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[1] Model applicability to core-scale solute transport is evaluated using breakthrough data 
from column experiments conducted with conservative tracers tritium ð3HÞ and sodium-22 
ð22Na Þ, and the retarding solute uranium-232 ð232UÞ. The three models considered are 
single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the 
multirate model, which is a deterministic model that admits the statistics of a random 
mobile-immobile mass-exchange rate coefficient. The experiments were conducted on 
intact Culebra Dolomite core samples. Previously, data were analyzed using single-porosity 
and double-porosity models although the Culebra Dolomite is known to possess multiple 
types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass 
transfer characteristics at field scale. The data are reanalyzed here and null-space Monte 
Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is 
adopted as a measure of the model structural error. The analysis clearly shows single-
porosity and double-porosity models are structurally deficient, yielding late-time residual 
bias that grows with time. On the other hand, the multirate model yields unbiased 
predictions consistent with the late-time -5=2 slope diagnostic of multirate mass transfer. 
The analysis indicates the multirate model is better suited to describing core-scale solute 
breakthrough in the Culebra Dolomite than the other two models. 

Citation : Malama, B., K. L. Kuhlman, and S. C. James (2013), Core-scale solute transport model selection using Monte Carlo 
analysis, Water Resour. Res., 49, 3133–3147, doi :10.1002/wrcr.20273. 

1. Introduction 

[2] During the last 30 years, significant effort has been 
expended to understand contaminant transport in fractured 
rock [Huyakorn et al., 1983 ; Sun and Buscheck, 2003] due 
in part to the necessity to evaluate site suitability for nu­
clear waste disposal. Contaminant transport in fractured 
rock is of common concern to regulators and stakeholders 
at nuclear waste disposal sites because off-site contaminant 
migration could impact groundwater resources. Modeling 
contaminant transport in fractured rock is challenging due 
to the complex and inherently heterogeneous nature of the 
transport domain, and the multitude of physical and chemi­
cal processes controlling contaminant interaction with the 
host rock. This has led to a development of several poten­
tially competing conceptualizations of the transport envi­
ronment [van Genuchten and Wagenet, 1989 ; Zheng et al., 
2010]. Model selection is typically based on subjective 
expert judgment. Hence, there is a need for objective crite­
ria for selecting physically based models that best describe 
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observed transport behavior and provide minimal predic­
tive uncertainty. 

[3] In this work, we present a criterion for selecting 
between competing models for describing transport at the 
core scale. Three models are considered : the single-poros­
ity model ; the traditional double-porosity model with sin-
gle-rate mobile-immobile domain mass exchange [van 
Genuchten and Wagenet, 1989 ; Gamerdinger et al., 1990], 
and ; a double-porosity model with multiple rates of mo­
bile-immobile-domain mass exchange controlled by a ran­
dom mass transfer coefficient [Haggerty and Gorelick, 
1995, 1998]. We refer to the traditional double-porosity 
model as simply the double-porosity model, and to the 
model with multiple rates of mass exchange as the multi-
rate model following Haggerty and Gorelick (1995) ; 
Haggerty et al. (2000) and Meigs et al. (2000). In the multi-
rate model, the mass transfer coefficient is a random vari­
able, not a single deterministic parameter. This 
conceptualization reflects spatial, not temporal, variability 
(due to heterogeneity, i.e., multiple types and scales of po­
rosity). The probability density function of the transfer 
coefficient gives the probability that a mobile-immobile 
interface (assumed to be randomly distributed in space), 
encountered by a particle along its trajectory through the 
transport domain, has a particular mass transfer coefficient 
value. 

[4] The three models are used to analyze breakthrough 
data collected in core-scale laboratory experiments [Lucero 
et al., 1998] using conservative tracers tritium ð3HÞ and so­

ð22dium-22 Na Þ, and the retarding tracer uranium-232 
ð232UÞ. The experiments analyzed herein were performed 
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on a rock core collected from a formation known to exhibit 
multiple types and scales of rock-matrix porosity. Previous 
analysis of the experimental data with single-porosity and 
double-porosity models by Lucero et al. (1998) yielded 
poor model fits to these data due to the inability of the two 
models to describe the long-tailing behavior of conserva­
tive solutes. The multirate model has been shown to prop­
erly describe this behavior in breakthrough data obtained in 
field-scale tracer tests [Meigs and Beauheim, 2001; Hagg­
erty et al., 2001; McKenna et al., 2001]. It is applied herein 
for the first time to core-scale breakthrough data to demon­
strate multirate mass-transfer effects are observable at this 
scale. 

[5] Null-space Monte Carlo analysis (NSMC) is used 
to evaluate model prediction uncertainty for each of the 
three model based on breakthrough data. It yields multi­
ple sets of parameters that calibrate the model [Tonkin et 
al., 2007; Tonkin and Doherty, 2009; James et al., 2009; 
Gallagher and Doherty, 2007], leading to multiple real­
izations of model fits to data at parameter estimation opti­
mality. By prediction uncertainty, we mean the variance 
and bias of the ensemble of these model-prediction real­
izations relative to observed behavior. Variance describes 
the scatter of realizations about mean behavior, while the 
residuals bias associated with each data point at optimal­
ity over all NSMC realizations provides a measure of the 
systematic departure of predicted from observed behav­
ior. This work presents the first use of residual bias in the 
solute transport literature as a criterion for model 
selection. 

2. The Multirate Transport Model 

[6] The multirate model is based on the traditional dou­
ble-porosity model where the transport domain is concep­
tualized as comprising two overlapping continua, namely 
the mobile (advective or fracture porosity) and immobile 
(diffusion-dominated matrix porosity) domains. Unlike the 
traditional double-porosity model where a single determin­
istic constant is used to characterize mobile-immobile­
domain mass exchange, a random variable is used in the 
multirate model. Using this conceptual approach, the gov­
erning equation for transport of a sorbing radionuclide in 
the mobile domain [Haggerty and Gorelick, 1995, 1998] is 
given in nondimensional form 

( ) Z 1@C 1 @2C @C þ f !D
@Cim þ d!D ¼ - - ADC;ð Þ ADCim

@T @T Pe @X 2 @X 

ð1Þ 

where C ¼ c=Cc;Cim ¼ cim =Cc;X ¼ x=Lc; T ¼ t=Tc; c 
and cim are mobile- and immobile-phase solute concen­[ ]
trations M L-3 ; x and t are space-time coordinates, 
Cc; Lc, and  Tc are characteristic concentration, length, 
and time, [AD ¼] ATc; A is the first-order radioactive decay 
constant T-1 ; !D ¼ !Tc is the dimensionless first-order 
mass-transfer rate coefficient (Damköhler-I number), 
f !D ¼ fT p !D is the rock matrix point capacity ratio,ð Þ ð Þ
fT ¼ ¢im Rim =¢ Rm is the dimensionless rock-matrixm 
total capacity ratio, p !D is the probability density func­ð Þ
tion (pdf) of !D; Pe ¼ Lc=aL is the Peeclet number, aL is 

the longitudinal dispersivity [L], ¢ and ¢im are the mobile-m 
and immobile-domain porosities, and Rm and Rim are the 
mobile- and immobile-domain retardation factors. 

[7] The dimensionless governing equation for immobile 
domain transport is 

@Cim ¼ !DðC - Cim Þ - ADCim ; ð2Þ 
@T 

the lumped-parameter formulation of immobile-domain 
mass transport. 

[8] The transport equations are solved subject to the ini­
tial condition 

C X  ; T ¼ 0Þ ¼ Cim ðT ¼ 0Þ ¼ ð3Þð C0; 

indicating initial equilibrium between mobile and immo­
bile-domain concentrations. The boundary condition at 
X ¼ 0 is  

( )  A @C þ BC 
 

¼ Cinj ð Þ;T ð4Þ  Lc @X X ¼0 

where Cinj is a normalized injection concentration and A 
[L] and B are parameters to specify the X ¼ 0 boundary 
condition type (A ¼ 0 and B ¼ 1 correspond to a Dirichlet 
boundary condition, while A ¼ -D=v and B ¼ 1 corre­
spond to a Robin boundary condition). The downstream 
boundary condition is 

( )
lim - 1 @C þ C ¼ 0; ð5Þ 

X !1 Pe @X 

indicating zero solute flux infinitely far downstream. 
[9] The solution to (1)–(5) is obtained on a semi-infinite 

domain 0 : X <1 as a simplification and limiting case of 
the finite domain considered by Haggerty and Gorelick 
(1995, 1998). It is given by 

( )
C inj - BCp uX þC X ¼ e Cp; ð6Þð Þ
B þ uA=Lc 

where the overbar indicates a Laplace transformed function, s is the ( qffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi )
Laplace transform parameter, u ¼ 1 - 1 þ 4f 1 =P P=2; 

ðs þ Þ ð Þ ¼ ðs þ Þ ð Þ ð Þ ¼ 1Cp ¼ C0= AD ; f 1 AD AD f 0 AD ; f 0 AD

þfT g AD , andð Þ
Z 1 !Dp !Dð Þ  

g AD ¼ ð7Þð Þ d!D: 
s þ AD þ !D0 

[10] The g AD is Laplacefunction ð Þ the transformed 
memory function of Haggerty et al. (2000). For single-po­
rosity gð ÞAD = 0, whereas for double-porosity with single-
rate mass transfer gð ÞAD ¼ !D=ðs þ AD þ !DÞ. The inverse 
Laplace transform of (6) is obtained using the de Hoog 
et al. (1982) algorithm. For all results reported herein, 
Cc ¼ cinj is the injection concentration, Lc is core length, 
and Tc ¼ Lc =vR, where vR ¼ v=Rm and v is the average lin­[ ]
ear velocity L T-1 . 
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2.1. Mass-Transfer Coefficient Distribution 

[11] To evaluate the memory kernel g AD numerically,ð Þ
the probability density function p !D must be specified. ð Þ
All valid probability density functions are admissible in the 
computation of the memory function, including single-pa­
rameter distributions such as the power-law used by Hagg­
erty et al. (2000) and Schumer et al. (2003). However, 
single-parameter distributions may not lead to improved 
multirate model predictions of breakthrough behavior com­
pared to the single-rate mass transfer model. Here, without 
loss of generality, we use the lognormal distribution 
because several key geological properties appear to approx­
imately follow this distribution [Haggerty and Gorelick, 
1998], including hydraulic conductivity [Neuman, 1982 ; 
Hoeksema and Kitanidis, 1985] and grain size [Buchan et 
al., 1993]. Other equally valid examples of distributions 
that have been used in the literature to characterize the mo­
bile-immobile mass transfer coefficients are summarized in 
Haggerty et al. (2000). Using any of these models with two 
or more parameters would likely yield multirate models 
that outperform the single-porosity and single-rate double-
porosity models. 

[12] The standard two-parameter lognormal distribution 
for !D 2 ½0;1Þ was used by Haggerty and Gorelick (1995, 
1998). For the case where physical bounds exist [ ]
!D 2 !D;min ; !D;max , it may be more appropriate to use ( )-1
the random variable !̂D ¼ 1=!D - 1=!D;max - !D;min , 
where !D;min and !D;max are the minimum and maximum 
physically allowable !D values. The pdf of !̂D is 

" # ( )21 log !̂D - Ĵð  Þ
pð  Þ^ pffiffiffiffiffi exp pffiffi ð8Þ!D ¼ ffi - ffi ; 

!̂D&̂ 2r &̂ 2

where Ĵ and &̂ are the mean and standard deviation of 
log ð  Þ^ .!D This is the lower- and upper-tail-truncated log­
normal distribution, which is a more plausible distribution 
when there are physical limits on permissible Damköhler-I 
numbers. These physical limits may be estimated from 
data. In the limit as !D;min ! 0 and !D;max ! 
1; !̂D ! !D, and p !̂D degenerates to the standard two-ð  Þ
parameter lognormal distribution. We set !D 2 ½0; 1000], 
loosely based on the work of Haggerty and Gorelick 
(1995), where !D ¼ 100 was suggested as the limit for sig­
nificant multirate mass transfer. 

3. Application to Core-Scale Breakthrough Data 

[13] The data considered here were collected in a series 
of column experiments conducted on five intact cores 
(denoted A through E) of the Culebra Dolomite as reported 
by Lucero et al. (1998). The Culebra Dolomite member of 
the Rustler formation of the Permian Basin in southeastern 
New Mexico is known to exhibit several categories and 
scales of porosity [Holt, 1997] including intercrystalline, 
interparticle, fracture, and vuggy porosities (Figure 1). The 
multiple types and scales of porosity are also clearly 
observable in Culebra Dolomite cores (Figure 2). The 
breakthrough data analyzed in this work were collected on 
the B core for the conservative tracers 3H and 22Na, and the 
retarding tracer 232U. Core B, pictured in Figure 2, was 
selected because its length-to-diameter ratio (50.9 cm to 

14.5 cm) was such that boundary effects can be neglected, 
thus permitting the use of the analytical solution developed 
for a 1D semi-infinite ð0 : x <1Þ transport domain. Dry 

3bulk density Pbulk ¼ 2400 kg=m and total porosity ¢T ¼ 
0:14 were determined by standard laboratory methods 
[Lucero et al., 1998]. Additional details on experiment 
setup, solute injection, flow rates, and effluent analysis, are 
available in Lucero et al. (1998) and are not repeated here. 

[14] Figure 3 shows normalized concentrations plotted 
against pore volume (PV) computed using ¢T. Solute injec­
tion pulses were longer in duration for tests shown in Fig­
ure 3b than for those in Figure 3a. Plotting data on a log-
log scale as in Figure 3b clearly shows that the effluent was 
not collected for a sufficiently long time to completely 
reveal the late-time tracer behavior. A long breakthrough 
tail is characteristic of mobile-immobile-domain mass 
transfer for conservative tracers. Despite this shortcoming, 
the data can be used to assess the performance of the three 
models. The data in Figure 3a show early breakthrough for 
both conservative tracers [Lucero et al., 1998], suggesting 
the occurrence of preferential flow in an advective porosity 
that is significantly smaller than the total core porosity ¢T. 
Breakthrough data for 232U are shown in Figure 4 (22Na 
data from the same test are included for comparison). 232U 
breakthrough clearly occurs much later than 22Na because 

232Uthe former sorbs onto the Culebra Dolomite. Peak 
concentration arrival occurs around 1 PV, about four times 
later than 22Na. Using the single-porosity model, Lucero 
et al. (1998) estimated the 232U retardation factor to be 4.5 
and 3.7, from B3 and B7 data, respectively. For the dual-
porosity model, they obtained mobile- and immobile-zone 
retardation factor values of fRm ¼ 1:14;Rim ¼ 65:4g and 
fRm ¼ 4:35;Rim ¼ 1:00g, from B3 and B7 data, respec­
tively. The value of Rim ¼ 65:4 appears to be an error in re­
cording the estimated value. 

3.1. Parameter Estimation 

[15] To estimate model parameters we let cobs be the 
breakthrough data vector, ccal h the model-calculated con­ð Þ
centrations vector, and h the vector of estimated model pa­( )
rameters. For 3H and 22Na, h ¼ ¢ ; aL; J; &; tinj , whereas m 
for 232U, h ¼ ðRm;Rim ; J; &  Þ. Injection pulse concentration ( )
cinj was fixed for tests B1, B2, B3, and B7, but was esti­

mated for tests B4, B5, and B8. Increased test durations for 
B4, B5, and B8 made it more difficult to maintain constant 
injection concentrations over prolonged test periods, result­
ing in injection concentrations that varied appreciably with 
time [Lucero et al., 1998]. Since this temporal variability is 
not incorporated explicitly into the solution, and its func­
tional form in unknown, the injection concentrations for 
tests B4, B5, and B8 are treated as unknown constants and 
are estimated from breakthrough data. Initial concentration 
ð Þ was fixed for all tests and was determined from efflu­
ent concentration values measured prior to solute injection. 
The truncated lognormal distribution ð!D 2 ½0; 1000]Þ was 
used to describe the mass-transfer coefficient distribution. 
The advective porosity ¢ , dispersivity, and the injected 

c0

ð Þm
pulse (tinj ) duration were estimated with the multirate 
model for 22Na data and used as fixed input parameters 
when estimating the retardation factor and !D distribution 
parameters from 232U data. Distribution parameters were 
also estimated for 232U because !D is a function of the 
tracer-specific molecular diffusion coefficient. 
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Figure 1. Different types and scales of Culebra Dolomite porosity. Anhydrite and mudstone of adja­
cent Rustler members act as confining layers. 

[16] We examine model sensitivity coefficients to deter­
mine whether all model parameters are estimable from 
available data. Sensitivity coefficients are derivatives of 
model-predicted effluent concentrations with respect to 
model parameters, which are elements of the Jacobian ma­
trix (J). They provide a measure of parameter identifiabil­
ity, because the determinant of JT J must be sufficiently 
larger than zero to be estimable from data [ € ¸ik and Ozis
Orlande, 2000]. Small sensitivity coefficients imply 
jJT Jj � 0 and the inverse problem is ill conditioned. Here, 
sensitivity coefficients were estimated with PEST [Doherty, 
2010] using central differences, and their variation with 
time is shown in Figure 5 for (a) short (B2) and (b) long 
(B4) solute injection pulses. The sensitivities are suffi­
ciently larger than zero to permit estimation of all parame­
ters from breakthrough data. The coefficients are also 
linearly independent for much of the time data were col­
lected. Apparent linear dependence is restricted to late-time 

data, implying parameters cannot be uniquely estimated 
solely from late-time data. The parameter sensitivity curves 
obtained in both short- and long-pulse injection tests show 
a weak symmetry between two opposite-sign branches 
associated with arrival and elution tracer breakthrough 
waves. Absolute values of sensitivity coefficients are larg­
est when measured concentrations are changing most rap­
idly. Variation of sensitivity coefficients with time for 
retarding tracer 232U in test B3 are shown in Figure 6. 
These are also sufficiently larger than zero indicating that 
parameters, including Rm and Rim , are estimable from 
breakthrough data. 

[17] Parameter estimation was performed using PEST. (  )  
The optimal vector of model parameters hopt was 
obtained by minimizing the sum of squared residuals, 

i h e h T e h ; ð9Þð Þ ¼ ð Þ ð Þ

Figure 2. Culebra Dolomite horizontal core B showing vuggy porosity, fractures, and vug-filling min­
erals. Foreground grid marks are inches. 
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Figure 3. Normalized concentrations plotted against PV for (a) short-injection-pulse tests B1, B2, B3, 
and B7, and (b) long constant-concentration-injection tests B4, B5, and B8. Vertical line marks one PV 
calculated using total porosity. Qx in (b) is volume flow rate in mL/min. 

where e ¼ cobs - ccal ð Þ is the vector of residuals. PEST h
uses the Levenberg-Marquardt nonlinear optimization algo­
rithm [Marquardt, 1963]. Parameter estimates and multi-
rate model fits to data are compared to those obtained using 
single-porosity and double-porosity models. Parameter val­
ues obtained by inverting 3H and 22Na breakthrough data 
with the all three models are summarized in Table 1 ; pa­
rameters estimated from 232U data are in Table 2. Because 
tinj was not reported in the original study [Lucero et al., 
1998], it was estimated from data. The !D column also 
includes the mean ðh!Di) and variance (&2 ) of the Dam­�D 

köhler-I number determined from the estimated values of Ĵ
and &̂. The last three rows of Table 1 show estimated model 
parameters from simultaneous inversion of B4, B5, and B8 
tracer-test breakthrough data. Parameter estimates are com­
parable to those from individual tests, even though the 
three tests were conducted with flow rates ranging over an 
order of magnitude (0.05, 0.1, and 0.5 mL/min). This indi­
cates minimal model structural error with regard to simulat­
ing average pore-water velocity. 

[21] Model fits to data for parameter values listed in Ta­
ble 1 are shown in Figure 7 (B1–B3, B7) and Figure 8 (B4, 
B5, B8) for 3H and 22Na. Figures are in pairs of (a) linear 
or semi-log (concentration on linear scale) and (b) log-log 

plots, to illustrate how models match data over multiple 
time scales and over several concentration orders of magni­
tude. The two plotting scales are complementary because 
an apparently good model fit on a semi-log or linear plot 
may be a poor fit on log-log scale, and vice versa. Model-fit 
results for 232U data are shown in Figure 9. Lucero et al. 
(1998) parameter estimates are comparable to those 
obtained here using single-porosity and double-porosity 
models, but they did not estimate tinj . 

[22] Parameter estimation using the multirate model 
yielded improved model fits to breakthrough data compared 
to those obtained using single-porosity and double-porosity 
models (see R2 values in Table 1). Mobile-domain porosity 
values (¢ ) estimated with single-porosity and double-po­m 
rosity models were comparable (means of 0.069 and 0.065, 
respectively), but were appreciably larger than those 
obtained using the multirate model (mean of 0.045). Dis­
persivity (aL) values were consistently largest for the sin­
gle-porosity model (mean of 12.1 cm) and smallest for the 
multirate model (mean of 3.76 cm) for all tests. Table 1 
shows there is significantly more variability in aL estimated 
using the single-porosity model than those obtained using 
the double-porosity and multirate models (standard devia­
tions of 4.2 cm, 2.4 cm, and 2.3 cm, respectively). The 

Figure 4. Concentrations plotted against PV for 22Na (conservative) and 232U (retarding) in tests B3 
(a) and B7 (b). Vertical line marks one PV calculated using total porosity. 
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Figure 5. Breakthrough concentration sensitivities to estimated multirate model parameters for (a) 
short- (B2) and (b) long-pulse (B4) 22Na tests. Concentration data are included for reference (those in (b) 
are scaled by 0.5). 

Damköhler-I numbers estimated with the double-porosity 
model appear closer (though not equal) to the geometric 
mean (h!Di ¼ eJ) of the multirate model than to the mean g

Jþ&2
(h!Di ¼ e =2). Results show absolute values of J and & 
for the 3H tracer test (B1) are smaller than those obtained 
with the tracer 22Na. With exception of B7, the 22Na tests 
yielded consistent values of J and & with jJj > 1:0 and 
& 1:9. Those obtained from 232U data (Table 2) are sig­
nificantly different. 

232U,[23] For the nonconservative tracer ¢ and aLm 
were estimated with the 22Na tracer from the same experi­
ment, because these parameters are intrinsic transport me­
dium properties. Estimated retardation factors from tests 
B3 and B7 are listed in Table 2. For test B3, fitting the mul­
tirate and double-porosity models to data yields Rm values 
appreciably smaller than the value obtained with single-po­
rosity model. This is because retardation is distributed 
between the mobile and immobile domains in the former 
two models. It is surprising to find the multirate model Rim 
in test B3 is significantly larger than the double-porosity 
model Rim . Intuitively, one would expect results similar to 

Figure 6. Breakthrough concentration sensitivities to 
estimated multirate model parameters for 232U in test B3. 

those obtained from test B7, because delayed breakthrough 
is partly due to matrix mass transfer and partly due to solid-
phase sorption. In addition, the retardation factors, Rm and 
Rim , estimated with the double-porosity and multirate mod­
els showed significant differences between test B3 and B7. 
These two results may be attributable to interplay between 
multirate mass-transfer and nonlinear sorption kinetics, 
where retardation is concentration dependent. The models 
all assume linear instantaneous sorption, variability in re­
tardation factors between tests B3 and B7 may be an arti­
fact of inherent model deficiency to account for nonlinear 
sorption kinetics. 232U column tests B3, B6 (not discussed 
here), and B7 were performed serially on the same core. B3 

232Uhad the lowest initial relative concentration with 
5c0=cinj ’ 2 x 10- , while for B7 c0=cinj ’ 10-3. B7  

was performed after the core had already been conditioned 
with 232U from the previous two tests. These initial concen­
tration differences are expected to affect the estimated re­
tardation factors in the presence of nonlinear sorption 
kinetics. 

3.2. Predictive Analysis 

[24] All models approximate a complex reality, and the 
discrepancy between reality and mathematical models is 
commonly referred to as model structural error. It is a mea­
sure of model deficiencies that lead to prediction errors 
even when the models are supplied with optimal input pa­
rameters. Structural error cannot be attributed to measure­
ment errors inherent in observations [Doherty and Welter, 
2010] and typically decreases as models become more real­
istic with increased understanding of underlying causal 
mechanisms of processes. A measure of structural error 
would thus provide an objective criterion for model 
selection. 

[25] Predictive uncertainty analysis presented here is 
used to demonstrate the structural deficiency of the single-
porosity and double-porosity models, and how this defi­
ciency leads to increased model prediction error. The anal­
ysis was undertaken with PEST for test B8. Details for 
conducting a PEST predictive uncertainty analysis can be 
found elsewhere [James et al., 2009 ; Tonkin and Doherty, 
2009 ; Tonkin et al., 2007 ; Gallagher and Doherty, 2007]. 
Using parameter values at optimality (Table 1) and the 
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Table 1. PEST-Estimated Parameters Using Conservative Tracer Breakthrough Data 

Test Qx (mL/min) Model ¢m aL (cm) !D J & tinj (hours) R2 �AIC c 

Single 0.081 7.99 1.33 0.982 902 
B1 3H 0.1 Double 0.073 4.83 0.735 1.28 1.69 0.997 215 

Multirate 0.060 2.98 (1.36, 7.43) -0.498 1.56 0.998 0 
Single 0.065 7.30 2.42 0.986 974 

B2 22Na 0.1 Double 0.061 5.14 0.538 3.48 0.997 476 
Multirate 0.042 2.18 (2.10, 217.9) -1.22 1.98 2.97 0.999 0 
Single 0.062 8.55 1.70 0.989 881 

B3 22Na 0.1 Double 0.058 6.04 0.395 2.17 0.996 474 
Multirate 0.037 2.03 (1.54, 70.3) -1.28 1.85 2.01 0.999 0 
Single 0.065 17.5 310.3 0.995 466 

B4 22Na 0.1 Double 0.062 9.38 0.209 312.4 0.998 117 
Multirate 0.045 3.37 (0.896, 19.7) -1.73 1.80 309.8 0.999 0 
Single 0.070 16.4 612.4 0.997 127 

B5 22Na 0.05 Double 0.069 10.7 0.229 611.8 0.998 0 
Multirate 0.051 5.72 (0.318, 8.21) -1.69 2.10 610.1 0.998 13 
Single 0.071 14.3 0.479 0.989 717 

B7 22Na 0.5 Double 0.066 9.89 0.473 0.601 0.999 183 
Multirate 0.061 8.46 (0.398, 0.314) -0.921 0.831 0.580 0.999 0 
Single 0.068 12.9 65.2 0.997 496 

B8 22Na 0.5 Double 0.065 7.01 0.289 64.6 0.999 379 
Multirate 0.047 3.01 (1.22, 45.8) -1.53 1.86 64.8 1.000 0 

Bf4,5,8g 
Single 
Double 
Multirate 

0.068 
0.066 
0.045 

15.8 
9.38 
3.46 

0.230 
(1.48, 107.9) -1.57 1.98 

a 

b 

c 

0.996 
0.998 
0.998 

676 
75 
0 

atinj ¼ f305.8, 619.3, 65.0g hours for Bf4,5,8g.
 
btinj ¼ f306.6, 619.0, 65.3g hours for Bf4,5,8g.
 
ctinj ¼ f305.2, 615.2, 64.9g hours for Bf4,5,8g.
 

associated covariance matrix, 500 random parameter sets 
were generated and projected onto the Jacobian matrix null 
space. No clear null space was found from the singular 
value decomposition of the Jacobian matrix, therefore we 
assumed the null space to be a single dimension in these 
low-dimensional (: 6) models. Model predictions com­
puted beyond the last observation based on the 500 parame­
ter sets generated in this manner are shown in the left 
column of Figure 10 for (a) single-porosity, (c) double-po­
rosity, and (e) multirate models. They show significant 
model prediction uncertainty for the single-porosity model, 
and only moderate uncertainty for the other two models. 
Using these parameter sets projected onto the null space as 
initial guesses, further minimization of i was undertaken, 
using the Jacobian matrix associated with the calibrated (  )
state. Using the value of i at optimality iopt , the 500 
null-space-projected parameter sets were processed with 
PEST to minimize the objective function such that 
i : 2iopt . Predictions associated with the recalibrated pa­
rameter sets are shown in the second column of Figure 10 
for (b) single-porosity, (d) double-porosity, and (f) multi-
rate models. As would be expected, post recalibration 
model predictions for all three models show a marked 

Table 2. PEST-Estimated Parameters Using 232U Breakthrough Data 

decrease in model prediction uncertainty from the precali­
bration predictions. The late-time -3=2 and -5=2 slope 
lines are included, which are diagnostic of double-porosity 
and multirate models [Haggerty et al., 2000]. Clearly, the 
model behavior projected beyond the time of the last obser­
vation follows the -3=2 slope for the dual-porosity model, 
and the -5=2 slope for the multirate mass transfer model. 

[26] Recalibration single-porosity model projections 
show significant underestimation of late-time observations. 
Dual-porosity model predictions are skewed toward overes­
timating the late-time observations. Multirate model pro­
jections are uniformly centered about the data and are 
consistent with the observed trend of the elution curve. Fig­
ure 11 shows histograms of residuals associated with the 
three models plotted at (a) t ¼ 4:1 and (b) t ¼ 4:7 days. 
Whereas the residuals computed at t ¼ 4:7 days with the 
multirate model have zero bias, those of the double-poros­
ity and single-porosity models show clear bias to negative 
(concentration overestimation) and positive (underestima­
tion) values. Only the multirate model shows minimal bias 
about the observed late-time data, even though its ensemble 
of predictions has comparable spread (variance) to those of 
the double-porosity model beyond the last observation. The 

Test Model Rm Rim !D J & 
tinj 

(hours) R2 

B3 
Single 
Double 

3.65 
2.36 1.80 0.754 

1.92 
2.33 

0.946 
0.995 

B7 

Multirate 
Single 
Double 
Multirate 

1.63 
3.49 
3.52 
3.48 

5.68 

2.83 
1.30 

(1.44, 176.4) 

0.022 
(66.6, 2.45x107) 

-1.86 

-2.21 

2.11 

3.58 

3.00 
2.33 
2.15 
2.12 

0.998 
0.987 
0.993 
0.991 
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Figure 7. Model fits to core B 22Na breakthrough data for short-pulse tests (B1, B2, B3, and B7) on 
(a) semi-log and (b) log-log scales. 

residual bias signifies model structural error associated gle-porosity and double-porosity model structural error
 
with single-porosity and dual-porosity models. Comparing increase with time, while bias for the multirate model does
 
results in Figure 11a and 11b shows residual bias and sin- not show appreciable change. At time t ¼ 4:1 days, the
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Figure 8. Model fits to core B 22Na breakthrough data for long-pulse tests (B4, B5, and B8) on (a) lin­
ear and (b) log-log scales. 

dual-porosity model residuals have zero mean and are 
nearly coincident with the multirate model. However, at 
t ¼ 4:7 days there is a growth in double-porosity model 
prediction bias. Prediction error due to model structural 
error increases with time. 

[27] Figure 12 shows histograms of 500 calibrated multi-
rate model parameter sets obtained from the posterior 
NSMC analysis described above. These distributions pro­
vide a measure of parameter estimation uncertainty. How­
ever, as indicated by Keating et al. (2010), parameter sets 
obtained using NSMC analysis do not necessarily consti­
tute a sample of the posterior density function of the param­
eters in the strict Bayesian sense. This is especially true 

with low-dimensional models (at most six parameters for 
the present case) for which a proper null space may not 
exist. This can be seen by comparing the posterior distribu­
tion obtained with the NSMC analysis with those obtained 
to a formal Bayesian approach using the DiffeRential Evo­
lution Adaptive Metropolis (DREAM) algorithm [Vrugt 
et al., 2008, 2009a, 2009b]. For the problem considered 
here with six parameters to be estimated from log-trans­
formed concentrations, DREAM ran six different Markov 
chains, and after a burn-in period of about 35,000 model 
runs per chain, we obtained the parameter posterior distri­
butions shown in Figure 13. DREAM required 300,000 
total model runs. Clearly, the computational demands of 
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Figure 9. Model fits to 232U breakthrough data from tests B3 and B7 on semi-log plots. Parameters 
shown in plots are for the multirate model. 

Figure 10. Model prediction uncertainty evaluated using posterior Monte Carlo analysis on B8 data 
with the (a and b) single-porosity, (c and d) double-porosity and (e and f) the multirate models (left and 
right columns represent before and after recalibration, respectively). Double-porosity model predictions 
approach -3=2 slope while the multirate model predictions approach -5=2 slope. 
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Figure 11. Residual histograms computed at (a) t ¼ 4:1 days and (b) t ¼ 4:7 days with recalibrated 
model runs. 

formal Bayesian analysis with DREAM can be prohibi­
tively high [Keating et al., 2010]. The parameter posterior 
distributions shown in Figure 13 show the final 10,000 
model runs. Normal distributions are included in the figure 
for comparison. The results show that posterior distribu­
tions obtained with DREAM have smaller variances and 
are more Gaussian than those obtained with the PEST pos­
terior NSMC analysis. While PEST results indicate greater 
variability in estimated parameter values that calibrate the 
model, DREAM results indicate that parameter estimation 
uncertainty is actually smaller. The low-dimensionality of 
the parameter space leads to an overestimation of parame­
ter estimation uncertainty using null-space Monte-Carlo 
analysis. Thus, PEST-based parameter estimation uncer­
tainty, obtained with NSMC analysis for a significantly 
lower computational cost, may be viewed as the upper 

bound of the true uncertainty computed with DREAM, for 
cases like the low-dimensional models used here. 

3.3. Statistical Model Selection 

[28] For a given number of observations, as models 
become more realistic, the increase in model complexity 
and the number of parameters leads to increased parameter 
estimation uncertainty because the number of observations 
available per estimated parameter decreases. In this case, 
model complexity and the number of parameters increase 
from the single-porosity to the multirate model, but the re­
spective model parameters are estimated with the same 
number of observations. Hence, statistical criteria that 
account for decreased information content due to increased 
model complexity may be used to augment model selection 
based on structural error evaluation. The corrected Akaike 

Figure 12. Parameter histograms after recalibration with PEST posterior Monte Carlo analysis for test 
B8. Red line indicates PEST-estimated optimal parameter values and green lines are PEST-estimated 
95% confidence intervals. 
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Figure 13. Posterior model parameter distributions estimated with DREAM for test B8. Red curves 
are normal distributions corresponding to mean and variance computed from data. 

Information Criterion, AIC c [Hurvich and Tsai, 1997 ; 
Anderson 
2005] is us

and Burnham, 1999 ; Poeter and Anderson, 
ed here for this purpose 

AIC c ¼ 2n log &eð Þ þ
n 

 
k 
- k - 1

 
; ð10Þ 

where n is the number of observations, k is the number of 
estimated parameters, and &e is the standard deviation of 

Figure 14. Model fits to test B8 data where only 30 data 
points were used in the optimization. The AIC c for each 
model is included in parenthesis. 

residuals at optimality. The first term typically decreases as 
model complexity increases, representing improved model 
fit to data, while the second penalty term increases. 
Because AIC c is a relative measure, it is preferable to use 
differentials of AIC c [Posada and Buckley, 2004], denoted 

AIC c, over all the three models under consideration. For 
iththe model, AIC c;i ¼ AIC c;i -min AIC c, where 

min AIC c is the smallest AIC c value among all models for 
this dataset. The AIC c are computed using PEST and 

AIC c are listed in Table 1. The minimum AIC c corre­
sponds to the multirate model, except in test B5, where it 
corresponds to the double-porosity model. Clearly, the rela­
tive AIC c values confirm the results of predictive analysis 
that the multirate model is better suited than the other two 
models to describing transport in the Culebra Dolomite 
core. 

[29] For time series data with high autocorrelation, the 
penalty for model complexity is vanishingly small when 
n o k and the AIC c reduces to a ranking of the models by 
residual variance. However, this is only a problem when 
the increased number of observations does not significantly 
increase the information content of the observation about 
the estimated parameters. We present, a separate optimiza­
tion with PEST using only 30 of the original 269 data in 
test B8 to determine whether the ranking of the three mod­
els with the AIC c would change appreciably. The resulting 
model fits are shown in Figure 14. Basically, the same 
results were obtained with the multirate model outperform­
ing the other two models. This is because the estimation 
variance is always smallest for the multirate model, and 
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Figure 15. Temporal residuals of tests B4, B5, and B8 and the histogram of the test B8 residuals.
 

artificially reducing n only has a modest effect on the final 
outcome. It should also be noted that a large n allows one 
to better capture the variability in the data due to random 
measurement error, which are assumed to be Gaussian in 
minimization of the sum of squared residuals. Furthermore, 
the number of parameters to be estimated increased by 2 
from the single-porosity to the multirate model, while the 
estimation variance also changed by a factor of about 2 
(7:6 x 10-6 to 3:2 x 10-7). 

[30] The temporal structure of the residuals was exam­
ined to determine whether they show strong temporal auto-
correlation (Figure 15). It can be seen that moderate 
autocorrelation is limited to very early time. Additionally, 
in this early-time period, it can be seen that only the single-
porosity model residuals show appreciable temporal auto-
correlation, which decreases as one moves to the multirate 
model. The computed responses of the single-porosity 
model show strong departure from observed behavior. As 
can be seen in Figure 15, the residuals obtained with the 
multirate model for the long tests (B4, B5, and B8) show 
only moderate temporal autocorrelation (at early time) and 
are mostly randomly distributed about zero. It should also 
be noted that the statistical rigor of DREAM does not 
depend on the distribution of the residuals but on the sam­
pling of the parameter space for parameters that minimize 
the sum of squared residuals. 

4. Discussion and Conclusions 

[31] We reanalyzed core-scale 3H and 22Na breakthrough 
data from experiments conducted by Lucero et al. (1998) 
on a Culebra Dolomite core using the single-porosity, dou­
ble-porosity, and the multirate model of [Haggerty and Gor­
elick, 1995, 1998] for a semi-infinite domain to determine 
which of the models best describes the observed break 
through behavior. Previous analysis of these data by Lucero 
et al. (1998) had suggested that the single-porosity model 
was sufficient to describe core-scale Culebra transport, a 
finding at odds with conclusions based on field-scale tests 
conducted in the Culebra Dolomite formation [Meigs et al., 
2000 ; McKenna et al., 2001]. In the results presented herein, 
the multirate model yielded better model fits to the data and 
significantly different parameter values from those obtained 
with the single-porosity and double-porosity models. The 
mobile-domain porosity and dispersivity values obtained 
with the multirate model were consistently lower than those 
obtained with the other two models because solute disper­
sion in the core is also accounted for by porosity variability 
encapsulated in the distribution parameters of the mobile/ 
immobile domain mass-transfer coefficient. The smaller dis­
persivity obtained with the multirate model is more plausible 
than those obtained with the other models, considering the 
length scale of the experiments. 
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[32] Model-prediction uncertainty was evaluated using 
breakthrough data from test B8 and post-calibration NSMC 
analysis as implemented with PEST. The prediction uncer­
tainty analysis revealed the presence of model structural 
error in the single-porosity and double-porosity models as 
demonstrated by significant bias in the residuals of model 
predictions made with these models with optimal parameter 
values. The residual bias increased with time over the span 
of the elution curve where breakthrough data are available, 
showing increased departure of model predictions from the 
observed trend (-5=2 slope line) of breakthrough data. The 
parameters associated with the NSMC predictive analysis 
may be viewed as samples from the posterior parameter 
distributions and were used to evaluate parameter estima­
tion uncertainty. The posterior distributions estimated using 
NSMC analysis were compared to those obtained with the 
more rigorous Bayesian analysis using the DREAM algo­
rithm. The comparison suggests that measures of parameter 
estimation uncertainty obtained with NSMC may be treated 
as upper bounds of the true posterior distributions, particu­
larly for low dimensional models where a true null space 
may not exist. 

[33] The analysis presented herein clearly shows the re­
sidual bias associated with the single-porosity and double-
porosity models increases with time indicating increasing 
systematic departure of predicted from observed behavior 
due to the inherent structural deficiencies of these models. 
The multirate model residuals, however, maintain minimal 
bias with time, indicating low model structural error. 
Although the predictions with the double-porosity and mul­
tirate models beyond the last observation have comparable 
variance, only the residuals of the multirate model have 
zero bias. These results show that the multirate model is 
the most appropriate of the three models for describing sol­
ute breakthrough behavior in Culebra core even though the 
three models yield parameters with comparable variances 
of posterior distributions. This finding was further con­
firmed using statistical model selection using the differen­
tial AIC c where the AIC c value was typically smallest for 
the multirate model. The one test where the double-porosity 
model yielded the smallest differential AIC c value, the 
value associated with the multirate model was only margin­
ally larger (0.5%). More elution data would be needed to 
resolve this minor departure from the norm given that the 
two models predict disparate long-term tailing behaviors. 
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