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Abstract. In this note we show that many subgroups of mapping
class groups of infinite-type surfaces without boundary have trivial centers,
including all normal subgroups. Using similar techniques, we show that

every nontrivial normal subgroup of a big mapping class group contains
a nonabelian free group. In contrast, we show that no big mapping class
group satisfies the strong Tits alternative enjoyed by finite-type mapping
class groups. We also give examples of big mapping class groups that fail
to satisfy even the classical Tits alternative; consequently, these examples
are not linear.

Let S be a connected orientable surface without boundary that is of in-
finite type, so that π1(S) is infinitely generated. The mapping class group
Map(S) is the group of homotopy classes of orientation-preserving homeo-
morphisms of S. The mapping class group of an infinite-type surface is often
called a big mapping class group. Similarly, let Sg be the compact connected
orientable surface of genus g and let Map(Sg) be its mapping class group.

In this note we address several questions about subgroups of Map(S). We
first prove some results about the triviality of centers of subgroups of Map(S).
We then show that Map(S) never satisfies the strong Tits alternative enjoyed
by Map(Sg), as well as some related results.

Centers. The center of Map(Sg) is trivial for g ≥ 3, while its center is a
cyclic group generated by the hyperelliptic involution when g = 1 or 2 ([4,
Section 3.4]). The centers of mapping class groups of finite-type surfaces with
punctures and boundary components were computed by Paris–Rolfsen ([12,
Theorem 5.6]). Although Dehn twists about boundary components are always
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central, for finite-type surfaces without boundary there are only finitely many
exceptional cases of low complexity where the center is nontrivial.

These results where the center is trivial follow from the existence of a
(stable) Alexander system—a collection Γ of simple closed curves and arcs in
the surface such that no nontrivial mapping class fixes Γ up to isotopy ([4,
Section 2.3]). Hernández–Morales–Valdez recently proved that the Alexander
method carries over to the infinite-type setting ([11]).

Theorem 1 (Hernández–Morales–Valdez). Let S be an orientable surface

of infinite topological type, with possibly non-empty boundary. There exists

a collection of essential arcs and simple closed curves Γ on S such that any

orientation-preserving homeomorphism fixing pointwise the boundary of S that

preserves the isotopy classes of the elements of Γ, is isotopic to the identity.

With this result in hand, it is straightforward to compute the centers of
big mapping class groups, just as in the finite-type case. Throughout this
note, we restrict our attention to surfaces without boundary. When S has
boundary components, Dehn twists about boundary components are always
central, and the center of Map(S) can be analyzed by applying a capping
homomorphism to each boundary component ([4, Proposition 3.19]).

Proposition 2. If S is an infinite-type surface without boundary, the

center of Map(S) is trivial.

Proof. Suppose f ∈ Map(S) is nontrivial; we show that f is not central.
By Theorem 1, there exists a curve c such that f(c) 6= c. Consider fTcf

−1,
which equals Tf(c). If f were central, the product fTcf

−1 would also equal
Tc. But Tf(c) 6= Tc, since curves are compact and f(c) 6= c.

If we now consider subgroups of Map(S), a similar proof goes through for
any subgroup that contains every Dehn twist, or even some nonzero power
of every Dehn twist. Examples of such subgroups include: the pure mapping
class group PMod(S), which is the subgroup that acts trivially on the space
of ends of S; the compactly supported mapping class group Mapc(S); and
the level m subgroup Map(S)[m], which is the subgroup that acts trivially on
H1(S;Z/mZ). Thus all of these subgroups of Map(S) have trivial center.

Patel–Vlamis showed that the center of PMod(S) is trivial in the case
where S is an infinite-type surface with finite genus and without boundary
([13, Lemma 3.3]). Their proof uses the same standard trick of conjugating
Dehn twists, but leverages the compact-open topology on Map(S) as a stand-
in for the Alexander method.

Note that PMod(S), Mapc(S), and Map(S)[m] are all normal in Map(S).
In fact, we can extend the result of Proposition 2 to the centers of all normal
subgroups of Map(S).

Theorem 3. If S is an infinite-type surface without boundary, every nor-

mal subgroup of Map(S) has trivial center.
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Proof. Let N be any normal subgroup of Map(S) and let f be any
nontrivial element of N . As f is nontrivial, by Theorem 1 there exists a curve
c such that f(c) 6= c. SinceN is normal, the product f(Tcf

−1T−1
c ) = Tf(c)T

−1
c

is also in N . We will show that f and Tf(c)T
−1
c do not commute. Conjugating

Tf(c)T
−1
c by f yields Tf2(c)T

−1
f(c) ∈ N . If Tf(c)T

−1
c and f were to commute, we

would have Tf2(c)T
−1
f(c) = Tf(c)T

−1
c . But this is not possible. First, consider

the case when i(c, f(c)) = 0. Since c and f(c) are distinct, so are f(c) and
f2(c). But then the two products are clearly distinct multitwists, even if f
swaps c and f(c). Then consider the case when i(c, f(c)) ≥ 1. Rearranging the
supposed equality yields Tf2(c) = Tf(c)T

−1
c Tf(c). The product on the right-

hand side is a partial pseudo-Anosov on the surface filled by c and f(c), since
its conjugate T 2

f(c)T
−1
c is pseudo-Anosov by Penner’s construction ([14]); see

also [4, p. 396]. However, the left-hand side of the equation is a Dehn twist,
a contradiction. We therefore have that f does not commute with Tf(c)T

−1
c

and so conclude that the center of N is trivial.

We note that this argument also holds for finite-type surfaces with stable
Alexander systems and recovers the corresponding fact about normal sub-
groups in that setting. This is a well-known fact for finite-type mapping class
groups. A proof can be given by considering the action of the normal sub-
group on the space of projective measured foliations; see, for instance, [2, p.
52]. Theorem 3 can be also be proved by appealing to the finite-type result,
in a similar way to how we proceed in our proof of Proposition 7.

The Tits alternative. Of course, for any S there do exist subgroups of
Map(S) that have nontrivial center. For instance, Map(S) has abelian sub-
groups, such as any cyclic subgroup or more generally any subgroup generated
by mapping classes supported on disjoint subsurfaces. It is a theorem, proved
independently by Ivanov and McCarthy, that Map(Sg) satisfies a strong ver-
sion of the Tits alternative: every subgroup is either virtually abelian or
contains a nonabelian free group ([7, 10]). In contrast, big mapping class
groups do not satisfy this strong version of the Tits alternative.

Theorem 4. For every surface S of infinite type without boundary,

Map(S) contains the restricted wreath product Z ≀ Z as a subgroup and so

does not satisfy the strong Tits alternative.

Proof. By the classification theorem of Kerékjártó and Richards ([8,
15]), every surface S of infinite type without boundary contains at least one
of the following: infinite genus, a countable collection of isolated punctures,
or a Cantor set of punctures where none of these punctures is accumulated
by isolated punctures. We consider these possibilities in turn.

Let S be a surface with infinite genus. Then S has at least one end
accumulated by genus. Consider the subgroup of Map(S) generated by a
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handle shift h (possibly one-ended) and a mapping class g supported on one
of the handles in the support of h (which is necessarily of infinite order). (See
[13] for a definition of handle shifts and [9] for their classification.) Then 〈g, h〉
is isomorphic to the restricted wreath product Z ≀ Z, which is not virtually
abelian and does not contain a nonabelian free group.

Similarly, let S be a surface with a countable set of isolated punctures.
We will construct a (one-ended) puncture shift, in analogy with a handle shift.
Take a subset P of the countable set of isolated punctures that accumulate to
an end e. We may index P by Z as {. . . p−1, p0, p1, . . . }. Take a bi-infinite strip
Σ containing P that has two boundary components that are arcs connecting e
to itself, so that Σ is homeomorphic to R× [−1, 1] with punctures at Z×{0}.
This is depicted in Figure 1. Let H be a homeomorphism that fixes the
boundary arcs as well as S \Σ and that pushes each pi to pi+1. Let h be the
mapping class of H and let g be a nontrivial mapping class supported on a
disk containing only p0 and p1, such that the disk and its translates under
powers of h2 are all pairwise disjoint. Then the subgroup 〈g, h2〉 is isomorphic
to the restricted wreath product Z ≀ Z.

Finally, let S be a surface with a Cantor set of ends and no infinite set
of isolated ends. Then none of the ends in the Cantor set C is accumulated
by isolated ends. We will construct a (one-ended) Cantor disk shift. Pick one
end e ∈ C. Partition C \ e into a countable number of Cantor sets and index
these by Z: {. . . , C−1, C0, C1, . . . }. Let Di be a disk that supports Ci and no
other ends. Let h be a mapping class that takes each Di to Di+1. Let g be
any nontrivial mapping class supported in D0. Then the subgroup 〈g, h〉 is
isomorphic to the restricted wreath product Z ≀ Z.

Figure 1. A puncture shift.

The classical Tits alternative replaces virtually abelian with virtually solv-
able. Since the Z ≀ Z subgroup of Map(S) from Proposition 4 is solvable, it
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is not a counterexample to Map(S) satisfying the classical Tits alternative.
We now give an example of a big surface whose mapping class group does not
satisfy the classical Tits alternative.

Example 5. Thompson’s group F does not satisfy the classical Tits al-
ternative, as it is not virtually solvable and does not have a nonabelian free
subgroup ([3, Corollary 3.3]). Let S be R2 \ C, where C is a Cantor set embed-
ded in [0, 1]×{0}. Let F act by piecewise-linear homeomorphisms on [0, 1]×R

so that it also acts faithfully by homeomorphsisms on C. All of these homeo-
morphisms are orientation preserving and so F is a subgroup of Homeo+(S).
Since F acts faithfully on C, the quotient map Homeo+(S) → Mod(S) is in-
jective on this F subgroup. It follows that F is a subgroup of Map(S), which
therefore does not satisfy the classical Tits alternative.

The construction in Example 5 can be extended to other examples of
big surfaces that have a Cantor set in their space of ends. For instance, the
construction holds for any surface S where Ends(S) contains a Cantor set
such that every point in the Cantor set is in the same mapping class group
orbit. Note that no big mapping class group containing Thompson’s group F
as a subgroup is linear, since F , not satisfying the classical Tits alternative,
fails to be linear ([16]). (In the finite-type setting, linearity of most mapping
class groups remains an open question.) Still, there are many surfaces where
the construction of Example 5 does not hold.

Question 6. Do there exist infinite-type surfaces whose mapping class

groups satisfy the classical Tits alternative?

Another way of framing the Tits alternative is that there are groups that
are not subgroups of any finite-type mapping class group. Thompson’s group
F is of course an example of such a group. On the other hand, considering
finite subgroups in the finite-type setting yields a very different phenomenon:
every finite group is a subgroup of Map(Sg) for some g. See [5] and [4,
Theorem 7.12].

Allcock and Winkelmann each proved that for every countable group G,
there is a complete hyperbolic surface S of infinite type without boundary such
that G is the isometry group of S ([1, 17]). Like Example 5, their arguments
imply that there are big mapping class groups that do not satisfy the classical
Tits alternative, but they are not sufficient to resolve Question 6.

Even if Map(S) does not satisfy the classical Tits alternative, it is possible
that it satisfies some variant. One result in this direction was proved by
Hurtado–Militon, who showed that a version of the Tits alternative holds for
the smooth mapping class group of S whenever S has finite genus and a space
of ends homeomorphic to a Cantor set ([6, Theorem 1.3]).

We conclude with a result showing that whenever Map(S) does not satisfy
the classical Tits alternative, the subgroup given as a counterexample cannot
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be normal in Map(S). Observe that in the case of a surface S with boundary,
a normal subgroup consisting of boundary twists is abelian and therefore
satisfies the other half of the alternative.

Proposition 7. If S is an infinite-type surface without boundary, every

nontrivial normal subgroup of Map(S) contains a nonabelian free group.

Proof. Let N be any normal subgroup of Map(S) and let f be any
nontrivial element of N . Then by Theorem 1 there is a curve c such that
f(c) 6= c. We have that g = f(Tcf

−1T−1
c ) = Tf(c)T

−1
c is also in N . The

element g has as support a compact subsurface Σ′. Let Σ be a connected
subsurface of S containing Σ′ such that no boundary component of Σ′ is
homotopic to any boundary component of Σ. Then g does not act as a Dehn
twist about any of the boundary components of Σ.

Consider MapΣ(S), the subgroup of Map(S) that sends Σ to itself. Ob-
serve that the restrictionMapΣ(S)|Σ is isomorphic to Map(Σ). By conjugating
g by some h ∈ MapΣ(S), we may then produce a nonabelian free group as a
subgroup of 〈g, hgh−1〉 by applying the Tits alternative to normal subgroups
in the finite-type setting.
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