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In this work we investigate some aspects of density matrix renormalization group (DMRG) method. We 

intuitively show why DMRG works better for open boundary conditions and why the number of sweeps in a 

periodic system is greater than an open one. We also describe reduction of the Hilbert space dimension us-

ing symmetries. Finally, we show that eliminating the repetitious states may help as much as symmetries 

to reduce the Hilbert space and thus increase the DMRG speed. 
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1. INTRODUCTION 
 

Density Matrix Renormalization Group Method 

(DMRG) is one of powerful methods to investigate the 

one dimensional system (nanowires). By increase the 

dimension to two and three, DMRG accuracy decreases 

considerably but still is the most powerful existing 

method. There are different type of DMRG and among 

its different types, the Lanczos-DMRG which was in-

troduced by Hallberg, uses the Lanczos method in 

DMRG to calculate the dynamical properties of lattice 

quantum many body systems [1]. Then it was used in 

other branches of physics such as calculation of the 

dynamical correlation functions [2]. Different types of 

DMRG are generally time-consuming but a fast version 

(has been called Dynamical-DMRG (DDMRG)) present-

ed by jeckelmann et al [3-4]. It is very similar to correc-

tion vector-DMRG which was proposed by Ramasesha 

et al. to calculate some types of dynamical correlation 

functions [5]. Despite the fact that researchers are 

working on DMRG to extend it to reach more precision 

in their calculations [6], some authors complain that 

DMRG does not satisfy them. When Kampf et al. ap-

plied the DMRG to one-dimensional ionic Hubbard 

model, They showd that the accuracy of the currently 

available DMRG data is not enough to provide a strin-

gent argument in their studies and with the available 

chain length and DMRG accuracy limitations it was 

not possible to precisely identify and locate the second 

transition point in their system [7]. In two dimensions, 

the accuracy in k-DMRG and r-DMRG decreases with 

the system size. The accuracy becomes rapidly worse 

with increasing interaction and is not significantly 

better at half filling [8]. In the meantime, boundary 

condition had a very important role in the works uses 

from the DMRG method and people consistently try to 

modify the boundary scheme to extract more precise 

results [9]. Sometimes, the boundary conditions influ-

ence the spectrum of the reduced density matrix (RDM) 

and generally DMRG performs substantially worse for 

systems with periodic rather than open boundary con-

ditions [3-4]. In addition, periodic boundary conditions 

are normally highly preferable to the open ones, as 

surface effects are eliminated and finite size extrapola-

tion gives better results for smaller system sizes. Lege-

za et al. found that because of the increase in the en-

tanglement of their periodic states the number of states 

kept tends to be the square of that required for open 

boundary conditions [10, 15]. To keep the accuracy of 

the results, people need much more basis states in each 

block of the DMRG method. The reduction of the accu-

racy comes from the boundary condition and when the 

interactions across the boundaries are weak, the accu-

racy of the DMRG calculation will be improved [11]. 

In this work, it is shown why DMRG with doubling 

the block size is less satisfactory than DMRG with 

adding a single site at a time. It is quantitatively 

shown that when we add a single site to the chain in 

each step, some repetitious states appear that lead to 

some decrease in the speed of DMRG method. Getting 

rid of these repetitious states may help us to find more 

flexible DMRG variants. We have also investigated the 

reduction of the Hilbert space dimension by using of 

symmetries. In our previous work we have used some 

these aspects [12]. 

 

2. THEORY 
 

There are different types of DMRG computer im-

plementation. Doubling the block sizes in each itera-

tion or adding single site to the left and right block is 

two approaches among them. Doubling the block size in 

DMRG leads to rough results. An obvious test is that, 

when we are generating the desired states of a 8-sites 

chain from tensor product of the possible states of a  

4-sites chain in quarter-filling in DMRG method, for 

simplicity all spins up, 
 

 
00

0 0



 
 (II-1) 

 

the state 0 0 00    can not be obtained from the all 
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possible tensor product of the (II-1) configurations un-

less we use the tensor product of 0 0   and 0 0   

and a translation. Possible states of a 4-sites chain in 

quarter-filling in DMRG method, is written as (II-1) 

equations because the following states have the same 

probability as above ones. 
 

 

00

0 0

0 0





 

 (II-2) 

 

When we use the periodic boundary condition 

0 0 00    may be identical with 0 0 0 0    that 

is generated from (II-2), the translation may is not 

necessary but these tasks in DMRG lead to lose of 

speed (because we have to retain the repetitious states 

II-2 that we discuss below) and when we use the open 

boundary condition this state can not be generated 

(using doubling the block size method and II-1) and we 

are not able to consider its probability and finally 

DMRG loses its accuracy. 

When we use adding a single site in each iteration, 

we should also note that the repetitious configurations 

may lead to some decrease in the speed of DMRG meth-

od. For a periodic chain an obvious example of repeti-

tious configurations appears when we reach 8 sites 

chain by adding sites to an initial 4 site chain in quarter 

filling. ( 0 0) ( 00)     and ( 00) ( 0 0)     lead 

to the same configurations. These two configurations 

even for an open boundary condition have the same 

probabilities since in the first case atoms are aligned 

leftward and in the next case they are aligned right-

ward. Note that rotating left ward has not any ad-

vantage to the rightward rotation. Another intuitive 

example is presented in the Table I and a quantitative 

diagram is presented in the Fig. 1.  
 

Table 1 – Schematic presentation of the configurations ob-

tained from adding a single site in a RG procedure in a boson-

ic Hubbard chain in half filling. ‘1’ is a symbol of site with an 

electron and ‘0’ represent an empty site. L is the chain length, 

N is number of repeated configurations at half filling for a 

Hubbard ring, M is the number of all possible configurations 

at quarter filling, O is the number of configurations at half 

filling and P is number of configurations after reduction of the 

Hilbert space dimension using symmetries 
 

 L  4 

N  0,  

M  2, 

O  2 

P  2 

L  6 

N  0,  

M  8,  

O  4 

P  3 

L  8 

N  2,  

M  32,  

O  12 

P  8 

L  10 

N  15,  

M  128,  

O  41 

P  16 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1100 

1010 

 

1 1 0 0 1 0 

1 1 0 0 0 1 

1 0 1 0 1 0 

1 0 1 0 0 1 

 

1 1 0 0 1 1 0 0 

1 1 0 0 1 0 1 0 

1 1 0 0 1 0 0 1 

1 1 0 0 0 1 1 0 

1 1 0 0 0 1 0 1 

1 1 0 0 0 0 1 1 

1 0 1 0 1 1 0 0 

1 0 1 0 1 0 1 0 

1 0 1 0 1 0 0 1 

1 0 1 0 0 1 1 0 

1 0 1 0 0 1 0 1 

1 0 1 0 0 0 1 1 

 

1 1 0 0 1 1 1 0 0 0 

1 1 0 0 1 1 0 1 0 0 

1 1 0 0 1 0 1 0 1 0 

1 1 0 0 1 0 1 0 0 1 

1 1 0 0 1 0 1 1 0 0 

1 1 0 0 0 1 0 1 1 0 

1 1 0 0 0 1 0 1 0 1 

1 1 0 0 1 0 0 0 1 1 

1 1 0 0 0 1 1 1 0 0 

1 1 0 0 0 1 1 0 0 1 

1 1 0 0 1 0 0 1 1 0 

1 1 0 0 1 0 0 1 0 1 

1 1 0 0 0 1 0 0 1 1 

1 1 0 0 0 0 0 1 1 1 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

1 1 0 0 0 0 1 0 1 1 

1 1 0 0 0 0 1 1 1 0 

1 1 0 0 0 0 1 1 0 1 

1 0 1 0 1 1 1 0 0 0 

1 0 1 0 1 1 0 1 0 0 

1 0 1 0 1 0 0 1 1 0 

1 0 1 0 1 0 1 1 0 0 

1 0 1 0 1 0 1 0 1 0 

1 0 1 0 1 0 1 0 0 1 

1 0 1 0 1 1 0 0 1 0 

1 0 1 0 1 1 0 0 0 1 

1 0 1 0 1 0 1 1 0 0 

1 0 1 0 1 0 0 1 1 0 

1 0 1 0 1 0 1 0 1 0 

1 0 1 0 1 0 1 0 0 1 

1 0 1 0 1 0 0 1 0 1 

1 0 1 0 1 0 0 0 1 1 

1 0 1 0 0 1 1 1 0 0 

1 0 1 0 0 1 1 0 1 0 

1 0 1 0 0 1 1 0 0 1 

1 0 1 0 0 1 0 1 1 0 

1 0 1 0 0 1 0 1 0 1 

1 0 1 0 0 1 0 0 1 1 

1 0 1 0 0 0 0 1 1 1 

1 0 1 0 0 0 1 0 1 1 

1 0 1 0 0 0 1 1 1 0 

1 0 1 0 0 0 1 1 0 1 
 

 
 

Fig. 1 – Hilbert space dimension of a Heisenberg spin chain 

and the amount of reduction due to Symmetries and repeti-

tious states 
 

States mentioned in the table is ones remained after 

reduction by translational symmetry. In this case we 

have not the spin inversion symmetry. A rapid increase 

in the number of repetitious configurations is clear from 

the Table 1. As we have mentioned in the previous sec-

tion, one has to do greater number of sweeps for fermi-

onic systems to reach satisfactory accuracy than spin 

system. Here we can construct fermionic system using 

two bosonic one. 

Let the total number of electrons in the fermionic 

system be even. At first to generate the desired states of 

a one-dimensional fermionic system in a given filling, 

we can construct two set of configurations. The first set 

contains the probable Configurations with one half of 

the entire electrons with spin up and the other set is 

include the same configurations but with spin down. By 

selecting a configuration from each mentioned set and 

defining the following summations,  
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  0

  0

0

0

  

  

  

  

  

 (II-3) 

 

we construct the states of the fermionic system. For a 

4-site chain the two mentioned sets are, 
 

 
00

0 0



 
 (II-4) 

 

And 
 

 
00

0 0



 
 (II-5) 

 

All possible states of the 4-sites chain at half filling 

can be calculated using the Eqs. (II-4 and II-5). For 

example 00 0 0 0       is a possible state for a 

4-sites chain at half-filling. 

If we do not discard the repetitious configurations in 

DMRG method and generate the states of the fermionic 

system, it is easy to see that this number of repetitious 

configurations grows more rapidly. This extremely more 

repetitious configuration enforces one to do more 

sweeps for fermionic systems to get a satisfactory accu-

racy. Note the in this picture we break a fermionic  

4-stite chain into two chains that all electrons has the 

same spin. 

When we are to generate the most appropriate state 

of an eight sites Hubbard chain another difficulty may 

be seen. To generate the most probable states of a linear 

chain in routine DMRG method, we have to store the 

most probable state of a seven sites Hubbard chain with 

6, 7 and 8 electrons since adding ,   or   and an 

empty site to them, respectively, may lead to a probable 

state for the 8 site Hubbard chain and this number of 

state increases logarithmically by growing the number 

of atoms in the chain. Usually people do not do this 

work and retain only Sz  0 in each iteration. 

The repetitious states in DMRG generate more diffi-

culties because lead to a greater superblock dimension. 

Number of repetitious states of the superblock is pre-

sented in the Fig. 2. 
 

 
 

Fig. 2 – Number of repetitious states of a fermionic Hubbard 

Chain 

Calculating the amount of reduction of the Hilbert 

space is not so straightforward since even two symmet-

ric states of the left and right block may lead to an 

asymmetric state of the superblock. 

When we generate the desired states of a fermionic 

system by using equations (II-4) and (II-5), each repeti-

tious state from each set leads to a repetitious state of 

the fermionic system. Thus to evaluate the above infor-

mation for fermionic NRG system when you use these 

equations to generate the desired states of a fermionic 

chain from spin chain, we note that eliminating the 

repetitious states of spin chain before generating the 

desired states of the fermionic chain may lead to loss 

some non-repetitious states of the fermionic chain. For 

example 0   can not be generated from equations (II-

4) and (II-5), because the translation has eliminated

0 0 . Using rotation of 00  on 00  we are able 

to generate this state, but it leads to more repetitious 

states. According to the mentioned facts, counting the 

number of repetitious state of a fermionc chain is a little 

more difficult than the spin system. Here we evaluate a 

minimum number of repetitious states may appear in 

the calculations. If we do not rotate the states of the 

group with spin up on the group with spin down, we loss 

some non-repetitious states, if we ignore them (an ap-

proximation) the number of repetitious states of the 

fermionic chain is equal to the number of repetitious 

states of the superblock in DMRG method. Thus we can 

use the Fig.1 for the fermionic system. For a linear chain 

with L sites like Hubbard that each site can have four 

different states (empty, one spin up electron and a dou-

bly occupies site), the number of repetitious states grows 

more rapid than a Heisenberg like system that each site 

of it can have two different states(spin up and down). 

Entanglement of the states is also an important fac-

tor that should be considered. When the entanglement 

increases and therefore the wave function related to 

each atom overlap with that of the neighbor ones, 

roughly speaking, they are able to see each other. In 

this situation, to get the accurate eigen-states of the 

system, they should be anti-symmetrized [13]. This 

means we have to include the anti-symmetrization in 

DMRG. Ref [10, 15] is an obvious example of this situa-

tion where by increase in entanglement of their periodic 

states, Legeza et al. had to do more sweeps to reach the 

desired accuracy. Paying attention to the necessity of 

the anti-symmetrization of the obtained eigen-states 

and ignoring it when its usage is not so important lead 

to some increase in the speed of the DMRG method.  

In the last step we try to reduce the Hilbert space 

dimension by means of symmetries and appropriate 

quantum numbers. Symmetries we propose to reduce 

the dimension of the Hilbert space for a Hubbard ring is 

the spin inversion symmetry, L time’s rotation which L 

is the ring (or chain) length and mirror reflection with 

respect to a diameter of the ring(center of the chain). 

Reduction of the Hilbert space dimension using symme-

tries like has also done previously. For an example that 

has used constrains such as Sz  0, spin inversion, 40 

translations, 4 rotations on a S  1/2 Heisenberg model 

on a tilted square lattice with 40 40  sites you may 

see the Ref [14]. 
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3. CONCLUSION 
 

In this work some aspects of DMRG is investigated. 

Influence of the boundary condition on this method is 

described. Within a sample ring, reduction of the Hil-

bert space dimensions using symmetries is specified. 

We present some repetitious states appear in the all 

RG methods that lead to reduction of the speed and 

accuracy of the method. In this paper we do not present 

a new DMRG type that resolves the difficulty of the 

repetitious states but we have shown that importance 

of the repetitious states is as much as using the sym-

metries. The reason why DMRG works better for fer-

mionic system that bosonic one is somewhat investi-

gated. The main goal of the paper is to find the difficul-

ties of the DMRG thus at first we try to find the au-

thors complain that DMRG do not satisfy them. Then 

we took a glance on the problem under investigation to 

find the difficulties. We find that when the system size 

increases the number of repetitious states also increase 

rapidly and in the periodic boundary condition this is 

worse. More information is presented in the text. 
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