
GLASNIK MATEMATIČKI
Vol. 55(75)(2020), 143 – 176

AN ALGEBRAIC FRAMEWORK FOR MULTI-OBJECTIVE

AND ROBUST VARIANTS OF PATH PROBLEMS

Robert Manger

University of Zagreb, Croatia

Abstract. It is well known that various types of path problems in
graphs can be treated together within a common algebraic framework.
Thereby each type is characterized by a different “path algebra”, i.e., a
different instance of the same abstract algebraic structure. This paper
demonstrates that the common algebraic framework, although originally
intended for conventional problem variants, can be extended to cover multi-
objective and robust variants. Thus the paper is mainly concerned with
constructing and justifying new path algebras that correspond to such more
complex problem varieties. A consequence of the obtained algebraic for-
mulation is that multi-objective or robust problem instances can be solved
by well-known general algorithms designed to work over an arbitrary path
algebra. The solutions obtained in this way comprise all paths that are
efficient in the Pareto sense. The efficient paths are by default described
only implicitly, as vectors of objective-function values. Still, it is shown
in the paper that, with slightly extended versions of the involved algebras,
the same paths can also be identified explicitly. Also, for robust problem
instances it is possible to select only one “robustly optimal” path according
to a generalized min-max or min-max regret criterion.

1. Introduction

Path problems are a family of optimization and enumeration problems,
which reduce to generation or comparison of paths in graphs. Some examples
are: checking path existence, finding shortest or longest paths, finding most
reliable paths or paths with maximum capacity, listing all paths, etc.

One strategy how to deal with path problems is to treat each particular
type of problem separately and solve it by dedicated algorithms. Indeed,

2020 Mathematics Subject Classification. 90C35, 90C29, 05C38, 16Y60, 68R10.
Key words and phrases. Directed graphs, path problems, path algebras, multi-

objective optimization, robust optimization, Pareto efficiency, min-max (regret).

143

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/324281507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

144 R. MANGER

we can develop specialized algorithms for shortest paths, similar but slightly
different algorithms for checking path existence, etc [14]. Another strategy is
to establish a general framework for the whole family of problems and to use
general algorithms. Such approach can be realized by introducing a suitable
algebraic structure.

There are many variants of the algebraic approach to path problems pro-
posed in the literature [2, 3, 5, 9, 10, 12, 13, 16, 18, 24, 25, 26, 27]. In this
paper we have chosen the variant from [5], which uses a structure whose in-
stances are called path algebras (or alternatively idempotent semirings). The
approach from [5] relies heavily on matrices and on analogies with linear al-
gebra. Each type of path problem is formulated by using a different path
algebra. Solving a concrete problem reduces to computing with matrices over
the corresponding algebra. The same overall computing procedure can be used
for any algebra, thus allowing construction of general (abstract) algorithms.

This paper is concerned with optimization path problems, such as finding
shortest, longest, most-reliable paths or paths with maximum capacity. A
conventional (single-objective) problem instance is specified by unique values
(e.g., lengths, reliabilities, capacities, . . .) given to graph arcs. The paper fo-
cuses on two complex problem variants, i.e., on multi-objective and on robust
variants. A common property of both complex variants is that their problem
instances are described by multiple values assigned to arcs.

In multi-objective optimization ([8, 19]), there are more objectives (cri-
teria of optimality) that have to be fulfilled. For instance, in a graph whose
arcs are given lengths and reliabilities, we could try to find paths that are at
the same time as short and as reliable as possible. Of course, objectives may
be in conflict, which means that usually there is no solution that can optimize
all objective functions simultaneously. One way of dealing with conflicts is
finding more solutions where each of them is in some aspect better than the
others. Or a kind of aggregate criterion (e.g., a weighted sum of original ob-
jective functions) should be followed. Or priorities among objectives should
be established.

In robust optimization ([1, 4, 15, 17]) there is only one objective, but
the values of the associated parameters are uncertain. Such uncertainty is
expressed through scenarios. For instance, in a robust maximum capacity
problem each scenario is a list of possible arc capacities. According to [17]
we will assume that the set of scenarios is finite and explicitly given. The
usual procedure for solving a robust problem considers only solutions that
are feasible for all scenarios. Then the “behavior” of any solution under any
scenario is measured in some way. As the “robustly optimal” solution, the
one is chosen whose worst behavior, measured over all scenarios, is the best
possible. Depending on the chosen behavior measure, such procedure can
lead either to the well known min-max (max-min) or to the min-max regret
criterion of robustness ([1]).

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 145

The aim of this paper is to extend the algebraic framework from [5] in
order to cover multi-objective and robust path problems. Or differently speak-
ing, our aim is to show that the considered complex path problems can be
regarded as members of the same family where conventional path problems
already belong. For this purpose, the paper constructs new path algebras,
which correspond to multi-objective or robust problems and are based on
algebras corresponding to the respective conventional problems.

The aim of the paper is mostly motivated by “aesthetic” reasons. Indeed,
it is nice to see that the already known algebraic framework is wider than
originally assumed, thus including the considered complex optimization path
problems together with simpler conventional problems. Apart from its aes-
thetic appeal, the idea of putting multi-objective and robust problems into
the same framework brings additional consequences. Namely, according to
this idea, multi-objective and robust problems could be solved by well-known
and tested general (abstract) algorithms.

In this paper, a multi-objective path problem instance is solved by find-
ing the full set of its Pareto-efficient solutions ([8, 19]). Each solution is
characterized by a vector of its objective-function values according to differ-
ent objectives. Efficiency means that the vectors in the set are incomparable
when compared with the standard partial ordering of vectors. Or more pre-
cisely, for any two solutions in the set, there is an objective where the first
one is better than the second one, and another objective where the second
one is better than the first one.

In the paper, robust path problems are treated as a special case of multi-
objective problems, and solved by using the same algebraic construction as for
multi-objective problems. The consequence is that, in order to solve a robust
problem instance, again the whole set of efficient solutions is found. Thereby
each solution is again represented as an efficient vector. But now that vector
comprises objective-function values under different scenarios.

Note that our way of solving a robust optimization problem differs from
the usual practice where only one “robustly optimal” solution is chosen ac-
cording to the previously mentioned min-max (max-min) or min-max regret
criterion. Still, both ways of solving can easily be harmonized by defining
suitable ranking functions for efficient vectors. In the paper we show that
such rankings can be expressed in terms of path-algebra operations, so that
the whole ranking procedure remains within the same algebraic framework.
Moreover, we show that our rankings are in fact abstractions and generaliza-
tions of the usual robustness criteria.

Apart from this introduction, the rest of the paper is organized as follows.
Section 2 contains all necessary preliminaries about the adopted algebraic
approach to path problems. Section 3 presents our construction of a path
algebra that can be used for solving multi-objective path problems. Thereby,
solutions are represented only as sets of efficient vectors. Section 4 shows

146 R. MANGER

how the algebra from Section 3 can be extended in order to identify not only
vectors but also paths in graphs where those vectors are achieved. Section 5 is
devoted to solving robust path problems and to ranking of efficient solutions.
The final Section 6 gives conclusions.

2. Algebraic approach to path problems

We start with the definition of our algebraic structure. A path algebra is
defined according to [5] as a set P equipped with two binary operations, ∨
and ◦, which have the following properties.

• The operation ∨ is idempotent, commutative and associative. Thus
for all x, y, z ∈ P it holds:

x ∨ x = x,

x ∨ y = y ∨ x,

(x ∨ y) ∨ z = x ∨ (y ∨ z).

• The operation ◦ is associative, left-distributive and right-distributive
over ∨. Thus for all x, y, z ∈ P :

(x◦y)◦z = x◦(y◦z),

x◦(y ∨ z) = (x◦y) ∨ (x◦z),

(y ∨ z)◦x = (y◦x) ∨ (z◦x).

• There exist a zero element φ ∈ P and a unit element ǫ ∈ P . Thus for
any x ∈ P :

φ ∨ x = x,

φ◦x = φ = x◦φ,

ǫ◦x = x = x◦ǫ.

The same or similar structure is also known in the literature as idempotent
semiring, see [2, 9, 10, 16, 24, 27]. The operation ∨ is called the join operation,
and ◦ is called multiplication. For x, y ∈ P , the elements x ∨ y and x◦y are
referred to as the join and the product of x and y, respectively.

Table 1. Extremal path algebras

notation P x ∨ y x ◦ y φ ǫ application

PS R ∪ {∞} min{x, y} x+ y ∞ 0 shortest paths
PL R ∪ {−∞} max{x, y} x+ y −∞ 0 longest paths
PR {t ∈ R | 0 ≤ t ≤ 1} max{x, y} x · y 0 1 most reliable paths
PC {t ∈ R | t ≥ 0} ∪ {∞} max{x, y} min{x, y} 0 ∞ max capacity paths

Some well-known path algebras from [5], mostly associated with opti-
mization problems, are given in Table 1. In this text they are denoted with
PS, PL, PR and PC. Each of them is based on real numbers (sometimes

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 147

extended with infinity symbols) and on ordinary extremal or arithmetic op-
erations. Similar algebras can also be found in [12, 27].

Table 2. Linguistic path algebras

notation P X ∨ Y X ◦ Y Φ E application

PA P(Σ∗) X ∪ Y {x∗y | x ∈ X, y ∈ Y } ∅ {λ} listing all paths
PE B(Σ∗) bas(X ∪ Y) {x∗y | x ∈ X, y ∈ Y } ∅ {λ} listing elem. paths
PO W(Σ∗) owl(X ∪ Y) {x∗y | x ∈ X, y ∈ Y } ∅ {λ} listing one path

Additional path algebras associated with enumeration problems are given
in Table 2. The first two of them, denoted with PA and PE, can be found in
[5]. The third algebra PO is described in [22]. They are all based on linguistic
concepts. Namely, Σ denotes here a finite alphabet, and Σ∗ is the set of all
words (finite sequences of letters) over Σ. Consequently, P(Σ∗) is the set of
all languages (sets of words) over Σ. The operation ∨ is based on the set
union ∪, and ◦ is based on word concatenation ∗. The symbol λ stands for
the empty word, and ∅ is the empty set (empty language). The zero and the
unit element are denoted with Φ and E, respectively.

The algebra PA deals with all languages without any restriction. The
algebra PE is similar to PA, but it deals with basic languages. An abbre-
viation of a word w is defined as any word that can be obtained from w by
removing at least one of its letters. For any language L ⊂ Σ∗, bas(L) is the
basis of L, i.e., the language consisting of all words from L that do not have
abbreviations in L. If bas(L) = L , then L is a basic language. B(Σ∗) denotes
the set of all basic languages over Σ. The algebra PO deals with words that
can be compared according to a suitably defined total ordering of words -
see [22]. Here W(Σ∗) denotes the set of all languages over Σ consisting of
at most one word. The expression owl(L) denotes the smallest word from a
given language L interpreted as a one-word language (specially owl(∅) = ∅).

An important concept in a path algebra P is its natural ordering relation,
which is defined by the following rule:

x � y if x ∨ y = y.

It is easy to prove that � is really an ordering (at least partial). For conve-
nience, we can also introduce a strict version of the same relation:

x ≺ y if (x � y and x 6= y).

148 R. MANGER

Also, it is easy to check that for the zero element φ and for any x, y, z ∈ P it
holds:

φ � x,

x � x ∨ y (and indeed y � x ∨ y),

if x � y then x ∨ z � y ∨ z,

if x � y then (x◦z � y◦z and z◦x � z◦y).

Now here are some additional remarks regarding notation. When evalu-
ating algebraic expressions over a path algebra P , it is always assumed that ◦
takes precedence over ∨ unless otherwise regulated by parentheses. Similarly,
both ∨ and ◦ are assumed to take precedence over �. Sometimes we will work
simultaneously with more than one path algebra. Still, in all algebras we will
almost always use the same symbols ∨ and ◦ for their algebraic operations.
Also, we will use the same symbol � for ordering.

Let us now consider n × n matrices over a path algebra P . We define
joins and products of matrices by analogy with ordinary linear algebra. Thus
for matrices X = [xij] and Y = [yij] over P , we put:

X ∨ Y = [xij ∨ yij] ,

X◦Y =

[
n∨

k=1

xik◦ykj

]
.

It is easy to prove that the set of considered matrices equipped with the above
operations is itself a path algebra. Its zero is the zero matrix Φ (filled with
zeros from P), and its unit element is the unit matrix E (having unit elements
from P on the diagonal and zeros elsewhere). For an n× n matrix X over a
path algebra P we consider its powers:

X0 = E, Xk = Xk−1◦X (k = 1, 2, . . .).

X is said to be stable if for some nonnegative integer q

q∨

k=0

Xk =

q+1∨

k=0

Xk.

The smallest q with this property is called the stability index of X . The join

X∗ = X0 ∨X1 ∨X2 ∨ . . . ∨Xq

is called the strong closure of X , while

X̂ = X1 ∨X2 ∨X3 ∨ . . . ∨Xq+1

is the weak closure of X . Obviously, one type of closure can easily be trans-
formed into the other. From now on, the word “closure” will refer to the weak
closure.

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 149

In this paper we consider directed graphs, where nodes are denoted as
integers and arcs as ordered pairs of nodes. We explore (directed) paths in
graphs, i.e., nonempty sequences of adjacent arcs with appropriate orientation.
A circular path is called a cycle. A path is elementary if it does not traverse
any node more than once.

A graph G is said to be labeled with a path algebra P if each arc (i, j) of
G is assigned a nonzero label l(i, j) ∈ P . The label l(µ) of a path µ in G is
then computed as the product of its arc labels. G is said to be absorptive if
for any elementary cycle γ in G and the unit element ǫ in P it holds:

l(γ) � ǫ.

An n-node labeled graph G is fully described by its n × n adjacency matrix
A = [aij], whose entries are defined as follows:

aij =

{
l(i, j) if the arc (i, j) exists,
φ otherwise.

The importance of adjacency matrices and absorptive graphs is stressed
by the following theorem proved in [5].

Theorem 2.1. The adjacency matrix A of an absorptive n-node graph G

is always stable with the stability index q ≤ n − 1. The (i, j)-th entry of the

closure Â is then equal to the join of labels of all elementary paths from node
i to node j (or φ if there are no such paths).

Now we are finally ready to explain our algebraic approach to path prob-
lems. For a certain problem instance posed in a graph G, we choose a suitable
path algebra P and assign appropriate arc labels l(i, j) ∈ P . Next we con-

struct the adjacency matrix A of G. Finally, we compute the closure Â and
read from it the solutions to the original instance. Feasibility and correctness
of the whole procedure is usually guaranteed by Theorem 2.1.

Concrete examples of using the described algebraic approach can be
found, e.g., in [5, 22, 23, 24, 25, 27], and later on in Sections 3-5 of this
paper. Note that each type of problem requires a different algebra, although
the overall problem structure remains the same. Thus it is possible to use

general (abstract) algorithms, i.e., algorithms that evaluate the closure Â of
a matrix A over an arbitrary path algebra P . Algorithms of that kind can be
found, e.g., in [5, 6, 7, 20, 21, 24, 25, 26], and some of them can be regarded
as counterparts of traditional methods for solving linear systems.

In this paper we will build new path algebras from existing ones. In some
cases such constructions will rely on algebraic reduction. The needed theory
is presented, e.g., in [3, 28]. Here is a short resume.

Let P be a path algebra whose join operation, multiplication, zero and
unit element are denoted with ∨, ◦, φ and ǫ, respectively. A function of the

150 R. MANGER

form ρ : P −→ P is called a reduction if it satisfies the following properties:

ρ(φ) = φ,

ρ(ǫ) = ǫ,

ρ(ρ(x) ∨ y) = ρ(x ∨ y) for all x, y ∈ P,

ρ(ρ(x)◦y) = ρ(x◦y) = ρ(x◦ρ(y)) for all x, y ∈ P.

Given such ρ, the set Pρ with the operations ∨ρ and ◦ρ is again a path algebra,
where

Pρ = {x ∈ P | ρ(x) = x} ,

x ∨ρ y = ρ(x ∨ y),

x◦ρy = ρ(x◦y).

So far we have considered path algebras in general. But in some situations
it will be necessary to restrict to algebras whose operations have additional
properties. For instance, we can require that the join operation in an algebra
P is a choice operation, i.e., for all x, y ∈ P :

x ∨ y = x or x ∨ y = y.

Or we can assume that multiplication in P has the so-called cancellation
property, i.e., for all x, y, z ∈ P :

if (x◦z = y◦z or z◦x = z◦y) then (x = y or z = φ).

Both properties are quite common, e.g., they can be found in most algebras
from Table 1.

3. Solving multi-objective path problems

As explained in the previous section, an instance of a conventional path
problem is specified by a graph G labeled with a suitable path algebra P .
However, in an instance of a multi-objective path problem each objective will
produce its own labeling with its specific algebra. Obviously, the labels as-
signed to the same arc by different objectives can be interpreted as a vector.
Thus in order to work with multi-objective path problems we need a mech-
anism for processing vectors of path-algebra elements. Such mechanism is
defined in the following paragraph and justified by Proposition 3.1.

Let s ≥ 2 be an integer. For i = 1, 2, . . . , s let Pi be a path algebra with
the zero element φi and the unit element ǫi. We consider vectors of length s

(written as rows) whose i-th entry belongs to Pi. The set of all such vectors
will be denoted with V(P1, P2, . . . , Ps), i.e.,

V(P1, P2, . . . , Ps) = {(x1, x2, . . . , xs) |xi ∈ Pi, i = 1, 2, . . . , s} .

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 151

Let ~x = (x1, x2, . . . , xs) and ~y = (y1, y2, . . . , ys) be two vectors from the set
V(P1, P2, . . . , Ps). We define their join and product in the following way:

~x ∨ ~y = (x1 ∨ y1, x2 ∨ y2, . . . , xs ∨ ys),

~x ◦ ~y = (x1◦y1, x2◦y2, . . . , xs◦ys).

Assuming the above definitions and notation, we can state the following simple
claim.

Proposition 3.1. The set V(P1, P2, . . . , Ps) with its operations ∨ and ◦

constitutes a path algebra, whose zero and unit elements are ~φ = (φ1, φ2, . . . , φs)
and ~ǫ = (ǫ1, ǫ2, . . . , ǫs), respectively.

Proof. It follows easily by straightforward verification of all path-
algebra properties.

The described path algebra V(P1, P2, . . . , Ps) will be called a vector alge-
bra, and P1, P2, . . . , Ps will be referred to as the corresponding scalar algebras.
It is easy to show that the natural ordering � in V(P1, P2, . . . , Ps) is compat-
ible with � in Pi, i = 1, 2, . . . , s, in the following sense:

(x1, x2, . . . , xs) � (y1, y2, . . . , ys) if and only if xi � yi for all i = 1, 2, . . . , s.

Note that � in V(P1, P2, . . . , Ps) is always a partial ordering even if � in each
Pi is total.

As mentioned in Section 1, a multi-objective path problem instance will
be solved by finding the whole set of its efficient solutions. Thus in order
to work with multi-objective path problems we also need another mechanism
for manipulating sets of efficient path-algebra elements. Such mechanism is
described in the following paragraph and justified by Proposition 3.2. For our
purposes it is enough to consider only finite sets.

Let P be a path algebra, with its natural ordering �, whose zero and
unit elements are again denoted with φ and ǫ, respectively. Let X be a set
of elements from P . We say that x ∈ X is dominated in X if there exists
y ∈ X such that x ≺ y. If x ∈ X is not dominated in X , we say that x is
efficient in X . Next we define the operator eff(). For a finite X ⊆ P , eff(X)
is the set of all elements of X that are efficient in X . In other words, eff()
deletes from X all dominated elements and leaves efficient elements. A finite
set X ⊆ P is said to be efficient if it does not contain dominated elements,
i.e., if eff(X) = X . Finally, we consider the set S(P) consisting of all efficient
subsets of P , i.e.,

S(P) = {X |X ⊆ P, X finite, eff(X) = X} .

For X,Y ∈ S(P) we define their join and product:

X ∨ Y = eff(X ∪ Y),

X◦Y = eff ({x◦y |x ∈ X, y ∈ Y }) .

152 R. MANGER

Relying on the above definitions and notation, the following claim is valid.

Proposition 3.2. The set S(P) with its operations ∨ and ◦ is itself a
path algebra, whose zero element is the empty set Φ = ∅ and unit element is
the single-element set E = {ǫ}.

Proof. Let us first consider a “relaxed” version of S(P), which is defined
in the same way as above but without the eff() operator. It is easy to prove
that the relaxed S(P) is a path algebra. Namely, the relaxed S(P) is closed
with respect to its relaxed ∨ and ◦. Also, all path-algebra properties are
satisfied, as it can easily be shown by straightforward verification.

In order to prove that our “reduced” version of S(P) (with eff() present)
is also a path algebra, it is enough to demonstrate that eff() is a reduction
over the relaxed S(P). Consequently, four properties of a reduction listed in
Section 2 must be verified.

The first two reduction properties are trivial. Let us check the third
property. Consider any two sets X and Y from the relaxed S(P). Then the
third property requires that

eff(eff(X) ∪ Y) = eff(X ∪ Y).

The above equality obviously holds. Indeed, the inner eff() on the left-hand
side can be omitted. It is true that due to such omission it can happen that
some inefficient v ∈ X temporarily “survives” although it is dominated by an
efficient w ∈ X . But then v will be deleted by the outer eff() since it will
still be dominated by the same w in X ∪ Y . Moreover, temporary survival of
v cannot cause unnecessary elimination of other elements in X ∪ Y . Namely,
if v dominates some u in X ∪ Y , then w (being ≻ v ≻ u) also dominates the
same u, so that u will be deleted by the outer eff() regardless of v.

Next we check the left part of the fourth reduction property. The right
part is checked analogously. Consider again any X and Y from the relaxed
S(P). The left part of the fourth property requires that

eff ({x◦y |x ∈ eff(X), y ∈ Y }) = eff ({x◦y |x ∈ X, y ∈ Y }) .

The above equality again holds. Skipping the inner eff() can be justified by
similar arguments as in the corresponding part of the proof for Proposition 4.1
in Section 4.

The described path algebra S(P) will be called a set algebra. In the same
context P will be referred to as the corresponding element algebra.

As already explained in this section, solving multi-objective path prob-
lems means working with sets of efficient solutions. On the other hand, each
of those solutions is characterized by a vector of values obtained according
to different objectives. Consequently, the two mechanisms described above,
for working with vectors and sets, respectively, should be combined. More
precisely, we are interested in path algebras of the form S(V(P1, P2, . . . , Ps)),

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 153

where Pi, i = 1, 2, . . . , s, is a scalar path algebra, V(P1, P2, . . . , Ps) consists of
vectors whose i-th entry belongs to Pi, and S(V(P1, P2, . . . , Ps)) consists of
efficient sets of vectors from V(P1, P2, . . . , Ps). Due to Propositions 3.1 and
3.2, the considered S(V(P1, P2, . . . , Ps)) is indeed a path algebra, which will
be called a vector-set algebra.

Now we are ready to explain in more detail our algebraic method for
solving multi-objective path problems.

• Let the considered instance of a multi-objective problem be posed in
a graph G with n nodes, and let it comprise s objectives. Suppose
that the conventional (single-objective) problem associated with the
i-th objective is characterized by a scalar path algebra Pi. Then the
i-th objective produces a labeling of G with Pi.

• The labels assigned to the same arc according to different objectives are
interpreted as a vector from V(P1, P2, . . . , Ps). That vector is further
interpreted as a single-element set. In this way, G is considered as la-
beled with the vector-set algebra S(V(P1, P2, . . . , Ps)). Consequently,
the given multi-objective problem instance is specified by the n × n

adjacency matrix A of G over S(V(P1, P2, . . . , Ps)).

• The problem instance is solved by computing the closure Â. Comput-
ing is accomplished through path-algebra operations ∨ and ◦ within
S(V(P1, P2, . . . , Ps)). The overall algorithm simply follows the closure
definition from Section 2, i.e., it evaluates joins of matrix powers. Or
some more sophisticated abstract closure procedure from the literature
is used, which is based, e.g., on Gaussian elimination or Gauss-Seidel
iteration.

• The solutions of the considered problem instance are directly repre-

sented by Â. Indeed, the (i, j)-th entry of Â is a set of efficient vectors
- each of them corresponds to (at least) one path in G from node i

to node j and comprises the labels of that path according to different
objectives.

Within our method, a path corresponding to an efficient vector is also called
efficient . For any two such paths connecting the same pair of nodes there is
an objective where the first one is better than the second one, and vice versa
- thus neither of them can be discarded as inferior. The method is further
illustrated by Example 3.3.

Example 3.3. We consider an instance of a two-objective path problem
given in Figure 1. The first objective is to minimize path length, and the
second objective is to maximize path reliability. Arc lengths and reliabilities
are given by left-hand and right-hand arc labels, respectively. For any pair
of nodes i and j we are looking for paths between i and j that are at the
same time as short as possible and as reliable as possible. At this moment

154 R. MANGER

we ignore arc identifiers (letters a, b, c, . . .) - they will be used in the next
example.

node 1

3, 0.8
7, 0.5

9, 0.7

1, 0.6

4, 0.42, 0.5

6, 0.3

8, 0.8

5, 0.9

node 2

node 3

node 4 node 5

a

b

c d

h

g
f

e i

Figure 1. An instance of the two-objective shortest/most-
reliable path problem

The considered multi-objective problem instance is specified by the fol-
lowing 5× 5 adjacency matrix:

A =

∅ {(3, 0.8)} {(2, 0.5)} ∅ ∅
∅ ∅ ∅ {(9, 0.7)} {(7, 0.5)}

{(6, 0.3)} ∅ ∅ {(4, 0.4)} {(8, 0.8)}
∅ ∅ ∅ ∅ {(1, 0.6)}
∅ ∅ {(5, 0.9)} ∅ ∅

.

We deal here with a matrix over the vector-set algebra S(V(PS, PR)), where
PS and PR are the scalar algebras from Table 1 associated with the con-
ventional shortest path and most-reliable path problem, respectively. The
corresponding closure matrix computed within S(V(PS, PR)) looks as fol-
lows:

Â =

{
(8, 0.15)

} {
(3, 0.8)

} {
(2, 0.5)

} {
(12, 0.56),
(6, 0.2)

} {
(10, 0.4),
(7, 0.12)

}

{
(18, 0.135)

} {
(21, 0.108)

} {
(12, 0.45)

} {
(9, 0.7)

} {
(7, 0.5)

}

(6, 0.3)

(9, 0.24)

(8, 0.15),
(13, 0.72),
(10, 0.216)

(4, 0.4)

(8, 0.8),
(5, 0.24)

{
(12, 0.162)

} {
(15, 0.1296)

} {
(6, 0.54)

} {
(10, 0.216)

} {
(1, 0.6)

}

{
(11, 0.27)

} {
(14, 0.216)

} {
(5, 0.9)

} {
(9, 0.36)

} {
(13, 0.72),
(10, 0.216)

}

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 155

From Â we can read the solutions for our problem instance. Suppose that
we are interested in paths from node 1 to node 5. Then we must observe the

(1, 5)-th entry in Â. It consists of two vectors - each of them corresponds
to (at least) one path between nodes 1 and 5 and comprises the length and
reliability of that path.

By observing closely our small graph, it is easy to find out that the vector
(10, 0.4) corresponds either to the path through nodes 1, 2 and 5, or to the
path through nodes 1, 3 and 5 (let us call them the first and the second path,
respectively). On the other hand, the vector (7, 0.12) corresponds to the path
traversing nodes 1, 3, 4 and 5 (let it be called the third path). Since both
vectors are efficient, it means that none of the three listed paths is inferior
to another. Indeed, the first two of them are equivalent, i.e., they have the
same lengths and reliabilities. The first or second path is more reliable than
the third one, but the third one is shorter.

It is also easy to see that in our small graph there exists as well the fourth
path between nodes 1 and 5, which traverses nodes 1, 2, 4 and 5, and which
is characterized by the vector (13, 0.336). However, that vector is discarded
from the solution set since it is not efficient. More precisely, (13, 0.336) is
dominated by (10, 0.4), which means that the fourth path is inferior to the
first or second path since it is longer and less reliable.

Example 3.3 has shown that our algebraic method works well at least for
one instance of one multi-objective path problem. But can we be sure that
it will work in general? Or more precisely, can we be sure that it will always
be feasible and correct? Feasibility means that the constructed adjacency

matrix A over S(V(P1, P2, . . . , Ps)) is really stable so that its closure Â can
be computed in a finite number of operations. Correctness means that the

entries of Â really contain the desired sets of efficient vectors.
In most cases, both feasibility and correctness can be guaranteed by The-

orem 2.1 from Section 2. But in order to apply Theorem 2.1, we must be sure
that the adjacency matrix A is absorptive in the sense of S(V(P1, P2, . . . , Ps)).
The next three propositions will establish necessary and sufficient conditions
for such absorptiveness.

Proposition 3.4. Let a graph G be labeled simultaneously with path al-
gebras P1, P2, . . . , Ps according to s objectives. Let the labels assigned to the
same arc by different objectives be interpreted as a label from the vector alge-
bra V(P1, P2, . . . , Ps). Then G is absorptive in the sense of V(P1, P2, . . . , Ps)
if and only if it is absorptive in the sense of Pi for each i = 1, 2, . . . , s.

Proof. As before, the unit element in Pi will be denoted by ǫi, and
the unit element in V(P1, P2, . . . , Ps) by ~ǫ. Let li() denote labeling with Pi

according to the i-th objective, and ~l() labeling with V(P1, P2, . . . , Ps). We
prove necessity. Suppose that G is absorptive in the sense of V(P1, P2, . . . , Ps)

156 R. MANGER

and let γ be any elementary cycle in G. Then, according to the definition of
absorptiveness:

~l(γ) � ~ǫ.

Thanks to properties of V(P1, P2, . . . , Ps) this is equivalent to

(l1(γ), l2(γ), . . . , ls(γ)) � (ǫ1, ǫ2, . . . , ǫs),

and also to

li(γ) � ǫi, i = 1, 2, . . . , s.

Thus again according to the definition of absorptiveness, G is absorptive in
the sense of Pi for any i. Sufficiency can be proved by reading the above
necessity proof in opposite direction.

Proposition 3.5. Let a graph G be labeled with a path algebra P . Let
the label assigned to any arc be interpreted as a single-element set from the
set algebra S(P). Then G is absorptive in the sense of S(P) if and only if it
is absorptive in the sense of P .

Proof. As before, the unit element in P will be denoted by ǫ, and the
unit element in S(P) by E. Let l() denote labeling with P and L() labeling
with S(P). We prove necessity. Suppose that G is absorptive in the sense
of S(P) and let γ be any elementary cycle in G. Then, according to the
definition of absorptiveness:

L(γ) � E.

Thanks to properties of S(P) this is equivalent to

eff({l(γ), ǫ}) = {ǫ}.

The above equality of sets is possible only if l(γ) is dominated by ǫ or equal
to ǫ, i.e., only if

l(γ) � ǫ.

Thus again according to the definition of absorptiveness, G is absorptive in
the sense of P . Sufficiency is proved by reading the above necessity proof in
opposite direction.

Proposition 3.6. Let a graph G be labeled simultaneously with path
algebras P1, P2, . . . , Ps according to s objectives. Let the labels assigned
to the same arc by different objectives be interpreted as a vector from
V(P1, P2, . . . , Ps), which is further interpreted as a single-vector set from
S(V(P1, P2, . . . , Ps)). Then G is absorptive in the sense of S(V(P1, P2, . . . , Ps))
if and only if it is absorptive in the sense of Pi for each i = 1, 2, . . . , s.

Proof. It follows directly by applying first Proposition 3.5, then Propo-
sition 3.4.

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 157

Our algebraic method is primarily intended to solve multi-objective vari-
ants combined of well-known conventional optimization path problems, such
as those listed in Table 1. Let us now analyze how the condition from Proposi-
tion 3.6 is interpreted within each of the extremal path algebras from Table 1.
Indeed, in PR and PC the unit element ǫ is the greatest element according to
the ordering �, so that absorptiveness is achieved automatically. In PS (as-
sociated with shortest paths) absorptiveness means that any elementary cycle
in a graph must have a nonnegative length - this is a reasonable assump-
tion since otherwise the shortest path problem would not make sense. PL

(associated with longest paths) is usually applied to acyclic graphs, so that
absorptiveness holds trivially. So putting it all together, the condition from
Proposition 3.6 is fulfilled for all algebras from Table 1, either automatically
or trivially or with some additional but natural assumptions regarding the
involved graph. Thus according to Proposition 3.6 and Theorem 2.1, our al-
gebraic method is applicable to multi-objective combinations of (at least) the
following conventional optimization problems: shortest paths, longest paths,
most-reliable paths, paths of maximum capacity.

4. Identifying efficient paths

A potential drawback of the method from the previous section is that it
represents efficient paths only implicitly, i.e., as vectors of objective-function
values. Moreover, it is not clear whether a particular vector represents just
one path or more paths that happen to produce the same values. In this
section we will develop an extended version of the method, able to explicitly
identify efficient paths together with vectors. For this purpose, we will need
a more complex version of the set algebra S(P) from the previous section.
The idea is to combine an extremal or vector path algebra (derived, e.g.,
from Table 1) with a linguistic path algebra (from Table 2). The first of the
combined algebras should correspond to the considered optimization problem,
while the second algebra should encode paths. The new version of S(P) is
defined in the following three paragraphs and justified by Proposition 4.1.

Let P be a path algebra whose zero element is denoted with φ and unit
element with ǫ. Let P̄ be another path algebra with the zero element φ̄ and the
unit element ǭ. The two algebras P and P̄ will be called active and passive
algebra, respectively. We consider the set of ordered pairs of the following
form:

Q =
{
(x, x̄) |x ∈ P, x 6= φ, x̄ ∈ P̄

}
.

For any pair (x, x̄) from Q, x is called the active component and x̄ is the
passive component.

Next we define a new efficiency operator ẽff() operating on finite sets of

pairs from Q. For a finite X ⊆ Q, ẽff(X) is a subset of X obtained through
the following two phases.

158 R. MANGER

• Phase 1. All pairs from X with equal active components are merged
into a single pair whose active component is the one found in the
original pairs and passive component is the join of passive components
from the original pairs. For instance, if X contains altogether three
pairs with a given x ∈ P , i.e., (x, x̄1), (x, x̄2) and (x, x̄3), then they are
replaced with a single pair (x, x̄1 ∨ x̄2 ∨ x̄3). Note that after phase 1
all pairs in X have distinct active components.

• Phase 2. All pairs from X that are dominated in X with respect
to their active components are deleted from X . For instance, if X

contains two pairs (x, x̄) and (y, ȳ) such that x ≺ y, then the pair
(x, x̄) is deleted. In other words, phase 2 leaves in X only those pairs
that are efficient according to their active component.

A finite set X ⊆ Q is said to be efficient if ẽff(X) = X . Our new version

of the set algebra, denoted by S̃(P, P̄) consists of all efficient subsets of Q,
i.e.,

S̃(P, P̄) =
{
X |X ⊆ Q, X finite, ẽff(X) = X

}
.

For X,Y ∈ S̃(P, P̄) we define their join and product:

X ∨ Y = ẽff(X ∪ Y),

X◦Y = ẽff ({(x◦y, x̄◦ȳ) | (x, x̄) ∈ X, (y, ȳ) ∈ Y }) .

By using the definitions and notation from the above three paragraphs, the
following result can be stated.

Proposition 4.1. Suppose that multiplication in P has the cancellation

property. Then the set S̃(P, P̄) with its operations ∨ and ◦ constitutes a path
algebra, whose zero element is the empty set Φ = ∅ and unit element is the
single-pair set E = {(ǫ, ǭ)}.

Proof. Let us consider a “relaxed” version of S̃(P, P̄), which is defined

in the same way as above but with the ẽff() operator missing. It is relatively

easy to prove that the relaxed S̃(P, P̄) is a path algebra. Within such proof, all
path-algebra properties are verified by straightforward computation. In addi-

tion, it must also be shown that the relaxed S̃(P, P̄) is closed with respect to
its relaxed operations ∨ and ◦. More precisely, it is clear that both operations
produce again finite sets of pairs. But it also has to be demonstrated that
the active component in any newly produced pair cannot be zero, i.e., that
the product of two nonzero elements from P is again nonzero. Indeed, this
is a simple consequence of the assumed cancellation property. Namely, for
x, y ∈ P , x 6= φ, y 6= φ, such that x◦y = φ we could write x◦y = φ◦y. Then
due to the cancellation property (since y 6= φ) it would follow that x = φ,
which would be a contradiction.

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 159

After proving that the relaxed S̃(P, P̄) is a path algebra, it follows rel-

atively easily that our “reduced” S̃(P, P̄), (i.e., with ẽff() included) is also

a path algebra. The only thing one must show is that ẽff() is a reduction

over the relaxed S̃(P, P̄). It means that four properties of a reduction from
Section 2 must be verified.

The first two reduction properties are trivial. Let us concentrate on the
left part of the fourth property. The right part is checked analogously. Con-

sider any two sets of pairs X and Y from the relaxed S̃(P, P̄). Then the left
part requires that

ẽff
(
{(x◦y, x̄◦ȳ) | (x, x̄) ∈ ẽff(X), (y, ȳ) ∈ Y }

)

= ẽff ({(x◦y, x̄◦ȳ) | (x, x̄) ∈ X, (y, ȳ) ∈ Y }) .

We can see that that the above equality really holds. Indeed, omission of the

inner ẽff() does not change the result. Here is the explanation.

• With such omission, some pairs from X with equal active components,

say (u, ū1) and (u, ū2) will remain separated although the inner ẽff()
should merge them into a single pair (u, ū1∨ū2). But after componen-
twise multiplication with the same (y, ȳ) ∈ Y , those pairs, becoming
(u◦y, ū1◦ ȳ) and (u◦y, ū2◦ ȳ), will still have the same active compo-

nents so that they will eventually be merged by the outer ẽff() into
(u◦y, ū1◦ ȳ ∨ ū2◦ ȳ). Thanks to the properties of P̄ , this is the same

result as if the original pairs from X were merged by the inner ẽff()
before multiplication with (y, ȳ).

• With such omission, a pair (u, ū) ∈ X dominated by some other pair
(v, v̄) ∈ X will temporarily “survive” although it should be deleted by

the inner ẽff(). Remember that domination means that u ≺ v. Then
the obsolete pair (u, ū) will produce new obsolete pairs of the form
(u◦y, ū◦ȳ) for various (y, ȳ) ∈ Y . But each of those new pairs will be
dominated by the corresponding (v◦y, v̄◦ ȳ). Namely, from u ≺ v it
follows that u◦y ≺ v◦y. Thereby, the inequality is again strict thanks
to the cancellation property of ◦ in P and the fact that y 6= φ. Thus
all obsolete pairs (u◦y, ū◦ ȳ) will eventually be deleted by the outer

ẽff().
• Temporary existence of the mentioned obsolete pairs (u◦y, ū◦ȳ) cannot

produce side-effects among the remaining pairs. Indeed, if an obsolete
pair (u◦y, ū◦ȳ) merges with some other pair, the obtained merged pair
will be dominated by the same pair (v◦y, v̄◦ȳ) that dominates (u◦y, ū◦ȳ).

So the outer ẽff() will delete the merged pair thus removing the effects
of obsolete merging. Similarly, if an obsolete pair (u◦y, ū◦ȳ) dominates
some other pair (u1◦y1, ū1◦ȳ1) and causes its deletion, then (u1◦y1, ū1◦ȳ1)

160 R. MANGER

is also dominated by the pair (v◦y, v̄◦ȳ) that dominates (u◦y, ū◦ȳ). So

(u1◦y1, ū1◦ȳ1) will be deleted by the outer ẽff() regardless of (u◦y, ū◦ȳ).

Next we have to check the third reduction property. Consider again any

two sets of pairs X and Y from the relaxed S̃(P, P̄). The third property
requires that

ẽff(ẽff(X) ∪ Y) = ẽff(X ∪ Y).

The equality obviously holds since the inner ẽff() can be skipped. Justification
for such skipping relies on similar arguments as for the above analyzed fourth
property.

On one hand, the described path algebra S̃(P, P̄) can be considered as a
modification of the set algebra S(P) from the previous section. On the other
hand, the same algebra can also be regarded as a generalization of the so-

called composite path algebra from [23]. Consequently, S̃(P, P̄) will be called
a composite set algebra based on the active algebra P and the passive algebra
P̄ . It should also be noted that our construction bears some resemblance to
the structure developed in [11], which is based on the so-called lexicographic
product and lexicographic ordering.

Similarly as in the previous section, in order to solve multi-objective path
problems it is necessary to work with vectors over some scalar algebras. Or
more precisely, our intention is to work with a composite set algebra whose
active algebra consists of vectors. However, according to Proposition 3.1,
correctness of such construction is guaranteed only if multiplication of those
vectors satisfies the cancellation property. Unfortunately, the desired prop-
erty does not hold in general. Indeed, if we consider the vector algebra
V(P1, P2, . . . , Ps) from the previous section, we can easily find nonzero vec-
tors whose product is zero. But luckily enough, it is still possible to design a
restricted version of V(P1, P2, . . . , Ps), which is good enough for our purposes
and has the required cancellation property. The design is described in the
following paragraph and justified by Proposition 4.2.

Let s ≥ 2 be an integer. For i = 1, 2, . . . , s, let Pi be a path algebra
whose zero and unit elements are denoted with φi and ǫi, respectively. We
consider vectors of length s (written as rows) whose i-th entry is a nonzero
element from Pi. The set of all such vectors together with the zero vector will

be denoted with Ṽ(P1, P2, . . . , Ps), i.e.,

Ṽ(P1, P2, . . . , Ps)

= {(x1, x2, . . . , xs) |xi ∈ Pi, xi 6= φi, i = 1, 2, . . . , s} ∪ {(φ1, φ2, . . . , φs)}.

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 161

Let ~x = (x1, x2, . . . , xs) and ~y = (y1, y2, . . . , ys) be two vectors from the set

Ṽ(P1, P2, . . . , Ps). We define their join and product in the following way:

~x ∨ ~y = (x1 ∨ y1, x2 ∨ y2, . . . , xs ∨ ys),

~x ◦ ~y = (x1◦y1, x2◦y2, . . . , xs◦ys).

Then, by assuming the above definitions and notation, the following result
holds.

Proposition 4.2. Suppose that for all i = 1, 2, . . . , s the join operation
in Pi is a choice operation and multiplication in Pi has the cancellation prop-

erty. Then the set Ṽ(P1, P2, . . . , Ps) with its operations ∨ and ◦ constitutes

a path algebra, whose zero element is ~φ = (φ1, φ2, . . . , φs) and unit element

is ~ǫ = (ǫ1, ǫ2, . . . , ǫs). Moreover, the operation ◦ in Ṽ(P1, P2, . . . , Ps) has the
cancellation property.

Proof. Note that Ṽ(P1, P2, . . . , Ps) is a subset of V(P1, P2, . . . , Ps) from

the previous section. Also, the operations ∨ and ◦ in Ṽ(P1, P2, . . . , Ps) are de-
fined in the same way as in V(P1, P2, . . . , Ps) , and the proposed zero and unit

elements are the same. Consequently, in order to prove that Ṽ(P1, P2, . . . , Ps)
is a path algebra (in fact a sub-algebra of V(P1, P2, . . . , Ps)), we only need

to demonstrate that Ṽ(P1, P2, . . . , Ps) is closed with respect to ∨ and ◦. In-
deed, let ~x = (x1, x2, . . . , xs) and ~y = (y1, y2, . . . , ys) be two vectors from

Ṽ(P1, P2, . . . , Ps). We must show that both ~x ∨ ~y and ~x ◦ ~y again belong to

Ṽ(P1, P2, . . . , Ps). To exclude trivial cases we can assume that both ~x and
~y are nonzero, which means that all xi, yi, i = 1, 2, . . . , s, are nonzero in Pi.
But then, since ∨ in Pi is a choice operation, each entry of ~x ∨ ~y, being a
choice among two nonzero values, is again nonzero. Similarly, since ◦ in Pi

has the cancellation property, each component of ~x◦~y, being a product of two
nonzero vales, must be nonzero (as already demonstrated within the proof
of Proposition 4.1). So both ~x ∨ ~y and ~x ◦ ~y consist of nonzero entries, thus

belonging to Ṽ(P1, P2, . . . , Ps).

It remains to prove that ◦ in Ṽ(P1, P2, . . . , Ps) has the cancellation prop-
erty. We prove the first part of the property (cancellation from right). Indeed,
let ~x = (x1, x2, . . . , xs), ~y = (y1, y2, . . . , ys) and ~z = (z1, z2, . . . , zs) be vectors

from Ṽ(P1, P2, . . . , Ps) such that ~x◦~z = ~y◦~z, or equivalently

xi◦zi = yi◦zi, i = 1, 2, . . . , s.

We must show that either ~x = ~y or ~z = ~φ. To exclude the trivial case, let us

assume that ~z 6= ~φ, which is equivalent to

zi 6= φi, i = 1, 2, . . . , s.

162 R. MANGER

But then, since ◦ in Pi has the cancellation property, the above two exposed
formulas together imply that

xi = yi, i = 1, 2, . . . , s.

Hence ~x = ~y. The other part of the cancellation property (cancellation from
left) is proved analogously.

As already announced, our extended method for solving multi-objective
variants of optimization path problems will be based on path algebras of the

form S̃(Ṽ(P1, P2, . . . , Ps), P̄), where s ≥ 2 is an integer, P1, P2, . . . , Ps are
extremal path algebras, and P̄ is a linguistic path algebra. Propositions 4.1

and 4.2 should guarantee that S̃(Ṽ(P1, P2, . . . , Ps), P̄) is really a path alge-
bra. But note that this guarantee is given only if for each i = 1, 2, . . . , s
the join operation in Pi is a choice operation and multiplication in Pi has
the cancellation property. Luckily enough, most extremal path algebras, e.g.,
most of those from Table 1, satisfy such conditions. An algebra of the form

S̃(Ṽ(P1, P2, . . . , Ps), P̄) could be called a composite vector-set algebra.
A detailed description of our extended method would look similarly as for

the simpler method from Section 3. Here we list only the main differences.

• To enable identification, each arc in our graph G is now also labeled
with a distinct letter from a finite alphabet Σ. That letter is interpreted
as a single-letter word, and furthermore as a single-word language from
a suitable linguistic algebra P̄ over Σ.

• The given problem instance is now specified by an adjacency matrix A

over a composite vector-set algebra of the form S̃(Ṽ(P1, P2, . . . , Ps), P̄),
rather than a vector-set algebra of the form S(V(P1, P2, . . . , Ps)).

• The (i, j)-th entry of the closure Â is not anymore a set of vectors, but
rather a set of ordered pairs. The active component within each pair
is a vector with the same meaning as before, while the corresponding
passive component is a language whose each word identifies one path
where the corresponding vector is achieved.

• Depending on the chosen linguistic algebra P̄ , all efficient paths or only
some of them are identified. In order to obtain all paths, a relatively
demanding algebra PA or PE from Table 2 must be used. However,
if we are pleased with only one path per vector, we can use a simpler
algebra PO from Table 2.

The described method is illustrated by the following example.

Example 4.3. We consider again the two-objective path problem instance
given in Figure 1, where the objectives are to minimize path length and to
maximize path reliability. Arc lengths and reliabilities are still given by nu-
merical arc labels. As in Example 3.3, for any pair of nodes i and j we are
looking for paths from i to j that are at the same time as short and as reliable

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 163

as possible. But now we want to explicitly identify such paths by algebraic
means. In order to enable identification, each arc is additionally labeled with
a distinct letter from the alphabet Σ = {a, b, c, . . .}.

The considered two-objective problem instance is now specified in a more
complex form than in Example 3.3, i.e., by the following 5 × 5 adjacency
matrix:

A =

∅ {((3, 0.8), {a})} {((2, 0.5), {b})} ∅ ∅
∅ ∅ ∅ {((9, 0.7), {c})} {((7, 0.5), {d})}

{((6, 0.3), {e})} ∅ ∅ {((4, 0.4), {f})} {((8, 0.8), {g})}
∅ ∅ ∅ ∅ {((1, 0.6), {h})}
∅ ∅ {((5, 0.9), {i})} ∅ ∅

The composite vector-set algebra involved here is S̃(Ṽ(PS, PR), PA). As
in Example 3.3, PS and PR are the extremal algebras from Table 1 asso-
ciated with the conventional shortest path and most reliable path problem,
respectively. The newly introduced PA is the linguistic algebra from Table 2
associated with the problem of listing all paths. The corresponding closure

matrix computed within S̃(Ṽ(PS, PR), PA) is:
Â =

{
((8, 0.15), {be})

} {
((3, 0.8), {a})

} {
((2, 0.5), {b})

} {
((12, 0.56), {ac}),
((6, 0.2), {bf})

}{
((10, 0.4), {ad, bg}),
((7, 0.12), {bfh})

}

{
((18, 0.135), {die})

}{
((21, 0.108), {diea})

} {
((12, 0.45), {di})

} {
((9, 0.7), {c})

} {
((7, 0.5), {d})

}

{
((6, 0.3), {e})

} {
((9, 0.24), {ea})

}

((8, 0.15), {eb}),
((13, 0.72), {gi}),
((10, 0.216), {fhi})

{
((4, 0.4), {f})

} {
((8, 0.8), {g}),
((5, 0.24), {fh})

}

{
((12, 0.162), {hie})

}{
((15, 0.1296), {hiea})

} {
((6, 0.54), {hi})

} {
((10, 0.216), {hif})

} {
((1, 0.6), {h})

}

{
((11, 0.27), {ie})

} {
((14, 0.216), {iea})

} {
((5, 0.9), {i})

} {
((9, 0.36), {if})

} {
((13, 0.72), {ig}),
(10, 0.216), {ifh})

}

Similarly as in Example 3.3, the matrix Â contains the solutions to our
problem instance. But now those solutions are more elaborately presented.
Indeed, each efficient vector is accompanied with a set of words identifying
paths where the values (lengths, reliabilities) from that vector are achieved.
For instance, if we are again interested in paths from node 1 to node 5, we

must observe the (1, 5)-th entry of Â. We can see the same two efficient
vectors (10, 0.4) and (7, 0.12) as in Example 3.3. But now it is also visible
that (10, 0.4) corresponds either to the path through arcs a and d, or to the
path through b and g. Similarly, (7, 0.12) corresponds to the path through b,
f and h. In this way, the whole set of efficient paths from node 1 to node 5
has been identified.

In the remaining part of this section we will explore applicability of our
extended method to different types of path problems. Applicability first
of all means that for the chosen integer s and path algebras P1, P2, . . . , Ps

and P̄ the involved algebraic structure S̃(Ṽ(P1, P2, . . . , Ps), P̄) is really a

164 R. MANGER

path algebra. However, as already emphasized, we can guarantee that

S̃(Ṽ(P1, P2, . . . , Ps), P̄) is a path algebra only if, for all i = 1, 2, . . . , s, ∨
in Pi is a choice operation and ◦ in Pi has the cancellation property. But even
then, we still cannot be sure that the method will be feasible and correct. Or
more precisely, we still cannot be sure that the constructed adjacency matrix

A over S̃(Ṽ(P1, P2, . . . , Ps), P̄) will be stable and that its closure Â will really
contain the desired results.

As in the previous section, feasibility and correctness can be guaran-
teed by Theorem 2.1 from Section 2. But to be able to apply Theorem 2.1,
we must assure that the adjacency matrix A is absorptive in the sense of

S̃(Ṽ(P1, P2, . . . , Ps), P̄). Conditions for such absorptiveness will be estab-
lished by the following proposition and its corollaries. We assume the usual
notation: if P and P̄ are two path algebras, then their unit elements are de-
noted with ǫ and ǭ, respectively. Also l() denotes labeling with P , while l̄()
is labeling with P̄ .

Proposition 4.4. Let P and P̄ be two path algebras such that S̃(P, P̄) is
also a path algebra. Suppose that a graph G is labeled simultaneously with P

and P̄ . Let the labels assigned to the same arc be interpreted as a single-pair

set from S̃(P, P̄). Then G is absorptive in the sense of S̃(P, P̄) if and only if
for each elementary cycle γ in G one of the following conditions holds:

• l(γ) ≺ ǫ,
• l(γ) = ǫ and l̄(γ) � ǭ.

Proof. Let L() denote labeling with S̃(P, P̄), and let γ be an elementary

cycle in G. Absorptiveness in the sense of S̃(P, P̄) means that L(γ) � E,

where E = {(ǫ, ǭ)} is the unit element in S̃(P, P̄). It is easy to check that
L(γ) = {(l(γ), l̄(γ))}, so that absorptiveness reduces to the following equality:

(4.1) ẽff
(
{(l(γ), l̄(γ)) , (ǫ, ǭ)}

)
= {(ǫ, ǭ)}.

We first prove necessity. The equality (4.1) can be achieved only in two ways:

• The pair (l(γ), l̄(γ)) is dominated by (ǫ, ǭ) in the sense of P . Then it
is necessary that l(γ) ≺ ǫ.

• The pair (l(γ), l̄(γ)) merges with (ǫ, ǭ) so that the result of merging is
(ǫ, ǭ). Then it is necessary that l(γ) = ǫ and also l̄(γ) ∨ ǭ = ǭ (i.e.,
l̄(γ) � ǭ).

So at least one of the conditions listed in the proposition statement must hold.
Next we prove sufficiency. Suppose that one of the listed conditions holds.

• If it is the first condition (i.e., l(γ) ≺ ǫ,), then the pair (l(γ), l̄(γ)) is
dominated by (ǫ, ǭ) and the left-hand side of (4.1) reduces to {(ǫ, ǭ)}.

• If it is the second condition, then (because of l(γ) = ǫ) the pairs on
the left-hand side of (4.1) merge together into (ǫ, l̄(γ) ∨ ǭ), which is
(because of l̄(γ) � ǭ) equal to (ǫ, ǭ).

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 165

Thus in both cases the equality (4.1) is achieved.

Corollary 4.5. Consider the situation from Proposition 4.4. Suppose
additionally that G is absorptive in the sense of both P and P̄ . Then G must

as well be absorptive in the sense of S̃(P, P̄).

Proof. It follows from Proposition 4.4. Indeed, let γ be any elementary
cycle in G. Absorptiveness in the sense of P means that l(γ) � ǫ, while
absorptiveness in the sense of P̄ means that l̄(γ) � ǭ. If the inequality l(γ) � ǫ

is strict, then the first condition from Proposition 4.4 is fulfilled, otherwise
the second condition holds.

Corollary 4.6. Consider again the situation from Proposition 4.4. Sup-
pose additionally that labeling of G with P has the following property: for each
elementary cycle γ in G, l(γ) ≺ ǫ. Then G must be absorptive in the sense of

S̃(P, P̄) regardless of properties of P̄ .

Proof. It follows directly from Proposition 4.4. Namely the first condi-
tion from Proposition 4.4 is fulfilled, so that the second condition does not
need to be examined.

Corollary 4.7. Let a graph G be labeled simultaneously with path alge-
bras P1, P2, . . . , Ps according to s objectives, thereby being absorptive in the
sense of Pi for each i = 1, 2, . . . , s. Suppose that for any i = 1, 2, . . . , s
the join operation in Pi is a choice operation and multiplication in Pi has
the cancellation property. Let P̄ be another path algebra. Suppose that the
same graph G is also labeled with P̄ , being also absorptive in the sense of
P̄ . Let all labels assigned to the same arc be interpreted as a single-pair

set from S̃(Ṽ(P1, P2, . . . , Ps), P̄). Then G must be absorptive in the sense of

S̃(Ṽ(P1, P2, . . . , Ps), P̄).

Proof. It follows directly from Corollary 4.5 by replacing P in Corol-

lary 4.5 with Ṽ(P1, P2, . . . , Ps). Thereby, we have in mind Propositions 4.1
and 4.2 and take into account (a version of) Proposition 3.4.

Corollary 4.8. Let a graph G be labeled simultaneously with path al-
gebras P1, P2, . . . , Ps according to s objectives. Thereby, for each elementary
cycle γ in G, the label of γ is � ǫi for any objective i, but ≺ ǫi for at least one
objective i (here ǫi is the unit element in Pi). Suppose that for any i the join
operation in Pi is a choice operation and multiplication in Pi has the cancel-
lation property. Let P̄ be another path algebra. Suppose that the same graph
G is also labeled with P̄ . Let all labels assigned to the same arc be interpreted

as a single-pair set from S̃(Ṽ(P1, P2, . . . , Ps), P̄). Then G must be absorptive

in the sense of S̃(Ṽ(P1, P2, . . . , Ps), P̄) regardless of properties of P̄ .

166 R. MANGER

Proof. It follows from Corollary 4.6 by replacing P in Corollary 4.6 with

Ṽ(P1, P2, . . . , Ps). We have again in mind Propositions 4.1 and 4.2 and take

into account that ordering in Ṽ(P1, P2, . . . , Ps) is compatible with orderings
in Pi.

Similarly as the basic method from the previous section, our extended
method is primarily intended to solve multi-objective combinations of well-
known conventional path problems such as those listed in Table 1. Analo-
gously as in the previous section, careful analysis case-by-case shows that the
extended method is applicable to combinations of (at least) the following con-
ventional problems: shortest paths, longest paths, most reliable paths. Fea-
sibility and correctness of the method is thereby guaranteed by Corollary 4.7
or 4.8 combined with Theorem 2.1. The conditions from the corollaries are
fulfilled either automatically or trivially or with some natural assumptions
regarding the involved graph. If more specific conditions from Corollary 4.8
are fulfilled, then the method works with the linguistic algebra PA, other-
wise PE or PO must be used. For instance, the guarantee for computations
within Example 4.3 is based on Corollary 4.8, and it is given because the
labeled graph in Figure 1 satisfies the conditions from that corollary (i.e., its
cycles have strictly positive lengths).

Note that the only path problem from Table 1 whose involvement could
prevent applicability of our extended method is the maximum capacity prob-
lem. Indeed, the obstacle lies in the associated algebra PC where multipli-
cation does not posses the cancellation property. Thus if our multi-objective
problem comprises maximum capacities as one of the objectives, Corollar-
ies 4.7 and 4.8 cannot be applied. At this point, one could argue that the
method may still work even with maximum capacities, although we are not
able to prove it. However, such possibility is clearly eliminated by the follow-
ing example.

Example 4.9. We consider an instance of a two-objective path problem
given in Figure 2, where both objectives refer to capacities. The graph has
again the same structure as in Examples 3.3 and 4.3, but now numerical labels
on arcs have different meaning. We can imagine that two commodities flow
through the graph. The left-hand and right-hand label on an arc specify arc
capacity regarding the first and second commodity, respectively. For any pair
of nodes i and j, each objective tries to find a path between i and j whose
capacity regarding one of the commodities is as large as possible. Similarly as
in the previous example, in order to enable identification of paths, each arc is
additionally labeled with a distinct letter from the alphabet Σ = {a, b, c, . . .}.

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 167

node 1

8, 10
3, 2

7, 9

4, 5

5, 86, 7

5, 7

8, 3

6, 8

node 2

node 3

node 4 node 5

a

b

c d

h

g
f

e i

Figure 2. An instance of a two-objective maximum-
capacity path problem

The considered two-objective problem instance can be specified by the
following 5× 5 adjacency matrix:

A =

∅ {((8, 10), {a})} {((6, 7), {b})} ∅ ∅
∅ ∅ ∅ {((7, 9), {c})} {((3, 2), {d})}

{((5, 7), {e})} ∅ ∅ {((5, 8), {f})} {((8, 3), {g})}
∅ ∅ ∅ ∅ {((4, 5), {h})}
∅ ∅ {((6, 8), {i})} ∅ ∅

This matrix is built over the structure S̃(Ṽ(PC, PC), PE), where PC is
the extremal path algebra from Table 1 associated with the conventional
maximum-capacity path problem, and PE is the linguistic algebra from Ta-

ble 2 for listing elementary paths. By pretending that S̃(Ṽ(PC, PC), PE) is

a path algebra, we try to compute the corresponding closure matrix Â. The
straightforward computation of joins of matrix powers gives the following re-
sult:

Â =

{
((5, 7), {be})

} {
((8, 10), {a})

} {
((6, 7), {b})

} {
((7, 9), {ac})

} {
((6, 3), {bg}),
((4, 5), {ach})

}

{
((4, 5), {chie})

}{
((4, 5), {chiea})

}{
((4, 5), {chi})

} {
((7, 9), {c})

} {
((4, 5), {ch})

}

{
((5, 7), {e})

} {
((5, 7), {ea})

} {
((5, 7), {eb}),
((6, 3), {gi})

} {
((5, 8), {f})

} {
((8, 3), {g}),

((4, 5), {fh, each})

}

{
((4, 5), {hie})

} {
((4, 5), {hiea})

} {
((4, 5), {hi})

} {
((4, 5), {hif, hieac})

} {
((4, 5), {h})

}

{
((5, 7), {ie})

} {
((5, 7), {iea})

} {
((6, 8), {i})

} {
((5, 8), {if})

} {
((6, 3), {ig}),

((4, 5), {ifh, ieach})

}

168 R. MANGER

According to the (1, 5)-th entry of Â, there are only two efficient paths
from node 1 to node 5. The first of them goes through arcs b and g, and its
capacities for different objectives are given by the vector (6, 3). The second
path crosses arcs a, c and h and achieves the capacity vector (4, 5). The two
listed paths are really efficient, namely the first one is better according the
first objective, and the second one according the second objective. Still, the
obtained solution set is not complete. Namely, it is easy to check that there
exists a third efficient path, going through arcs b, f and h, achieving the same
vector (4, 5) as the second path. So we have found a situation where the
method fails.

The main reason why our method did not produce correct results is simply

because S̃(Ṽ(PC, PC), PE) is not really a path algebra. Some of the path-
algebra properties are violated, and therefore the computed results can be
different depending on ordering of algebraic operations. In our attempt to

compute the closure Â, matrix powers have been generated one after another
and joined together. Thereby A3 has been obtained by multiplying A2 with
A. Thus paths consisting of three arcs have been generated by extending two-
arc paths with an additional arc. In this way, the three-arc path b,f,h should
have been generated from the two-arc path b,f by extension with h. But our
algorithm discarded b,f since it connects the same nodes 1 and 4 as a,c and is
dominated by a,c. This was a mistake since b,f would again become efficient
after extension with h.

One may wonder how is it possible that a non-efficient path can become
efficient after it is extended with one more arc. The reason for such unexpected
behavior is lack of cancellation property, which originates in PC but spreads
also to vectors over PC. To see the whole phenomenon more clearly, let us
denote the capacity vector of the path b,f with ~x = (5, 7), the vector of a,c
with ~y = (7, 9), and the vector of the arc h with ~z = (4, 5). Then the capacities
of the path b,f,h are computed as ~x◦~z = (4, 5), and the capacities of a,c,h are
obtained as ~y◦~z = (4, 5). The whole situation is summarized as follows:

~x ≺ ~y, ~z 6= ~φ, but ~x◦~z = ~y◦~z,

which is a clear violation of the cancellation property. Namely, if we were
allowed to cancel ~z in the last equation, we would obtain ~x = ~y, thus a
contradiction.

According to Example 4.9, the cancellation property stated in Corollar-
ies 4.7 and 4.8 is really essential for proper working of our extended method.
However, from the practical point of view, the method can still be regarded
as useful even if such property is missing. Namely, computation of efficient
vectors is still correct since it mimics simpler computation from the previous
section. Also, each vector will be accompanied with at least one efficient path.

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 169

Thus the method can be used if we do not insist on identifying all efficient
paths for the same vector and do not care which of several possible paths has
been identified.

5. Solving robust path problems

Let us consider a robust path problem where uncertainty is expressed
through s scenarios. Obviously, such problem can be interpreted as a multi-
objective problem with s objectives. Thereby each objective corresponds to
one scenario. So the initial robust problem reduces to a special type of multi-
objective problem where all objectives are of the same type, thus labeling the
graph repeatedly with the same path algebra.

According to the above interpretation, an instance of a robust path prob-
lem can be solved by using the methods from Sections 3 and 4. More pre-
cisely, an instance is specified by an adjacency matrix over a vector-set algebra
of the form S(V(P, P, . . . , P)) or a composite vector-set algebra of the form

S̃(Ṽ(P, P, . . . , P), P̄). The scalar algebra P here is a suitable extremal algebra,
and P̄ is a linguistic algebra. The problem instance is solved by computing
the corresponding closure matrix.

As an example of solving a robust path problem instance we can consider
again Example 4.9. Indeed, the graph from Figure 2 can be reinterpreted as
an instance of the robust maximum capacity problem. Numerical arc labels
then become arc capacities under two scenarios. If we ignore arc identifiers
(letters), computation within the vector-set algebra S(V(PC, PC)) will be
correct, and the same sets of efficient vectors will be obtained as already shown
in Example 4.9. Each vector corresponds to (at least) one efficient path, and
it contains capacities of that path under different scenarios. Another example
of the same kind will be given soon as Example 5.1.

In Section 1 we have already noticed that our methodology for solving
robust problems by computing whole sets of efficient vectors differs from the
usual practice found in the literature. Namely, the usual practice is that only
one “robustly optimal” solution is selected according to some more specific
criterion. In the next paragraphs we will demonstrate how our approach
can be harmonized with the usual approach. More precisely, we will show
that a robustly optimal solution can be selected a posteriori, by applying a
suitable ranking function to all vectors within a set of solutions. Ranking
should allow comparison of all vectors, and the desired single solution should
correspond to the best ranked vector. We will define two abstract ranking
procedures, which can be expressed in terms of algebraic operations from the
corresponding scalar path algebra P . It will turn out that the two procedures
are generalizations of the standard min-max and min-max regret criterion,
respectively ([1]).

170 R. MANGER

Our first way of ranking vectors is called abstract min-max , and it is
feasible only if the join operation ∨ in P is a choice operation. Obviously,
with such ∨, any x and y from P are comparable according to the ordering
�, namely the join x ∨ y is either x or y, which means that either y � x or
x � y. Consequently, any finite set of elements from P is totally ordered,
thus containing the smallest and the greatest element according to �. Let us
denote the corresponding operators for finding the smallest and the greatest
element by min� and max�, respectively. We use such notation in order to
distinguish these operators from the standard min and max for real numbers.

The abstract min-max works in the following way. For a vector ~x =
(x1, x2, . . . , xs) from V(P, P, . . . , P), its rank r(~x) is computed as

r(~x) = r(x1, x2, . . . , xs) = min�{x1, x2, . . . , xs}.

The best ranked vector ~z in a finite set X of (efficient) vectors is the one
whose rank is the greatest according to �, i.e.,

r(~z) = max�{r(~x) | ~x ∈ X}.

Note that the proposed ranking r() is sound in the sense that the best
rank always belongs to an efficient vector. Indeed, let ~y = (y1, y2, . . . , ys) be
inefficient. Then ~y is dominated by some efficient ~x = (x1, x2, . . . , xs), i.e.,
yi � xi, i = 1, 2, . . . , s. Thus

r(~y) = min�{y1, y2, . . . , ys} � min�{x1, x2, . . . , xs} = r(~x).

So it really makes sense to rank only efficient vectors.
Note also that both min� and max� can be interpreted algebraically as

evaluation of certain algebraic expressions. Indeed,

min�{x1, x2, . . . , xs} = x1 ∧ x2 ∧ . . . ∧ xs,

where ∧ is the choice operation complementary to ∨, i.e., for any x, y ∈ P :

x ∧ y =

{
x if x ∨ y = y

y if x ∨ y = x
.

Similarly, max� can be evaluated by using ∨, e.g.,

max�{r(~x) | ~x ∈ X} =
∨

~x∈X

r(~x).

Now we define our second ranking, which is called abstract min-max re-
gret . As before, the join operation in P is assumed to be a choice operation.
Additionally, it is also assumed that multiplication in P allows inversion.
Thus for each element x ∈ P , x 6= φ, there is another element x−1 such that

x◦x−1 = x−1◦x = ǫ.

The notation here is standard, i.e., φ denotes the zero element in P , while ǫ

is the unit element in P . Sometimes x−1 cannot be found in the original P ,
but only in a larger path algebra that includes P as its subset.

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 171

Prior to starting the ranking procedure, it is necessary to solve s instances
of the corresponding conventional path problem. They are obtained from the
given robust instance by considering each of its scenarios separately. Let us
denote the (optimal) solution value of the i-th conventional instance by ωi.
Assume that ωi 6= φ.

The abstract min-max regret ranking can briefly be described as the (pre-
viously defined) abstract min-max ranking applied to modified vectors. Mod-
ification is done by multiplying each vector entry xi with the inverse of the
corresponding ωi. The idea is to measure the “regret” for each scenario, i.e.,
deviation of the actual solution value vs. the optimal value.

Going into more details, the abstract min-max regret ranking can be
described as follows. For a vector ~x = (x1, x2, . . . , xs) from V(P, P, . . . , P), its
rank r′(~x) is computed as

r′(~x) = r′(x1, x2, . . . , xs) = min�{x1◦ω
−1
1 , x2◦ω

−1
2 , . . . , xs◦ω

−1
s }.

The best ranked vector ~z in a set X of (efficient) vectors is the one whose
rank r′() is the greatest according to �, i.e.,

r′(~z) = max�{r
′(~x) | ~x ∈ X}.

The proposed ranking r′() is again sound in the sense that the best rank
always belongs to an efficient vector. Indeed, suppose that ~y = (y1, y2, . . . , ys)
is dominated by ~x = (x1, x2, . . . , xs). Then yi � xi and also yi◦ω

−1
i � xi◦ω

−1
i

for all i = 1, 2, . . . , s. Consequently,

r′(~y) = min�{y1◦ω
−1
1 , y2◦ω

−1
2 , . . . , ys◦ω

−1
s }

� min�{x1◦ω
−1
1 , x2◦ω

−1
2 , . . . , xs◦ω

−1
s } = r′(~x).

So again, there is no need to rank inefficient vectors.
The whole procedure of solving a robust path problem instance with a

posteriori ranking of efficient solutions is illustrated by the next example.
Both ranking functions are applied and compared.

Example 5.1. We consider an instance of the robust shortest-path prob-
lem given in Figure 3. The shown graph G has arcs whose numerical labels
denote lengths. There are two scenarios for arc lengths given by left-hand and
right-hand labels, respectively. For any pair of nodes i and j we would like
to find shortest paths between i and j, thus paths whose sum of arc lengths
under any scenario is as small as possible. In order to enable identification of
paths, each arc is additionally labeled with a distinct letter from the alphabet
Σ = {a, b, c, . . .}.

172 R. MANGER

node 1

2, 5
9, 10

3, 6

4, 5

2, 53, 6

6, 8

8, 11

5, 12

node 2

node 3

node 4 node 5

a

b

c d

h

g
f

e i

Figure 3. An instance of the robust shortest path problem
with two scenarios

The considered robust problem instance is specified by the following 5×5
adjacency matrix:

A =

∅ {((2, 5), {a})} {((3, 6), {b})} ∅ ∅
∅ ∅ ∅ {((3, 6), {c})} {((9, 10), {d})}

{((6, 8), {e})} ∅ ∅ {((2, 5), {f})} {((8, 11), {g})}
∅ ∅ ∅ ∅ {((4, 5), {h})}
∅ ∅ {((5, 12), {i})} ∅ ∅

The composite vector-set algebra involved here is S̃(Ṽ(PS, PS), PA), where
PS is the extremal algebra from Table 1 associated with the conventional
shortest-path problem, and PA is the linguistic algebra from Table 2 associ-
ated with the problem of listing all paths. The corresponding closure matrix

computed within S̃(Ṽ(PS, PS), PA) is:
Â =

{
((9, 14), {be})

} {
((2, 5), {a})

} {
((3, 6), {b})

} {
((5, 11), {ac, bf})

}{
((11, 15), {ad}),

((9, 16), {ach, bfh})

}

{
((20, 30), {die}),
((18, 31), {chie})

}{
((22, 35), {diea}),
((20, 36), {chiea})

}{
((14, 22), {di}),
((12, 23), {chi})

} {
((3, 6), {c})

} {
((9, 10), {d}),
((7, 11), {ch})

}

{
((6, 8), {e})

} {
((8, 13), {ea})

} {
((9, 14), {eb})

} {
((2, 5), {f})

} {
((6, 10), {fh})

}

{
((15, 25), {hie})

} {
((17, 30), {hiea})

} {
((9, 17), {hi})

} {
((11, 22), {hif})

} {
((4, 5), {h})

}

{
((11, 20), {ie})

} {
((13, 25), {iea})

} {
((5, 12), {i})

} {
((7, 17), {if})

} {
((11, 22), {ifh})

}

The solutions of our problem instance can directly be read from Â. For

instance, from the (1, 5)-th entry of Â we can read that there are exactly
three efficient paths from node 1 to node 5. The first path goes through arcs

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 173

denoted by a and d, the second through a, c and h, and the third through b,
f and h. The second and the third path are equivalent in the sense that they
achieve the same length for any scenario, i.e., 9 (for the first scenario) and 16
(for the second scenario), respectively. The lengths of the first path depending
on the scenarios are 11 and 15, respectively, which means that the first path
is longer than the other two paths under the first scenario, but shorter under
the second scenario.

Next we analyze application of the abstract min-max ranking to the con-
sidered robust problem. As it can easily be verified, in the associated scalar
algebra PS the operator min� is equivalent to the standard max, while max�
is equivalent to the standard min. Therefore, in the context of robust shortest
paths, the abstract min-max reduces to the standard min-max known from
the literature. So the robustly optimal path is the one whose maximal length,
measured over all scenarios, is as small as possible.

To be concrete, let us consider again only efficient paths between nodes 1
and 5, described by the set of pairs { ((11, 15), {ad}), ((9, 16), {ach, bfh}) } .
Let us see how the abstract min-max procedure works on that data. The
first phase of ranking replaces each vector with its rank r(), so that the set
transforms into { (15, {ad}), (16, {ach, bfh}) } . The second phase applies for

instance the operator ẽff() to the transformed set, thus extracting the pair
with the best rank, i.e., (15, {ad}). Consequently, the robustly optimal path
goes through arcs a and d, and its length is at most 15 under any scenario.

Finally, we analyze application of the abstract min-max regret ranking
to the considered problem. Since multiplication in the algebra PS is in fact
addition of real numbers, the expression of the form xi◦ω

−1
i appearing in our

ranking is in fact xi − ωi. Obviously, xi − ωi can be interpreted as absolute
deviation of the actual path length under a certain scenario vs. the optimal
length for that scenario. Consequently, in the context of robust shortest paths,
the abstract min-max regret reduces to the standard min-max regret known
from the literature. The robustly optimal path is the one whose maximal
deviation from the optimal length, measured over all scenarios, is as small as
possible.

Let us now test how the abstract min-max regret works on efficient paths
between nodes 1 and 5, which are described by the previously shown set
of pairs. Before starting the ranking procedure, it is necessary to solve the
conventional shortest-path problem instances for each scenario separately. As
it can easily be verified, the shortest paths under the first and second scenario
have lengths 9 and 15, respectively. The first phase of ranking replaces each
vector with its rank r′(). The rank of the first vector is max{11−9, 15−15}=
2, while the rank of the second vector is max{9−9, 16−15}= 1. Consequently,
the set of pairs transforms into { (2, {ad}), (1, {ach, bfh}) } . The second phase

of ranking applies the operator ẽff() to the transformed set, thus leaving only

174 R. MANGER

the second pair having a better rank. Consequently, the robustly optimal
path is either a,c,h or b,f,h, and its length differs from the optimal length by
at most 1 under any scenario. Note that the paths selected by the min-max
regret criterion are not the same as for the min-max criterion.

6. Conclusions

In this paper the algebraic approach from [5] has been applied to multi-
objective and robust variants of path problems. More precisely, it has been
shown that multi-objective problems are concrete instances of the same ab-
stract algebraic problem as conventional (single-objective) problems. Each
problem (either multi-objective or conventional) is characterized by a dif-
ferent path algebra, i.e., a different instance of the same abstract algebraic
structure. Thereby, the newly constructed algebras used for multi-objective
problems are more complex, and they incorporate algebras associated with
conventional problems as their building blocks. The same algebraic construc-
tion covers also robust path problems with discrete scenarios since they can be
considered as special cases of multi-objective problems. The paper contains
proofs showing that all newly constructed path algebras are correctly defined.

According to our results, an instance of a multi-objective or robust path
problem, posed in a directed graph, can be specified by the adjacency matrix
of that graph over the corresponding path algebra, and solved by computing
the closure of that matrix within that algebra. It has been proved that, under
some plausible conditions, the involved adjacency matrix is absorptive, which
guarantees that its closure is computable and meaningful. For a pair of graph
nodes, the solutions are expressed as a set of efficient paths connecting those
nodes. Such paths are identified explicitly, or described implicitly by vectors
of objective-function values obtained for different objectives/scenarios. In
case of a robust problem it is also possible to extract only one “robustly opti-
mal” solution by applying suitable algebraic ranking functions. The rankings
proposed in the paper can be regarded as generalizations of the traditional
min-max or min-max regret criteria.

The results of the paper are interesting because their provide an elegant
and clear setting for all considered problems. Indeed, multi-objective, robust
and conventional path problems conform to a common algebraic pattern, i.e.,
they can be described in the same matrix form and solved by the same general
matrix-closure algorithms. Moreover, thanks to absorptiveness, the most-
efficient closure algorithms from [5] can be used, which are based on Gaussian
elimination or Gauss-Seidel iteration. The main advantage of the considered
algorithms is their generality - there is no need to invent a dedicated solution
procedure for each particular problem variant.

Computational speed of a general algorithm is measured in terms of the
involved abstract algebraic operations. Unfortunately, for a multi-objective or

MULTI-OBJECTIVE AND ROBUST PATH PROBLEMS 175

robust problem, a single algebraic operation is already complex by itself. As
a consequence, application of a fast general algorithm to a multi-objective or
robust problem can still be extremely demanding in terms of actual computing
time. This is in fact not a surprise. Namely, it is well known that a set of
Pareto-efficient solutions can have exponential size. Also, it is well known
that robust path problems are NP-hard. Thus we cannot expect from the
considered algorithms to be really efficient on large problem instances.

An interesting topic for future work would be to develop good computer
implementations of the path algebras proposed in this paper. Such imple-
mentations should be incorporated into a general-purpose software package for
solving path problems. With that package, application of general path-finding
algorithms to multi-objective or robust path problems could become more at-
tractive. At least, smaller instances having only few objectives/scenarios could
be solved in an ad-hoc fashion without bothering with dedicated algorithms.

Acknowledgements.

This work has been fully supported by Croatian Science Foundation under
the project IP-2018-01-5591. The author would like to thank the reviewers
for their useful remarks on an earlier version of the paper.

References

[1] H. Aissi, C. Bazgan and D. Vanderpooten, Min-max and min-max regret versions of

combinatorial optimization problems: A survey, European J. Oper. Res. 197 (2009),
427–438.

[2] R. Backhouse, Regular algebra applied to language problems, J. Log. Algebr. Program.
66 (2006), 71–111.

[3] J.S. Baras and G. Theodorakopoulos, Path problems in networks, Synthesis Lectures
on Communication Networks, Morgan & Claypool Publishers, San Rafael CA, 2010.

[4] D. Bertsimas, D.B. Brown and C. Caramanis, Theory and applications of robust op-

timization, SIAM Rev. 53 (2011), 464–501.
[5] B. Carré, Graphs and networks, Oxford University Press, Oxford, 1979.
[6] P. de la Torre and C.P. Kruskal, Fast parallel algorithms for all-sources lexicographic

search and path-algebra problems, J. Algorithms 19 (1995), 1–24.
[7] C.T. Djamégni, P. Quinton, S. Rajopadhye and T. Risset, Derivation of systolic algo-

rithms for the algebraic path problem by recurrence transformations, Parallel Comput.
26 (2000), 1429–1445.

[8] M. Ehrgott, Multicritera optimization, 2nd Edition, Springer, Berlin, 2010.
[9] J.S. Golan, Semirings and their applications, Kluwer Academic Publishers, Dortrecht,

1999.
[10] M. Gondran and M. Minoux, Graphs, dioids and semirings. New models and algo-

rithms, Springer, Berlin, 2008.
[11] A.J.T. Gurney and T.G. Griffin, Lexicographic products in metarouting, in: Proceed-

ings of the International Conference on Network Protocols (ICNP), Beijing, China,
October 16-19, 2007, (eds. K.L. Calvert and D. Yau), IEEE Computer Society, Pis-
cataway NJ, 2007, 113–122.

[12] T.G. Griffin, Exploring the stratisfied shortest-paths problem, Netw. Sci. 1 (2012),
2–14.

[13] U. Huckenbeck, Extremal paths in graphs, Akademie Verlag, Berlin, 1997.

176 R. MANGER

[14] D. Jungnickel, Graphs, networks and algorithms, Fourth Edition, Springer, Berlin,
2013.

[15] A. Kasperski and P. Zielinski, Robust discrete optimization under discrete and interval

uncertainty: A survey, in: Robustness Analysis in Decision Aiding, Optimization, and
Analytics (eds. M, Doumpos, C. Zopounidis and E. Grigoroudis), Springer, Cham CH,
2016, 113–143.

[16] V.N. Kolokoltsov, Idempotent structures in optimization, Journal of Mathematical
Sciences 104 (2001), 847–880.

[17] P. Kouvelis and G. Yu, Robust discrete optimization and its applications, Springer,
Berlin, 1997.

[18] J-Y. Le Boudec and P. Thiran, Network calculus. A theory of deterministic queuing

systems for the internet, Lecture Notes in Computer Science 2050, Springer, Berlin,
Online Version April 26, 2012.

[19] F.S. Lobato and V. Steffen Jr., Multi-objective optimization problems: concepts and
self-adaptive parameters with mathematical and engineering applications, Springer,
Cham, 2017.

[20] R. Manger, Gaussian block algorithms for solving path problems, Math. Commun. 3
(1998), 67–81.

[21] R. Manger, Solving path problems on a network of computers, Informatica (Ljubl.)
26 (2002) 91–100.

[22] R. Manger, A new path algebra for finding paths in graphs, in: Proceedings of the 26th
International Conference on Information Technology Interfaces - ITI 2004, Cavtat,

Croatia, June 7-10, 2004. (eds. V. Lužar-Stiffler, and V. Hljuz Dobrić), University
Computing Centre, Zagreb, 2004, 657–662.

[23] R. Manger, Composite path algebras for solving path problems in graphs, Ars Combin.
78 (2006), 137–150.

[24] M. Mohri, Semiring frameworks and algorithms for shortest-distance problems, J.
Autom. Lang. Comb. 7 (2002), 321–350.

[25] G. Rote, Path problems in graphs, Comput. Suppl. 7 (1990), 155–189.
[26] M. Russling, Deriving a class of layer-oriented graph algorithms, Sci. Comput. Pro-

gramming 26 (1996), 117–132.
[27] K.K. Somasundaram and J.S. Baras, Solving multi-metric network problems: An in-

terplay between idempotent semiring rules, Linear Algebra Appl. 435 (2011), 1494–
1512.

[28] A. Wongseelashote, Semirings and path spaces, Discrete Math. 26 (1979), 55–78.

R. Manger
Department of Mathematics
Faculty of Science

University of Zagreb
Bijenička cesta 30, 10 000 Zagreb
Croatia
E-mail : manger@math.hr

Received : 7.3.2019.
Revised : 30.8.2019.

