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Abstract. In this paper, we consider the problem about finding out
perfect powers in an alternating sum of consecutive cubes. More precisely,

we completely solve the Diophantine equation (x + 1)3 − (x+ 2)3 + · · · −

(x + 2d)3 + (x + 2d + 1)3 = zp, where p is prime and x, d, z are integers
with 1 ≤ d ≤ 50.

1. Introduction

In 1964, Leveque ([11]) proved that, if f(x) ∈ Z[x] is a polynomial of
degree k ≥ 2 with at least two simple roots, and n ≥ max {2, 5 − k} is an
integer, then the superelliptic equation

(1.1) f(x) = zn

has at most finitely many solutions in integers x and z. In 1976, this result
was extended by Schinzel and Tijdeman ([17]). They proved that the equation
(1.1) has at most finitely many solutions in integers x, z and variable n ≥
max {2, 5 − k} through an application of lower bounds for linear forms in
logarithms.

Earlier in 1875, Lucas ([12]) considered the Diophantine equation

(1.2) 12 + 22 + · · ·+ x2 = y2,
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and claimed that (1, 1) and (24, 70) are the only solutions in positive integers
(x, y) to the equation (1.2). In 1918, Watson ([22]) completely solved the
equation (1.2).

In 1956, Schäffer ([16]) studied the more general equation

(1.3) 1k + 2k + · · ·+ xk = yn.

It is easy to see that for every k and n, (x, y) = (1, 1) is a solution of (1.3).
Schäffer ([16]) proved that if k ≥ 1 and n ≥ 2 are fixed, then (1.3) has only
finitely many solutions except the following cases

(1.4) (k, n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)}.
In the same paper Schäffer gave a conjecture regarding the integral solu-

tions of (1.3). He conjectured that, for k ≥ 1 and n ≥ 2 with (k, n) not
in the set (1.4), equation (1.3) has only one non-trivial solution, namely
(k, n, x, y) = (2, 2, 24, 70). There are some results, at least in principle, to
determine all solutions of (1.3).

Jacobson, Pintér, Walsh ([8]) confirmed the conjecture for n = 2 and k
even with k ≤ 58. Recently, Bennett, Győry, Pintér ([1]) proved completely
the Schäffer conjecture for arbitrary n and k ≤ 11. As an extension of [1],
Pintér ([14]) proved Schäffer conjecture for odd values of k with 1 ≤ k ≤ 170
and even values of n.

Zhang and Bai ([24]) generalized the equation (1.3) and considered the
more general equation

(1.5) (x+ 1)k + (x + 2)k + · · ·+ (x+ d)k = yn,

for k ≥ 2. They completely solved the equation (1.5) for k = 2 and d = x.
For k = 2, they also proved that for a prime p ≡ ±5 (mod 12) with p | d and
νp(d) 6≡ 0 (mod n), the equation (1.5) has no integer solution.

Recently, Soydan ([20]) considered the equation (1.5) for k ≥ 2 and d = lx
for some integer l ≥ 2. He proved that all solutions of the equation (1.5) in
integers x, y ≥ 1 and n ≥ 2 satisfy n < C, where C is an effectively computable
constant depending only on l and k. He also proved that for k 6= 3 all solutions
of the equation (1.5) in integers x, y, n with x, y ≥ 1, n ≥ 2 and l ≡ 0 (mod 2)
satisfy max{x, y, n} < C1 where C1 is an effectively computable constant
depending only on l and k.

Cassels ([5]) solved the equation (1.5) completely for n = 2, d = 3 and
k = 3. Zhang ([25]) determined the perfect powers in sum of three consecutive
cubes by rewriting the equation (1.5) for k = d = 3 as

(1.6) (x − 1)3 + x3 + (x− 1)3 = yn.

Stroeker ([21]) completely solved the equation (1.5) for k = 3, n = 2 and
2 ≤ d ≤ 50 using linear forms in elliptic logarithms. Recently, Bennett, Patel
and Siksek ([3]) extended the result of Stroeker for n ≥ 3.
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Several generalizations of (1.3) have been considered by different authors.
For example Dilcher ([7]) studied the equation

(1.7) χ(1)1k + χ(2)2k + · · ·+ χ(xf)(xf)k = byn,

where χ is a primitive quadratic residue class character with conductor f
and k, b 6= 0 are fixed integers. This may be viewed as a character-twisted

analogue of a classic equation of Schäffer. Recently, Bennett ([2]) completely
solved the equation

(1.8) 1k − 3k + 5k − · · ·+ (4x− 3)k − (4x− 1)k = −yn

for 3 ≤ k ≤ 6.
In this paper we consider the following Diophantine equation

(1.9) (x + 1)3 − (x+ 2)3 + · · ·+ (−1)m−1(x+m)3 = zp,

where m,x, z are integers with m ≥ 2 and p is any prime number.
We note that for a fixed ordered tuple (m, p), it is easy to conclude that

equation (1.9) has only finitely many solutions. Since we are dealing with an
infinite collection of tuples (m, p) in our case it is not obvious that there are
finitely many solutions. On top of that we also find the precise solutions of
equation (1.9) using a combination of both classical and modern techniques
in Diophantine analysis.

Simplifying (1.9), for odd m we obtain

(1.10)

(

x+
m+ 1

2

)

{

(

x+
m+ 1

2

)2

+ 3
m2 − 1

4

}

= zp.

Putting m = 2d+ 1 for some positive integer d, we have

(1.11) (x + d+ 1)
{

(x + d+ 1)2 + 3d(d+ 1)
}

= zp.

From the equation (1.11), we can see that gcd((x+d+1), (x+d+1)2+3d(d+1))
divides 3d(d+ 1). Hence

(1.12) x+ d+ 1 = αz1
p and (x + d+ 1)2 + 3d(d+ 1) = βz2

p

for some integers z1, z2 and rationals α, β with αβ = 1 and z1z2 = z. The
denominator and the numerator of α and β are composed of prime divisors of
3d(d+ 1). From (1.11) and (1.12), we deduce the following ternary equation

(1.13) βz2
p − α2z2p1 = 3d(d+ 1).

If β < 0, then from the equation (1.12), we have z2 < 0. Also α < 0 as αβ =
1. Hence, (±z1, z2) is an integral solution of equation (1.13) corresponding
to (α, β) if and only if (±z1,−z2) is an integral solution of equation (1.13)
corresponding to (−α,−β). Therefore it is enough to solve the equation (1.13)
for β > 0.
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Suppose Sd is the set of such pairs of positive rationals (α, β). We need
to solve the equation (1.13) for each (α, β) ∈ Sd with 1 ≤ d ≤ 50. Clearing
denominators we can rewrite the equation (1.13) as

(1.14) rz2
p − sz2p1 = t,

where r, s, t are positive integers and gcd(r, s, t) = 1.
Now we state our main theorem as follows.

Theorem 1.1. For m = 2d + 1 with 1 ≤ d ≤ 50, the integral solutions

(x, z, p) of the equation (1.9) are given in the Table 1.

Remark 1.2. If z = 0, then from the equation (1.11), we have x = −(d+
1) as (x+d+1)2+3d(d+1) > 0 for any d. Therefore, (x, z, p) = (−d−1, 0, p)
are the trivial solutions of the equation (1.9) for any d.

Remark 1.3. From Theorem 1.1, it is clear that for p > 7, there is no
integral solution for the equation (1.9). For p = 5, (d, x, z) = (20,−15, 6)
is the only integral solution for the equation (1.9). For p = 7, (d, x, z) ∈
{(4,−3, 2), (15,−13, 3), (27, 26, 6)}.

2. Preliminaries

We use well known tools such as linear forms in two logarithms, variation
of Kraus criterion, modular method, local solubility, descent to prove Theo-
rem 1.1. In this section we provide the necessary details for these methods.

Linear forms in 2 logarithms: We state a special case of the following well
known result of Laurent ([10]).

Proposition 2.1 ([10, Corollary 2]). Let α1 and α2 be two positive

real, multiplicatively independent algebraic numbers and logα1, logα2 be any

fixed determinations of the logarithms that are real and positive. Write

D = [Q(α1, α2) : Q] and

b′ =
b1

D logA2
+

b2
D logA1

,

where b1, b2 are positive integers and A1, A2 are real numbers greater than one

such that

logAi ≥ max

{

h(αi),
| logαi|

D
,
1

D

}

, i = 1, 2

with

h(α) =
1

d

(

log |a|+
d
∑

i=1

logmax(1, |α(i)|)
)

,

where a is the leading coefficient of the minimal polynomial of α and the α(i)’s

are the conjugates of α in C.
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Let Λ = b2 logα2 − b1 logα1. Then

log |Λ| ≥ −25.2D4(max{log b′ + 0.38, 10/D, 1})2 logA1 logA2.

Variation of Kraus Criterion: Now we state the following variation of
Kraus criterion for the non-existence of integral solutions to the equation
(1.14) for given r, s, t and p.

d (x, z, p)

d (−d− 1, 0, p)
2 (0,±9, 2), (3,±18, 2), (69,±612, 2)
4 (−3, 2, 7), (1,±24, 2), (5,±40, 2), (235,±3720, 2)
5 (34,±260, 2)
6 (0,±35, 2), (11,±90, 2)
7 (−7,±13, 2), (160,±2184)
8 (16,±145, 2)
11 (36,±360, 2)
12 (−9,±44, 2), (0,±91, 2), (23,±252, 2), (104,±1287, 2), (195,±3016, 2)
15 (−13, 3, 7)
16 (83,±1040, 2)
19 (−16,±68, 2), (−14,±84, 2), (34,±468, 2),

(170,±2660, 2), (265,±4845, 2), (5746,±437844, 2)
20 (−15, 6, 5), (0,±189, 2), (39,±540, 2)
26 (−39,−30, 3), (−36,−27, 3), (−18, 27, 3), (−15, 30, 3)
27 (−10,±216, 2), (−46,−36, 3), (−34,−24, 3), (−22, 24, 3), (−10, 36, 3)

(84,±1288, 2), (98,±1512, 2), (39734,±7928712, 2), (26, 6, 7)
28 (13,±420, 2), (29,±580, 2)
29 (−24,±126, 2), (405,±9135, 2)
30 (−21,±170, 2), (0,±341, 2), (59,±990, 2),

(248,±4743, 2), (1179,±42130, 2), (5208,±379223, 2)
32 (−24,±171, 2), (319,±6688, 2)
34 (16,±561, 2), (35,±770, 2), (14245,±1706460, 2)
36 (−91,−72, 3), (−39,−20, 3), (−35, 20, 3), (17, 72, 3)
38 (2811,±152190, 2)
39 (−31,±207, 2), (81,±1529, 2), (480,±11960, 2)
42 (−124,−99, 3), (0,±559, 2), (83,±1638, 2), (38, 99, 3)
45 (8,±702, 2), (69,±1495, 2), (440,±10854, 2)
47 (−36,±288, 2), (516,±13536, 2)
49 (230,±4900, 2), (−95,−75, 3), (−5, 75, 3)

Table 1. The integral solutions to equation (1.9) for m =
2d+ 1 with 1 ≤ d ≤ 50 and p is prime.
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Lemma 2.2 ([3, Lemma 6.1]). Consider the equation (1.14) for p ≥ 3.
Also let q = 2kp+ 1 be a prime that does not divide r. Define

(2.1) µ(p, q) = {η2p : η ∈ Fq} = {0} ∪ {ζ ∈ F∗
q : ζk = 1}

and

(2.2) B(p, q) = {ζ ∈ µ(p, q) : ((sζ + t)/r)2k ∈ {0, 1}}.
If B(p, q) = ∅, then the equation (1.14) does not have any integral solution.

Modular method: Before going to our problem we would like to give a
brief description about modular method. Let E be an elliptic curve over Q of
conductor N and #E(Fq) be the number of points on E over the finite field
Fq for a good prime q. Let aq(E) = q+1−#E(Fq). By a newform f of level
N , we mean a normalized cusp form of weight 2 for the congruence subgroup
Γ0(N). Write f = q +

∑

i≥2 ciq
i and K := Q(c1, c2, · · · ) is the totally real

number field generated by the Fourier coefficients of f .
We say that the curve E arises modulo p from the newform f (and write

E ∼p f) if there is a prime ideal p of K above p such that for all but finitely
many primes q, we have aq(E) ≡ cq (mod p). If f is a rational newform, then
f corresponds to some elliptic curve F (say). If E arises modulo p from f ,
then also we say that E arises modulo p from F . In this regard we have the
following result.

Proposition 2.3 ([6, Prop 15.2.2]). Let E and F be elliptic curves over

Q with conductors N and N ′ respectively. Suppose that E arises modulo p
from F . For all primes q

1. if q ∤ NN ′, then aq(E) ≡ aq(F ) (mod p) and
2. if q ∤ N ′ and q‖N , then q + 1 ≡ ±aq(F ) (mod p).

The following result provides a bound for the exponent p.

Proposition 2.4 ([6, Prop 15.4.1]). Let E/Q be an elliptic curve of con-

ductor N with h | #E(Q)tors for some integer h. Suppose f is a newform of

level N ′ and q be a prime with q ∤ N ′, q2 ∤ N . Also let

Tq = {a ∈ Z : −2
√
q ≤ a ≤ 2

√
q, a ≡ q + 1 (mod h)} .

Let cq be the q-th coefficient of f and define

B
′

q(f) := NormK/Q

(

(q + 1)2 − cq
2
)

∏

a∈Tq

NormK/Q(a− cq)

and

Bq(f) =

{

q · B′

q(f) if f is irrational,

B
′

q(f) if f is rational.

If E ∼p f , then p|Bq(f).
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Descent: Following well known method is very useful to eliminate possible
integral solution for a Diophantine equation of certain type.

Consider the equation in integers R,X, S, Y, T,

(2.3) RY p − SX2p = T

with R,S, T pairwise coprime integers.
For a prime q, we define

S
′

:=
∏

ordq(S) is odd

q.

Then SS
′

= v2 for some integer v. Take RS
′

= u and TS
′

= mn2 for
some integers u,m and n with m squarefree. Substituting these values in the
equation (2.3), we have

(vXp + n
√
−m)(vXp − n

√
−m) = uY p.

Let K = Q(
√−m) and O be its ring of integers. Let P be the set of prime

ideals of O which divide u and 2n
√−m. The p-Selmer group is given by

K(P, p) = {ǫ ∈ K∗/K∗p : ordP(ǫ) ≡ 0 (mod p) for P 6∈ P}
and this is a Fp–vector space of finite dimension. Let

Θ = {ǫ ∈ K(P, p) : Norm(ǫ)/u ∈ Q∗p}.
Now it is easy to see that

(2.4) vXp + n
√
−m = ǫZp,

where ǫ ∈ Θ and Z ∈ K∗.

Lemma 2.5 ([3, Lemma 9.1]). Let q be a prime ideal of K. Suppose one

of the following holds:

1. ordq(v), ordq(n
√−m), ordq(ǫ) are pairwise distinct modulo p;

2. ordq(2v), ordq(ǫ), ordq(ǭ) are pairwise distinct modulo p;
3. ordq(2n

√−m), ordq(ǫ), ordq(ǭ) are pairwise distinct modulo p.

Then there is no X ∈ Z and Z ∈ K satisfying the equation (2.4).

Lemma 2.6 ([3, Lemma 9.2]). Let q = 2kp + 1 be a prime. Suppose

qO = q1q2 where q1, q2 are distinct prime ideals in O, such that ordqj
(ǫ) = 0

for j = 1, 2. Let

χ(p, q) = {ηp : η ∈ Fq}.
Let

C(p, q) = {ζ ∈ χ(p, q) : ((vζ + n
√
−m)/ǫ)2k ≡ 0 or 1 (mod qj) for j = 1, 2}.

Suppose C(p, q) = ∅. Then there is no X ∈ Z and Z ∈ K satisfying the

equation (2.4).
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Lemma 2.7 ([3, Lemma 9.3]). Suppose

1. ordq(n
√−m) < p for all prime ideals q of O;

2. the polynomial Up + (ρ−U)p − 2 has no roots in O for ρ = 1,−1,−2;
3. the only root of the polynomial Up + (2 − U)p − 2 in O is U = 1.

Then, for ǫ = n
√−m, the only solution to equation (2.4) with X ∈ Z and

Z ∈ K is X = 0 and Z = 1.

3. Proof of Theorem 1.1 for p ≥ 5

At first, we use lower bounds for linear forms in two logarithms to bound
the exponent p appearing in (1.13).

Lemma 3.1. Let p > 19. Consider

(3.1) α1 = β/α2 and α2 = z21/z2 (6= 1)

with |z1| ≥ 2 and z2 ≥ 2.
Then α1 and α2 are positive and multiplicatively independent. Moreover,

if we write

(3.2) Λ = logα1 − p logα2,

then

(3.3) 0 < Λ <
3d(d+ 1)

α2z2p1
.

Proof. One can see that α1 and α2 are positive as β > 0 and z2 > 0.
From the equations (1.13),(3.1) and (3.2), we have

eΛ − 1 =
βzp2
α2z2p1

− 1 =
3d(d+ 1)

α2z2p1
> 0.

Therefore 0 < Λ < 3d(d+1)

α2z2p

1

since ex − 1 > x for any positive real number x.

Now we want to prove that α1 and α2 are multiplicatively independent.
On contrary, let us suppose that α1 and α2 are not multiplicatively inde-
pendent i.e., there exist coprime positive integers a and b such that αa

1 = αb
2.

Clearly α1 6= 1. Then a ordl(α1) = b ordl(α2) for all prime l. Hence b|ordl(α1).
Let g = gcd{ordl(α1) : l is prime}. From (3.2), we have

(3.4) Λ = logα1

(

1− p
logα2

logα1

)

= | logα1|
∣

∣

∣
1− p

a

b

∣

∣

∣
.

Hence from (3.3) and (3.4), we have

(3.5) 0 <
1

g
≤
∣

∣

∣
1− p

a

b

∣

∣

∣
<

3d(d+ 1)

| logα1|α2z2p1
,

as b | g.
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Since |z1| ≥ 2, from the equation (3.5), it follows that

4p ≤ z2p1 <
3d(d+ 1)g

| logα1|α2
.

Therefore,

(3.6) p ≤ log

(

3d(d+ 1)g

| logα1|α2

)

/log 4.

We wrote a Magma script ([4]) to compute this bound on p for 1 ≤ d ≤
50. The maximum possible value for the right-hand side of (3.6) is 18.11
corresponding to d = 48 and (α, β) = (1/7056, 7056), which is not possible as
p > 19. This completes the proof of lemma.

Lemma 3.2. Let p > 1000. Consider

α1 = β/α2 and α2 = z21/z2 (6= 1)

with |z1| ≥ 2 and z2 ≥ 2. Then we have

log z2
log z21

≤ 1.01.

Proof. From the equations (3.1), (3.2) and (3.3), we have

(3.7) logα1 − p(log z21 − log z2) <
3d(d+ 1)

α24p
.

Hence

log z2
log z21

≤ 1 +
1

p log z21

(

3d(d+ 1)

α24p
+ | logα1|

)

≤ 1 +
1

1000 log 4

(

3d(d+ 1)

α241000
+ | logα1|

)

,

(3.8)

where p > 1000 and z2 ≥ 2. We write a Magma script ([4]) to find the
maximum possible value of the right-hand side which is 1.01, corresponding
to d = 50 and (α, β) = (7650, 1/7650). This completes the proof.

Now we are ready to apply Proposition 2.1 to find an upper bound for p.

Lemma 3.3. Let (z1, z2) be an integral solution of the equation (1.13) with
|z1|, z2 ≥ 2 and z21 6= z2, where 1 ≤ d ≤ 50 and (α, β) ∈ Sd. Then we have

p < 4× 104.

Proof. Let A1 = max{H(α1), e}, whereH(a/b) = max{|a|, |b|} for α1 =
a
b . Let A2 = max{z12, z2}. From Lemma 3.1, it is clear that the hypothesis of
Proposition 2.1 is satisfied for our choices of α1, α2, A1, A2 with D = 1. Let

b′ =
1

logA2
+

p

logA1
.
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For p > 1000, we have b′ > 1000
logA1

. For 1 ≤ d ≤ 50 and (α, β) ∈ Sd, the

lower bound for 1000/logA1 is 37.27 corresponding to d = 50 and (α, β) =
(7650, 1/7650). Now applying Proposition 2.1, we have

(3.9) log |Λ| ≥ −25.2 (max{log b′ + 0.38, 10, 1})2 logA1 logA2.

Further, this gives

− logΛ ≤ 25.2 logA1 logA2(log b
′)2

≤ 25.2 logA1 logA2 log
2

(

p

logA1
+

1

log 4

)

.
(3.10)

From equation (3.3), we conclude

(3.11)

p <
1

log z21

{

log

(

3d(d+ 1)

α2

)

+ 25.2 logA1 logA2 log
2

(

p

logA1
+

1

log 4

)}

.

As |z1| ≥ 2, from Lemma 3.2 we have

p <
1

log 4

{

log

(

3d(d+ 1)

α2

)

+ 26 logA1 log
2

(

p

logA1
+

1

log 4

)}

.

We wrote a Magma script ([4]) to obtain p < 4 × 104. This completes the
proof of the lemma.

Let z1 and z2 be integral solutions of (1.13). Then by Lemmas 3.1, 3.2 and
3.3, we found

p < 4× 104, for |z1| ≥ 2 and z2 ≥ 2 with z21 6= z2.

When z21 = z2, we determine all the possible solutions for 1 ≤ d ≤ 50 and
these solutions (z1, z2) are not satisfying the equation (1.13). Similarly, if
z1 ∈ {−1, 0, 1} or z2 = 1, we determine all the possible solutions for 1 ≤ d ≤ 50
and we observe that (20,−15, 6, 5), (27, 26, 6, 7) are the only integral solutions
for (d, x, z, p) satisfying the equation (1.11). Hence we conclude that the
equation (1.11) has no integral solution for p > 4× 104.

For 1 ≤ d ≤ 50, (α, β) ∈ Sd and 5 ≤ p ≤ 4 × 104, we wrote a Magma
script ([4]) with k ≤ 765, that searches for a prime q satisfying q = 2kp+1 ∤ r
such that B(p, q) = ∅.

We note that if there exist such a prime q with B(p, q) = ∅, then by
Lemma 2.2 the equation (1.13) has no solution for exponent p. This criterion
fails when β = 3d(d + 1) (equivalently r = t) for which we have the trivial
solution (z1, z2) = (0, 1). In addition, for β 6= 3d(d + 1) (equivalently r 6= t)
we found 1716 quintuples (d, p, r, s, t) which fail to satisfy this criterion.

Now, to complete the proof of Theorem 1.1 for p ≥ 5, we are remaining
with the following cases.

1. r = t and p < 4× 104;
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2. r 6= t and p < 4× 104 consisting 1716 quintuples (d, p, r, s, t).

To solve the equation (1.14) for r = t and p < 4 × 104 we want to apply
modular method. Here we use the recipes of Kraus ([9]) due to Wiles ([23]),
Ribet ([15]) and Mazur ([13]).

In the case r = t, the equation (1.13) has a solution (z1, z2) = (0, 1). In
fact, we want to show that (z1, z2) = (0, 1) is the only solution.

Since r = t, we have α = 1/3d(d + 1) and thus the equation (1.13) will
reduce to

(3.12) zp2 − 1

(3d(d+ 1))3
z2p1 = 1.

Let R = Rad (3d(d+1)). Since z1 and z2 are integers, we have R | z1. Hence
z1 = Rz3 for some integer z3. Then from the equation (3.12), we have

zp2 − R2p

(3d(d+ 1))3
z2p3 = 1.

Take T = R2p

(3d(d+1))3 then the above equation becomes

(3.13) zp2 − Tz2p3 = 1.

It is easy to see that Rad(T ) = R. Further we assume that

(3.14) 2p > 3 · ordq(3d(d+ 1))

for all odd primes q. We want to show that z1 = 0 for the equation (3.12).
On contrary, let us assume that z1 6= 0, which implies z3 6= 0. Also z2 6= 0.
The equation (3.13) can be written in the following form

Axp +Byp + Czp = 0,

where A = −1, B = −T,C = 1, x = 1, y = z23 , z = z2 and also

Axp ≡ −1 (mod 4), Byp ≡ 0 (mod 2).

Now we associate a solution (z2, z3) to the Frey Curve

(3.15) E : Y 2 = X(X + 1)(X − Tz2p3 ).

The Weierstrass model given in (3.15) is smooth as z2z3 6= 0. Let E ∼p f ,
where f is a weight 2 newform of level Np with Np is defined as follows:

(3.16) Np =







































R if ord2(T ) = 0 or ≥ 5,
R
2 if ord2(d(d + 1)) = 2 and p = 5,

R if ord2(d(d+ 1)) = 3, p = 5 and z3 even,

R if ord2(d(d+ 1)) = 4, p = 7 and z3 even,

22R if ord2(d(d+ 1)) = 4, p = 7 and z3 odd,

24R if ord2(d(d+ 1)) = 3, p = 5 and z3 odd.
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Suppose f is rational and hence we get an elliptic curve F of conductorNp.
Now we choose a prime q = 2kp+1 such that q ∤ Np and E has multiplicative
reduction at q. Then by Proposition 2.3, q + 1 ≡ ±aq(F ) (mod p) and this
implies 4 ≡ (aq(F ))2 (mod p) as q ≡ 1 (mod p).

Suppose that f is irrational. Since cq 6∈ Q for infinitely many coefficients
of f , we have Bq(f) 6= 0 for infinitely many primes q. Then Proposition 2.4
allows us to obtain a bound for p. In fact, this bound is very small. Here we
improve this bound by choosing a set of primes P = {q1, . . . , qn} such that
qi ∤ Np for all i and BP(f) = gcd(Bq(f) : q ∈ P). Thus, if E ∼p f then
p | BP(f).

From the above observations, the following lemma is very helpful to elim-
inate newforms of level Np.

Lemma 3.4. Let 1 ≤ d ≤ 50. Also let p ≥ 5 be a prime which satisfies

the inequality (3.14) for all primes q. Let Np be given in (3.16). Suppose for

each irrational newform f of weight 2 and level Np there is a set of primes

P not dividing Np such that p ∤ BP(f). Suppose for every elliptic curve F of

conductor Np there is a prime q = 2kp+ 1, q ∤ Np, such that

1. B(p, q) = {0̄}, where B(p, q) is in statement of Lemma 2.2;

2. p ∤ (aq(F )2 − 4).

Then the equation (1.11) has only one solution with

(α, β) =

(

1

3d(d+ 1)
, 3d(d+ 1)

)

satisfying x = −(d+ 1).

Proof. If z1 = 0, then we see that x = −(d + 1). Let us assume that,
z1 6= 0. We know that, there is a newform f of level Np such that E∼pf ,
where E is the Frey-Hellegouarch curve. If f is irrational, then p | BP(f),
which is a contradiction to our hypothesis. Hence f is rational and so E∼pF ,
where F is an elliptic curve of conductor N .

From equation (1.14), we see that z2
p = sz1

2p+t
r . Hence

(sz1
2p + t

r

)2k

≡ z2
2kp ≡ z2

q−1 (mod q).

Since z2
q−1 ≡ 0 or 1 (mod q), by the definition of B(p, q) we have z̄1 ∈

B(p, q). Thus, by condition (1), z̄1 = 0̄. Hence we see that, q | z1. Since
z1 = Rz3, we have q | z3. Thus, it follows that E has multiplicative reduction
at q. Hence q + 1 ≡ ±aq(F ) (mod p). Since q ≡ 1 (mod p), we observe that
(aq(F ))2 ≡ 4 (mod p), which is a contradiction by condition (2).

Now we wrote a Magma script ([4]) for each 1 ≤ d ≤ 50 which computes
the newforms of weight 2 and level Np. Here we assume that P is the set of
primes < 100 which do not divide Np. Then for each irrational newform we
compute BP(f).
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For every prime 5 ≤ p < 4× 104 that does not divide BP(f), satisfies the
inequality (3.14) and for every isogeny class of elliptic curves F of conductor
Np, we search for the primes q = 2kp + 1, q ∤ Np with k ≤ 765 such that
conditions (1) and (2) of Lemma 3.4 hold.

If we find such a prime then the equation (1.11) has no solution with
r = t. The criterion holds for all values of p except for few small values of
p. When Np = R, there are 55 cases where either p does not satisfy the
inequality (3.14), or it divides BP(f) for some irrational newform f , or q does
not satisfy conditions (1) and (2) of Lemma 3.4.

For other special cases of Np we are remaining with 3 equations, which
do not satisfy the above conditions. The largest value of p among the 58
quintuples is p = 19 with

d = 37, α = 1/4218, β = 4218, r = t = 75044648232, s= 1.

Now we have total 1716 + 55 + 3 = 1774 remaining equations, which can
not be eliminated by Lemma (2.2) and modular approach. These equations
are of the form (1.14) with r, s and t positive integers and gcd(r, s, t) = 1.
There is a possibility that r, s and t may not be pairwise coprime. We apply
the procedure mentioned in [3, section 9.1] which is nothing but a repetitive
way of clearing out the common factor to get an equation of the form

(3.17) RY p − SX2p = T

where R,S, T are pairwise coprime and X,Y are divisors of z1, z2 respectively.
If there exist a solution for the equation(3.17), then −ST is a square

modulo q for any odd prime q ∤ R. Also we check for local solubility at the
primes dividing R,S, T , and the primes q ≤ 19. Applying these above tests,
we are remaining with 175 equations after elimination. For these remaining
equations we apply descent.

By applying Lemmas 2.5 and 2.6 to the remaining equations, which were
left after local solubility, we eliminate ǫ ∈ Θ. But we know that if r = t
then the equation (1.14) has a solution, i.e., (z1, z2) = (0, 1). For r = t, the
reduction process leads to R = T = 1. Thus the solution (z1, z2) = (0, 1) in
(1.14) corresponds to (X,Y ) = (0, 1) in (3.17). Also

n
√
−m(K∗)p ∈ Θ.

Hence using Lemmas 2.5 and 2.6, we eliminate all ǫ except the case ǫ = n
√−m

as the equation (2.4) has a solution (X,Z) = (0, 1).
For the case ǫ = n

√−m, the equation (3.17) has only one solution
(X,Y ) = (0, 1) by Lemma 2.7. If X = 0 then z1 = 0 and hence, x = −(d+1).
If Lemmas 2.5, 2.6 and 2.7 allow us to conclude X = 0, then we can eliminate
(r, s, t) as we can consider x 6= −(d + 1). We write a Magma script ([4]) for
above procedure and we eliminate 164 equations. Now we have to solve only
11 remaining equations by Thue approach. By writing V = Y 2 in (3.17), we
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obtain the Thue equation

(3.18) RY p − SV p = T.

Using Thue equation solver in Magma ([4]), we solve the remaining equa-
tions. Finally we have the following solutions.

273 − 283 − · · · − 803 + 813 = 67,

(−2)3 − (−1)3 + · · · − 53 + 63 = 27,

(−12)3 − (−11)3 + · · · − 173 + 183 = 37,

(−14)3 − (−13)3 + · · · − 253 + 263 = 65.

(3.19)

This concludes the proof of Theorem 1.1 for p ≥ 5.

4. Proof of Theorem 1.1 for p = 2

Putting x+ d+ 1 = u and p = 2 in the equation (1.11), we have

(4.1) z2 = u3 + 3d(d+ 1)u.

This represents a family of elliptic curves. For 1 ≤ d ≤ 50, we obtain the
integral solutions of the equation (4.1) by Magma ([4]). These solutions give
rise to all the integral solutions of (1.11) and those are given explicitly in
Table 1.

5. Proof of Theorem 1.1 for p = 3

In this case the required equation is

(5.1) z3 = u3 + 3d(d+ 1)u.

Let α = gcd(u, 3d(d+ 1)), then

(5.2) u = αu1 and u2 + 3d(d+ 1) = αu2,

where gcd(u1, u2) = 1. Let Ord2(u1u2) = l and Ord3(u1u2) = m, for some
non-negative integers l,m. Then we can write

u1 = 2l · u3 and u2 = 3m · u4,

or u1 = 3l · u3 and u2 = 2m · u4,

or u1 = 2l · 3m · u3 and u2 = u4,

or u1 = u3 and u2 = 2l · 3m · u4,

(5.3)

where u3 and u4 are integers with gcd(u3, u4) = 1.
Also write α = 2δ2 ·3δ3 ·α1 for some integer α1 with δ2 := ord2(α) and δ3 :=

ord3(α). As αu1 · αu2 = z3, we have α2
1u3u4 = z31 for some integer z1. Since

1 ≤ d ≤ 50, for any prime q | α1, ordq(α1) ≤ 2. Therefore, we can conclude
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that, if α2
1 | z31 then α1 | z1. Write z1 = α1 · z2 for some integer z2, hence we

have u3 · u4 = α1z
3
2 . Since gcd(u3, u4) = 1, we can write

(5.4) u3 = α2 · z33 and u4 = α3 · z34 ,
for some integers α2, α3, z3, z4 with α2α3 = α1 and z3z4 = z2. Rewriting the
equation (5.2), we have

(5.5) α · u2 − α2 · u2
1 = 3d(d+ 1).

Now from equations (5.3),(5.4) and (5.5), we will have a set of Thue equations
as follows:

α · α3 · 3m · z34 − α2 · α2
2 · 22l · (z23)3 = 3d(d+ 1),

or α · α3 · 2m · z34 − α2 · α2
2 · 32l · (z23)3 = 3d(d+ 1),

or α · α3 · z34 − α2 · α2
2 · 22l · 32m · (z23)3 = 3d(d+ 1),

or α · α3 · 22l · 32m · z34 − α2 · α2
2 · (z23)3 = 3d(d+ 1).

(5.6)

Now, for 1 ≤ d ≤ 50 we have written a Magma script ([4]) to solve
these four Thue equations. The theory about solving these Thue equations is
discussed in [19]. Using backward calculations from these solutions we find
all solutions for the equation (5.1) and these are given explicitly in Table 1.

6. concluding remark

For m = 2d the equation (1.9) becomes

d[3x2 + 3(2d+ 1)x+ d(4d+ 3)] = (−z)p.

Since the polynomial 3dx2+3d(2d+1)x+d2(4d+3) is an irreducible polynomial
over Q for 1 ≤ d ≤ 50, by [6, Theorem 12.11.2, p. 437], we conclude that the
equation (1.9) has finitely many solutions for even m.

For x > 50, we are not able to conclude anything about getting perfect
powers in alternating sums of consecutive cubes of even length. Though for
x ≤ 50 we see that (2, 2,−2, 7), (3, 12,−3, 7) and (6, 14,−6, 5) are solutions
for (d, x, z, p) in the equation (1.9). In general, when m is even in the equation
(1.9), we conjecture the following.

Conjecture 6.1. Let m = 2d with 1 ≤ d ≤ 50 and p ≥ 5 be a prime.

Then the only integer solutions of the equation (1.9) are given by

(d, x, z, p) ∈ {(2, 2,−2, 7), (3, 12,−3, 7), (6, 14,−6, 5), (27, 215,−9, 7)}.
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[12] É. Lucas, Problem 1180, Nouvelle Ann. Math. 14 (1875), 336.
[13] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.
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[16] J. J. Schäffer, The equation 1p +2p + · · ·+ np = mq , Acta Math. 95 (1956), 155–189.
[17] A. Schinzel and R. Tijdeman, On the equation ym = f(x), Acta Arith. 31 (1976),

199–204.
[18] S. Siksek, Modular approach to Diophantine equations, in: Explicit methods in number
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