
Creating a Phrase Similarity Graph From Wikipedia

Lubomir Stanchev

Computer Science Department

Indiana University - Purdue University Fort Wayne

Fort Wayne, IN, USA

Email: stanchel@ipfw.edu

Abstract—The paper addresses the problem of modeling the
relationship between phrases in English using a similarity graph.
The mathematical model stores data about the strength of the re
lationship between phrases expressed as a decimal number. Both
structured data from Wikipedia, such as that the Wikipedia page
with title “Dog” belongs to the Wikipedia category “Domesticated
animals”, and textual descriptions, such as that the Wikipedia
page with title “Dog” contains the word “wolf” thirty one times
are used in creating the graph. The quality of the graph data is
validated by comparing the similarity of pairs of phrases using
our software that uses the graph with results of studies that were
performed with human subjects. To the best of our knowledge,
our software produces better correlation with the results of both
the Miller and Charles study and the WordSimilarity-353 study
than any other published research.

I. IN T RO D U C T I O N

The main goal of the paper is to describe how to create a
similarity graph that can be used to calculate the degree of
semantic similarity between phrases. For example, the graph
can be used to tell us that the similarity between the phrases
“New York” and “big apple” is around 0.5 because the two
phrases can represent the same concept. In the same way,
the graph can be used to tell us that the similarity between
the phrases “National Hockey League” and “United Nations”
is around 0.01 because there is little correlation between
the two phrases. The graph can also be used to compute
the strength of the asymmetric relationship between phrases.
For example, the graph can tell us that someone who is
interested in documents about the “Guggenheim Museum” is
also interested in documents about “New York” with relatively
high probability. The reason is that the Guggenheim museum
is located in New York. However, just because someone is
interested in documents about the phrase “New York” does not
give us confidence that they are also interested in documents
about the “Guggenheim Museum” phrase. The reason is that
the Guggenheim museum is only one of thousands of famous
landmarks that are located in New York city.

If we type “big apple” in our favorite Internet search engine,
for example Google or Bing, then all top results will contain
the phrase “big apple”. Most search engines will not return
web pages that contain “New York” but do not contain “big
apple” as one of the top results. The reason is that most
Internet search engines rely on keyword matching to compute
the query result and do not posses the knowledge that the
phrases “New York” and “big apple” are semantically similar
and the degree of this semantic similarity. The similarity graph

captures this semantic similarity. For example, the graph can
be used to find phrases that are semantically similarly to the
phrase “vitamin C”, such as “ascorbic acid”, and rewrite a
query using these phrases. In this way, the similarity graph
will allow us to not only perform semantic search (i.e., search
based on the meaning of phrases), but it will also help us rank
the result. For example, results that contain the phrase“ascorbic
acid” may be ranked higher than results that contain the phrase
“antioxidant” because, according to the graph, the phrase
“ascorbic acid” is semantically closer to the phrase “vitamin
C” than the phrase “antioxidant”. Another interesting software
application is using the similarity graph to partition a set of
documents based on the meaning of the phrases in them.
The similarity graph can be used to measure the semantic
similarity between any pair of documents. Then a clustering
algorithm, such as K-Means clustering ([17]), can be applied.
The similarity graph can also be used as part of a query-
answering system, such as the IBM Watson Computer that
competed on the Jeopardy game show and the Siri system for
the iPhone. For example, suppose that the phrase “statue of
liberty” is part of the user query. Then the similarity graph
can be used to rewrite the query using semantically similar
phrases, such as “France” and “New York”. Such a rewrite
can help the system find more information that is related to
the user query.

The problem of evaluating the strength of the semantic
relationship between phrases is intrinsically hard because
computers are not as proficient as humans in understanding
natural language text. However, natural language descriptions
can provide important evidence about the similarity between
phrases. For example, the Wikipedia document with title
“Hockey” contains the word “Canada” nine times. This fact
can serve as evidence about the strength of the semantic rela
tionship between the words “hockey” and “Canada”. Although
significant effort has been put forward in automated natural
language processing (e.g., [6], [7], [18]), current approaches
fall short of understanding the precise meaning of human text.
In fact, the question of whether computers will ever become
as fluent as humans in understanding natural language text is
an open problem. In this paper, unlike most natural language
processing applications, we do not parse text and breakdown
sentences into the primitive elements of the language (e.g.,
nouns, verbs, etc.). Instead, we only examine the words in the
text. Our algorithm is based on our previous work ([28]) that
also considers the order of the words in a sentence.

mailto:stanchel@ipfw.edu
lib-spc
Typewritten Text
Stanchev. Published in IEEE Internatioanl Conference on Semantic Computing Proceedings: June 16, 2014, Newport Beach, CA.

Current approaches that extract information about word and
phrase similarity from freely accessible sources focus on the
structured information. In particular, most papers that deal with
WordNet (e.g., [15], [31]) adapt the approach taken in [23]
that semantic similarity can be measured solely based on the
inheritance (a.k.a. kind-of) links and possibly data about the
specificity of the words (i.e., their information content – see
[22], [16], [11]). Note that WordNet is a lexical database that
describes the words in the English language, their meaning,
and the relationship between the words. More recent papers,
such as [32], explore additional relationship between words,
such as the holonym (a.k.a. part-of) relationship. Although
these approaches work well in practice and produce similarity
data that closely correlates to data from human studies, such
as [19], we show that there is room for improvement. In
particular, unstructured information, such as that a Wikipedia
web page contains a word multiple times, is not considered. In
our previously published algorithm ([28]), we also extracted
unstructured information from WordNet. For example, the
definition of one of the senses of “New York” is that it is a
city that is located on the Hudson river. This close relationship
between “New York” and “Hudson river” is not considered by
the other papers that are cited in this paragraph because these
algorithms do not process textual information.

In this paper, we propose a novel mechanism for measuring
the semantic similarity between phrases based on information
from Wikipedia and we extend our previously published
research ([28]) that extracts the degree of semantic similarity
between words based on information from WordNet. We show
how information from Wikipedia can be used to extend the
similarity graph that was constructed based on information
from WordNet. The graph is created using probability theory
and corresponds to a simplified version of a Bayesian network
([21]). The weight of an edge represents the probability that
someone is interested in the content of the destination node
given that they are interested in the content of the source node.
Note that the weight function is asymmetric. We experimen
tally validate the quality of our algorithm on two independent
benchmarks: Miller and Charles ([19]) and WordSimilarity
353 ([5]). Our approach outperforms existing algorithms that
we are familiar with on both benchmarks because we process
more information as input, including natural language descrip
tions, and we are able to apply this information to build a
better model of the semantic relationships between words and
phrases.

In what follows, in Section 2 we review related research.
The major contribution of the paper is an algorithm that
adds information from Wikipedia to a similarity graph – see
Section 3. Section 4 presents two algorithms for measuring
the semantic similarity between phrases that use the similarity
graph. Section 5 shows how our system compares to existing
systems that measure the semantic similarity between words
and phrases of the English language, while concluding remarks
and areas for future research are outlined in Section 6.

II. RE L AT E D RE S E A R C H

This paper extends a previous workshop paper that creates
a similarity graph from WordNet ([28]). WordNet contains
information about the words in the English language. For
example, WordNet contains the information that one of the
senses of the word “chair” is “a seat for one person”. Alterna
tively, Wikipedia contains information about phrases from the
world that we live in, such as “United Nations” and “Olympic
Games”. This paper extends the similarity graph that was
created in [28] by adding information from Wikipedia.

Existing research that applies Bayesian networks to rep
resent knowledge deals with the uncertain or probabilistic
information in the knowledgebase (e.g., [24], [20]). In this
paper, we will take a different approach and we will not use
Bayesian networks to model uncertain information. In contrast,
we will create a probabilistic graph that stores information
about the similarity of phrases. Unlike Bayesian networks,
we store only the probability that a phrase is relevant given
that an adjacent (in the graph) phrase is also relevant (e.g.,
unlike Bayesian networks, we do not store the probability that
a phrase is unrelated given that an adjacent in the graph phrase
is unrelated).

The idea of creating a graph that stores the degree of
semantic similarity between words or phrases is not new. For
example, [13], [25] show how to create a graph that only
represents inheritance of words, while [10] approximates the
similarity of words based on information about the structure of
the graph in which they appear. These papers, however, differ
from our approach because we suggest representing available
evidence from all type of sources, including natural language
descriptions and Wikipedia. Our approach is also different
from the use of a semantic network ([29]) because the latter
does not consider the strength of the relationship between the
nodes in the graph.

There are alternative methods to measure the semantic
similarity between words. The most notable approach is the
Google approach ([4]) in which the similarity between two
phrases is measured as a function of the number of Google
results that are returned by each phrase individually and the
two phrases combined. Other approaches that rely on data from
the Internet include [2] and [14]. Although these approaches
produce good measurement of semantic similarity, they have
their limitations. First, they do not make use of structured
information, such as the hyponym (i.e., kind-of) relationship in
WordNet and the category-subcategory relationship in Wikpe
dia. Second, they do not provide evidence about the semantic
similarity score that is returned. In contrast, our approach can
show the paths in the similarity graph between the two input
phrases, which serves as evidence that supports the similarity
score.

Research from information retrieval is also relevant to
creating and using the similarity graph. For example, if the
word “ice” appears multiple times in the Wikipedia page
“Hockey”, then this provides evidence about the relationship
between the two words. Our approach will use a model

that is similar to TF-IDF (stands for term frequency, inverse
document frequency – see [12]) to compute the strength of the
semantic relationship between phrases. In the TF-IDF model,
if the word “ice” appears two times in the Wikipedia page for
“Hockey”, then the term frequency can be computed as 2. This
number is multiplied by a number that is inversely proportional
to how often the word “ice” appears in other Wikipedia pages.
For example, if most Wikipedia pages contain the word “ice”,
then the fact that the Wikipedia page “Hockey” contains
this word is not consequential. Conversely, if the word “ice”
appears only in few Wikipedia pages, then the fact that the
Wikipedia page “Hockey” contains the word “ice” is statically
meaningful.

Note that a lot of research effort has recently focused on
using a description language, such as OWL (stands for Web
Ontology Language – [1]), to describe document resources.
A semantic query language, such as SPARQL (a recursive
acronym that stands for SPARQL Protocol and RDF Query
Language – [26]), can be used to search for relevant docu
ments. This approach differs from our approach because it
does not provide ranking of the query result. At the same
time, a SPARQL query returns exactly the resources that fulfil
the query description. Alternatively, our system can return
resources that are related to the input query in ranked order.
Using a similarity graph has some added advantages: there
is no need to describe the resources using a mathematical
language, there is no need to phrase the query using a
mathematical language, and the system is much more scalable
(OWL knowledgebases are usually applied only to a limited
knowledge domain because query answering over them is
intrinsically computationally expensive.)

III. CR E AT I N G T H E SI M I L A R I T Y GR A P H

While WordNet provides information about the words in
the English language, Wikipedia gives us information about
the world that we live in. It contains information about people,
events, organizations, sports, and history, to name a few topics.
A Wikipedia dump was downloaded from the Wikipedia web
site. This download contains a snapshot of Wikipedia as an
XML file. We transformed the file into a relational database file
using the MediaWiki software (www.mediawiki.org). From the
database, information about the categories and the Wikipedia
pages was extracted. For example, there are relational tables
that describe which category contains what pages and what
subcategories. There is also a relational table that contains
information about the hyperlinks in every Wikipedia page.
We also extracted the text from every Wikipedia page and
created links between Wikipedia pages, Wikipedia categories,
and word forms from WordNet. Note that while most of the
entries in WordNet are single words, it also contains word
forms, such as “sports utility vehicle”.

Before we present our algorithm, it is is worth mentioning
that the algorithm depends on a plethora of parameters, which
are represented as constants through this section. Experimen
tal results have shown that increasing the values of these
parameters can adversely affect the correlation results that

are presented in Chapter 5. These parameters represent our
confidence in the Wikipedia data. Since the data in Wikipedia
is not as precise as the data in WordNet, the values for the
parameters are relatively low. For example, we believe that
there is a 10% chance that someone who is interested in the
title of a Wikipedia page will be also interested in one of the
word sequences that appear in the title. Conversely, we believe
that there is 60% chance that someone who is interested in a
sense from WordNet will be also interested in one of the word
sequences in the definition of the sense.

It is also worth briefly describing how WordNet is used
to create the input graph. A node is created for every word
form and every sense. The label of a word form node is the
word, while the label of a sense node is the definition of the
sense. Two-way edges are drawn between every word form and
its senses. Next, two-way edges are drawn between senses to
represent the hyponym (a.k.a. kind-of) and meronym (a.k.a.
part-of) relationships between senses that represent nouns.
Similarly, edges that represent the troponym relationship for
verbs are drawn, where the verb Y is a troponym of the verb
X if the activity Y is doing X in some manner. We also draw
edges that represent the related to and similar to relationships
between adjectives. Note that text descriptions also result in
new edges. For example, we draw edges between a sense node
and the nodes for the words that appear in its definition and
its example use.

The first step of the algorithm is to add nodes to the similar
ity graph that represent titles of Wikipedia pages, categories,
and redirections. A redirection is a Wikipedia page that points
to a different Wikipedia page with different title. The label of
each new node is the title of the Wikipedia page, category, or
redirection in all lowercase letters. Note that if a node with
that label already exists (e.g., from WordNet), then a new node
is not created.

We next process the redirection information in Wikipedia.
For example the Wikipedia page with title “Accessible com
puting” has a redirection to the Wikipedia page with title
“Computer accessibility”. We assume that there is a 20%
change that someone who is interested in the title of the initial
Wikipedia page will also be interested in the title of the page
that the redirection link points to. Therefore, we will draw
an edge from the node “accessible computing” to the node
“computer accessibility” with weight 0.2 (see Figure 1). We
will also draw a reverse edge from “computer accessibility”
to “accessible computing”. The weight of this edge will be
equal to 0.2 divided by the number of redirections to the
node “computer accessibility”. For example, if there are three
redirections to the Wikipedia page “Computer accessibility”,
then this will result in the partial graph that is shown in
Figure 1.

Next, we will draw edges between nodes for Wikipedia
pages, categories, and redirections and nodes that represent
word forms in WordNet. Note that a Wikipedia page can
have both a title and subtitle, where the subtitle is written in
parentheses. Given a title, we will tokenize it and extract all
words, pairs of consecutive words, and triplets of consecutive

http:www.mediawiki.org

0.2/3

accessible computing

computer accessibility

0.2

Fig. 1. Representing redirection from Wikipedia.

words from it. We will then draw edges between the Wikipedia
node and each word form node from WordNet that has label
that is one of the extracted tokens. We consider a sequence
of at most three words because this is the longest word
form in WordNet. The weight of the edge is computed using
the formula computeMinMax(0,0.1,ratio). The variable ratio
is equal to the number of times the word form appears in
the title divided by the total number of words in the title.
For example, Figure 2 shows how the title “National Hockey
League” will be processed. The number 0.1 represents the fact
that we assume that there is a 10% probability that someone
who is interested in the title of a Wikipedia page will be also
interested in one of the word sequences that appear in the title.

all edges: computeMinMax(0,0.1,1/3)

national hockey league

national hockey league

Fig. 2. Wikipedia pages to word form edges.

The computeMinMax function returns a number that is
almost always between the first two arguments, where the
magnitude of the number is determined by the third argument.
Since the appearance of a phrase in the title of a Wikipedia
page is not a reliable source of evidence about the relationship
between the two, the value of the second argument is set
to 0.1 in the above example. The computeMinMax function
smooths the value of the ratio parameter. For example, a word
that appears as one of 20 words in the title of a Wikipedia
page is not 10 times less important than a word that appears
as one of the two words in the title of a Wikipedia page.
The function makes the difference between the two cases
less extreme. Using this function, the weight of the edge in
the second case will be only roughly four times smaller than
the weight of the edge in the first case. This is a common
approach when processing text. The importance of a word
in a text decreases as the size of the text increases, but
the importance of the word decreases at a slower rate than
the rate of the growth of the text. Formally, the function
computeMinMax is defined as follows.

computeMinMax (minV alue, maxV alue, ratio) =
−1minV alue + (maxV alue − minV alue) ∗ log2(ratio)

Note that we use the above formula only when the value

of the ratio variable is smaller or equal than 1/2. For exam
ple, if ratio=1, then the value of computeMinMax is not
well defined because of division by zero. Therefore, when
ratio > 1/2 we set the value of the function as maxValue*1.2.
Note that this can happen only in rare circumstances (e.g., a
Wikipedia title that consists of a single word).

We use the formula computeMinMax(0,0.05,ratio) to com
pute the weight of an edge between a word form in the subtitle
of a Wikipedia document and a word form node. In other
words, we consider the information in the subtitle twice less
important than the information in the title of a Wikipedia
document. Therefore, we assume that there is a 5% chance
that someone who is interested in the title of a Wikipedia
document will be also interested in one of the word sequences
that appear in the subtitle of the document.

We also examine the text of each Wikipedia document
and identify word forms that repeat five times of more. We
believe that this signals a relationship between the title of
the Wikipedia document and the word forms that appear
multiple times. We will compute the weight of such an edge as
computeMinMax(0,0.05,ratio), where ratio here is equal to the
number of times the word form appears in the text multiplied
by the number of words in the word form and divided by the
size of the text that consists of word forms that appear five
times or more. In other words, we do not penalize for the
size of the document. Instead, we only consider how many
word forms appear five times or more. The number 0.05 is
the probability that someone who is interested in the title of
a Wikipedia document will be also interested in one of the
word forms in the document that appears five times or more.
For example, the word form “Canada” appears 89 times in
the Wikipedia page with title “Ice hockey at the the Olympic
Game”. If the word forms in the document that repeat five
times or more make up 300 total words, then we will draw
the edge that is shown in Figure 3.

ice hockey at the olympic games

canada

computeMinMax(0,0.05, 89/300)

Fig. 3. Edges for text in Wikipedia pages.

We will also add backward edges between the word forms
and the Wikipedia documents. For example, suppose that the
word form “coat” appears in four Wikipedia page titles. Then
we will draw an edge between the word form and each of the
four Wikipedia pages. The weight of each edge will be equal
to computeMinMax(0,0.05,1/4). We chose the number 0.05
because we estimated the probability that a user is interested
in one of the Wikipedia pages that contain a specific word
form in their title given that they are interested in the word
form as 5%. Figure 4 shows an example of how the graph is
built.

 computeMinMax(0,0.05,1/4)

coat (clothing) coat(dog) coat of arms

coat

coat (animal)

all edges:

Fig. 4. Edges between word form nodes and Wikipedia page nodes.

Similarly, we will draw edges between a word form and
nodes for Wikipedia categories that contain the word form.
The value of the edge will be computed the same way. Finally,
we will draw an edge between a word form and a node
for a Wikipedia document that contains the word form in
its subtitle. Here, the weight of each edge will be computed
as computeMinMax(0,0.025,ratio), where ratio is equal to 1
divided by the number of Wikipedia pages that contain the
word form in their subtitle. We chose the number 0.025
because we estimated the probability that a user is interested in
one of the Wikipedia pages that contain a specific word form
in their subtitle given that they are interested in the word form
as 2.5%.

Next, we will examine the see-also links. For example,
consider the Wikipedia page for “Hospital”. It has five “see
also” links, including “Burn center”, and “Trauma center”. The
see-also links provide evidence about the relationship between
the concepts (e.g., hospital is related to trauma center). We will
draw edges between the Wikipedia page node and each of the
see-also page nodes. The weight of each edge will be equal to
0.05 divided by the number of see-also links – See Figure 5.
We chose the number 0.05 because we believe that there is a
5% probability that someone who is interested in the title of
a Wikipedia page will also be interested in the title of one of
the see-also pages.

0.05/5

hospital

burn center trauma center

0.05/5

Fig. 5. Edges for see-also links.

We will also add backward edges for the see-also links.
For example, if there are 20 see-also links that point to the
node for the Wikipedia page with title “Hospital”, then we
will draw an edge for each link and give it a weight that is
equal to 0.025/20. In general, the weight of each edge will be
equal to 0.025/count, where count is the number of incoming
see also-links. We chose the number 0.025 because we believe
that there is a 2.5% probability that someone who is interested
in the title of a Wikipedia page is also interested in one of the
titles of the Wikipedia pages that points to it using a see-also
link.

We will also add edges for the hyperlinks in the Wikipedia
documents. For example, consider the Wikipedia page with
title ”Canada”. It has a single hyperlink to the Wikipedia page
with title “Maple Leaf Flag”. At the same time, it has 530

hyperlinks to Wikipedia pages. We will draw the edge between
the two nodes that is shown in Figure 6. In general, the weight
of an edge is equal to 0.05 times the number of hyperlinks to
the destination Wikipedia page divided by the total number
of hyperlinks in the original Wikipedia page. We have chosen
the number 0.05 because we believe that there is a 5% chance
that someone who is interested in the title of a Wikipedia page
will also be interested in one of the titles of Wikipedia pages
that can be reached using one of the hyperlinks in the original
Wikipedia page.

Consider again the Wikipedia page for “Maple leaf flag”.
If, for example, there are 10 hyperlinks pointing to it, then we
will draw backward edges for each hyperlink. The weight of
each edge will be equal to 0.025 divided by the total number of
hyperlinks towards the page – see Figure 6. Here we assume
that there is a 2.5% chance that someone who is interested
in the title of a Wikipedia page will be also interested in the
title of one of the Wikipedia pages that points to it using a
hyperlink.

0.025/10

canada

maple leaf flag

0.05/530

Fig. 6. Edges for hyperlinks.

Next, consider the “Furniture” Wikipedia category. “Beds”
is one of 24 subcategories. Therefore, we will draw an edge
between the nodes for the two pages with weight that is equal
to 0.1*(sub category size)/(size of all subcategories). This is
the probability that someone who is interested in furniture
is also interested in beds. The number 0.1 represents that
we assume that there is a 10% change that someone who is
interested in the title of a category will also be interested in
the title of one of the subcategories. We estimate the “size”
of a category as the total number of Wikipedia pages that
it contains. For example, the category “Beds” contains 41
pages, while all 24 subcategories of the “Furniture” category
contain a total of 917 Wikipedia pages. Therefore, we will
draw the edge that is shown in Figure 7. Note that “Beds” is
one of the bigger subcategories of the “Furniture” category.
Therefore, the edge between the two nodes will have bigger
weight than the edge between the nodes for “Furniture” and
“Kitchen countertops”, for example. The reason is that the
“Kitchen countertops” category contains only 5 pages.

0.10*41/917

Furniture

Beds

0.05/2

Fig. 7. Edges for subcategories.

We will also draw a backward edge from “Beds” to “Furni
ture”. The weight of this edge will be computed as 0.05/count
– see Figure 7. The variable count represents the number of
super-categories of the category page. For example, the “Beds”
category has two super-categories: “Furniture” and “Sleep”.
Therefore, the variable count in this case is equal to 2. We
have chosen the number 0.05 because we estimate that there
is a 5% chance that someone who is interested in the title of
a Wikipedia category will also be interested in the title of one
of the super-categories.

Lastly, consider the “Beds” category and the “Adjustable
bed” Wikipedia page that belongs to the category. Recall that
there are 41 pages in the “Beds” category. We will draw
the edges that are shown in Figure 8. The forward edge
is calculated as 0.1 divided by the number of pages in the
category. In other words, we estimate that there is a 10%
chance that if someone is interested in the title of a Wikipedia
category, then they are also interested in the title of one of
the Wikipedia pages in the category. The backward edge is
calculated as the 0.05/count, where count is the number of
categories that the Wikipedia page appears in. This means that
there is a 5% probability that someone who is interested in the
title of a Wikipedia page is also interested in the title of one of
the categories that the page appear in. Since the “Adjustable
bed” Wikipedia page appears only in the category “Beds”, we
will draw the backward edge that is shown in Figure 8.

0.05/1

beds

adjustable bed

0.1/41

Fig. 8. Page-category edges.

IV. ME A S U R I N G SE M A N T I C SI M I L A R I T Y BE T W E E N

PH R A S E S

The similarity graph is used to represent the conditional
probability that a user is interested in a phrase given that
they are interested in an adjacent phrase in the graph. We
compute the directional similarity between two nodes using
the following formula.

A →s C =
1 − (1 − PPt(C|A)) (1)

Pt is a cycleless path from A to C
PPt(C|A) = P (n2|n1) (2)

(n1,n2) is an edge in the path Pt

Informally, we compute the directional similarity between
two nodes as a function of all the paths between the two
nodes, where we eliminate cycles from the paths. Each path
provides evidence about the similarity between the phrases
that are represented by the two nodes. For example, suppose
that there are two paths between “car” and “auto”. The first

path has weight of 0.6 and the second path has a weight of
0.5. In other words, we have evidence that someone who is
interested in “car” is also interested in “auto” with probability
60% and 50%. If we combine the available evidence, then we
get directional similarity of 1 − (1 − 0.6) · (1 − 0.5) = 0.8.
This is the probability that we succeed in two independent
tries, where the probability in the first try is 50% and the
probability of the second try is 60%. In other words, every
path brings new evidence that can increases the value of the
directional similarity, but the value can never become more
than one.

We compute the directional similarity between two nodes
on a path as the product of the weights of the edges along the
path, which follows the Markov chain model. Since the weight
of an edge along the path is almost always smaller than one
(i.e., equal to one only in rear circumstances), the value of the
conditional probability will decrease as the length of the path
increases. This is a desirable behavior because a longer path
provides less evidence about the similarity between the two
end nodes.

Next, we present two functions for measuring similarity.
The linear function for computing the similarity between two
phrases is shown in Equation 3.

w1 →s w2 + w2 →s w1 1 |w1, w2|lin = min(α,) ∗ (3)
2 α

The minimum function is used to cap the value of the
similarity function at 1. α is a coefficient that amplifies the
available evidence. The experimental section of the paper
shows how the value of α affects the correlation between the
results of the system and that of human judgement.

The second similarity function is inverse logarithmic, that
is, it amplifies the smaller values. It is shown in Equation 4.
The norm function simply multiplies the result by a constant
(i.e., −log2(α)) in order to move the value of the result in the
range [0,1]. Note that the norm function does not affect the
correlation score.

−1 |w1, w2|log = norm() (4)
log2(min(α, w1→sw2+w2→sw1))2

Given two nodes, the similarity between them is computed
by performing a depth-first traversal of the graph from each
node in parallel. Common nodes between the two traversals
identify paths between the two nodes. When the weight of a
path becomes under 0.0001, we prune the path. We do this in
order to make the algorithm more efficient. Paths with weight
under 0.001 will have little effect on the semantic similarity
score. In our experimental results we only consider path of
lengths 100 edges or less. In other words, we cap the depth-
first traversal algorithm on both ends to 50 edges. A path with
length of more than 100 edges will provide little evidence
about the relationship between two phrases.

Note that we take the average of the two directional sim
ilarity distances in order to determine the similarity score.
Empirical observations have shown that multiplying the two

numbers is an inferior approach because often one of the
two numbers is very small. For example, consider trying to
compute the similarity distance between the words “ostrich”
and ”animal”. One should hope this score to be high because
the two words are clearly related. However, the directional
similarity between the words “animal” and “ostrich” is low
because there is very little evidence that someone who is
interested in learning about an animal is interested in exactly
the ostrich.

V. EX P E R I M E N TA L RE S U LT S

The system consists of the two programs: one that creates
the similarity graph and one that queries the similarity graph.
We used the Java API for WordNet Searching (JAWS) to
connect to WordNet. The interface was developed by Brett
Spell ([27]). All experiments were performed on a Silicon
Graphics UV10 Linux machine. It takes about 16 hours to
build the similarity graph and save it to the hard disk. The
similarity graph is saved in several hash tables and its total
size is about 10GB. It takes about 40 minutes to load the
similarity graph back into main memory. The average time for
computing the similarity distance between two phrases once
the graph is loaded into main memory is about 45 seconds.
Of course, this time can be made faster if we decrease the
maximum length of a path to be below 100 edges. However,
this may result in less accurate results.

We used the similarity graph to compute the similarity
between 28 pairs of words from the Miller and Charles study
([19]). The study presented the words to humans and computed
the mean score of the human ranking. As Table I suggests, the
correlation drops as the value of α increases.

Table I shows the result of the correlation with different
values for α. Table II show how our results compare with other
proposals for extracting semantic similarity between phrases.
The results are for α = 0.1. As the table suggests, both our
algorithms produce better results (i.e., closer correlation with
the results from the human judgement experiment in [19])
than existing algorithms. We also outperform our previous
algorithm that uses information only from WordNet ([28]).

α | · |lin | · |log
0.1 0.93 0.93
0.2 0.88 0.90
0.3 0.85 0.85
0.4 0.80 0.80
0.5 0.75 0.75
0.6 0.70 0.68
0.7 0.68 0.59
0.8 0.65 0.49
0.9 0.63 0.34
1.0 0.62 0.18

TABLE I

CO R R E L AT I O N R E S U LT S F O R D I FF E R E N T VA L U E S O F α O N T H E MI L L E R S

A N D CH A R L E S B E N C H M A R K .

We explore how the coefficient α affects the quality of
the result. We get the highest correlation with the results
from the Miller and Charles study ([19]) when α is equal

algorithm correlation
Hirst and St-Onge ([8]) 0.74

Leacock and Chodorow ([15]) 0.82
Resnik ([22]) 0.77

Jiang and Conrath ([11]) 0.85
Lin ([16]) 0.83

Stanchev ([28]) 0.87
| · |lin 0.93
| · |log 0.93

TABLE II
CO R R E L AT I O N R E S U LT S W I T H T H E MI L L E R S A N D CH A R L E S B E N C H M A R K .

to 0.1. The correlation score is 0.93 for both the linear and
logarithmic algorithms. A correlation score of 0.93 shows very
close correlation between the results that were produced by our
system and the data from the human judgement in the Miller
and Charles study. To the best of our knowledge, this is the
highest correlation with the study ever achieved in published
research.

In order to avoid overfitting, we decided to check if similar
results hold for a different benchmark. In particular, we
used the WordSimilarity-353 dataset ([5]). It contains 353
phrase pairs. Thirteen humans were used to rate the similarity
between each pair of phrases and give a score between 1 and
10 (10 meaning that the phrases have the same meaning and 1
meaning that the phrases are unrelated). The average similarity
rating for each word pair was recorded. Table III shows
the correlation of our linear and logarithmic algorithms and
different values of α with the results from the WordSimilarity
353 benchmark.

α | · |lin | · |log
0.1 0.54 0.53
0.2 0.52 0.53
0.3 0.52 0.52
0.4 0.51 0.52
0.5 0.50 0.49
0.6 0.49 0.44
0.7 0.46 0.40
0.8 0.45 0.35
0.9 0.43 0.31
1.0 0.42 0.18

TABLE III

CO R R E L AT I O N R E S U LT S F O R D I FF E R E N T VA L U E S O F α O N T H E

WO R D SI M I L A R I T Y-35 3 B E N C H M A R K .

Table IV shows how our system compares with eight
existing systems that have documented their performance on
the WordSimilarity-353 benchmark. The results of our system
are for α = 0.1. As the table shows, our system produces better
results then all other systems. We also outperformed our previ
ous algorithm that uses information only from WordNet ([28]).
Note that some algorithm (e.g., [2]) use additional information
from the web, while our algorithm only uses information from
WordNet, Wikipedia, and data from University of Oxford’s
British National Corpus ([3]) that contains the frequency of
use of each word in the English language. Although computing
the degree of similarity between phrases is not the main
application of the similarity graph, the experimental results

algorithm correlation
Jarmasz ([9]) 0.27

Hirst and St-Onge ([8]) 0.34
Jiang and Conrath ([11]) 0.34

Strube and Ponzetto ([30]) 0.19-0.48
Leacock and Chodrow ([15]) 0.36

Lin ([16]) 0.36
Resnik ([22] 0.37

Stanchev ([28]) 0.49
Bollegala et al. ([2]) 0.50

| · |lin 0.54
| · |log 0.53

TABLE IV

CO R R E L AT I O N RE S U LT S W I T H [5]

give us confidence about the quality of the data in the graph.

VI. CO N C L U S I O N A N D FU T U R E RE S E A R C H

In previous work, we have created a similarity graph from
WordNet data. In this work, we extended this similarity graph
to include data from Wikipedia. As a result, we can now
process phrases, such as “United Nations” and “National
Hockey League”, and not just simple word forms that are
found in WordNet.

There are numerous applications of the similarity graph,
where the most obvious application is semantic search. We can
present to the user the documents that they are interested in
based on phrase similarity. Similarity, the similarity graph can
be used to find documents that are semantically similar to an
input document and for document clustering. We verified the
data quality of the similarity graph by showing that it can be
used to compute the semantic similarity between phrases and
we experimentally verified that our algorithms produce results
of better quality than existing algorithms on the Charles and
Miller and WordSimilarity-353 benchmarks. We believe that
we outperformed existing algorithms because our algorithms
processes not only structured data, but also natural language.

Our plan for future research is to use the similarity graph
to create a suit of semantic applications. We believe that the
similarity graph can be used to not only find data that cannot
be found by performing keyword search, but it can also help
us achieve good ranking of the query result based on semantic
relevance.

RE F E R E N C E S

[1] OWL	 Web Ontology Language Guide. http://www.w3.org/TR/owl
guide/.

[2] D. Bollegala, Y.	 Matsuo, and M. Ishizuka. A Relational Model of
Semantic Similarity Between Words Using Automatically Extracted
Lexical Pattern Clusters from Web. Conference on Empirical Methods
in Natural Language Processing, 2009.

[3] L. Burnard.	 Reference Guide for the British National Corpus (XML
Edition). http://www.natcorp.ox.ac.uk, 2007.

[4] R. L. Cilibrasi and P. M. Vitanyi. The Google Similarity Distance. IEEE
ITSOC Inforamtion Theory Workshop, 2005.

[5] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolf-
man, and E. Ruppin. Placing Search in Context: The Concept Revisited.
ACM Transactions on Information Systems, 20(1):116–131, January
2002.

[6] C. Fox.	 Lexical Analysis and Stoplists. Information Retrieval: Data
Structures and Algorithms, pages 102–130, 1992.

[7]	 W. Frakes. Stemming Algorithms. Information Retrieval: Data Struc
tures and Algorithms, pages 131–160, 1992.

[8]	 G. Hirst and D. St-Onge. Lexical chains as representations of context for
the detection and correction of malapropisms. Fellbaum, pages 305–332,
1998.

[9]	 M. Jarmasz. Roget’s Thesaurus as a Lexical Resource for Natural
Language Processing. Master’s thesis, University of Ottawa, 1993.

[10]	 G. Jeh and J. Widom. SimRank: A Measure of Structural-context
Similarity. Proceedings of the Eight ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 538–543,
2002.

[11]	 J. Jiang and D. Conrath. Semantic Similarity Based on Corpus Statistics
and Lexical Taxonomy. Proceedings on International Conference on
Research in Computational Linguistics, pages 19–33, 1997.

[12]	 K. Jones. ”a statistical interpretation of term specificity and its applica
tion in retrieval”. Journal of Documentation, 28(1):11–21, 1972.

[13]	 R. Knappe, H. Bulskov, and T. Andreasen. Similarity Graphs. Fourteenth
International Symposium on Foundations of Intelligent Systems, 2003.

[14]	 S. Kulkami and D. Caragea. Computation of the Semantic Relatedness
Between Words Using Concept Clouds. International Conference of
Knowledge Discovery and Information Retrieval, 2009.

[15]	 C. Leacock and M. Chodorow. Combining Local Context and WordNet
Similarity for Word Sense Identification. WordNet: An electronic lexical
database, pages 265–283, 1998.

[16]	 D. Lin. An Information-theoretic Definition of Similarity. Proceedings
of the Fifteenth International Conference on Machine Learning, pages
296–304, 1998.

[17]	 J. B. MacQueen. Some Methods for classification and Analysis of
Multivariate Observations. Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, page 281297, 1967.

[18]	 M.F.Porter. An Algorithm for Suffix Stripping. Readings in Information
Retrieval, pages 313–316, 1997.

[19]	 G. Miller and W. Charles. Contextual Correlates of Semantic Similarity.
Language and Congnitive Processing, 6(1):1–28, 1991.

[20]	 R. Pan, Z. Ding, Y. Yu, and Y. Peng. A Bayesian Network Approach to
Ontology Mapping. Proceedings of the Fourth International Semantic
Web Conference, 2005.

[21]	 J. Pearl. Bayesian Networks: A Model of Self-Activated Memory
for Evidential Reasoning. Proceedings of the 7th Conference of the
Cognitive Science Society, University of California, Irvine, CA., page
329334, 1985.

[22]	 P.Resnik. Using Information Content to Evaluate Semantic Similarity in
a Taxonomy. International Joint Conference on Artificial Intelligence,
pages 448–453, 1995.

[23]	 R. Rada, H. Mili, E. Bickness, and M. Blettner. Development and
Application of a Metric on Semantic Nets. IEEE Transactions on
Systems, Man, and Cybernetics, 19(1):17–30, 1989.

[24] Q. Rajput and S. Haider. Use of Bayesian Networks in Information Ex
traction from Unstructured Data Sources. Proceedings of International
Conference on Ontological and Semantic Engineering, pages 325–331,
2009.

[25]	 Simone Paolo Ponzetto and Michael Strube. Deriving a Large Scale
Taxonomy from Wikipedia. 22nd International conference on Artificial
intelligence, 2007.

[26]	 E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query for OWL-DL.
3rd OWL: Experiences and Directions Workshop (OWLED), 2007.

[27]	 B. Spell. Java API for WordNet Searching (JAWS).
http://lyle.smu.edu/ tspell/jaws/index.html, 2009.

[28]	 L. Stanchev. Building Semantic Corpus from WordNet. The First
International Workshop on the role of Semantic Web in Literature-Based
Discovery, 2012.

[29]	 M. Steyvers and J. Tenenbaum. The Large-Scale Structure of Semantic
Networks: Statistical Analyses and a Model of Semantic Growth.
Cognitive Science, 29(1):41–78, 2005.

[30]	 M. Strube and S.P.Ponzetto. Wikirelate! Computing Semantic Relat
edness using Wikipedia. Association for the Advancement of Artificial
Intelligence Conference, 2006.

[31]	 Z. Wu and M. Palmer. Verb semantics and lexcial selection. Annual
Meeting of the Association for Computational Linguistics, pages 133–
138, 1994.

[32]	 D. Yang and D. M. Powers. Measureing Semantic Similarity in the
Taxonomy of WordNet. Australian Computer Science Conference, pages
315–322, 2005.

http:http://lyle.smu.edu
http:http://www.natcorp.ox.ac.uk
http://www.w3.org/TR/owl

