuspension Solution
containing 5Qug/ml RNase
- Mix with vortex
- Add 200 pl of Cell Lysis Solution

- Inverting mix

3. Cell debris precipitation

- Add 300ul of PD3
- Inverting mix immediately

- Centrifuge at 12,500 rpm for 15 min

4. Binding DNA

- Decant the clear lysate into S@n column
placed in a 2 ml collection tube

- Centrifuge at 12,500 rpm for 1 min

- Discard the flow-through

5. Wash the DNA pellet

- Add 400 pl of PW
- Centrifuge at 12,500 rpm for 1 min
- Discard the flow-through

6. Wash the DNA pellet

- Add 600 pl of Wash Buffer
- Centrifuge at 12,500 rpm for 1 min twice

- Discard the flow-through

7. Elution

- transfer the Spin column to a new 1.5 ml
microcentrifuge tube

- Add 50 pl of TE buffer

- Stand for 2 min

- Centrifuge at 12,500 rpm for 2 min

- Collect the plasmid DNA

- Store at -28C until used
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3.2.2 Functional analysis of Paviova sp. A>-elongase in P. patens

3.2.2.1 Construction of entry clone

The primers PsSELO5-For and PsSELO5-Rev were used PIGR
amplification of the pCR2.1-TOPG-PSELO5 with Tag DNA polymerase
(Invitrogen). PCR was carried out in a total voluoié&O0 pl containing 2 pl of 10 uM
of each primer, 5 pl of 10x PCR buffer, 1 pl of dd1 dNTPs, 1.5 pl of 50 mM
MgCl,, 1 pl of 1/50 diluted pCB2.1-TOPG-PSELOS as a template, and 0.5 pl of 5
U/ul Tag DNA polymerase (Invitrogen). The PCR conditionsreveonducted as
following; initial denaturation for 4 min at 8@, followed by 28 cycles of 1 min at
94°C, 0.5 min at 4%, 2.5 min at 72, followed by a final extension at Q2 for
another 10 min (Table 3.4).

One microliter of amplification product was incorpted directly into
1 pl of entry vector, pCR8/GW/TOP@ vector (Invitrogen) (Figure 3.2) in a total 6
pl solution containing 1 pl of salt solution. Thextare was incubated at room
temperature for 60 min and transformed into One tSHBOP10 Chemically
competent. cali cells (Invitrogen). The transformants were cultlom LB medium
containing 100 pg/ml spectinomycin. Plasmids DNAevpurified from transformed
E. coli cultures by High-Speed Plasmid Mini Kit (Geneditidble 3.3). The resulting
plasmids were verified by digestion wilcoRI for 60 min and analyzed by 1.0%
agarose gel electrophoresis.

The corresponding plasmid was sequenced with Mi®ai@ and
reverse primers, yielding the plasmattL1-PsSELO5SattL2. The obtained plasmid
containing PSELO5 sequence flanked dijl. recombination sequences was then
recombined withattR sites of destination vectors using the Gat&y Clonas&”

Il Enzyme Mix (Invitrogen).
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Table 3.4 Construction of pCR8/GW/TOPC vector containingPaviova sp. A°-
elongase gene (the plasnaitiL1-PsELO5attL 2).

Step

Action

1. PCR mixtures

- 0.5 pl ofTag DNA polymerase (Invitrogen)
- 5.0 ul of 10X PCR buffer

- 4.0 pl of 2.5 mM dNTPs

- 1.5 pl of 50 mM MgGi

- 2.0 pl of 10 uM Primer PSELO5-For

- 2.0 pl of 10 uM Primer PSELO5-Rev

- 35 ul of sterile water

2. PCR conditions

- Pre-denaturation &t®#br 4 min | - 1 cycle
- Denaturation at € for 1 min
- Anneling at 48C for 0.5 min - 28 cycles
- Extension at 7Z for 2.5 min

- Final extension at 72 for 10 min | - 1 cycle

3. DNA purification

- Separate on 1.0% agarose gel electrophoresis
- Gel purify by QIA Gel Extraction Kit (See Table23

4. Ligation mixture

- 1.0 pl of pCRB/IGW/TOPG vector
- 1.0 pl of PCR product
- 1.0 pl of salt solution
- 3.0 ul of sterile water

- Incubate at %&C, overnight

5. Transformation

- Add 3 pl of mixed into 50 pl dE. coli competent cells
- Keep on ice for 30 min and heat af@Zor 1 min

- Keep on ice for 5 min and add 300 pl of SOC medi
- Incubate with shaking incubator at’87for 60 min

- Spread plates on LB medium containing 100 pg/ml

spectinomycin

6. DNA extraction

- Plasmid isolation by High-Spdddsmid Mini Kit
(Geneaid) (See Table 3.3)
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3.2.2.2 Construction of P. patens expression vector

This reaction separately transferred 150 ng (20ftlPSELO5 coding
sequence of the plasmattL1-PsELObSattL2 into 100 ng (3 ul) of desired destination
vector, pMDC32 (a tandemly duplicated caulifloweosaic virus 35S (CaMV35S)
promoter) (Figure 3.3) or pMDC43 (a tandemly dugtiedd CaMV35S promoter
together with green fluorescence protein (GFP6)iorgg (Figure 3.4) (ABRC)
(Columbus, OH, USA) (Curtis and Grossniklaus, 2003# total volume of 10 ul
solution containing 3 pl of TE buffer (pH 8.0), adul of LR ClonasE” Il Enzyme
Mix (Invitrogen) at 4C for 2 days (Table 3.5).

The mixtures are further incubated with 1 pl oftBimmase K at 37C
for 15 min. An aliquot of 3 pl was introduced inme Shdt TOP10 Chemically
Competent. cali cells (Invitrogen). The transformants were cultlos LB medium
containing 50 pg/ml kanamycin. Plasmids DNA wereather purified from
transformeck. coli cultures by High-Speed Plasmid Mini Kid (Geneditiable 3.3).
The resulting plasmids were verified by digestiathvEcoRI at 37C for 60 min and
analyzed by 1.0% agarose gel electrophoresis. fidsaglted in the generation of
recombinant plasmids, pMDC32-PsELO5S carrying a geseLO5 and pMDC43-
PsSELOS carrying a gene PsSELOS fused to C-termif@F6, driven by a tandemly
duplicated CaMV35S promoter and nos terminator, andtaining hygromycin
resistance (Hyy gene as a selection marker.

Table 3.5 Construction &f. patens expression vector.

Step Action

1. Recombination - 2.0 pl of pMDC32 or pMDC43 (150 ng) (ABRC)
- 3.0 pl of pCR 8/GW/TOPG vector containing
Paviova sp.A>-elongase gene (the plasnaitl1-
PsSELOS5attL2)

- 2.0 pl of TE buffer (pH 8.0)

- 2.0 pl of LR Clonas®' Enzyme Mix (Invitrogen)

- Incubate at %&C, overnight
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Table 3.5 Construction &f. patens expression vector (continued).

Step Action

2. Digestion - Add 1 pl of Proteinase K (Invitrogen
- Incubate at 3C for 15 min

3. Transformation - Add 5.0 pl of recombination reaction irocoli
competent cells (See Table 3.4)

4. DNA extraction - Plasmid isolation by High-Sdd@lasmid Mini Kit
(Geneaid) (See Table 3.3)

3.2.2.3 Large scale plasmid DNA purification

An aliquot of 0.5 ul of recombinant plasmids, pMIX=BSELOS5 or
pMDC43-PsELOS5, was introduced into One $heOP10 Chemically Competekt
coli cells (Invitrogen) (Table 3.4). The transformamisre cultured on solid LB
medium containing 50 pg/ml kanamycin and a singlerty was then transferred into
500 ml Erlenmeyer flasks containing 250 ml of ldjuiB medium containing 50
pg/ml kanamycin. Plasmids DNA were further purifiedm transformedE. coli
cultures by Geneaid Plasmid Maxi Kit (Geneaid) (€&h6). The resulting plasmids
were verified by digestion witlEcoR| for 60 min at 37C and analyzed by 1.0%
agarose gel electrophoresis and determined the [RNAcentration using UV-

spectrophotometry.

Table 3.6 Large scale plasmid DNA purification (@aid Plasmid Maxi Kit,

Geneaid).

Step Action

1. Cell harvesting - Transfer 50 ml of cells to a 50 ml centrifugedub

- Centrifuge at 13,000 rpm for 15 minutes

- Discard the supernatant completely

- Repeat as required for samples >50 ml using the

same centrifuge tube
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Table 3.6 Large scale plasmid DNA purification (@aidl Plasmid Maxi Kit,

Geneaid) (continued).

Step

Action

2. Re-suspension

- Add 10 ml of PM1 Buffer (RNasadéled) to re-

suspend the cell pellet completely by vortex oefip

3. Cell lysis

- Add 10 ml of PM2 Buffer and mix gently by
inverting the tube 10 times (be sure and mix
completely)

- Do not vortex, to avoid shearing the genomic DN
- Let stand at room temperature for at least 2 ey

to ensure the lysate is clear

A

4. Neutralization

- Add 10 ml of PM3 Buffer
- Immediately shake vigorously for 10 seconds
- Do not vortex
- Centrifuge at 13,000 rpm for 30 minutes %€ 4

5. DNA binding

- Transfer the supernatant to the equilibratedriils
Maxi Column and allow the column to empty
completely by gravity flow

- Discard the flow-through and place the Plasmid

Maxi Column back in the 50 ml centrifuge tube

6. Wash

- Wash the Plasmid Maxi Column by addingnBof
PW Buffer
- Allow the column to empty completely by gravity

flow then discard the filtrate

7. DNA elution

- Place the Plasmid Maxi Column in a clean 50 ml
centrifuge tube

- Add 12 ml of PEL Buffer to elute the DNA by
gravity flow

- Discard the Plasmid Maxi Column once it has

emptied completely
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Table 3.6 Large scale plasmid DNA purification (@aid Plasmid Maxi Kit,

Geneaid) (continued).

Step Action

8. DNA precipitation - Add 9 ml (0.75 volumes) sbpropanol to the
eluted DNA from Step 7

- Mix the tube completely then centrifuge at
13,000 rpm for 60 minutes at 4°C

- Carefully remove the supernatant and wash the
DNA pellet with 5 ml of 75% ethanol

- Centrifuge at 13,000 rpm for 30 minutes at 4°C.
- Carefully remove the supernatant

- Air-dry the DNA pellet for 10 minutes

- Dissolve the DNA pellet in 0.5 ml (or suitable
volume) of TE

9. Determination - Determine the DNA concentration using

UV-spectrophotometry

3.2.2.4 Protoplast transformation and regeneration

3.2.2.4.1 Protoplast isolation

Protoplasts were isolated from 5 plates (1 g fresight) of 14-
day-old protonemal wild typ®. patens cultures by digestion with 20 ml of 0.5%
Driselase enzyme suspension dissolved in 8% D-rt@niior 45 min. The digested
moss material was successively passed through sigtiea pore size of 100 pm,
centrifuged at 250g and washed in 20 ml of 8% D-mtahtwice. Subsequently, the
protoplast pellets were resuspended in 10 ml ofiwal protoplast wash (CaPW)
solution and estimated the protoplast density usirttaemocytometer (Grimsley
al., 1977) (Table 3.7).
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Table 3.7 Protoplast isolation.

Step Action
1. Cell Harvesting and - Approximately 1g fresh weight of 14-day-old
digestion protonemata wild typ®. patens tissue

- Digested with 20 ml of 0.5% Driselase (Sigma)
for 45 min

2. Centrifugation - Digested moss material is sgsively passed
through sieve with a pore size of 10®

- Centrifuge at 2509 for 5 min

- Discard the supernatant

3. Wash - Add 20 ml of 8% mannitol twice

- Centrifuge at 2509 for 5 min

- Remove the supernatant
- Yielding isolated moss protoplasts pellet

4. Resuspend - Resuspend the protoplast pell€t ml of CaPW

5. Estimate - Estimate the protoplast density using
a haemocytometer

3.2.2.4.2 Polyethylene-glycol (PEG)-mediated transformation
of protoplasts and P. patensregeneration

Three hundred microliters of the expression coestpMDC32-
PSELO5 and pMDC43-PsELO5S from section 3.2.2.3 vamearately digested with
Hindlll in a total volume of 400 pl at 3Z for 5 hr. The linear DNA was then
subsequently precipitated. Fiveteen micrograms loé tinear plasmids were
separately transformed into 5xX1protoplasts of the wild typ®. patens by PEG-
method (Schaefest al., 1991 with modification) (Table 3.10).

Transformation experiments were performed by pbljene
glycol (PEG) 6,000 with 300 pl of D-mannitol/MgIMES (MMM) solution (See
Appendix A) of a WT protoplast suspension (5xpéotoplasts) added to 15 pg linear
plasmids. After transformation, the transformedigotasts were resuspended in the 1

ml of sterile 8% D-mannitol and added with 7 ml mblten PRMT (protoplast
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regeneration medium-top) medium (See Appendix Anl2f mixtures were plated
onto each 90x15 mm Petri dishes containing soéidifpprotoplast regeneration
medium-bottom (PRMB) medium (See Appendix A) andtured at 258C under
continuous light provided by fluorescent tubes. Thedium was covered with a
sterile cellophane sheet which facilitates the df@an of the regenerating plant at
subsequent stages.

After regeneration of protoplasts on PRMB/PRMT muedlifor
14 days, the cellophanes with the culture weresteared to the solid BCD medium
(Knight et al., 2002) containing hygromycin B (3fg/ml) and cultured for 14 days,
followed by 14 days release period on medium witlamiibiotic and retransferred to
selective medium for a further 14 days. Transfornpdants that survived this

selection regime were defined as stable transfaignan

Table 3.8 Protoplast transformation and regenaratio

Step Action
1. Protoplast - Aliquot 5x10 protoplasts into the sterile tube
harvesting - Centrifuge at 2509 for 5 min and discard the sog@nt

- The protoplast pellet
2. Resuspend - Add 300 pl of MMM solution and a8dugy of

expression vector DNA into the protoplast suspensio

3. Transformation Time in minutes
- Add 300 ul of PEG solution
- Heat at 48C for 5 min

10 - Keep on ice for 10 min

20 - Add 1 ml of CaPW and mix gently
25 - Add 2 ml of CaPW and mix gently
30 - Add 4 ml of CaPW and mix gently
35 - Add 4 ml of CaPW and mix gently

40 - Centrifuge at 2509 for 5 min
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Table 3.8 Protoplast transformation and regenardtiontinued).

Step Action

4. Resuspend and | - Resuspend the protoplast pellet in 1 ml of

dispense sterile 8% mannitol

- Add 7 ml of molten PRMT medium

- Dispense onto 90x15 mm plates of PRMB overlayd&d W
cellophane (2 ml/plate)

- Incubate at 2% under continuous light for 14 days

3.2.3 Fatty acid analysisof P. patensby GC-MS

Total fatty acids from 14-day-old protonemata adss were analyzed
by GC and fatty acid methyl esters (FAMES) prepaaedording to Kaewsuwaet
al., (2006). Briefly, total fatty acids of moss tiesufrom wild type and individual
transgenid®. patens plants were transmethylated with 2.5% sulfuric atigbolved in
methanol at 85°C for 30 min, a total of 1 ml of @radand 1 ml of heptane were added
to the extracts and well mixed. The top organietaywith the FAMEs were collected
and dried under nitrogen gas.

GC analysis of FAMEs was conducted using an AgiG880N (USA)
equipped with an HP-INNOWax capillary column (0251 x 30 m x 0.25 um), a
flame ionization detector, using helium as theieamas. An aliquot (2 pl) of each
sample extract was injected onto the GC columnguhie injector in the split mode.
The initial column temperature was 285(0.5 min) and was increased at a rate of
3.5°C/min to 235C (14.3 min), and then maintained at Z3f®r 1.0 min. Fatty acids
were identified by comparison with the retentiomds of standards and were
expressed as mg/l.

The amounts of fatty acids were estimated from pleak areas
extrapolated with the calibration curves of knowattyf acid standards. The
corresponding fatty acids were further verifiedhwihe same condition by GC-MS
using the HP 5972A Series operating at an ioninatioltage of 70 eV with a scan
range of 50-500 Da.
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3.2.4 Molecular analysis by PCR and Southern blotting

3.2.4.1 Genomic DNA extraction for PCR analysis

Approximately 50 mg fresh weight of 14-day-old mro¢mal wild type
and stable transgeni patens were frozen using liquid nitrogen and pulverizedai
microcentrifuge tube. The powdered tissues weredad with 250 pl of shortly
extraction buffer (See Appendix A) twice, incubatedice for 5 min, and centrifuged
at 13,000 rpm for 5 min. A volume of 350 pl of supant was mixed with 350 pl of
isopropanol and centrifuged at 13,000 rpm for agitahal 15 min. Genomic DNA
pellet was washed with 250 pl of 70% ethanol, fed by resuspending dried
genomic DNA with 400 pl TE buffer before PCR anay3able 3.9).

Table 3.9 Genomic DNA extraction for PCR analysis.

Step Action

1. Breaking of the cell wall | - Approximately 50 mg fresh weight of wild type
and stable transgenit patens.

- Grind to a fine powder using lig..Nh a mortar
and pestle

- Transfer the powder to RNase-free, ligiN

1.5 ml microcentrifuge tube

2. Cell lysis - Add 500 pul of shortly extractionffar

- Mix vigorously
- Centrifuge at 13,000 rpm for 10 min

3. DNA precipitation - Add 350 pl of isopropanol to 350 pl of supernatan
- Mix with vortex

- Centrifuge at 13,000 rpm for 15 min

- Discard the supernatant

- Yielding the DNA pellet

4. DNA washing - Add 250 pl of 70% ethanol and wigorously

- Centrifuge at 13,000 rpm for 15 min




69

Table 3.9 Genomic DNA extraction for PCR analys@ntinued).

Step Action

5 DNA drying - Dry the DNA by speed vacuum for 10 min

6. DNA dissolving - Resuspend the genomic DNA wi@® pl of
TE buffer

- Keep at 4C, overnight

7. Storage - Store at -28C, overnight until used

3.2.4.2 PCR analysis

DNA integration event of PSELO5 was verified by PERperiments
with specific primers, PsSELO5-For, 5-ATG ATG TTGQ& GCA G-3' and
PsSELO5-Rev, 5-TTA CTC CGC CTT GAC CG-3’ correspeddo the start and stop
regions of PSELO5 (Pereimt al., 2004b). The hygromycin resistance (Hygene
was also confirmed by PCR with primers, Hygro-FATG AAA AAG CCT GAA
CTA CCG-3' and Hygro-Rev, 5'-CTA TTT CTT TGC CCT G®&\-3' derived from
5’- and 3’- Hyg coding region.

The PCRs were carried out in a total volume of b@qgntaining 2 pul
of 10 uM each primers, 5 pl of 10x PCR buffer, Iofil0 mM dNTPs, 1 ul of 1/50
genomic DNA as a template, 1.5 ul of 50 mM Mg@ind 0.5 pl of 5 U/uTaq DNA
Polymerase (Invitrogen). After initial denaturatiah 94C for 4 min, amplification
was performed in 35 cycles of 1 min a@40.5 min at 4% and 2.5 min at 72,
followed by a final extension at %2 for another 10 min and amplification product

was analyzed on 1.0% agarose gel electrophoresis.

3.2.4.3 Genomic DNA extraction for Southern blotting

Genomic DNA was extracted from approximately 1 eslr weight of
14-day-old protonemal wild type and stable tranggéh patens tissues using the
Nucleod™ PhytoPur& Genomic DNA Extraction Kit (Amersham Biosciences)
(Table 3.10). DNA was recovered by ethanol preatmh and dissolved in 250 pl of
TE buffer.
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Table 3.10 Genomic DNA extraction (Nuclén PhytoPur®' Genomic DNA

Extraction Kit, Amersham Biosciences).

Step

Action

1. Breaking of the cell

- Approximately 1g fresh weight of 14-day-old

wall protonematd. patens
- Grind to a fine powder using lig..Nh a mortar and
pestle
- Transfer the powder to RNase-free, ligiN
1.5 ml microcentrifuge tube
2. Cell lysis - Add 4.6 ml of Reagent 1 containguug/ml RNase

and mix thoroughly with vortex mixer

- Add 1.5 ml of Reagent 2

- Invert several times to gel homogeneous mixture
- Incubate at 5& in water bath for 10 min

- Place sample on ice for 20 min

3. DNA extraction

- Remove sample from ice

- Add 2 ml of CHC} (-20°C) and mix gently

- Add 200upl of Nucleon PhytoPure DNA extraction
resin suspension

- Centrifuge at 13,000 rpm for 30 min

- Transfer the upper DNA containing phase into

a fresh tube (~ 7 ml)

4. DNA precipitation

- Add an equal volume of caddpropanol (~ 7 ml)
- Gently invert the tube until DNA precipitates
- Centrifuge at 13,000 rpm for 30 min

5. DNA washing

- Add 10 ml of cold 70% ethanol
- Centrifuge at 13,000 rpm for 30 min
- Discard the supernatant
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Table 3.10 Genomic DNA extraction (Nuclén PhytoPur®' Genomic DNA

Extraction Kit, Amersham Biosciences) (continued).

Step Action

6. DNA dry and - Dry the DNA pellet by speed vacuum for 30 min

dissolving - Add 250l of sterile TE buffer and keep at@,
overnight

7. Determination - Determine the DNA concentration by
UV-spectrophotometry

3.2.4.4 Southern blotting

One microgram aliquots of genomic DNA from wild ¢&and stable
transgenic lines (C6, N15 and N64) were complatejested withEcoRV, EcoRI or
Ncol for 6 h, separated on a 0.6% (w/v) Seakem LE csgamgel (Cambrex Bio
Science Rockland, Rockland, ME, USA). The DNA waent transferred to a
Biodyne B positively charged 0.45 nylon membranall(Bife Sciences, Ann Arbor,
MI, USA) in 10x saline sodium citrate (SSC) for 4 To improve transfer of the
larger DNA fragments, the gel was soaked in 0.294®1 for 10 min to partially
depurinate the DNA, followed by denaturation wit® &1 NaOH/1.5 M HCI for 15
min and neutralization with 0.5 M Tris base/1.5 M@ pH 7.0 for an additional 15
min. After prehybridization with DIG Easy Hyb (RaelApplied Science, USA) at
40°C for 45 min, the membrane filter was separategbpd with specific fragments
amplified from the expression constructs used f@ndformation which were
corresponded to PSELO5 and Hggding region. The probes were labeled with PCR
DIG Probe Synthesis Kit (Roche Applied Science, Y8Ad the hybridization was
performed overnight at 4G in DIG Easy Hyb (Roche Applied Science, USA). The
membrane was washed twice with 2x SSC, 0.1% sodiadecyl sulfate (SDS) at
room temperature for 5 min and then wash twice Wittx SSC, 0.1% SDS at &
for 30 min. Detection was accomplished with a chemiinescent substrate (CSPD,
Roche Applied Science, USA) and exposed to CL-XRosilm (Thermo Scientific
Inc., Rockford, IL, USA).
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3.2.5 Optimization of biomass and ADA production in transgenic P. patens

culture

3.2.5.1 Starter culture preparation and cultivation conditions

Protonemata tissues (14-day-old, 1 g) of transgenmatens C6 were
blended with 100 ml of modified liquid BCD basal dnem with a homogenizer
(OMNI THq, USA) at a speed of 30,000 rpm for 1 min yieldlh§% (w/v) starter
inoculum. Then 10 ml of cell suspension was indealan 250 ml Erlenmeyer flasks
containing 90 ml of modified liquid BCD basal mewtitand further cultivated on an
orbital shaker (New Brunswick Scientific Innova B10USA) at 125 rpm with
continuous light conditions provided by fluorescéumbes (126:mol/mé/s’) at 25C
for 14 days.

The obtained protonemata tissues (14-day-old, &veyke transferred
into 250 ml Erlenmeyer flasks containing 100 ml liofuid BCD basal medium
formulated by central composite design (CCD) ardh@r cultivated on an orbital
shaker (New Brunswick Scientific Innova 2100, US#A)125 rpm with a continuous
light condition provided by fluorescent tubes (1@6ol/n’/s") at 25C for 14 days.

3.2.5.2 Optimization of culture medium for biomass and ADA
production using RSM

The optimization of medium constituents to improv@mass and
ADA production in transgeni®. patens C6 was carried out based on BCD medium
(Knight et al., 2002) using RSM (Raet al., 2000). The effects of sucrose (A),
potassium nitrate (B) and glutamate (C) were studig CCD method with five
settings (2, 1, 0, +1, +2) of each three factoele\(Table 3.11). Sucrose could be
converted directly to acetyl-CoA used for fatty dscisynthesis and provided
additional reducing power, NADPH, for the varioussdturation enzymes needed to
produce ARA (Jinet al., 2008; Jinet al., 2009), which is precursor of ADA
biosynthesis. Potassium nitrate is essential ferptoduction of LC-PUFASs because
it plays a crucial function in maintaining high iady of malic enzyme which plays
an important role in the provision of NADPH for tlatacid biosynthesis and thus
regulates the extent of LC-PUFAs accumulatioMiralpina, especially ARA (Wynn
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et al., 1999) and glutamate was demonstrated to hawtearr activating acetyl-CoA
carboxylase (ACC; EC 6.4.1.2). ACC catalyzes thenfdion of malonyl-CoA, an
essential substrate for fatty-acid synthase andatty acyl chain elongation systems
(Kowluru et al., 2001).

The relationship of the independent variables ahe tesponses
(biomass or ADA production) was calculated by thecaomd-order polynomial

equation:

Yi = fo+ BiA+ BB + BsC + 1A + SooB® + S2aCP + P1oAB + S13AC + oaBC (1)

whereY; is the predicted responsg, B, C, D, and E are the independent variables,
P, Po andfs are the linear effectghi, f2o andfss are the squared effects, gfid, Si3
and /3 are the interaction terms.

The analysis of variance (ANOVA) for the experimredrdata and the
model coefficients were calculated using the safew®esign-Expeftv.7.1.5. (Stat
Ease Inc., MN). In addition, two-dimension contplots were constructed for visual
observation of the trend of maximum responses &edirtteractive effects of the

significant variables on the responses.

Table 3.11 Levels of variables used in the cemraiposite experimental design used
for studying the effects of sucrose (A), potassinitmtate (B) and glutamate (C)

concentrations on biomass and ADA production bydganicP. patens C6.

Runs Sucrose concentration Potassium nitrate  Glutamate concentration

(A) (all) concentration (©) (g

(B) (9/)
1 40 (-1) 0.6 (-1) 1.0 (-1)
2 80 (1) 0.6 (-1) 1.0 (-1)
3 40 (-1) 1.0 (1) 1.0 (-1)
4 80 (1) 1.0 (1) 1.0 (-1)
5 40 (-1) 0.6 (-1) 2.0 (2)
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Table 3.11 Levels of variables used in the cemaiposite experimental design used
for studying the effects of sucrose (A), potassinitmate (B) and glutamate (C)
concentrations on biomass and ADA production byndgenic P. patens C6

(continued).

Runs Sucrose concentration Potassium nitrate  Glutamate concentration

(A) (a/l) concentration (©) (gl
(B) (9/)

6 80 (1) 0.6 (-1) 2.0 (1)
7 40 (-1) 1.0 (1) 2.0 (2)
8 80 (1) 1.0 (1) 2.0 (2)
9 20 (-2) 0.8 (0) 1.5 (0)
10 100 (2) 0.8 (0) 1.5 (0)
11 60 (0) 0.4 (-2) 1.5 (0)
12 60 (0) 1.2 (2) 1.5 (0)
13 60 (0) 0.8 (0) 0.5 (-2)
14 60 (0) 0.8 (0) 2.5(2)
15 60 (0) 0.8 (0) 1.5 (0)
16 60 (0) 0.8 (0) 1.5 (0)
17 60 (0) 0.8 (0) 1.5 (0)
18 60 (0) 0.8 (0) 1.5 (0)
19 60 (0) 0.8 (0) 1.5 (0)
20 60 (0) 0.8 (0) 1.5 (0)

3.2.5.3 Experimental validation of the optimized conditions

Two selected experiments were conducted in 250 makesflasks
containing the total volume of 100 ml final prodocatliquid medium with 4 g of 14-
day old protonemata as described above to verigy \hlidity of the optimal
conditions for maximum biomass and ADA producti@ach of these experiments

was carried out in triplicate and the data caledas mean + S.E. (n=3).
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3.2.5.4 Effects of EPA and oil supplementation on biomass, ADA
and ®-3 DPA production in transgenic P. patens culture

Oil supplementation was applied to improve-EUFA production in
transgenicP. patens C6 based on the optimized liquid BCD medium froect®n
3.2.5.3. The basal medium supplemented with 0.1EBfA or 0.2% (v/v) each of oils
including linseed oil, soybean oil, sunflower @rn oil and palm oil was used for oll
amendment test. Tween 80 at 0.25% (w/v) was used amulsifier.

The cultivation of the transgenie. patens C6 was performed by
inoculation of 14 day-old protonemata (4% w/v) iBO2mL sterile shake-flasks
containing the total volume of 100 ml optimized uid BCD with oll
supplementation. The liquid BCD basal medium wasduss the control experiment.
After 14 days of cultivation in a growth room at°’@5in an orbital shaker set at 125
rpm under continuous light provided by fluorescartes (126umol/m?/st), DCW

and production of PUFAs in the cells were estimatetiplicate.

3.2.5.5 Dry cell weight deter mination (Biomass production)

After 14 days of culture, the cells were separdteth the media by
filtration through a sieve and then washed thneesi with a large amount of distilled
water to remove residual medium. The cells werterBd again under vacuum
condition, subsequently frozen at -20°C and fresrzed for 3-4 days. Finally, the
biomass production was calculated in term of dtyweight and expressed as g/l of

DCW. Each treatment was conducted in triplicate.
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CHAPTER 4
RESULTS AND DISCUSSION

4.1 Cloning of A>-elongase gene from Paviova sp.

The P. patens produces several PUFAs, especially ARA and EPA
(Grimsleyet al., 1981; Kaewsuwast al., 2006) which are £-PUFAs required for
the synthesis of the &PUFAs, ADA ando-3 DPA, respectively by a®-elongase
(Pereiraet al., 2004b). HoweveR. patens lacks this G, PUFA synthesizing enzyme,
whereas the algae accumulates large amounts of DHAe cells (Medinaet al.,
1998; Meireleset al., 2003; Zhouet al., 2007). Accumulation of £-PUFA in the
algae indicates high activities of very long-chaJFA synthesizing enzymes.
Previously gene encoding far-elongase was isolated from the marine microalgae
Paviova sp. CCMP459 (Pereirat al., 2004b). This expressed enzyme displayed
unique substrate specificity for bothv6 and -3 G0 PUFA substrates, with no
activity toward any g or G, PUFA substrates (Pereiehal., 2004b). This study is
therefore interested in the production gh-BUFA substrates iR. patens for further
®-6 DPA and DHA productions.

To identify a gene coding for the-elongation enzyme involved in the
final step of ADA andw-3 DPA biosynthesis, which are the precursors>@ DPA
and DHA, respectively, cDNA reverse-transcribedrfi@aviova sp. mRNA was PCR
amplified with PsSELOS5-forward and PsSELOS5-reversemprs based on NCBI
sequence data (accession number AY630573) (Pestedla, 2004b) andlaq DNA
polymerase (Invitrogen) which performs a nontengli¢pendent terminal
transferase activity by adding a single deoxyadeeofA) to the 3" ends of PCR
products. An amplification product contained th@eoted length (approximately 836
bp indicated by arrow) (Figure 4.1 and 4.2b) wametl into pCR2.1-TOP® vector
(Invitrogen) containing a single overhanging 3" xdgbymidine (T) residues (Figure
4.2a). Topoisomerase | frowfaccinia virus binds to duplex DNA at specific sites and
cleaves the phosphodiester backbone aft€dCTT in one strand (Shuman, 1991)
(Figure 4.2c). The energy from the broken phospdsidr backbone is conserved by

formation of a covalent bond between thepBosphate of the cleaved strand and
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a tyrosyl residue (Tyr-274) of topoisomerase |. T@spho-tyrosyl bond between
the DNA and enzyme can subsequently be attacketdeb$ hydroxyl of the original
cleaved strand, reversing the reaction and relgasipoisomerase (Shuman, 1994)
(Figure 4.2c), yielding plasmid named p&RL-TOPG-PSELO5 (approximately
3,931 bp) (Figure 4.2d).

The resulting plasmids were verified by digestiothviEcoRI (Figure
4.2e). After screening the five plasmid DNA (P1-P&yo (P1 and P2) of those
plasmids were released the approximately 852 lgxlsgene of interest (B) from the
approximately 3,913 bp sized of vector (A) (Figdr@f) and clone P2 was selected

for sequencing with M13 forward and reverse primers

Figure 4.1 PCR amplification products frdtaviova sp. cDNA with PSELO5-For and
PSELO5 Rev primers and analyzed on 1.0% agaroselgerophoresis. The DNA
sizes in kbp are indicated on the left. The armoglidates the expected DNA size.

M : 1 kbp DNA Ladder (Promega)

PCR : PCR amplification product
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(b)

-

PSELO5 834 bp TAA g

VDDDOOT
LIDJD9IS,
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&
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pCR*2.1-TOPO®  JacZ

3,931 bp

S0D000LL
$50999V

/ Topoisomerase I
EcoRI

(d)

PsELOS
_EcoRI
pCR*2.1-TOPO®-PSELO5 il
4,765 bp
Am"
f1 ori
Topoisomerase I
Km*
lDigestion with EcoeRI
(e ®
pUC ori %
EcoRI M kbp
(284) EcoRI1
(284)
A =—p
Amr
PsELOS
pCR*2.1-TOPO®
4,765 bp
EcoRI —
(1,136) B
EcoRI
(1,136) — (.5

Figure 4.2 Construction of the plasmid pRL-TOPJ-PSELO5. (a) pCR.1-TOPG vector
(Invitrogen). (b) PCR products. (c) Topoisomerasaction. (d) Recombinant plasmid ptRl-
TOPOP-PSELOS. (e and f) Plasmid DNA isolated frdncoli cultures and digested wiffcoRl. The
DNA sizes in kbp are indicated on the right.

M : 1 kbp DNA Ladder (Promega)

P1-5 : Plasmid DNA from clone No. 1-5

: Approximately 3,913 bp sized pCR2-TOPO vector (Invitrogen)
B : Approximately 852 bp sized &faviova sp.A®-elongase

* : Selected plasmid DNA for sequencing
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The open reading frame (ORF) of the clone PSELONAIclone P2)
is 834 bp from an ATG start to a TAA stop codond aondes for 277 amino acids
with 100% identity to a clonedPaviova sp. A*-elongase (accession number
AY630573) from previously reported (Pereetaal., 2004b) (Figure 4.3). This amino
acid polypeptide contained a C-terminal lysine-riobtif, typical characteristic for
the endoplasmic reticulum (ER) targeting (Jacksbral., 1990) as well as four
conserved motifs including KxxExxDT (Box 1), QxxFkMHH (Box 2) the extended
histidine-rich box which is suggested to be funwiity important for PUFA
elongation (Qiet al., 2002), NxxxHxXxMYxYY (Box 3), and TxxQxxQ (Box 4)
which are commonly of PUFA elongases (Megkal. 2004; Jakobssosa al. 2006)
(Figure 4.3). However, these conserved motifs wetdfound in other classes of plant
microsomal elongaseg-ketoacyl CoA synthases, and fatty acid elongasésE)
involved in extraplastidial elongation of saturatud monounsaturated fatty acids.
The secondary structure analysis revealed that ®SEk highly hydrophobic and
predicted to contain six transmembrane domaine({Rest al., 2004b) (Figure 4.4).

4.2 Functional analysis of Paviova sp. A>-elongasein P. patens

4.2.1 Construction of entry clone

In this approach, PCR was used to amplify the PdE&€uence from
plasmid pCR2.1-TOP(-PsELO5 (Figure 4.2d) with two specific primersEP®5-
For and PsELO5-Rev arithg DNA polymerase (Invitrogen) which performs a non-
template-dependent terminal transferase activityatiging a single deoxyadenosine
(A) to the 3ends of PCR products.

An amplification product containing an approximgt8B6 bp size of
Paviova sp. A’-elongase (Figure 4.5b) was directly ligated in@R8"/GW/TOPJ
entry vector (Invitrogen) containing a single owerging 3 deoxythymidine (T)
residues (Figure 4.5a). Topoisomerase | fidemacinia virus binds to duplex DNA at
specific sites (CCCTT) and cleaves the phosphagliesackbone in one strand
(Figure 4.5¢) (Shuman, 1991). The energy from ttokdn phosphodiester backbone
is conserved by formation of a covalent bond bebnee 3 phosphate of the cleaved

strand and a tyrosyl residue (Tyr-274) of topoismase |. The phospho-tyrosyl bond
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PSELOS-For

PVELOS ATGATGTTGGCCGCAGGCTATCTTCTAGTGCTCTCGGCCGCTCGCCAGAGCTTCCAGCAGGACATTGACAACCCCAACGGGGCCTACTCGACCTCGTGGACTGGCCTGCCCATTGTGATG 120
M M L A A G Y L L V L S A A R Q S F p 1 D N P N G A Y S T S W T G L P I V. M

PSELO5 ATGATGTTGGCCGCAGGCTATCTTCTAGTGCTCTCGGCCGCTCGCCAGAGCTTCCAGCAGGACATTGACAACCCCAACGGGGCCTACTCGACCTCGTGGACTGGCCTGCCCATTGTGATG 120
M M L A A G Y L L V L S A A R Q s F Q Q D I D N P N G A Y S T S W T G L P I V. M

PVELOS TCTGTGGTCTATCTCAGCGGTGTGTTTGGGCTCACAAAGTACTTCGAGAACCGGAAGCCCATGACGGGGCTGAAGGACTACATGTTCACTTACAATCTCTACCAGGTGATCATCAACGTG 240
s v v Y L S G VvV F GG L T X Y F E N R X P M T G L K D Y M F T Y N L Y Q V 1 I N V

PsELO5 TCTGTGGTCTATCTCAGCGGTGTGTTTGGGCTCACAAAGTACTTCGAGAACCGGAAGCCCATGACGGGGCTGAAGGACTACATGTTCACTTACAATCTCTACCAGGTGATCATCAACGTG 240
s v v Yy L s GG V F GG L T K Y F E N R K P M T G L % ? Y M F T Y N L Y Q V 1 I N V

pa

PvELO5 TGGTGCGTGGTGGCCTTTCTCCTGGAGGTGCGGCGTGCGGGCATGTCACTCATCGGCAATAAGGTGGACCTI[GGGCCAACTCCTTCAGGCTCGGCTTCGTCACGTGGGTGCACTACAAC 360
W vV vV A F L L E V R R A G M s L 1 G N K V D L|G P|N s F R L G F VvV T W V H Y N

PSELO5 TGGTGCGTGGTGGCCTTTCTCCTGGAGGTGCGGCGTGCGGGCATGTCACTCATCGGCAATAAGGTGGACCTTI[GGGCCCJAACTCCTTCAGGCTCGGCTTCGTCACGTGGGTGCACTACAAC 360
c v vV A F L L E V R R A G M S L 1 G N K VvV p L|G P|IN s F R L G F vV T W V H Y N

PVELOS AAJAAGTACGTGGAGCTCCTCGACACCICTATGGATGGTGCTGCGCAAGAAGACGCAGCAGGTCTCCTTCCTCCACGTCTATCATCACIGTGCTTCTGATGTGGGCCTGGTTCGTTGTCGTC 480
N E L W M VvV L R K K T Q vV L L M W A W F V V V

PSELO5 AAJAAGTACGTGGAGCTCCTCGACACCICTATGGATGGTGCTGCGCAAGAAGACGCAGCAGGTCTCCTTCCTCCACGTCTATCATCACIETGCTTCTGATGTGGGCCTGGTTCGTTGTCGTC 480
N Y V E L D L w M vV L R K K T QJQ V S F L HV Y HH|Jv r L M W Ao W F V V V

PVELO5 AAGCTCGGCAATGGTGGTGACGCATATTTTGGCGGTCTCATGAACTCGATCATCCACGTGATGATGTATTCCTACTACJACCATGGCGCTCCTGGGCTGGTCATGCCCCTGGAAGCGCTAC 600
K L G N G G D A Y F G G L M|IN S I I HV MMY S Y YJ]r Mm A L L G W S C P W K R Y

PSELO5 AAGCTCGGCAATGGTGGTGACGCATATTTTGGCGGTCTCATGHAACTCGATCATCCACGTGATGATGTATTCCTACTACJACCATGGCGCTCCTGGGCTGGTCATGCCCCTGGAAGCGCTAC 600
K L G N G G D A Y F G G L MIN S I I HVMMY S Y YJr Mm A L L G W s C P W K R Y

PVELO5 CTJACGCAGGCACAGCTCGTGCAGIITTTGCATCTGCCTCGCCCACTCCACATGGGCGGCAGTAACGGGTGCCTACCCGTGGCGAATTTGCTTGGTGGAGGTGTGGGTGATGGTGTCCATG 720
LIT Q A Q F ¢ 1 ¢ L A H S T W A A V T G A Y P W R 1 ¢ L V E V W V M V S M

PSELOS CTQACGCAGGCACAGCTCGTGCAGIITTTGCATCTGCCTCGCCCACTCCACATGGGCGGCAGTAACGGGTGCCTACCCGTGGCGAATTTGCTTGGTGGAGGTGTGGGTGATGGTGTCCATG 720
LT A LV F C 1 C L A H S T W A A V T G A Y P W R 1 C L V E V W V M V s M

PvELOS CTGGTGCTCTTCACACGCTTCTACCGCCAGGCCTATGCCAAGGAGGCGAAGGCCAAGGAGGCGAAAAAGCTCGCACAGGAGGCATCACAGGCCA?GGCGGTCAtGGCGGAGTAA 834
L v L IE: T R E Y R Q A Y A K E A K A K E A K K L A Q E A S Q A K A v K A E

PSELO5 CTGGTGCTCTTCACACGCTTCTACCGCCAGGCCTATGCCAAGGAGGCGAAGGCCAAGGAGGCGAAAAAGCTCGCACAGGAGGCATCACAGGCCAAGGCGGTCAAGGCGGAGTAA 834
I v L F Y R E Y R Q A ¥ A K E A K A K E A K K L A Q E A N Q A K A v K A

¢ PSEL.O5-Rev

Figure 4.3 Nucleotide and amino acid polypeptidgusaces oPaviova sp.A>-elongase characterized in the present study. Tigeenaent was obtained using the
Clustal X program. Conserved amino acid motifssii@wn in a red box and the restriction enzypal site is shown in a blue box.

PVELO5 : A clonedPaviova sp.A®-elongase (accession number AY630573) from preljaeported (Pereiret al., 2004b)

PSELO5 : A cloné®aviova sp.A®-elongase (In the present study)

* : The dilysine residues at -3 and -6 positioneaif the C-terminus gave this gene probable locdlireghe endoplasmic reticulum (ER)
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Figure 4.4 Analysis oPaviova sp. A>-elongase using the TMHMM Server v. 2.0 predicts #xistence of six transmembrane segments. Usiigdeita the
TMRPres2D tool generated two-dimensional rendeoingaviova sp.A®-elongase. The TMHMM analysis predicts that N- @sterminus are located on the inside

of the cytoplasmic membrane. Conserved amino aoiifsrare shown in the yellow box.
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a
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Figure 4.5 Construction of the plasmid pBRGW/TOPC-PSELOS. (a) pCRB/IGW/TOPG vector

(Invitrogen).

(b)

PCR products. (c) Topoisomeraseaction. Recombinant

(d)

pCR*8/GW/TOP(-PSELOS. (e and f) Plasmid DNA isolated frdncoli cultures and digested with
Apal. The DNA sizes in kbp are indicated on the right.

M
G1-2
G1
G2

*

*%

: 1 kbp DNA Ladder (Promega)

: Plasmid DNA from clone No. 1 and 2

: Approximately 3,020 and 631 bp sized DNA

: Approximately 3,229 and 422 bp sized DNA
: The reverse orientation of PSELO5 in pt&RGW/TOPCJ vector
: The forward orientation of PSELOS in pER/GW/TOPG vector

plasmid
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between the DNA and enzyme can subsequently bekatteby the Shydroxyl of the
original cleaved strand, reversing the reaction eeidasing topoisomerase (Figure
4.5c) (Shuman, 1994), resulting in plasmid namedR¥BIGW/TOPP-PSELO5
(approximately 3,651 bp) (Figure 4.5d). To previtietreverse orientation of PSELO5
in pCR8/GW/TOPC vector in the subsequent step, restriction enzyae used for
verification: Apal digested single site at 318 and 568 bp-positmnBsSELO5 cDNA
and pCR8/GW/TOPQ vector, respectively (Figure 4.5e). The forwarimtation of
PSELO5 cDNA in pCR8/GW/TOPCJ vector was demonstrated in the plasmid clone
G2 since it showed the approximately 3,229 and B@%ized DNA, whereas the
plasmid from G1 contained the reverse orientatioh RSELOS5 cDNA in
pCR®8/GW/TOPC vector because it provided two distinguish DNA dmnat
approximately 3,020 and 631 bp (Figure 4.5f). Tfeeeclone G2 was selected for
sequencing with GW1 and GW2 primers, yielding tlesmidattL1-PsELOS5attL2.

4.2.2 Construction of P. patens expression vector

Gateway-compatible plant destination vector wasduk® protein
over-expression of PSELO5 B patens. The resulting recombinant plasmid G2 has
PsSELOS gene flanked kattL recombination sequence and it then was conselguent
recombined withattR sites of a desired destination vectors, pMDC3gufie 4.6a)
and pMDC43 (Figure 4.7a), yielding the recombinpl#smids pMDC32-PsELO5
(approximately 10,932 bp) (Figure 4.6b) and pMDE&EELOS (approximately
11,666 bp) (Figure 4.7b). Both resulting plasmidsravverified by digestion with
EcoRI (Figure 4.6¢c and 4.7c). After screening the fasmids pMDC32-PsELO5
(K1-2) (Figure 4.6d), both were released the appmately 852 bp sized gene of
interest (B) from the approximately 9,736 and 34sized of vector (Al and A2)
(Figure 4.6d). Similarly, the seven plasmids pMD&EELOS (R1-R7) were released
the approximately 852 bp sized gene of interestf(@&n the approximately 10,470
and 344 bp sized of vector (Al and A2) (Figure %.7Aherefore clone K1 and R5
were selected for large scale plasmid DNA purifaraisince clone K1 indicated that
the expression construct containedPaiova sp. A*-elongase driven by a tandemly
duplicated CaMV 35S promoter (K1), while clone Réhmined aPaviova sp. A>-
elongase driven by a tandemly duplicated CaMV34#noiter together with GFP and
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nos terminator with hygromycin resistance selectiassette which used to transform

into the moss protoplasts (Figure 4.6d and 4.7d).

4.2.3 Protoplast transformation and regener ation

After protoplast transformation with pMDC32-PsSEL©@b pMDC43-
PsSELO5, transformed plants that still survived tve BCD medium containing
hygromycin B were defined as stable transformamtsle wild type cannot grow on
selection medium (Figure 4.8 and 4.9). Protoplastssformed with linear plasmids,
pMDC32-PsELO5 and pMDC43-PsELO5 gave 36 and 47%lesttansformants
from 250 and 180 picked regenerants, respectivalythe selective medium. All
transformants were morphologically indistinguisiafyom the wild type plant. They
gave rise to normal filamentous growth and gamedopliormation (Figure 4.8c and
4.9c¢).

4.2.4 Fatty acid analysis of P. patensby GC and GC-M S

To produce ADA and-3 DPA inP. patens, it is necessary to express
the A>-elongase gene (Figure 4.10). Generally, varionsmpters are used to facilitate
gene expression in plants. The CaMV 35S promotdéigkly active in most of the
transgenic plants. However, a tandemly duplicataM\Z 35S promoter showed a six
fold higher expression level of activity iR. patens than the normal CaMV 35S
promoter (Horstmanet al., 2004). In this studyp. patens was transformed with the
two recombinant plasmids, pMDC32-PsELOS5 that corst&®sELO5 cDNA (Pereira
et al., 2004b) or pMDC43-PsELOS carrying a gene PsEL@Eed to C-terminus of
GFP6, driven by a tandemly duplicated CaMV 35S mt@mand nos terminator, and
contained the Hyggene as a selection marker. One hundred and gesevén stable
hygromycin-resistant transgenic lines (92 and BBdiforP. patens transformed with
pMDC32-PsSELO5 and pMDC43-PsELO5, respectively) we@eened by co-
migration and spiking with known fatty acid stardiand by the mass spectrometry
(MS) fragmentation patterns. GC analysis of FAMESlb transgenic lines showed
that they contained only one additional fatty apghk (retention time, RT = 14.7
min) compared to the wild type (Figure 4.11 and?%.This was identical to that of
the methyl ester of authentic ADA and this compqumden investigated by
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(a) The first selection

(b) The second selection (¢) The third selection

Figure 4.8 Regeneration of transgeRigatens transformed by pMDC32-PsELO5 on

the selective BCD medium containing hygromycin B (&/ml).
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(a) The first selection

(b) The second selection

(c) The third selection

Figure 4.9 Regeneration of transgeRigatens transformed by pMDC43-PsELO5 on

the selective BCD medium containing hygromycin B (&/ml).
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GC-MS, displayed a molecular ion of 346 m/z, whishhe expected molecular ion
for methyl ester of ADA as well as the fragmentatmatterns identical to that of the
authentic ADA methyl ester (Figure 4.13). It wasrt#fore considered to be ADA, an
®-6 elongation product of the PSELOS. Further edimnaof ADA quantity from the
calibration ADA standard revealed that the four pGM3-PsSELO5 transgenics with
the highest ADA production lines (N15, N64, N70 aN@7) obviously produced
22.6-46.4 times higher levels of ADA compared te #ix transgenic line (C1, C2,
C3, C4, C5 and C6) containing the pMDC32-PsELOSstroiet (Table 4.1), while no
ADA was detected in the control wild type (Figuré¥and 4.12; Table 4.1).
However, ano-3 DPA was not observed from any transgenic lines
cultivated in BCD media (Figure 4.11 and 4.12; €a#l1). This might due to vary
low amount of substrate EPA naturally presenPimpatens. However, it has been
reported that lower temperature could activate Fip@duction. This evidenced may
cause by the more availability of dissolved oxygémower temperatures (Harris and
James, 1969) which lead to enhance fatty acid egighby aerobic desaturase and
elongase enzymes (Higashiyamtaal., 1999). Jangt al. (2005) reported that EPA
production ofMortierella alpina ATCC 32222 was the highest at’C2(Janget al.,
2005). Similarly, the EPA yield dfl. alpina cultures was enhanced at low culture
temperature (12-f&) (Janget al., 2000). Moreover, the improvement of EPA
production in microalgae by temperature shifting baen reported (Jiang and Gao,
2004). Jiang and Gao (2004) showed that EPA yieldthe Phaeodactylum
tricornutum increased up to 6.6 mg/l after application of @-stage culture with
temperature shifting from 26 for 6 days to 1% for 12 h, being raised by 120%
compared with the control. In additioR, patens contains high proportions of ARA
(Grimsleyet al., 1981; Kaewsuwast al., 2006). ARA plays an important role as a
precursor for EPA production, which involve the yme A'’-desaturase. Previously a
novel gene from an EPA-rich funguSaprolegnia diclina), namely sdd17, had been
identified (Pereirat al., 2004a). This gene encodesw@3d desaturase that is mainly
involved in EPA production from ite-6 G0 PUFA substrate (ARA), specifically by
heterologous expression tBaccharomyces cerevisiae, somatic soya bean embryos
(Pereiraet al., 2004a) and mammalian cells (Chenal., 2010). So that genetic

engineering could be applied to obtain stable gang P. patens producing a high
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etal., 2003).
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Table 4.1 Biomass and polyunsaturated fatty adisF# production from the wild type (WT) and transgeP. patens grown in liquid BCD medium forl4 days.

Transgenic Biomass -6 PUFA production (mg/l) -3 PUFA production (mg/l)
lines no. (o LA GLA EDA DHGLA ARA ADA ALA EPA -3 DPA
WT 5.53+0.95 45.58+8.94 2.96+0.54 2.50+0.75 1.27#0.37 42.89+5.85 nd 9.71+£1.75  1.29+0.22 nd
C1 4.07£0.75 27.14+7.73 3.81+0.44 0.41+0.04 5.45+0.44 16.52+2.06 0.17+0.05 16.21+2.34 0.47+0.05 nd
C2 3.83+0.24 24.67+6.98 2.88+0.73 0.45+0.03 1.61+0.27 17.32+3.21 0.15+0.09 12.12+1.95 0.48+0.09 nd
C3 3.77+0.37 21.17+8.53 2.98+0.34 0.41+0.02 1.61+0.52 12.63+2.22 0.15+0.04 10.88+3.09 0.58+0.08 nd
C4 5.17+0.66 22.76+5.45 3.45+0.41 0.53+0.07 2.13+0.33 20.28+2.63 0.22+0.06 15.57+1.88 0.96+0.03 nd
C5 4.40+0.51 33.65+4.44 3.95#0.74 0.66+0.02 7.02+0.27 18.20+2.85 0.20+0.08 18.56+2.34 0.61+0.07 nd
C6 4.83+0.45 41.33+8.48 2.8840.33 2.05+0.66 1.45+0.22 37.25#5.33 0.42+0.08 8.67+1.22 1.22+0.35 nd
N15 5.4310.45 63.24+6.77 4.68+0.48 5.80+0.70 1.90+0.34 46.08t6.52 4.47+0.89 13.53+2.04 1.60+0.18 nd
N64 6.00+0.38 64.3615.04 3.85+0.37 2.52+0.54 4.35+0.54 64.17+7.07 6.97#0.74 13.35+1.85 2.0710.25 nd
N70 4.97+0.66 69.49+7.84 5.67+0.28 3.10+0.61 4.25+0.61 50.53+5.85 3.57+0.68 14.05+2.65 1.84+0.11 nd
N77 5.03+0.61 53.22+5.83 3.62+0.32 2.52+0.44 4.78+0.53 55.00+6.22 3.40+0.55 9.55+1.38 1.69+0.20 nd

nd, not detected.
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level of EPA for furthero-3 DPA production. Successful application of such
techniques should help the increasing amount of Eil¥strate ifP. patens.

Expression of the fusion constructin patens in this study confirmed
that ADA, anw-6 C»-PUFA, was produced from the native ARA substrateereas
®-3 DPA production was not generated from the endogs EPA substrate. The-
elongation conversion efficiency B patens for -6 PUFAs was higher than far-3
PUFAs, probably due to lesser amount of EPA sutesireP. patens. Recently, the
cotton A'>desaturase (FAD2-4)- and marine microalggaviova viridis Coo-
elongase-GFP fusion polypeptides appeared to lmtidunally expressed in transgenic
Arabidopsis plants and E. coali, respectively, and were shown to localized in the
cytoplasmic membrane (Nigt al., 2009; Zhanget al., 2009). These results also
showed that when PSELO5 was attached to the Cratraf GFP6, PSELOS function
was stronger than with a non-fusion protein. Thislence suggests that the chimeric
elongase produced has higher activity, better mangbrintegration, or greater
stability. Similarly, the functional expression &fie human KDEL receptor in
Lactococus lastis has been improved more than ten times by using 1@G&Bn to the
C-terminus (Drewet al., 2001). Whereas a fusion gene between GFP andlCOP
(Constitutively Photomorphogenic 1) exhibited bmital activities identical to the
native protein, as shown by genetic complementatbra lethal copl allele in
transgenicArabidopsis (Von Arnim et al., 1998). Nevertheless, these provide the
evidences that GFP does not degrade the functitusmhn protein. Furthermore, GFP
as a reporter gene under regulatory control of @®oter, was proved to reduce or
avoid the gene silencing in transgenic soybearS(iemyet al., 2008). Thus the GFP
gene in a vector system may play a useful roletrfonsgenic evaluation and avoid
gene silencing in transformed plants. These resnttcated that expression of the
transgene PSELO5 and PsSELOS fused to C-termin@H6%6, under the control of a
tandemly duplicated CaMV35S promoter, were theeefsuccessful. The highest
production of ADA (6.97+0.74 mg/l) from the availabendogenous ARA substrate
was with the transgenic line N64. Although a loweleof expression was obtained,
other stronger promoters might be applied for higleeel gene expression IR.

patens, including complete rice actin (Actl) (Horstmadnal., 2004), wheat early-
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methionine labeled (EM) (Knighet al., 1995), and maize ubiquitin promoters
(Bezanillaet al., 2003).

4.2.5 Molecular analysisby PCR and Southern blotting

The specific integration of the transformed DNAoiR.patens was
analyzed by PCR using genomic DNA from the tendgamic lines (C1, C2, C3, C4,
C5, C6, N15, N64, N70 and N77) and the wild typelfjWPCR with the primer pair
PsSELOS5-For/PSELO5-Rev amplified a fragment of Ol& kpairs (kbp), which
corresponded to PSELO5 cDNA (Figures 4.14a andduré 4.14d and e) and with
the primer pair HygFor/Hyd-Rev, a fragment of 1.0 kbp corresponded to
hygromycin resistance coding region from each eftén transgenic lines (C1, C2,
C3, C4, C5, C6, N15, N64, N70 and N77) (Figure &.2ad c; Figure 4.14d and f),
where as the wild type (WT) gave negative resustprasented in Figure 4.14b, c, e
and f. The length of bands suggested the succeB$fA integration, and indicated
that PSELO5 and hygromycin resistance genes waresferred into thé>. patens
genome. However, a low number of copies of a tramsgn a plant chromosome have
a much lower incidence of instability (Jones, 200B)addition, stably transformed
transgenicP. patens usually have multiple numbers of integrated trensg in the
genome (Kamisuggt al., 2006).

To analyze the integration patterns of transgenk$, day-old
protonemata of transgenic lines (C6, N15 and Néw) aild type were assessed by
Southern blot analysis using probes for the PsEa@®b Hyg genes. Transgenic line
C6 and lines N15 and N64 were identified as hawigher ADA whenP. patens
transformed with pMDC32-PsELO5 and pMDC43-PsELGEspectively, and were
therefore chosen for molecular analysis of thesgane. The results showed that
hybridization of genomic DNA from the transgeninds C6 and N15 digested with
EcoRV and probed with the PSELO5S probe detected stsmggpls of 2.3 and 3.0 (a)
kbp, respectively (Figure 4.15a2; Figure 4.16a2) thie same size of 2.6 (b) kbp were
probed with the Hygprobe (Figure Figure 4.15a2; Figure 4.16a2), ctest with the
predicted sizes of the relevant fragments resultirgn EcoRV digestion of
pMDC32-PsELOS (Figure 4.15al) and pMDC43-PsELOgUFe 4.16al), whereas
weak signals of similar sized DNA of line N15 webtained from transgenic line
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N64 (Figure 4.16a2). Similarly, digestion wittcoRI generated a single strongly
hybridizing fragment of 0.9 and 9.7 kbp (Figure5h2) in transgenic line C6 when
hybridized with PSELO5 and Hygprobes, respectively, which are the sizes of
transgene fragments (Figure 4.15b1). This indicetasline N64 has fewer copies of
the transgene than lines C6 and N15.

Digestion withNcol which cuts at 625 bp site within PSELO5 cDNA,
produced a high intensity band of 1.1 kbp (*) ianggenic line N15 when hybridized
with PSELO5 probe, while a lower intensity band wiasected in line N64 (Figure
4.16b2). An additional fragment of 10.5 kbp (**) wh is the predicted size of
fragments generated Bycol from multiple tandemly repeated copies of pMDC43-
PSELOS5, hybridized with either PSELO5 or Hygrobes (Figure 4.16b1 and b2).
However, hybridization with these probes from tgersc line N15 produced the
several additional DNA fragments, whereas only ohéhe flanking sequences was
detected in line N64 (arrowed).

These results suggest that line N64 contains orgingle copy of the
expression construct, whereas there are eitheipteuttopies with rearrangements or
several insertion sites of the construct in linea®@ N15. Therefore both single copy
and multiple copies of plasmid DNA containing thé fength of PSELO5 gene were
not only integrated into the transgeritc patens genome and stably inherited to its
culture, but also led to successful functional espion. The effects of transgenic
copy number on the level of gene expression argvikrto be complex. Though it was
anticipated that the increase of transgene copybeumould increase expression
level (Dai et al., 2001; ElI-Shemyet al., 2007), it is now known that gene co-
suppression phenomena frequently occur in transgeants with repeated transgene
or an unusual structure such as inverted repeascf\erett al., 1998). Moreover, an
increased copy number of transgene can correldateami increased risk of silencing
(Lessardet al., 2002). Transgenic line N64 with single copy nembmproved G-
PUFA production rather more than the line with nplét copies of transgene (C6 and
N15), suggesting that lower copy number may perpatentially greater gene
expression since multiple copy number integratiounla inhibit transgene expression

and even lead to transgene silencing in transgetaots (Stamet al., 1997).
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However, the chromosomal insertion site was notrotiad in this experiment and so

the differences may result from position effects.

4.3 Optimization of culture medium for biomass and C,, PUFA production using
RSM

Although a tandemly duplicated CaMV35S promoter besn used for
transformation, it might not be strong enough feng expression (Zeidlest al.,
1996; Horstmanrmet al., 2004). Apart from using stronger promoters, moptation of
culture medium is a useful alternative tool forguot enhancement. In this study, the
highest production line (C6) was further optimizgdthe RSM experiments (Rasb
al., 2000). The observed responses (biomass or AlAyation) of transgeni®.
patens (C6) for studying the effects of sucrose (A), KN@) and glutamate (C) are
summarized in Table 4.2.

Table 4.3 shows the regression coefficient of easfable in terms of
linear, quadratic and interaction along wgtvalue for biomass and ADA production.
Coefficients with lowerp-values p<0.05) are more significant. The coefficient
estimates and the correspondpgalues suggest that among test variables usdtkin t
study, sucrose (A), sucrdsfA?), KNOs? (B?), glutamaté (C?) were significant for
both biomass and ADA production, whereas KN@) was significant only for
biomass production. In addition, interactions beteucrose (A) and KNEB); and
KNO3 (B) and glutamate (C) were also significant foorbass production while
interaction between sucrose (A) and glutamate (@ys vgignificant for ADA
production. Other interactions were found to begméicant.

The corresponding second-order regression equatmnded levels of

biomass and ADA production can be predicted by Ef)sand (3), respectively.

Yoiomass (g)= 16.87 — 0.43A + 0.93B — 0.17C — 0.74A0.43B — 0.46C + 0.56AB —
0.22AC + 0.62BC 2)

Yaoa(mgy ~ =3.05 — 0.54A + 0.04B + 0.14C — 0.20A0.26B — 0.27C + 0.02AB —
0.61AB + 0.13BC (3)
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Table 4.2 Effect of sucrose (A), potassium niti@gand glutamate (C) concentrations on biomass and

ADA production by the transgenic line (C6) using ttentral composite design technique.

Runs Sucrose Potassum Glutamate  Biomass production® ADA production®
(A) (o nitrate (C) (g (o (mall)
(B) (g Actual Predicted = Actual Predicted
1 40 (-1) 0.6 (-1) 1.0 (-1) 15.50 15.88 1.88 2.10
2 80 (1) 0.6 (-1) 1.0 (-1) 14.73 14.33 2.02 2.27
3 40 (-1) 1.0(1) 1.0 (-1) 15.63 15.38 2.04 1.95
4 80 (1) 1.0(1) 1.0 (-1) 16.10 16.07 1.78 2.05
5 40 (-1) 0.6 (-1) 2.0(1) 15.30 14.74 3.62 3.32
6 80 (1) 0.6 (-1) 2.0 (1) 12.67 12.32 1.01 1.07
7 40 (-1) 1.0(1) 2.0(1) 16.90 16.71 3.98 3.70
8 80 (1) 1.0(1) 2.0(1) 17.50 16.53 1.61 1.37
9 20 (-2) 0.8 (0) 1.5 (0) 14.77 14.78 2.77 2.98
10 100 (2) 0.8 (0) 1.5 (0) 12.47 13.05 1.01 0.83
11 60 (0) 0.4 (-2) 1.5 (0) 13.11 13.28 2.06 1.93
12 60 (0) 1.2 (2) 1.5 (0) 16.57 16.99 1.93 2.09
13 60 (0) 0.8 (0) 0.5 (-2) 15.53 15.39 2.03 1.69
14 60 (0) 0.8 (0) 2.5 (2) 13.97 14.71 1.86 2.23
15 60 (0) 0.8 (0) 1.5 (0) 16.80 16.87 3.05 3.05
16 60 (0) 0.8 (0) 1.5 (0) 16.93 16.87 3.00 3.05
17 60 (0) 0.8 (0) 1.5 (0) 16.63 16.87 3.00 3.05
18 60 (0) 0.8 (0) 1.5 (0) 16.60 16.87 3.09 3.05
19 60 (0) 0.8 (0) 1.5 (0) 16.80 16.87 3.08 3.05
20 60 (0) 0.8 (0) 1.5 (0) 16.87 16.87 3.04 3.05

ADA, adrenic acid.
®The values given in the table are the means oéttependent experiments.
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Factor  Biomass production ADA production
C.E? SE’P s§ Dff M F-value Probe>P CE? SE’ S§ Dff ME F-value Probe>P
P-value P-value
Model 16.87 0.22 40.58 9 451 14.74  0.0001° 3.05 0.11 12.00 9 1.33 16.52 <0.0001"
A -0.43 0.14 3.00 1 3.00 9.82 0.0106" -0.54 0.071 4.64 1 464 57.47 <0.0001"
B 0.93 0.14 1378 1 13.78  45.04 <00001° 0.039 0.071 0.025 1 0.025 0.31 0.5905
C -0.17 0.14 047 1 0.47 1.53 0.2449 0.14 0.071 0.29 1 0.29 3.64 0.0853
AB 0.56 020 249 1 2.49 8.15 0.0171° -0.019 0.10 0.002767 1 0.002767 0.034 0.8568
AC -0.22 020 038 1 0.38 1.23 0.2938 061 010 2.97 1 2.97 36.77 0.0001"
BC 0.62 020 3.04 1 3.04 9.94 0.0103" 0.13 0.10 0.14 1 0.14 1.69 0.2221
A? -0.74 011 1374 1 13.74 4490 <0.0001° -0.29 0.057 2.06 1 2.06 25.49 0.0005
B? -0.43 011 473 1 4.73 15.46  0.0028" -0.26  0.057 1.69 1 1.69 21.00 0.0010"
c? -0.46 011 522 1 5.22 17.08  0.0020 -0.27  0.057 1.86 1 1.86 23.09 0.0007°

The bold values indicate the significance at ovatthe 95.0% confidence level.

"Significant atp < 0.05;%Coefficient estimate’Standard errofSum of square$Pegree of freedonfMean squares.

A, sucrose; B, potassium nitrate; C, glutamate. ABdrenic acid.
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The fit of the model for biomass and ADA productexpressed by the
coefficients of regressioR® which were found to be 0.9299 and 0.9370, resyelyi
indicating that the second-order polynomial modgk.E(2) and (3) could explain
92.99% and 93.70% of the total variation, respetyiv

Three-dimensional and 2-D contour plots are theaplgical
representations of the regression equation andihehge identification of the type of
interactions between test variables. The maximuedipted value is indicated by the
surface confined in the smallest ellipse in theteon diagram (Tanyildiziet al.,
2005). The circular contour plots indicate that theraction between the
corresponding variables is negligible. An ellipticat saddle nature of the contour
plots indicates significance of the interactionswaen the corresponding variables.
Figure 4.17 and 4.18 depicts the significant irdeoa between two variables by
keeping the other variables at their middle le¥@tdiomass and ADA production.

The interaction effects of sucrose (A)-potassiuntrate (B) and
potassium nitrate (B)-glutamate (C) on biomass pectdn are presented in Figure
4.17. At middle sucrose concentration (60 g/l)jraamease in biomass production was
obviously observed with the high level of potassioirate (1.00-1.20 g/l) (Figure
4.17al and a2) and glutamate (2.00 g/l) (Figur@pklLland b2) used. The evidence
from this study suggested that the cell growth wakiced by relatively middle
concentration of sucrose. Recently, it was repatttatl sucrose plays a central role in
plant growth and development as a primary transfoorh of carbon and energy in
plant cell cultures and also as a regulation oegexpression and signal transduction
(Smeekens, 2000). However, the optimal sucrose erdration may vary with
different plant species. e.g., Gertlowski and PReter(1993) studied the influence of
sucrose concentration on biomass production iruulof Coleus blumel and found
that a high initial sucrose concentration of 60lgd to a high biomass accumulation
without an obvious lag phase. Zhoegal. (1994) found that the production of
biomass increased with an increase of sucrose otaten from 30 to 45 g/l in
culture medium oPerilla frutescens, while Zhong and Yoshida (1995) and Shirtle
al. (2009) found that the growth rate increased wdih increase of sucrose
concentration up to 60 and 70 g/l in the culturelne of P. frutescens andPsoralea

corylifolia, respectively. Moreover, an even higher sucroseaatration of 70-100
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g/l seemed to repress the cell growth. The resggested that the cell growth was
repressed by relatively higher concentration ofrese, which led to a relatively
higher osmotic pressure (Kimbatlal., 1975).

It has been well known that nitrogen is an impdrtautrient affecting
the growth of many organisms such as bacteriagaldiatom and plant. Nitrate-N is
widely used as the sole nitrogen source for migamlculture because there is less
likelihood of pH shift in the medium compared toraonium-N (Yongmanitchai and
Ward, 1991). However, the influence of nitrogenrseumight be species specific.
Yongmanitchai and Ward (1991) found that the préidacof biomass increased with
an increase of nitrate concentration from 0.25 t601g/l, but decreased at
concentration of nitrate of 1.5 g/l in the cultw&P. tricornutum. Wen and Chen
(2001b) indicated that potassium nitrate was ithest favorable nitrogen source
nitrogen source for biomass production by the dmatdtzschia laevis and found that
the production of biomass increased with an in@ngagitrate concentration from
0.065 to 0.620 gl/l.

Glutamate is involved in nitrogen metabolism andaquired as an
essential precursor of protein and nucleotide ®githas well as a substrate for
energy metabolism in the organism (Wigeal., 1981). In addition, glutamate can
stimulate aerobic glycolysis (Pellerin and Magitrel994). Therefore, glutamate
could potentially have a substantial influence @l growth. Cliquet and Jackson
(1999) and Yuet al. (2003) reported that glutamate supported bioraasamulations
of Paecilomyces fumosoroseus andM. alpina, respectively.

Figure 4.18 shows the significant interaction bemsucrose (A) and
glutamate (C) on ADA production. Maximum ADA prodiotn was obtained at
relatively low concentration (20 g/l) of sucrosedahigh glutamate concentration
(2.00-2.50 g/l). In plant cell cultures, sucroseswgdrolyzed to glucose and fructose
by extracellular and/or cell wall bound invertadéattinez and Park, 1993). These
sugars could be converted directly to acetyl-CoAdufor fatty acids synthesis and
provided additional reducing power, NADPH, for tha&rious desaturation enzymes
needed to produce ARA (Jebhal., 2008; Jiret al., 2009), which is precursor of ADA
biosynthesis. Glutamate was demonstrated to haraeain activating acetyl-CoA
carboxylase (ACC; EC 6.4.1.2). ACC catalyzes then&dion of malonyl-CoA, an
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essential substrate for fatty-acid synthase andafity acyl chain elongation systems
(Kowluru et al., 2001). Furthermore, glutamate can be utilizeddtiy acid synthesis,
either directly through the generation of keto acat acetyl-CoA (Alberst al.,
1996). Yuet al. (2003) studied the influence of glutamate conegioin on total lipids
and ARA production and found that supplementatibtess than 0.8 g/l glutamate
could increase total lipids and ARA production. Hwer, supplementation of greater
than 0.8 g/l glutamate led to a decrease in tha ligids in biomass as well as ARA
production. Singh and Ward (1998) found that glismwas the best nitrogen
sources for DPA production Bythium acanthicum. Certiket al. (1999) reported that
glutamate was one of the potentially availableogién sources for increasing G6PDH
activities and enhancing PUFA biosynthesis. Howew#ien glutamate concentration
is too high (greater than 0.8 g/l), glutamate W&l converted to proline accompanied
by NADPH consumption (Andarwulan and Shetty, 1998hich is necessary for
ARA biosynthesis.

4.4 Experimental validation of the optimized conditions

The information from the equation models (Eqgs. @ @nhand the plots
(Figure 4.17 and 4.18), relating to the optimaklewof sucrose (A), potassium nitrate
(B) and glutamate (C) for maximum biomass (Expentm®) and ADA (Experiment
B) production are summarized in Table 4.4. The ipted and actual experimental
responses (biomass and ADA production) for eaclofsediriables are also presented.
Maximum production rates of 17.15 g/l DCW and 1@/l ADA, and 13.05 g/l
DCW and 4.48 mg/l ADA, were obtained from experitse and B, respectively.

This represents 90-97 and 81-99% validity of thedpmtion models,
respectively. This study therefore suggests thatfital optimal culture conditions
would be sucrose 61.79 and 22.06 g¢/l; potassiumataitl.18 and 1.00 g/l; glutamate
2.05 and 2.35 g/l; These conditions would lead &ximum production of biomass of
17.15 g/l and ADA of 4.48 mgl/l, respectively, which 3.55-fold and 10.66-fold
higher, respectively, than production rates in tio@-optimization study (4.83 g/l
biomass and 0.42 mg/l ADA).
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Table 4.4 Predicted and actual biomass and ADAyxtoh byP. patens suspension cultures using various culture conubtio

Experiments Sucrose Potassum Glutamate Biomass production® ADA production®
(A) (g nitrate ©) (g (o/l) (mg/l)
(B) (g/ Actual Predicted %validity Actual Predicted %validity
A 61.79 1.18 2.05 17.15 17.65 90 1.77 2.16 81
B 22.06 1.00 2.35 13.05 14.38 97 4.48 451 99

The cells were cultured in 250-ml shake-flasks aming the total volume of 100 ml final productibeguid medium with 4 g inoculums
and incubated for 14 days.

A and B, experiments based on maximum growth ané ABduction conditions, respectively.

PRepresents mean of the responses (biomass and Adaigtion) based on three separate experiments.

ADA, adrenic acid.
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4.5 Effects of EPA and oil supplementation on biomass, ADA and -3 DPA in
transgenic P. patens

Although only ADA, anw-6 C-PUFA was initially produced in the
transgenic lines, the further experiments werei@mut to manipulate-3 DPA, an
®-3 C-PUFA production irP. patens by EPA and vegetable oil supplementation. In
general, EPA is a directly precursor t#t3 DPA and vegetable oils contain various
fatty acids that serve as precursors of long chatiy acid (LC-FA) biosynthesis. In
addition, it has been reported that supplementatitim 1% oil improve biomass and
PUFA production inM. alpina (Janget al., 2005). Therefore the five highest ADA
producing lines (C6, N15, N64, N70 and N77) werewgr in the previously
optimized medium (liquid BCD medium containing 22 .6/l of sucrose, 1.00 g/l of
potassium nitrate and 2.35 g/l glutamate, suppléedewith 0.1 mM of EPA (Figure
4.19) or 1.0% vegetable oil mixture comprising éied oil, soybean oil, sunflower oill,
corn oil, and palm oil (0.2% of each oil) (Figur2d). An additional peak (RT = 15.7
min) was detected which was identical to the redentime of authentieo-3 DPA
from both experiments (Figure 4.19 and 4.20). Témsnpound also showed a
molecular ion of 344 m/z, which is the expectedenalar ion of methyl ester of-3
DPA as well as a fragmentation pattern identicathat of the authentio-3 DPA
methyl ester (Figure 4.21). This event can be caled thato-3 DPA was
successfully activated iA. patens by exogenous substrate supplementation.

This study also confirmed that PSELO5 is specifitydor ARA and
EPA which are g PUFA, without any activity toward fgand Gg fatty acids, which
is in agreement with the previous report (Pereadraal., 2004b). Based on the
specificity to substrate fatty acids, ELO-like enms can be classified broadly into
three groups: one is specific to saturated and onsaturated fatty acid (SFA and
MUFA), another to PUFA of fixed chain-length (“siegstep”), and the other is to
PUFA with variable chain-lengths (“multi-step”) (Mer et al., 2004). PSELO5
showed specificity only to £ PUFA (Pereiraet al., 2004b); this specificity also seen
with algal A®-elongases fronDstreococcus tauri, Thalassiosira pseudonana (Meyer
et al., 2004), and liverworMarchantia polymorpha (Kajikawaet al., 2006), and thus
PSELOS belongs to the second group (“PUFA single~$t
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Figure 4.19 Gas chromatographic analysis of fattid anethyl esters (FAMEs) from 14 day-old
protonematd. patens wild type (WT) and transgenic lines (C4 and C&)eTprotonemata is grown in
optimized liquid BCD medium containing 22.06 g/l aafcrose, 1.00 g/l of potassium nitrate and 2.35
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retention time of ADA and-3 DPA are indicated by single asterisk and doakterisks, respectively.
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Figure 4.20 Gas chromatographic analysis of fattid anethyl esters (FAMEs) from 14 day-old
protonemateP. patens wild type (WT) and transgenic lines (C6, N15, aé4). The protonemata is
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The effect of the vegetable oil supplement on tioenbss and PUFA
production of transgenie. patens plants compared with the wild type is illustraiad
Table 4.5. Supplementation with a total of 1.0% etafble oils increased biomass
2.24-fold and PUFAs 4.04-9.03-fold, compared to dngounts detected in the wild
type in the previously optimized liquid BCD mediumithout oil supplement. In the
same way, the addition of oils enhanced biomassPasieAs in transgenil. patens
(C6, N15, N64, N70 and N77) especially®PUFAs, ADA andw-3 DPA (Figure
4.22a and b; Table 4.5), whereas EDA decreasdubsettransgenic lines. Vegetable
oils generally contain high levels of i&fatty acid, precursors for LC-FA
biosynthesis. For example, LA is the major fattydao soybean oil, corn oil and
sunflower oil (56-85%), ALA is the major fatty acid linseed oil (58%) (Jang al.,
2005), and oleic acid (OA) is rich in palm oil (38%) (Mhanhmackt al., 2011).
Therefore the addition of oils allowed moss to @\ s-fatty acid substrates to LC-
PUFAs. Shinmenet al. (1989) showed that olive oil and soybean oil &ddi
increased the accumulation of ARA Mortierella fungi and supplementation of oils
stimulates cell growth, EPA, DHA and total PUFA guation inM. alpina (Janget
al., 2005). The decrease in EDA levels observed e ttansgenidP. patens was
probably due to the presence of PSELO5-encodedjasen

Therefore, metabolic engineering with PSELO5 an&LR5-GFP6
fusion together with oil supplementation succe$gfattivated bothw-6 andw-3 Gy
elongation products, ADA ano-3 DPA, in transgenic lines from 11.2 to 24.3 arfgl 6
to 11.7 mgl/l, respectively. These results indicaeemaximum accumulation of ADA
(2.3% of total fatty acids) and-3 DPA (1.1% of total fatty acids) in transgenicdi
N64 (Table 4.6), 2-11 times higher than other samiktudies performed by
heterologous expression of multiple PUFA synthegjzjenes in higher plants (0.1-
1.2% of total fatty acids) (Tables 4.6 and 4.7)isTik the first report on producing an
®-3 DPA, DHA precursor, in non-seed lower plant.
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Table 4.5 Biomass and polyunsaturated fatty adidH@® production from the wild type (WT) and transgeP. patens expressing PSELO5 grown for 14 days.

Line Biomass® Biomass’ ®-3 PUFA production (mg/l)

(gl (g ALA? ALAP EPA? EPAP ®-3 DPA? -3 DPAP
WT  553+0.95 12.43+0.85 9.71#1.75 39.60%3.75 1.29+0.22 7.7120.41 nd nd
C6  4.83+0.45  9.60+0.63 8.67+1.22 13.94+1.84 1.22+0.35 0.9620.15 nd 6.3520.43
N15 5.43+0.45  9.37+0.52 13.53+2.04 20.48+0.94 1.60+0.18 1.83+0.08 nd 10.27+0.32
N64 6.00+0.38  9.03+0.98 13.35+1.85 15.36+0.87 2.07+0.25 1.45+0.07 nd 11.75+0.41
N70 4.97+0.66  9.33%0.73 14.05+2.65 16.20+2.73 1.8420.11 1.0420.05 nd 7.60+0.21
N77 5.03+0.61  9.70+0.57 9.55+1.38 16.03+3.08 1.69+0.20 0.92+0.12 nd 8.56+0.18
Line -6 PUFA production (mg/l)

LA? LA® GLA? GLAP EDA? EDA’ DHGLA® DHGLA® ARA? ARAP ADA? ADAP
WT 45.58+8.94 210.68+20.75 2.96x0.54 11.96+0.87 2.50+0.74 10.74+#1.28 1.27+0.37 11.85x0.87 42.89+5.85 196.88+13.96 nd nd

C6 41.33+8.48 88.6848.39 2.88+0.33 9.09+1.55 2.05+0.66 0.90+0.14 1.45+0.22 2.64+0.32 37.25+5.33 46.85+4.85 0.42+0.08 11.18+0.75
N15 63.2446.77 70.35£12.95 4.68+0.48 5.06+0.74 5.80+0.70 2.17+0.37 1.90+0.34 5.86+0.54 46.08+6.52 53.56+£3.86 4.47+0.89 13.31+0.84
N64 64.36+5.04 144.90+19.76 3.85+0.37 10.86+1.56 2.52+0.54 0.73+0.12 4.35+0.54 5.21+0.24 64.17+7.07 73.41+4.73 6.97£0.74 24.31+0.43
N70 69.49+7.84 86.98+16.85 5.67+0.28 13.36+x1.37 3.10+0.61 0.61+0.08 4.25+0.61 5.27+0.11 50.53+5.85 60.27+2.79 3.57+0.68 12.59+0.63
N77 53.2245.83 111.51+15.96 3.62+0.32 14.29+1.83 2.52+0.44 0.28+0.04 4.78+0.53 4.83#0.77 55.00+6.22 59.83+6.40 3.40£0.55 16.23+0.73

#PUFA production fronP. patens grown for 14 days in liqguid BCD medium.

®PUFA production fronP. patens grown for 14 days in optimized liquid BCD mediunpglemented with a total of 1.0% vegetable oildtiding linseed oil, soybean oil, sunflower
oil, corn oil, and palm oil (0.2% of each oil).

nd, not detected.
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Table 4.6 Total fatty acid and new C22 PUFA proaurcfrom the wild type (WT) and transgercpatens expressing PSELO5 grown for 14 days.
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Line SA and MUFA (mg/l)
16:0° 16:0° 16:1° 16.1° 18:0° 18:0° 18:1° 18:1°
WT 85.20+11.75 361.79+15.95 1.72+0.17 33.71+4.85 1.25+0.07 24.48+2.23 14.08+1.81 101.37+9.83
C6 79.82+13.85 329.25+22.72 2.17+0.12 34.97+5.06 2.40+0.50 20.57+1.95 7.62+1.47 206.42+16.93
N15 82.14+11.54 572.76+18.05 1.63+0.31 27.21+3.94 1.09+0.13 17.9245.33 11.94+1.78 157.64+7.94
N64 86.98+11.00 433.38+20.32 1.37+0.16 42.20+3.61 1.1740.13 32.05#3.31 15.78+2.06 242.23+35.64
N70 89.56+10.57 297.33+9.98 2.78+0.39 26.09+2.30 2.48+0.49 25.34+1.45 6.98+1.67 227.81+16.48
N77 79.30+19.01 507.18+12.02 1.15+0.06 33.51+4.37 0.92+0.16 37.31£2.99 10.18+2.31 255.72+20.62
Line Fatty acid production (mg/l) Total fatty acid production C,, PUFA (% total fatty acids)
(mall)

SFA? SFAP MUFA?® MUFAP PUFA? PUFAP Total® Total® ADA? ADA®  DPA®  DPAP
WT  86.45+#11.71 386.27+13.73 15.80+1.93 135.0845.34 106.13+26.62 489.69+36.13  208.38+37.93 1011.04+39.11 nd nd nd nd
C6  82.22+14.08 349.83+22.39 9.79+1.52 241.39+20.03 94.96+19.55 180.83+33.47  186.97+15.96 772.05+33.04  0.22+0.03 1.46+0.33 nd  0.82+0.16
N15 83.22+11.60 590.67+12.81 13.57+1.54 184.85+4.48 141.51+30.52 183.17+38.83  238.30+17.45 958.70+22.87  1.87+0.30 1.39%0.23 nd  1.07+0.17
N64 88.16210.90 465.43+22.99 17.14+2.21 284.43+39.24 161.71+13.73 288.06+56.86  267.01+0.88 1037.91+60.88  2.61+0.31 2.3320.32 nd  1.13+0.22
N70 92.04+10.31 322.67+10.43 9.76+1.80 253.90+16.90 152.57+28.92 204.27+50.38  254.37+20.34 780.84#52.98  1.39+0.16 1.62+0.29 nd  0.97+0.15
N77 80.22+19.17 544.48+15.01 11.33%+2.37 289.24+16.26 133.78x4.25 232.73+22.52  225.34+16.50 1066.45+15.95  1.51+0.07 1.52+0.26 nd  0.80+0.10

#PUFA production fronP. patens grown for 14 days in liquid BCD medium.

®PUFA production fronP. patens grown for 14 days in optimized liquid BCD mediunpplemented with a total of 1.0% vegetable oildiding linseed oil, soybean oil, sunflower

oil, corn oil, and palm oil (0.2% of each oil).

nd, not detected.
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Plant host

Target gene

New fatty acid production
(% of total fatty acid)

Reference

Arabidopsisthaliana

Brassica juncea

Nicotiana benthamiana

N. benthamiana

N. benthamiana

N. benthamiana

Physcomitrella patens

Danio rerio A°/A°-desaturaseGaenorhabditis elegans
A®-elongasePaviova salina A*-elongase and

P. salina A*-desaturase

Pythium irregulare A®-desaturaselhraustochytrium sp.
A°-desaturaseR. patens A®-elongaseCalendula officinalis
A'%-desaturaselhraustochytrium sp.A%-elongase,

P. irregulare o3-desaturaséhraustochytrium sp.A*
desaturasethraustochytrium sp. lysophosphatidyl
acyltransferase)ncorhynchus mykiss elongase
Micromonas pusilla A°-desaturasé?yramimonas cordata
A®-elongaseBandP. salina A*-desaturase

Echium plantagineum A°-desaturase?. cordata
A®-elongaseBandP. salina A°-desaturase
Ostreococcus tauri A>-desaturaseR. cordata
A®-elongaseBandP. salina A°-desaturase

P. salina A%-elongasep®-desaturase,

A>-desaturasey’-elongase and*-desaturase

Paviova sp.A®-elongase

GLA (0.4%), SDA (1.5%), DHGLA (1.5%),
ETA (0.8%), ARA (1.0%), EPA (2.4%),

®-3 DPA (0.1%), DHA (0.5%)

GLA (27.3%), SDA (2.2%), DHGLA (1.9%),
ETA (1.1%), ARA (4.0%), EPA (8.1%),

-3 DPA (0.1%), DHA (0.2%)

GLA (2.1%), ARA (0.6%), SDA (1.5%),
ETA (0.6%), EPA (10.7%)»-3 DPA (0.3%)
GLA (4.4%), ARA (1.3%), SDA (2.4%),
ETA (0.1%), EPA (3.4%)p-3 DPA (0.2%)
GLA (5.8%), ARA (1.2%), SDA (1.1%),
ETA (0.4%), EPA (9.6%)p-3 DPA (0.2%)
EDA (1.7%), DHGLA (0.5%), ARA (2.4%),
ADA (1.2%), ETrA (1.5%), ETA (0.2%),
EPA (1.2%) -3 DPA (0.6%), DHA (0.7%)
ADA (2.3%), ©-3 DPA (1.1%)

Robertet al., (2005)

Wu et al., (2005a)

Petrieet al., (2010c)

Petrieet al., (2010c)

Petrieet al., (2010c)

Petrieet al., (2010b)

Current study

ap, cordata A%-elongase displays somé&-elongase activity.
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CHAPTER 5
CONCLUSIONS

The A°-elongase gene has been cloned from marine &gdeva sp.
The open reading frame (ORF) of the cloned PSELDISA is 834 bp from an ATG
start to a TAA stop codons and codes for 277 amanms. This amino acid
polypeptidescontainedfour conserved motifs KxxExxDT (Box 1), QxxFLHxYHH
(Box 2) the extended histidine-rich box, NxxxHxxMYX (Box 3), anda tyrosine-
rich box TxxQxxQ (Box 4) and the secondary structure asialpf PSELO5 gene
showed that the encoded polypeptides containepugative transmembrane domains.

Heterologous expression of PSELO5 and PsSELOS5-GEB6N in P.
patens resulted in the production of,£€PUFA, ADA (0.15+0.04-6.97+0.74 mg/l)
without any exogenous ARA substrate addition. Thoar f pMDC43-PSELOS
transgenics with the highest ADA production lind$1%, N64, N70 and N77)
obviously produced 22.6-46.4 times higher levelsA®A compared to the six
transgenic line (C1-C6) containing the pMDC32-PsBbL&dnstruct, while no ADA
was detected in the control wild type. However,caB DPA was not detected from
any transgenic lines cultivated in BCD media. Thghbést production of ADA
(6.97£0.74 mg/l) from the available endogenous AR#bstrate was with the
transgenic line N64.

Molecular analysis (PCR and Southern Blottingnfoamed that
Paviova sp.A>-elongase was transferred irRopatens genome. Both single copy and
multiple copies of the expression construct wereseoled in transgeniP. patens
genome.

Optimization of biomass and ADA production innsgenicP. patens
by statistically based experimental design, RSMciawgd that sucrose, KNCand
glutamate significantly influenced on biomass pdn, whereas sucrose and
glutamate considerably affected to ADA producti®he optimal culture conditions
studied by CCD would be 61.79 g/l sucrose, 1.1&§D; and 2.05 g/l glutamate for
biomass production and 22.06 g/l sucrose, 1.0&KNMD3; and 2.35 g/l glutamate for
ADA production. This optimized conditions led teetmaximum biomass and ADA
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production of 17.15 g/l and 4.48 mg/l, respectiy@hich were 3.55-fold and 10.66-
fold higher, respectively, than production rateshi@ non-optimization study (4.83 g/l
DCW and 0.42 mg/l ADA).

In addition, metabolic engineering with PSELOS dPsELO5-GFP6
fusion together with oil supplementation succe$gfattivated bothw-6 andw-3 G-
elongation products, ADA and-3 DPA, in transgenic lines from 11.18+0.75 to
24.31+0.43 and 6.35+0.43 to 11.75+0.41 mg/l, respely. The maximum
accumulation of ADA (2.3% of total fatty acids) amd3 DPA (1.1% of total fatty
acids) was achieved in transgenic line N64.

The efficient biosynthesis of £ LC-PUFAs in transgeni®. patens
plants has now been conclusively demonstrated is #tudy, using reverse-
engineering and nutritional supplementation apgreac This heterologous
expression system has not only realized the pdisgibi producing the important
nutritional compounds in transgenic plants, bub @iovided a new experimental tool
with which to better investigate plant lipid metébm. Finally, P. patens is therefore
served as an alternative source of furind DPA and DHA production.
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APPENDIX A

Solutions and media for moss tissue culture and protoplast transformation

Stock solution for media making (Knightet al., 2002)

Solution B
- MgS0, 7H,0 25 g
- Distilled H,O to 1000 ml
Solution C
- KH,PO, 25 g
- Distilled H,O to 1000 ml
Solution D
- KNO3 101 ¢
- FeSQ.7H,0O 1.25 g
- Distilled H,O to 1000 mi
Trace element solution
- H3BO3 614 mg
- Al(SOy)3K2S0,24H,0 55 mg
- CuSQ5H0 55 mg
- KBr 28 mg
- LiCl 28 mg
- NaoM00O4.2H,0 25 mg
- MnCl4H,0 389 mg
- CoChL.6H,0 55 mg
-ZnSQ,. 7H,0 55 mg
Kl 28 mg
- SnChL-2H,0 28 mg
- NiCl,.6H,0 59 mg
- Distilled H,O to 1000 ml
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Routine basal medium (BCD)

- Stock B 10 ml
- Stock C 10 ml
- Stock D 10 ml
- Di-ammonium (+)-tartrate 920 (5) mg (mM)
- Trace element solution 1 mi
- Agar 8 ¢
- Distilled H,O to 1000 mi
- Sterilization by autoclaving and Ca@Vas added 1 mM
immediately before pouring plates
Protoplast regeneration medium-bottom layer
(PRMB) 10 mi
- Stock B 10 ml
- Stock C 10 ml
- Stock D 920 (5) mg (mM)
- Di-ammonium (+)-tartrate 1 ml
- Trace element solution 60 g
- D-mannitol 8
- Agar 1000 ml
- Distilled H,O to 10 mM

- Sterilization by autoclaving and Ca@as added
immediately before use
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Protoplast regeneration medium-top layer (PRMT)
- Stock B 10 ml
- Stock B 10 ml
- Stock B 10 ml
- Di-ammonium (+)-tartrate 920 (5) mg (mM)
- Trace element solution 1 ml
- D-mannitol 80 ¢
- Agar 8
- Distilled H,O to 1000 mi
- Sterilization by autoclaving and Ca@as 10 mM
added immediately before use

Solutionsfor protoplast transformation

8% D-mannitol solution
- D-mannitol 80 ¢
- Distilled H,O to 1000 ml

- Sterilization by autoclaving

Calcium protoplast wash (CaPw)

- D-mannitol 80 ¢
- CaCb-2H,0 1095 g
- Distilled H,O to 1000 ml
- Sterilization by autoclaving

1M MgCl,
- MgCl,6H,0 203.3 g
- Distilled H,O to 1000 ml

- Sterilization by autoclaving
1% MES pH 5.6

- N-morpholino ethanesulphonic 19
- Adjust to pH 5.6 with 0.1 M KOH
- Distilled H,O to 100 ml

- Sterilization by autoclaving
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1M Ca(NQ),
- Ca(NGy),4H,0 236.1 g
- Distilled H,O to 1000 ml
- Sterilization by autoclaving

D-mannitol/MgCLMES solution (MMM)
- D-mannitol 910 mg
- 1M MgCl, solution 150 ul
- 1% MES pH 5.6 solution 1 ml
- Distilled H,O to 8.85 ml
- Filter sterilization

D-mannitol/Ca(NQ@). solution
- 8% D-mannitol solution 9 mi
- 1M Ca(NQ); solution 1 ml
- 1M Tris buffer pH 8.0 100 ul
- Filter sterilization

PEG solution
- Polyethylene glycol (PEG) 6000 2 g
- Autoclave in a glass universal bottle
- On day of transformation, melt PEG in microwave
- Add D-mannitol/Ca(N@). solution and mix well 5 ml
- Filter sterilization
- Leave at room temperature for about 2 h before use

0.5% Driselase solution
- Driselase 0.125 ¢
- 8% D-mannitol solution 25 ml

- Gently mix (do not shake vigorously)
- Leave to stand at room temperature for 15 min
- Centrifuge at 2,5009 for 5 min

- Filter sterilization
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Shortly extraction buffer
- Tris-(hydroxymethyl) aminomethane
hydrochloride (Tris-HCI, pH 9.0)
- LiCl
- Ethylenediaminetetraacetic acid (EDTA)
- Sodium dodecyl sulfate (SDS)
- Distilled H,O to

- Sterilization by autoclaving

0.2

0.4
25
10

1000

mM

mil
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APPENDIX B

Standard curve of fatty acid methyl ester

Preparation of fatty acid standard solutions

Stock solutions of the reference standatdésmethyl ester (1 mg),
ALA methyl ester (1 mg), GLA methyl ester (1 mg)P& methyl ester (1 mg),
DHGLA methyl ester (0.5 mg), ARA methyl ester (0r®)), EPA methyl ester (0.1
mg), ADA methyl ester (0.5 mg) ang3 DPA methyl ester (0.5 mg) were made by
dissolving in heptane and these stock solutionsewen-fold serial dilution to six
concentrations.

Fatty acid methyl esters (FAMES), LA, ALA, GLA ari€EDA methyl
esters ranging from 31-1,000 pg/ml, DHGLA, ADA and3 DPA methyl esters
ranging from 15-500 pg/ml, ARA methyl ester rangingm 6-200 pg/ml and EPA
methyl ester ranging from 6-100 pg/ml were used donstruction of calibration
curves.

GC analysis of FAMEs was conducted using an Agil6890N
equipped with an HP-INNOWax capillary column (0251 x 30 m x 0.25 uM), a
flame ionization detector, using helium as theieamas. An aliquot (2 ul) of each
sample extract was injected onto the GC columngustie injector in the split mode.
The initial column temperature was £85(0.5 min) and was increased at a rate of
3.5°C/min to 235C (14.3 min), and then maintained at Z3fr 1.0 min. Calibration
curves were established by analysis of the stanclampounds at six concentrations

and plotted peak area against the concentratieadf reference standards.
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Figure 1B Standard curve of LA methyl ester (Ratentime = 6.8 min).
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Figure 2B Standard curve of GLA methyl ester (Retentime = 7.1 min).
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Figure 3B Standard curve of ALA methyl ester (Ratentime = 7.4 min).
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Figure 4B Standard curve of EDA methyl ester (R@bertime = 9.2 min).
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Figure 5B Standard curve of DHGLA methyl ester @Rébn time = 9.7 min).
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Figure 6B Standard curve of ARA methyl ester (Reétentime = 10.2 min).
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Figure 7B Standard curve of EPA methyl ester (Retariime = 11.4 min).
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Figure 8B Standard curve of ADA methyl ester (Ratentime = 14.7 min).
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Figure 9B Standard curve ef3 DPA methyl ester (Retention time = 15.7 min).
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Gateway cloning technology
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A Gateway™ cloning vector set for high-throughput functional analysis of genes

in planta (Curtis and Grossniklaus, 2003)

1. 35Sinduction construct (pMDC32)
- Backbone pCambia 1300
- Karl in bacteria

- Hyd' in plants

pMDC32

e CTCTAGAGGATCCCCGGGTACCGGGCCCCCCCTCGAGGCGCGCCAAGCTATCAAACAAGTTTGTACAAAAAA
—

2X 358
promoter Xbal BamHI Kpnl Xhol  Ascl

Stop Stop Stop Stop  Stop
TTTCTTGTACAAAGTGGTTCGATAATTCCHTAATTAACTAGT TCFAGAGCGGCCGCCACCGCGGTGGAGCTC
—

attR2 Pacl Spel Xbal Notl Sacl

2. GFP C-terminal fusions (pMDC43)
- Backbone pCambia 1300
- Karf in bacteria

- Hyd in plants

Cmr" Xbal

ccdB

Cassette C1

Cm" Xbal
——

ccdB
—

pMDC43
2X 35S promoter gfp6
> » ACAAAGGCGCGCCAAGCTATCAAACAAGTTTGTACAAAAAA
Ascl attR1
Stop Stop Stop Stop Stop
TTTCTTGTACAAAGTGGTTCGATAATTCCTTAATTAAITAGTTATAGA
—— —
atR2 Pacl  —

Cassette C1
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