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ABSTRACT 

This study focuses on the development of a two dimensional (2D) simplified numerical framework of 
rigid wall-flexible diaphragm (RWFD) structures that can be used to validate seismic design approaches. 
This type of low-rise industrial buildings, which is widely used in North America, incorporates rigid in-
plane concrete or masonry walls and flexible in-plane wood, steel or “hybrid” roof diaphragms. The 
numerical modeling is detailed enough to capture the nonlinear seismic response of RWFD buildings, but 
simplified enough to efficiently conduct a large number of nonlinear time-history dynamic analyses. The 
2D numerical modeling framework is based on a three step sub-structuring approach including: (1) a 
hysteretic response database for diaphragm connectors, (2) a 2D inelastic roof diaphragm model 
incorporating hysteretic connector response and (3) a simplified 2D building model incorporating 
hysteretic diaphragm model response. The diaphragm connector database (step 1) was developed for both 
wood and steel deck connectors using cyclic test data available in the literature. Two well-known 
hysteretic models (Wayne-Stewart and CUREE-SAWS) were used for estimating/fitting hysteretic 
parameters of each connector type. The analytical model of the inelastic roof diaphragm (step 2) was 
generated to account for the elastic shear deformation of deck panels, elastic flexural deformations of 
chord members as well as inelastic deformations of deck-to-frame connectors (from the connector 
database-step 1). This model includes monotonic and cyclic analysis capabilities. The last step of the 
proposed analytical framework is a simplified two dimensional model of a RWFD building developed in 
RUAUMOKO2D to account for the inelastic response of roof diaphragms (based on the analytical roof 
diaphragm model-step 2) and the out-of-plane walls as well as second order (P-Δ) effects. Both the 
proposed analytical model of the roof diaphragm and the proposed simplified building model were 
validated with experimental and analytical studies available in the literature. Furthermore, a sensitivity 
study was conducted to examine the effect of: (i) analysis time step, (ii) different base fixity of the out-of­
plane walls, (iii) P-Δ effects, (iv) inherent viscous damping and (v) direction of shaking on the collapse 
assessment of RWFD structures. 
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ABSTRACT 

This study focuses on the development of a two dimensional (2D) simplified numerical framework 
of rigid wall-flexible diaphragm (RWFD) structures that can be used to validate seismic design 
approaches. This type of low-rise industrial buildings, which is widely used in North America, 
incorporates rigid in-plane concrete or masonry walls and flexible in-plane wood, steel or “hybrid” 
roof diaphragms. The numerical modeling is detailed enough to capture the nonlinear seismic 
response of RWFD buildings, but simplified enough to efficiently conduct a large number of 
nonlinear time-history dynamic analyses. The 2D numerical modeling framework is based on a 
three step sub-structuring approach including: (1) a hysteretic response database for diaphragm 
connectors, (2) a 2D inelastic roof diaphragm model incorporating hysteretic connector response 
and (3) a simplified 2D building model incorporating hysteretic diaphragm model response. The 
diaphragm connector database (step 1) was developed for both wood and steel deck connectors 
using cyclic test data available in the literature. Two well-known hysteretic models (Wayne-
Stewart and CUREE-SAWS) were used for estimating/fitting hysteretic parameters of each 
connector type. The analytical model of the inelastic roof diaphragm (step 2) was generated to 
account for the elastic shear deformation of deck panels, elastic flexural deformations of chord 
members as well as inelastic deformations of deck-to-frame connectors (from the connector 
database-step 1). This model includes monotonic and cyclic analysis capabilities. The last step of 
the proposed analytical framework is a simplified two dimensional model of a RWFD building 
developed in RUAUMOKO2D to account for the inelastic response of roof diaphragms (based on 
the analytical roof diaphragm model-step 2) and the out-of-plane walls as well as second order (P­
Δ) effects. Both the proposed analytical model of the roof diaphragm and the proposed simplified 
building model were validated with experimental and analytical studies available in the literature. 
Furthermore, a sensitivity study was conducted to examine the effect of: (i) analysis time step, (ii) 
different base fixity of the out-of-plane walls, (iii) P-Δ effects, (iv) inherent viscous damping and 
(v) direction of shaking on the collapse assessment of RWFD structures. 

Introduction 
Rigid Wall-Flexible Diaphragm (RWFD) buildings are widely used for light industrial and low-
rise commercial construction in the United States and Canada. These buildings are usually 
framed with exterior precast concrete (plant cast or site cast) or masonry walls, interior columns 
and horizontal roof members. The horizontal roof framing members are designed to act as 
diaphragms and can be categorized into wood, steel and “hybrid” roof systems. Steel roof 
systems are framed with steel deck, steel bar joists and joist girders. Wood deck systems consist 
of plywood or oriented strand board (OSB) deck fastened to wood framing using common nails, 
while “hybrid” systems are constructed using wood structural panels (plywood or OSB) fastened 
to wood cover-plates which are fastened to steel joists and joist girders. 
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Rigid Wall-Flexible Diaphragm buildings have performed poorly during past earthquakes 
including the 1964 Alaska [1], 1971 San Fernando [1], 1987 Whittier Narrows [2], 1989 Loma 
Prieta [3], 1994 Northridge [1], and the 2010 and 2011 Christchurch [4] earthquakes. The main 
failure modes observed during these earthquake events can be categorized into: (i) wall panel-to­
roof connection failures, (ii) partial out-of-plane collapse of roof and walls, (iii) damage to wall 
panels with large openings due to insufficient reinforcement or incorrect placement of 
reinforcement, and (iv) large deformations of flexible roof diaphragms [1-4]. 

Several experimental and analytical studies on the seismic response and performance of 
RWFD buildings have been conducted over the last two decades. The main focus of these studies 
has been the design and seismic response of the flexible roof diaphragm and connections 
incorporated into wood and/or steel deck systems. The numerical modeling of RWFD buildings 
has been a main component for these studies. Cohen et al. [5] developed a two degree-of­
freedom simplified model as well as a linear elastic detailed finite element model (FEM) in the 
analysis program SAP2000 to match the response of masonry structures tested under seismic 
loading. Olund [6] developed a detailed FEM of a single story concrete tilt-up building in the 
Perform3D analysis program to evaluate the collapse capacity of the structure. Tellier [7] 
generated a two dimensional (2D) macro-model in the MATLAB platform to evaluate the 
seismic performance of concrete tilt-up buildings. A detailed deep horizontal plane truss 
numerical model of flexible roof systems was developed in the OpenSees software platform by 
Shrestha [8] to reproduce the dynamic characteristics and the elastic and inelastic response of 
tested steel deck diaphragm specimens. In most of these studies, the flexible roof diaphragm 
system was modeled with linear elastic elements despite the fact that the roof diaphragm is often 
the main source of inelasticity in the seismic response of RWFD buildings. Despite the favorable 
modeling features of detailed finite element models, the computational overhead needed to 
perform nonlinear time history dynamic analyses of RWFD buildings is an important parameter 
to be considered when analyzing a large number of these buildings using numerous ground 
motion records. For this reason, a two dimensional simplified numerical framework is proposed 
in this study. The proposed numerical approach is detailed enough to capture the nonlinear 
response of RWFD buildings, but simple enough to efficiently conduct a large number of 
nonlinear time-history dynamic analyses. The two dimensional numerical framework is based on 
a three step sub-structuring approach that includes: (1) a hysteretic response database for roof 
diaphragm connectors, (2) a 2D inelastic diaphragm model incorporating hysteretic connector 
response, and (3) a 2D building model incorporating hysteretic diaphragm model response. The 
proposed analytical tool and a sensitivity/parametric study on the effects of the 2D building 
modeling assumptions (step 3) are presented in this paper. 

Numerical Framework 
Each of the three modeling steps of the two dimensional numerical framework is presented in the 
following sections.  

Roof Diaphragm Connector Database-Step 1 
The first step of the proposed numerical framework involved the generation of a deck-to-framing 
and panel-to-panel side-lap connector database for connectors used for wood, “hybrid” and steel 
deck diaphragms. This database includes the hysteretic response of the connections, which is the 
main source of inelasticity in the flexible diaphragm in-plane seismic response. The connectors’ 
hysteretic properties are incorporated into numerical models of the flexible roof diaphragm. The 
connector database was developed for wood and steel deck connectors using cyclic test data 
available in the literature [9-14]. The wood connectors include common nails, cut and rolled 



 

 
 
 

 
  

 
 

 

  
 

  

 

 
  

 
 

 
 

    

 
    

 

  

  

thread screws. The steel deck connectors include pins (powder-actuated fasteners), screws, 
button punches, and welds. The Wayne-Stewart [15] and CUREE-SAWS [16] hysteretic models 
were used for estimating the hysteretic parameters of each connector type. A set of MATLAB 
[17] codes was developed to optimize the hysteretic parameters associated with both models. The 
optimal hysteretic parameters were computed through an identification process to fit the 
numerical model with the experimental data of each connector test by minimizing the differences 
in force and deformation. The identification process was set as a constrained least squares 
problem that was solved using the Trust Region Reflective Algorithm. Details on the 
optimization procedure followed can be found in [18]. 

Inelastic Roof Diaphragm Model-Step 2 
An analytical 2D model of the roof diaphragm was generated in the MATLAB platform. Each 
deck panel was modeled as a deep shear beam, while all the deck-to-framing and sidelap 
connectors around each panel were modeled using the Wayne-Stewart hysteretic model. The 
Wayne-Stewart hysteretic properties of the connectors were obtained from step 1 (connector 
database) of the sub-structuring modeling approach. This analytical model was developed with 
displacement controlled monotonic and cyclic analysis capabilities. A constant cyclic force 
applied at mid-span of the diaphragm was considered for the analysis on the diaphragm model in 
order to induce constant shear forces in the diaphragm. The total in-plane flexible diaphragm 
displacement, as schematically illustrated in Fig. 1, was computed as the sum of: (i) the elastic 
shear deformation of each individual panel, (ii) the inelastic deformations (slippage) of 
connectors and (iii) the elastic flexural deformations of the chord members. The algebraic 
equations of equilibrium developed for this analytical model were solved using the Newton-
Raphson method. Analysis convergence was satisfied when the maximum load imbalance was 
less than a specified tolerance. The inelastic response of the roof diaphragm generated using the 
analytical model was further incorporated into the simplified building model of step 3.  

δ = δ +δ +δtotal flexure @chord panels connectors 

Figure 1. Illustrative representation of the analytical inelastic roof diaphragm model developed 
in MATLAB. 

Simplified Building Model-Step 3 
This modeling step introduces a two dimensional simplified model of a RWFD building 
developed in the RUAUMOKO2D [19] platform. The inelastic response of the roof deck 
diaphragm, the out-of-plane walls, the in-plane walls and the second order (P-Δ) effects were 
incorporated into the simplified building model. The modeling assumptions are presented in the 



 

 

 

 

   

  
 
 

 

 
   

 

 

 

 
 
 

 

 
    

 

 
  

following sections.  

Geometry, Mass and Element Properties 
The geometry of a typical RWFD building consists of the rigid in-plane walls, the out-of-plane 
walls, the flexible roof diaphragm and the interior columns. Half of a typical RWFD building 
was modeled in the RUAUMOKO2D platform accounting for the building’s symmetry. The total 
number of degrees of freedom (DOFs) incorporated into the proposed simplified building model 
can be computed according to Eq. (1). 

DOFs = (4× N ) + 2 (1)opwhb 

where Nopwhb is the number of out-of-plane wall slices or wall panels on one side of half 
of the RWFD building. 

An illustrative example of a simplified building model is provided in Fig. 2. This building 
is of dimensions 400ft x 200ft, therefore the respective DOFs for excitation along the short 
direction of the building computed according to equation (1) are equal to 34. 

Figure 2. Illustrative example of a simplified RWFD building model developed in 
RUAUMOKO2D. 

The in-plane inelastic shear and elastic flexural response of the flexible roof diaphragm 
were accounted for in the simplified model. The roof diaphragm, represented by inelastic 
horizontal springs, was discretized by horizontal slices coordinated with the locations of the out-
of-plane wall panels. The inelastic horizontal springs were modeled to follow the Wayne-Stewart 
hysteretic rule implemented into the RUAUMOKO2D platform. The hysteretic properties of 
these springs were obtained from the diaphragm’s inelastic response modeled in step 2. The 
tributary diaphragm mass was lumped at the center of each diaphragm slice. The out-of-plane 
wall panels were modeled by vertical beam elements located at the centerline of each wall panel 
with four masses lumped along the height. The locations of the lumped masses were at: (i) one-
third height, (ii) mid-height, (iii) two thirds height, and (iv) top of the wall. The mass of the wall 
parapet (if applicable) was also lumped at the roof level. The wall beam elements were modeled 
to be simply supported at the top and bottom. A modified Takeda [20] moment-curvature 
hysteresis rule was implemented at each beam sub-element end to represent the inelastic flexural 
response of the out-of-plane wall panels. The moment curvature relationship properties were 
based on the reinforcement details of the out-of-plane wall panels. The post yield stiffness factor 
of the modified Takeda hysteresis was considered equal to the ratio of the cracked moment of 
inertia to the gross moment of inertia of the out-of-plane wall panels. The plastic hinge length of 



 

 
  

   

    
   

 

   

   

 

  
 

  

  

 
 

  

 
 

 
 

  
 

 

 

 
  

 

 
 

  

  

the inelastic wall beam elements was set equal to walls’ cross sectional thickness. The elastic 
flexural and shear responses of the rigid in-plane wall panels were modeled by a single 
horizontal linear elastic spring element and a horizontal lumped mass. The principle of virtual 
work and the unit load method were used to compute the equivalent linear stiffness accounting 
for both shear and flexural deformations. The in-plane wall panels were considered as a 
cantilever element with a force applied at its free end for deriving the equivalent linear stiffness 
as presented in Eq. (2). 

1
k = in − plane −walls 3(h 3EI  ) + (h  GA  ) (2)

 where E  is the modulus of elasticity of the wall panels, G  is the shear modulus of the 
wall panels, I  is the moment of inertia of the wall panels, A  is the cross sectional area of the 
wall panels and h  is the height to the roof. 

Damping Properties 
For modeling purposes, damping is usually considered in the form of equivalent viscous 
damping as a percentage of the critical damping in one or more modes of vibration. Based on 
numerous studies and viewpoints available in the literature, the initial stiffness Rayleigh 
damping was selected be used in the simplified modeling accounting on its simplicity and 
robustness compared to the tangent stiffness proportional damping. Essential component of the 
damping matrix formulation for nonlinear analyses is the target damping values. Current 
guidelines recommend values of viscous damping considered for nonlinear analyses of structures 
under earthquake shaking to vary between 2% and 5% of critical [21]. A target damping value of 
2% of critical at the first and second mode of vibration was selected for the simplified building 
model, considering that RWFD buildings are expected to have lower damping values compared 
to tall buildings mainly because there are fewer non-structural components. 

Additional Analysis Options 
Second order (P-Δ) effects were accounted into the simplified modeling of the RWFD buildings 
by including leaning columns under each diaphragm degree of freedom and using the large 
displacement analysis option in RUAUMOKO2D. The Newmark-Beta implicit direct integration 
method was used to solve the dynamic equation of equilibrium. The Newmark’s average 
acceleration method (β=1/4) was considered for the nonlinear analyses, since it is 
unconditionally stable [22, 23] compared to the linear acceleration method (β=1/6). The analysis 
time step for conducting nonlinear time history analyses was set constant and equal to 0.001sec. 
This time step value was defined based on a trial-and-error procedure to achieve numerical 
convergence of the displacement and acceleration values at the center of the roof diaphragm. 

Model Validation 
The inelastic roof diaphragm model and the simplified building model were validated with 
experimental and numerical studies available in the literature. Both models matched the results 
of existing studies with relatively good accuracy. Due to space limitations the validation study 
results are not presented in this paper but can be found in [18]. 

Sensitivity Study 
A sensitivity study was conducted to investigate the effects of different modeling assumptions of 
the proposed simplified building model (step 3) on the collapse assessment of a typical RWFD 
building. The collapse assessment of the RWFD building was evaluated by conducting 
Incremental Dynamic Analyses (IDA) [24] using the FEMA P695 Far Field Ground Motion 



 

 
 
 

  

 

   

    
 

 
 

 

 
  

    
 

 
  

 

 

 
  

   
 

 

  

 
  

 

 

 

 

ensemble [25] and computing the median collapse intensity defined as the median 2% damped 
spectral acceleration at the fundamental period of the building archetype for which 50% of the 
earthquake motions cause its sidesway collapse. To monitor the state of the structure at the end 
of each nonlinear time history analysis, the building drift ratio (BDR) (see Eq. (3)), which is the 
combination of the diaphragm drift ratio (DDR) [26] with the in-plane wall drift ratio (WDR), 
was considered as the Damage Measure (DM). The Intensity Measure (IM) was defined by the 
2% damped spectral acceleration at the fundamental period of the RWFD building. 

⎡ x x ⎤ 
, in−mid roof plane walls BDR % % ( )  % ⎢ (3)( ) = DDR ( )  +WDR % ⇒ BDR ( )  = ( + ⎥ ×100 

h2) wall ⎥⎢ Lroof ⎣ ⎦ 
where xmid,roof is the displacement at the middle of the flexible roof diaphragm, Lroof is the 

horizontal span of the flexible roof diaphragm, xin-plane walls is the displacement at the top of the 
rigid in-plane walls and hwall is the height of roof above the foundation. 

A single story concrete tilt-up building, of dimensions 200ft x 400ft, incorporating a 
flexible roof diaphragm was considered in this sensitivity study. A panelized “hybrid” roof 
system with oriented strand board was used for the horizontal diaphragm system. The tilt-up 
concrete wall panels had a height of 30ft to the roof plus a 3ft tall parapet. A response 
modification factor, R=4.0 representing intermediate precast shear walls was used for the design. 
This RWFD building archetype was designed according to 2012 IBC [27], ASCE 7-10 [28], 
2008 NDS SDPWS [29] and ACI 318-11 [30] code provisions. Seismic design category D and 
risk group II were applicable. Details on the roof diaphragm nailing pattern as well as the seismic 
exposure design characteristics are provided in [18]. The effects of the modeling assumptions 
studied are associated with the: (i) analysis time step, (ii) second order (P-Δ) effects, (iii) 
inherent viscous damping, (iv) response of out-of-plane walls and (v) direction of shaking. 

Analysis Time Step 
Four different integration time steps were considered to evaluate the nonlinear time history 
analysis convergence. The displacement and acceleration at the center of the flexible roof 
diaphragm were the response parameters considered to check the analysis convergence. The four 
analysis time steps were selected to be integer factors of the time steps of all the FEMA P695 
ground motions. The selected time step values are: 10-2sec, 10-3sec, 10-4sec and 10-5sec. The 
results obtained using the four different integration time steps to evaluate the response of the 
RWFD building archetype under one representative earthquake record (due to space limitations 
in this paper) are shown in Figs. 3 and 4. It is observed that the convergence of displacement was 
achieved with a time step of 0.01sec (see Fig. 4), while a smaller time step (0.001sec) was 
needed to achieve convergence of accelerations (see Fig. 3). Hence, an integration time step 
equal to 0.001sec was selected to perform nonlinear time history dynamic analyses of the 
simplified RWFD building model. 
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Figure 3.    Effect of integration time step on the acceleration at the center of the roof diaphragm 
for Loma Prieta earthquake record: (a) time history and (b) close up view at the peak response. 
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Figure 4.   Effect of integration time step on the displacement at the center of the roof diaphragm 
for Loma Prieta earthquake record: (a) time history and (b) close up view at the peak response. 

Second Order (P-Δ) Effects 
The influence of second order (P-Δ) effects on the collapse capacity of the RWFD building 
archetype was also investigated. As noted earlier in this paper, the large displacement analysis 
option of RUAUMOKO2D was used to account for P-Δ effects, while the small displacement 
analysis option was activated to omit the influence of second order effects. As shown in Fig. 5, 
the median collapse does not differ significantly (≈0.06g) for the two analysis cases (with and 
without the P-Δ effects). However, the implementation of second order effects into the modeling 
of RWFD buildings is necessary because it influences their collapse capacity at higher 
intensities. 
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Figure 5.   Influence of P-Δ effects on the collapse capacity of the RWFD building archetype. 

Inherent Viscous Damping 
The effects of the type of inherent viscous damping as well as the target damping values were 
investigated. Three different target values (2%, 4% and 5% of critical) were selected to evaluate 
their influence on the collapse capacity of the RWFD building archetype as shown in Fig. 6a. 
The median collapse of the building was improved for higher values of equivalent viscous 
damping, while a damping ratio of 2% of critical was detrimental to the building’s collapse 
performance. A lower damping value is more realistic for RWFD buildings that can be 
characterized as “naked” since they incorporate fewer non-structural components. Therefore, the 
2% of critical damping assumption was a representative value for the simplified modeling of 
RWFD buildings. Note that the analyses for evaluating the target damping values were 
conducted accounting for initial stiffness equivalent viscous damping. Furthermore, the collapse 
capacity of the RWFD archetype was evaluated for both initial stiffness and tangent stiffness 
proportional damping as presented in Fig. 6b. The target damping value of 2% of critical was 
considered in this study. The median collapse of the building archetype did not differ 
significantly for the two cases, while improved performance was observed for the tangent 
stiffness proportional damping case at higher intensities. Considering that the initial stiffness 
case is a conservative and numerically robust assumption compared to the tangent stiffness 
damping, the initial stiffness damping was considered an appropriate modeling assumption. 
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Figure 6. Influence of: (a) target damping values and (b) damping type on the collapse capacity 
of the RWFD building archetype. 

Out-of-Plane Wall Panels 
Collapse of the out-of-plane loaded wall panels of RWFD buildings has been observed as a main 
failure mode in past earthquakes. Therefore, their effect on the collapse capacity of the RWFD 
building archetype was investigated herein. The effect of modeling the out-of-plane wall panels 
as part of the 2D simplified building model was examined along with different base fixity 
conditions of these walls. Three different fixity cases were studied including: (i) pin (top)-pin 
(bottom), (ii) pin (top)-bilinear hysteresis (bottom) and (iii) pin (top)-modified Takeda hysteresis 
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(bottom). The properties of both bilinear and modified Takeda hysteretic models were obtained 
based on the corresponding moment-curvature relationships of the out-of-plane walls. The 
moment-curvature relationships were generated from the reinforcement design details of the wall 
panels. Comparing the fragility curves of Fig. 7a for the analysis cases with and without the out-
of-plane walls and the various wall fixity conditions, it is observed that the collapse capacity of 
the RWFD archetype improved when the walls were accounted into the modeling. Furthermore, 
as shown in Fig. 7a, the median collapse intensity of the RWFD building incorporating a 
modified Takeda base fixity hysteresis was not significantly improved compared to the bilinear 
base fixity case. However, it appears that the pin-pin fixity case assumption conservatively 
represents the collapse capacity of RWFD buildings when out-of-plane walls are incorporated 
into the modeling approach. Moreover, the inelastic response of the out-of-plane wall panels was 
investigated by implementing a modified Takeda [20] moment-curvature hysteresis at each sub-
element end of these panels. Based on the analyses, the wall panels were found to yield and that 
is also verified by their fragility curve presented in Fig. 7b. According to the results of this study, 
it was concluded that the modeling of inelastic out-of-plane wall panels affects the building’s 
response and should be incorporated into the proposed simplified building model.  
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Figure 7. Influence of : (a) out-of-plane wall panels’ base fixity conditions and (b) the inelastic 
response of the out-of-plane wall panels on the collapse capacity of the RWFD building 
archetype. 
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Direction of Shaking 
The direction of shaking was the last parameter investigated in this study. The RWFD building 
archetype incorporating “hybrid” flexible diaphragm was subjected to ground excitation along its 
long and short direction, respectively. As shown in Fig. 8, the collapse capacity of the building 
archetype was considerably improved when excited along the long direction, with an increase of 
the median collapse capacity of approximately 50%. One influencing factor in this result was 
that the diaphragm design necessary for the short direction yielded excessive capacity in the long 
direction. 
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Figure 8. Influence of direction of shaking on the collapse capacity of the RWFD building 
archetype. 

Conclusions  
This paper introduced an efficient numerical framework for nonlinear seismic analysis of Rigid 
Wall-Flexible Diaphragm (RWFD) buildings. This numerical tool is based on a three step sub-
structuring approach including the hysteretic response database for diaphragm connectors, the 
two dimensional inelastic diaphragm model incorporating hysteretic connector response, and the 
two dimensional building model incorporating hysteretic diaphragm model response. The 
numerical model of the flexible roof diaphragm as well as the two dimensional simplified 
building model demonstrated very good correlation with experimental and analytical studies 
available in the literature. Furthermore, a sensitivity study was conducted and presented in this 
paper, on the effects of different modeling assumptions on the collapse performance of a typical 
RWFD building. This study showed that the assumptions considered in the simplified building 
model (step 3 of sub structuring approach) were realistically representing the seismic response of 
typical RWFD buildings. Therefore, the proposed numerical framework can be used as an 
efficient tool for the collapse assessment of RWFD buildings. This numerical tool is detailed 
enough to capture the nonlinear response of RWFD buildings, but simplified enough to 
efficiently conduct a large number of nonlinear time-history dynamic analyses in a timely 
manner and for designers to better investigate new and existing RWFD buildings in a more 
accessible computer model. 
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