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Quantum-dot cellular automata (QCA) technology is one of attractive emerging technologies that are 

suitable for low-power, and ultra-dense digital circuit’s development. QCA Comparator plays an important 

role in the digital circuits. In this study, a new QCA comparator architecture is presented. This new archi-

tecture is carefully designed using three 3-input majority gates. The proposed QCA comparator architec-

ture is simulated by using the QCADesigner tool version 2.0.3. The designed QCA comparator has 29 cells 

and the occupied area by circuit is 0.04 µm2. The results demonstrate that the developed QCA comparator 

architecture provides an improvement compared to other QCA comparator architectures in terms of the 

number of required cells. 
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1. INTRODUCTION 
 

Recently, the circuit design based on Quantum-dot 

Cellular Automata (QCA) has received a great deal of 

attention. So, several attempts have been directed to-

wards design of arithmetic circuits such as adder [1-3], 

and comparators [4-6].  

Comparators are extensively utilized circuit in the 

microcontrollers and Central Processing Units (CPUs) 

[7]. There are several attempts to improve the perfor-

mance of the QCA comparator such as [4-6, 8-10].  

The designed comparator in [5] is 1-bit comparator 

with 100 cells. Another designed comparator, which has 

been presented in [6], has two-layer structure with 79 

cells. In [8], a 1-bit comparator has been designed with 

73 cells. The designed comparator in [9] is composed of 

two 5-input majority gates and a 3-input majority gate 

with 43 cells. In [10], a 1-bit comparator with 81 cells is 

designed. However, these QCA comparator architec-

tures have advantages, the performance of the QCA 

comparator can be improved as described in this paper. 

This paper deals with QCA based comparator de-

sign. In this study, we design a new full QCA compara-

tor. The developed QCA comparator is simulated using 

the QCADesigner tool version 2.0.3. The simulation 

results show that the proposed QCA comparator archi-

tecture has advantages in comparison with other QCA 

comparator architectures in terms of the number of re-

quired cells and occupied area.  

The remaining of this paper is organized as follows: 

in section 2, the backgrounds of the proposed QCA cir-

cuit including QCA cells, QCA clock, QCA gate, and 

QCA comparator is presented. Moreover, this section 

investigates the previous QCA comparator architec-

tures. In section 3, the proposed QCA comparator is 

presented. In section 4, the simulation results are pre-

sented and compared with other works. Finally, section 

5 concludes this paper. 

 

2. BACKGROUND 
 

2.1 The QCA Cells 
 

The basic element in the QCA technology is a cell. 

The cells in the QCA technology are formed with 4 

quantum dots. Each dot in the QCA cell represents a 

position where an electron can be positioned [11, 12]. In 

this technology, each cell is charged with two free elec-

trons. Electrons can tunnel between quantum dots [6]. 

It should be noted that there are two possible steady 

states for each cell. Fig. 1 shows a QCA cell and these 

two possible steady states.   
 

 
 

Fig. 1 – The possible polarizations for the QCA cell [2, 6] 
 

The polarization of the QCA cell, which is shown by 

P, can be computed based on the distribution probabil-

ity of the electron locations. Note that, P  − 1 and 

P  1 represent the binary value 0 and 1, respectively 

[2, 6, 13]. 

Equation (1) shows the calculation method for the 

polarization in the QCA cell [6, 13].  
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Here    denotes the ith quantum-dot charge ( 1 ip 

to show presentation of electron, otherwise it is 0). 
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2.2 QCA Clock 
 

In the QCA technology, clock is utilized for infor-

mation flow controlling [14]. The QCA clock is divided 

into four phases. Fig. 2 shows the clock zones in the 

QCA technology [14].  
 

 
 

Fig. 2 – The clock zones in the QCA technology [14] 
 

As it is shown in Fig. 2, the cells are begin depolar-

ized during the Switch phase. In this phase, the poten-

tial barriers within cells are low. In the Hold phase, the 

electrons cannot change their positions within the cell. 

However, they can influence other cells. Note that, the 

barrier potential is gradually become lower at the end 

of this phase. So, during the Release phase, the cells 

begin to depolarize. The clock phase changes to the 

Relax phase, when the barriers are in their lowest lev-

el. So, the cells are remain in this state and the cell 

barriers are remain at their lowest level [2, 14]. 
 

2.3 The QCA Gates 
 

The majority gate is a basic QCA logic gate. Figure 

3 shows the 3-input QCA majority gate [15].  
 

 
 

Fig. 3 – The 3-input QCA majority gate [15] 
 

The majority gate is a logical gate utilized in the 

complex circuits. The output of the majority gate is true 

if and only if more than 50% of its inputs are true [15]. 

The basic majority gate takes input as 3, 5, 7… (2n + 1) 

bits. The functionality of the 3-input majority gate is 

defined as follows [15]: 
 

 Maj(A, B, C) = AB + AC + BC (2) 

Other types of gates, namely AND gate and OR 

gate, are constructed by using the majority gate with 

fixed polarization on one of its inputs. On the other 

hand, a NOT gate is fundamentally different from the 

majority gate. Figure 4 shows these gates [2].  
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Fig. 4 – The QCA logic gates (a) AND gate (b) OR gate (c) 

Inverter gate [2, 8] 

 

2.4 The QCA Comparator 
 

Comparators are used in the CPUs and microcontrol-

lers. The comparator is a hardware electronic device that 

takes two integers as inputs in the binary form and de-

termines whether one integer is greater than, less than 

or equal to another integer (A  B, A  B and A  B) 

[16, 17]. The truth table for the 1-bit comparator is 

shown in Table 1.  
 

Table 1 – Truth table for 1 bit comparator 
 

A B L (A  B) E (A  B) G (A  B) 

0 0 0 1 0 

0 1 1 0 0 

1 0 0 0 1 

1 1 0 1 0 
 

In this table, when AB  00 & 11, both inputs are 

equal. Therefore, the output E, which is used to denote 

the state of A = B, will be high. When AB  01, B is 

greater than A. Hence, the output L, which is used to 

denote the state of B  A, is active, and when AB  10, 

A is greater than B. So, the output G, which is used to 

denote the state of A  B, is active. 

From the truth table, the logical expressions for 

each output can be expressed as follows: 
 

 If  A  B   then    L AB  (3) 
 

 If  A  B   then    L AB AB   (4) 
 

 If  A  B   then   G AB  (5) 
 

There are many attempts to improve the perfor-

mance of the QCA comparator such as [5, 6, 8, 9]. In 
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the rest of this section, the previous designs are pre-

sented and reviewed.  

In [5], a 1-bit comparator with 100 cells have been 

designed. This circuit is divided into four parts.  For 

stable information transmission, this circuit is connect-

ed to four different clock zones. 

The designed comparator in [6] has three outputs. 

This comparator composed of two layers with 79 cells. 

For an n-bit full comparator, the output E of one stage 

is fed directly to the input of the next stage. 

The comparator in [8] has been designed with 73 

cells. This comparator has two inputs and three out-

puts. These two inputs are compared and then the re-

sults are sent to one of three outputs. 

In [9], a comparator with three input has been de-

signed. The two 5-outputs majority gates generate L 

and G at the same time and the 3-input majority gate 

generates E after 0.25 clock cycles delay. This architec-

ture uses 43 cells and occupied area is 0.06 µm2.  

  

3. THE PROPOSED QCA COMPARATOR  
 

In this paper, we rewrite the equations 3-5 as fol-

lows: 
 

 If  A  B   then     ,  , 0 .L AB Maj A B   (6) 

 

 If  A  B   then    , , 0 .G AB Maj A B   (7) 

 

 If  A  B  then          ,E AB AB   (8) 
 

     , ,0 ,  ,  , 0 , 0Е Maj Maj A B Maj A B  

  ,  , 0 .Maj L G  

 

In this section, we propose new and efficient QCA 

comparator based on these equations. The proposed 

QCA comparator architecture is shown in Figure 5.  
 

 
 

a 
 

 
 

b 
 

Fig. 5 – The proposed QCA comparator (a) logic circuit, (b) 

layout 

As it is shown in Figure 5, the proposed comparator 

is composed of three majority gates. Two 3-input major-

ity gates generate G (A  B) and L (A  B). The outputs 

of these 3-input majority gates, act as inputs for 3-

input majority gate and generate E (A  B). When A 

and B are equal, the output A  B is 1 .If A is greater 

than B, the output G is 1 and if A is smaller than B, 

the output L is 1. 

 

4. SIMULATION RESULTS AND COMPARISONS 
 

The proposed QCA comparator architecture is simu-

lated using QCADesigner tool version 2.0.3. Table 2 

shows the utilized parameters for the simulation.  
 

Table 2 – The utilized parameter for the simulation of the 

proposed comparator architecture 
 

Parameter Value  

Number of samples 12800 

convergence tolerance 0.001000 

radius of effect [nm] 65.000000 

relative permittivity 12.900000 

clock high 9.800000e –

 22 

cell size [nm] 18*18 

clock low 3.800000e –

 23 

cell distance [nm] 2 

clock amplitude factor 2.000000 

layer separation 11.500000 

maximum iterations per sample 100 

the diameter of the quantum dot 

[nm] 

5 

 

These simulation results demonstrate that the pro-

posed QCA comparator has correct logic function. In 

addition, the designed comparator has 29 cells and the 

area occupied by circuit is 0.04 m2.  

Table 3 summarizes the simulation results of the 

proposed QCA comparator architecture in comparison 

with other QCA comparator architectures in [5, 6, 8-

10]. 
 

Table 3 – Comparison of the QCA comparators  
 

Reference 
Number 

of cells 
Area (in µm2) Delay 

[5] 100 0.13 1 

[6] 79 0.03 1 

[8] 73 0.06 1 

[9] 43 0.06 1.25 

[10] 81 0.06 0.75 

This paper 29 0.04 1 
 

Based on these simulation results, the proposed 

comparator has advantages in terms of the number of 

required cells in comparison with other QCA compara-

tor architectures in [5, 6, 8-10].  

 

5. CONCLUSION  
 

The QCA technology is a promising and helpful 

technology for circuit design at nano scale. In this pa-

per, a new architecture has been proposed for the QCA 
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comparator. The performance of the proposed QCA 

comparator has been verified using QCADesigner tool 

version 2.0.3. The simulation results showed that the 

number of required cells in the proposed QCA compara-

tor is 29 cells and the occupied area by the proposed 

QCA comparator architecture  is 0.04 µm2. In compari-

son with the previous comparator architecture, the 

proposed QCA comparator architecture achieved 36% 

reduction in terms of the number of required cells. 

Therefore, the proposed QCA comparator architecture 

has a huge potential to be an efficient architecture for 

hardware implementation of comparators in nano 

technology. 

 

 

REFERENCES 
 

1. A.O. Orlov, I. Amlani, R.K. Kummamuru, 

R. Ramasubramaniam, G. Toth, C.S. Lent, G.H. Bernstein, 

G.L. Snider, W. Porod, J.L. Merz, IEEE Conf. Nanotech., 

IEEE 465 (2001). 

2. H. Rashidi, A. Rezai, J. Nano- Electron. Phys. 9, 01012 

(2017). 

3. M. Mohammadi, Micro. J. 50, 35 (2016). 

4. Y. Xia, K. Qiu, J. Electron. Inf. Tech. 31 No 6, 1517 (2009). 

5. Q. Ke-ming, X. Yin-shui, 7th Int. Conf. ASIC 1297 (2007). 

6. M. Hayati, A. Rezaei, ETRI J. 34 No 2, 284 (2012). 

7. S.C. Henderson, E.W. Johnson, J.R. Janulis, P.D. Tougaw, 

IEEE Tran. Nanotech. 3, 2 (2004). 

8. G. Bahniman, G. Shoubhik, K. Smriti, IEEE Inter. Conf. 

Electr. Dev. Solid-State Circ. 1 (2012). 

9. D. Bahrepour, Int. J. Inf. Electr. Eng.5 No 6, 406 (2015). 

10. D. Ajitha, K.V. Ramanaiah, V. Sumalatha, Int. Conf. Adv. 

Electr. Comput. Commun. (ICAECC) 238 (2014). 

11. S. Hashemi, K. Navi, Int. Biennial Conf. Ultrafine Grained 

and Nanostruct. Mater. Proc. Mater. Sci. 11, 376 (2015).   

12. S. Hashemi, M. Tehrani, K. Navi, Sci. Res. Essays 7 No 2, 

177 (2012). 

13. H. Rashidi, A. Rezai, S. Soltany, J. Comput. Electr. 15 

No 3, 968 (2016). 

14. S. Nejad, F. Kakhki, E. Rahimi, Int. Symp. Commun. Syst. 

Netw. Digital Signal Proc. 351 (2010). 

15. V. Shekhawat, T. Sharma, K.G. Sharma, IEEE Int. Conf. 

Recent Adv. Innov. Eng. (ICRAIE) 1 (2014).  

16. H.S. Jagarlamudi, M. Saha, P.K. Jagarlamudi, World 

Acad. Sci. Eng. Tech. 5 No 12, 1529 (2011). 

17. K. Kong, Y. Shang, R. Lu, IEEE Trans. Nanotech. 9 No 2, 

170 (2009). 

 

https://www3.nd.edu/~lent/pdf/nd/Quantum-dot_Cellular_Automata_Introduction_and_experimental_overview.pdf
https://www3.nd.edu/~lent/pdf/nd/Quantum-dot_Cellular_Automata_Introduction_and_experimental_overview.pdf
https://doi.org/10.21272/jnep.9(1).01012
https://doi.org/10.4218/etrij.12.0211.0258
https://doi.org/10.1109/ICASIC.2007.4415874
http://dx.doi.org/10.4218/etrij.12.0211.0258
https://doi.org/10.1109/TNANO.2003.820506
https://doi.org/10.1166/qm.2016.1365
https://doi.org/10.1016/j.mspro.2015.11.133
https://doi.org/10.1016/j.mspro.2015.11.133
https://doi.org/10.5897/SRE11.1182
https://doi.org/10.5897/SRE11.1182
https://doi.org/10.1007/s10825-016-0832-3
https://doi.org/10.1007/s10825-016-0832-3
https://waset.org/publications/12355/quantum-dot-cellular-automata-based-effective-design-of-combinational-and-sequential-logical-structures
https://waset.org/publications/12355/quantum-dot-cellular-automata-based-effective-design-of-combinational-and-sequential-logical-structures
https://doi.org/10.1109/TNANO.2009.2028609
https://doi.org/10.1109/TNANO.2009.2028609

