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Abstract. Aerodynamic analysis in motorsport is conducted using three methods, computational, 

scaled experimental and full-scale operational. However, the varying fidelity, different sampling 

resolutions and unavoidable errors of each technique make valid comparisons between datasets 

from each method difficult and time consuming.  Kriging is a geostatistical method to estimate 

values within a data field by examining and applying the trends of the dataset. This research 

examines how such techniques can be used to aid comparison between aerodynamic measurements 

of a race car. It examines how kriging can be used to transform discrete measurements, of varying 

fidelity and sampling resolution, into semi-continuous measurements, thus allowing computational 

results to be compared across a wider range of conditions than initially tested. This work explores 

how kriging can allow the trends from highly sampled data, such as track running, to be applied to 

less sampled data, such as CFD to improve computational and overall aerodynamic analysis. 

Introduction 

In modern motorsport aerodynamics has become a key performance differentiator due to the 

large impact aerodynamic devices have on overall car performance as highlighted by Toet [1]. This 

results in a much faster rate of aerodynamic development compared with other areas of the 

aerospace and motoring industry, with cars often being developed week to week [1]. It also sees a 

variety of analysis methods being used and thus puts demands on analysis techniques that are not 

seen in other applications. A major issue for many industries is how to assess performance with 

various pieces of data that are not sampled at the same resolution or in the same exact conditions.  

The importance of CFD, and other aerodynamic analysis methods to motorsport is clearly 

evident as highlighted in [1]. This work highlights that Reynolds Averaged Navier Stokes (RANS) 

solvers are commonly used within motorsport for aerodynamic development and to understand the 

differences between the various testing methods. One CFD run examines a single car geometry and 

condition, taking a number of hours to produce one solution. Thus it is not efficient to test a wide 

range of points in CFD. However for each solution it does provide a large amount of detail about 

the nature of the flow surrounding the vehicle. Ultimately CFD is a method to predict the 

performance of a component, the real test and end usage of any component in motorsport is on track 

running. [1] clearly identifies the importance of on-track testing but also highlight the difficulties 

associated with it. Furthermore the work of Petrone et al [2] demonstrates the large effort required 

to derive accurate aerodynamic component loads from on track testing alone. The contradictions 

and complexity of motorsport aerodynamic CFD analysis are clearly evident. It is therefore clear 

that a method to predict the performance of a CFD model across a wider range of conditions, 

without explicitly testing those conditions would be highly desirable.  

Various pieces of research have proposed that kriging and cokriging could fulfill such 

requirements. Kriging was developed in the 1950s for applications in geostastistics and mining as 

outlined in Krige's 1951 PhD thesis, [3]. In this work Krige outlines that any estimated point 

(	�� ���� ), can be considered as a linear combination of known values in a dataset (������ , as per, 

	�� ���� = ∑ �������
�
�
�                                            (1) 
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Furthermore the weightings, w, for this linear combination can be calculated by examining the 

variances within the dataset, and considering the location of the estimated point to the known values 

of the dataset. The work of Matheron, [4] gave further mathematical definitions to the concepts 

outlined in [3]. There is, therefore, a well-founded theoretical basis for kriging. From this 

theoretical basis kriging has been extensively applied in a number of other areas. Watson [5] 

investigated the application of kriging and cokriging to aerodynamic wake measurements. The work 

of [5] clearly demonstrates that kriging and cokriging can be applied to compare and correlate 

computational and experimental aerodynamic results. [5] also outlined how kriging can be used to 

provide quantitative measurements for correlation of aerodynamic measurements in an area that was 

previously only qualitative.   

Laurenceau’s 2008 work [6] demonstrates that with all methods of kriging, average errors began 

to level off when a sampling size greater than 50 is used.  Crowel et al [7] confirms this and 

compares kriging and proper orthogonal decomposition (POD) to interpolate CFD results. The work 

of [7] details that kriging is, on average, more accurate than POD, however it is less 

computationally efficient.  

Cokriging extends basic kriging to produce a second set of weightings using a second, related 

dataset however also adds complexity to the analysis. The work of Han et al [8] proposes a new 

method for cokriging, aiming to reduce its complexity. This work utilises low fidelity CFD results, 

cokriged with less sampled but higher fidelity CFD results to improve aerodynamic measurements. 

This work was furthered by Han et al in [9] where hierarchical kriging was utilisied. By applying 

kriging multiple times building up in fidelity it is possible to produce estimation as accurate as 

cokriging with reduced resources. These works justify the need for a less complex, more efficient 

method to compare datasets of varying fidelity. Furthermore the variety of aerodynamic 

applications of kriging seen in [5], [6], [7], [8] and [9] demonstrate that kriging has the fundamental 

accuracy to be applied to a range of aerodynamic analysis problems.  

Methodology 

Existing wind tunnel (WT) data was provided by Carlin Motorsport that sampled the car at 

various front and rear rideheights, producing a number of aerodynamic measurements. Further to 

this a CFD model of the F312 racecar was constructed using geometry supplied by Carlin. Previous 

works, ([10],[11],[12]) have shown that the K-� Realizable turbulence model sufficiently predicts 

the performance inverted wings in ground effect, as such this turbulence model has been applied to 

the CFD in this work. The flow was assumed to be incompressible as [12] and [13] show this 

assumption is within the bounds of accuracy for this study. The added accuracy of compressible 

flow modelling seen in these works did not outweigh reduction in the number of test cases caused 

by the added resources that would be required. An unstructured mesh, constructed in BETA-CAE 

ANSA was used and the solution solved using Fluent. In total the mesh comprised of approximately 

20 million cells. A y
+ 

> 30 has been used for all CFD cases due to the complex geometry of the 

F312 and the accurate performance of the K-� Realizable turbulence model at this y
+ 

[14]. The CFD 

model was validated against existing WT data. For a full WT replication geometry results were 

found to be within 2.5% and 4.8% for lift and drag respectively. All solutions were completed on 

UNSW’s high performance Trentino cluster across 64 processes.  

In addition to the WT data, track data was also supplied by Carlin Motorsport. As outlined above 

modelling the precise aerodynamic loads from on track data is extremely difficult, however with 

some simple assumptions aerodynamic trends can be easily extracted from suspension deflection 

readings, as per Nowlan [15]. For simplification and comparison to the WT and CFD results only 

straight-line running has been considered. In this running the impact of acceleration on suspension 

readings was minimised by only considering points where acceleration was negligible. Despite this, 

minor acceleration and vibration will still be present in the data, which partially accounts for the 

increased variability seen in the track interpolation. When the car is travelling in a straight line it is 

assumed that the only variable force acting upon the suspension is aerodynamic. Some forces, other 

than aerodynamic loads, do act on the suspension during on track running. However, these other 
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forces are more constant and thus do not vary with front and rear ride height to the extent of the 

aerodynamic forces. As a result the change in suspension loading with ride height can be considered 

primarily due to aerodynamics. As such, it can be clearly seen that the net aerodynamic force can be 

considered approximately equal to the sum of the suspension forces at each of the four springs. As 

such the following formulas have been used to estimate the aerodynamic loads acting on the F312 

in track running, 

����� = ��	���	���	                              (2) 

����� = ∑�����                                  (3) 

Where MR= motion ratio, which relates the amount of wheel movement to the deflection of the 

suspension as determined by suspension geometry, K= suspension spring rate and � is the deflection 

of the suspension in mm.  

Kriging has been used to examine the change in aerodynamic loading with front and rear ride 

height. The advantage of kriging over other interpolation methods is that it first examines the 

dataset to determine the trends and then uses this to inform its interpolation, rather than relying on a 

generic interpolation function, such as a basic polynomial. The first step is to examine the 

covariance in the dataset, by considering the distances between all known points in a dataset a 

variogram can be fitted that models the covariance in the dataset at  distance h. For this work a 

tuned Gaussian variogram has been utilised, as per: 

����� = 1 −  !"�#$�
%
                              (4) 

     In this variogram, &, has been used to tune the variogram to fit the dataset with h being the 

separation distance between the data points. Kriging aims to minimise the variance of the 

theoretical error of the estimated point (���, by differentiating the variance expression the following 

system of equation is produced which Isaaks and Srivastava [16] refer to as the ordinary kriging 

system. 

'� = (                                                                                               (5) 

Where C is the modelled variogram of the known points in the dataset, w is the weightings to be 

applied to each datapoint and D is the modelled variogram of the estimated point to the known 

points. For brevity the full derivation will not be discussed but can be found in numerous resources 

such as [16]. Through this it is possible to produce aerodynamic measurements across a wider range 

of conditions than initially explicitly tested.  It can be seen that the ordinary kriging system is a 

function of both the variogram, (���,	and the dataset, (ℝ��, with  �� being used to calculate C and D 

for the various measured values in	ℝ�. Therefore the trends, of various datasets (��, �+… . � can be 

applied to each discrete dataset,	ℝ�. Each dataset (ℝ�) will, however, have its own natural level of 

total covariance. This is primarily influenced by the noise and drift within the data, rather than the 

actual trend of the dataset. To account for this each variogram, (���, has been normalised by total 

covariance. This ensures that all variograms reach unity, rather than total covariance, as h increases. 

This process ensures that each variogram can be scaled to match the total covariance of the dataset 

it is to be applied to, allowing variograms from each method to be applied to any other methods 

dataset. This is akin to cokriging; however, this simple procedure negates the complexity of 

cokriging. This process requires the same level of resources as basic kriging however results in an 

outcome similar to that of cokriging. 

Results and Discussion 

In this work nine CFD test points have been considered. In contrast to the CFD measurements 

the track data took in approximately 200 straight line measurements during the one lap considered. 

The wider range of sampling points provided by the WT and track allow for a more accurate 

variogram to be fitted to the datasets. As can be seen in Fig. 1 that the track dataset has a slightly 

different distribution, to the other datasets, with unity reached at a much higher h. All three datasets 
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do, however, show Gaussian distribution as seen in Fig. 1. The on track ride height measurements 

will have a margin of error and noise attached to them. This, in combination with the wider range of 

sampled points results in the slightly different distribution. The impact of these errors, however, has 

been minimised by filtering the data before analysing it, in line with method discussed in [2]. 

However, one must acknowledge and consider the variability and range of on track measurements 

as this is what the car will experience in real life.   

 
Figure 1-Normalised Variograms comparison 

 
Figure 2- CFD and WT results interpolated over the track ride height conditions 

 

This work has focused on the predicted load values from the WT and CFD datasets. It has used 

the raw datasets and a kriging procedure to produce a prediction of load over the range of ride 

heights experienced during one lap of on track running for each method of analysis, as seen in Fig. 

2. The range of ride heights seen in the track lap sees h vary by approximately 30mm over the 

interpolation. Both WT and CFD were sampled at the same velocity and as such the interpolation 

has only considered the impact of front and rear ride height on load. The pure act of interpolating 

the two datasets across the wider range of track front and rear ride heights demonstrates the value of 

the kriging process for aerodynamic analysis. The kriging process utilisied extends the CFD and 

WT results across a much wider range of conditions, using the discrete raw results as a basis. 

To simulate all 800 track front and rear ride height measurements in both CFD and WT would 

take considerable resources and in many cases is not possible. The kriging process used reduces the 

time and resources required to estimate the CFD results over various conditions. While the process 

may not produce results of perfect accuracy it does given a valuable insight into an area which 

otherwise lacked detail. It can be clearly seen in Fig. 2 that the CFD results, do in general, agree 

with the WT results. However at several key areas they deviate. It was known that the areas of 

deviation all occur at a somewhat similar front and rear ride height combination. Further 

investigation at these conditions could thus provide vital information about the limitations of the 

CFD model and guide future development of the computational model.  
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Figure 3- Comparison of interpolated CFD results using trends of various datasets 

 

The process outlined previously allows for the trends seen in the various datasets to be applied to 

the distinct CFD measurements. The variograms, and thus trends, from the three analysis methods 

have been applied to the nine CFD readings and interpolated over the timed lap, as seen in Fig. 3. 

The three interpolations have used the same base dataset, with only the difference in the kriging 

process being the variogram applied. As a result the differences seen in Fig. 3 represent the 

differences in the trends predicted by the three methods. The higher variability of the track data is 

clearly seen. This variability is partially due to influences from variables, such as car vibration, that 

cannot be controlled at the level seen in the WT and CFD and the inherent noise of track 

measurements as highlighted by [1] and [2] and discussed previously in regards to the track 

variogram. Furthermore when considered with Fig. 2 the process has highlighted both the ride 

height conditions where the CFD results differ from the WT and the areas where the trends of the 

CFD results differ. By extending the CFD results to a wider range of test points than initially 

individually sampled in CFD, large amounts of detail regarding the CFD results, has been provided 

that would otherwise not be evident if only the raw results were used.  

Summary 

The kriging process developed extends the initial CFD results to a wider range of testing 

conditions and gives added detail regarding the CFD results that would not be possible if only raw 

results were considered. This substantially reduces the time and effort required to produce CFD 

results across a wide range of testing points. The value of this low resource method can be clearly 

seen, especially when one considers the time and resources required to obtain similar results over 

the 800 track test points using CFD testing at each point. This process also uses the discrete 

measurements of CFD, and applies the other methods variograms to the interpolation, providing 

further detail on the CFD model that would not be possible otherwise. Although this work has 

focused on motorsport analysis it is believed that the results of this work could be readily applied to 

a variety of computational analysis.  
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