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Abstract. For automotive applications, passive flow control devices can be used to reduce, delay or 

prevent flow separation. This study explores the nature of vortex generation and behaviour, 

numerically and experimentally, for a simple geometry at a Reynolds Number (Rex) of 5×10
5
 and 

1.945×10
6
. The setup comprised a triangular vane vortex-generator mounted on a shallow ramp 

referenced from literature. Flow over the isolated ramp was validated with past experimental 

particle-image-velocimetry (PIV) data, which also highlighted the relative performance of various 

turbulence models. A parametric study was undertaken with the vane orientation defined by an 

angle-of-attack (β) and stream-wise location (xedge/xVG). These results revealed relationships 

between geometric parameters of the vortex generator, as well as the influence of the boundary 

layer thickness (hVG/δ), on the spatial trajectory of induced vortices. 

Introduction 

Most modern formula racing cars include fins, barge boards, turning vanes and vortex generators 

(VGs) to control the airflow. Flow separation generally occurs due to the momentum loss in the 

boundary layer as it acts against an adverse pressure gradient [1], [2]. Typical race cars are designed 

for high downforce, but the large gradients associated with this are separation-prone. Vortices are 

also often generated in order to influence specific components elsewhere on the vehicle, which can 

be far downstream and therefore sensitive to vortex path variation and decay behaviour. 

The present work explores the influence of VG position and orientation on the trajectory of 

induced vortices emanating from a simple vane-type configuration. Although previous studies have 

identified some of the generic features [2] of vortex generators, further progress is required in 

characterizing the downstream core behaviour and assessing the suitability or otherwise of steady-

state Reynolds-Averaged Navier-Stokes (RANS) modeling (typical in the motorsport industry) for 

this application. 

The vane, in both experiments and simulations, was positioned on a ramp geometry which 

provided some complexity to the baseline flow and pressure distribution as a loose proxy for a real-

world scenario. The ramp was inspired by Beves [1], who studied flow control using surface 

dimples and provided a good starting point for validation. Initially, the ramp geometry was 

simulated as a valid and verified baseline prior to application of flow control. Secondly, the VGs 

were attached to the ramp and simulated under identical free-stream flow at different orientations. 

Latter set of simulations also incorporated higher velocities and was supported by wind tunnel 

experiments. 

Methodology 

A triangular-shaped, 26.57° vane-type VG, 30 mm long (xVG) and 15 mm high (hVG) was used 

throughout the present study. This had an aspect ratio of 2 (xVG/hVG) and was modelled to represent 

a 2 mm thick plate. Dimensions of the wind tunnel test section (Fig. 1) used by Beves [1] was 

numerically replicated, with an upstream ramp angle of 5.5° and a downstream ramp angle of 16°. 
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His PIV measurements were taken at three inspection planes X50, X100 and X200 (Fig. 1). A near-

identical meshing strategy was used with the VG-inclusive domain, constructed after this initial 

validation stage and these results were experimentally validated after collaboration with RMIT 

University. For the sake of brevity, this will only be briefly mentioned, with more emphasis on 

validation against the original ramp flow. 

 
Figure 1: Original layout of the 350 mm wide wind tunnel test section defined by Beves [1] marked 

with the primary longitudinal and cross-stream inspection planes used in this study. 

 

Table 1: Boundary conditions defined for the reference flow domain shown in Fig 1. 

A B C D 

4.5 m/s inlet Zero-shear wall 0 Pa Pressure Outlet No-Slip wall 

Wind-tunnel experiments at RMIT utilised four-hole Cobra probes with a 13-second sampling 

time to resolve all three velocity components downstream of the VG. A 5×4 measurement grid was 

used for different angles-of-attack, at 1 VG-length downstream of the tail. 

Numerical Model 

A 64-bit commercial pressure-based solver, ANSYS Fluent, was used with second order 

upwinding for discretisation. The isolated ramp domain was examined with 4 different fully-

structured, hexahedral meshes. The local boundary layer was captured by approximately 20 and 24 

cells for the reference and fine mesh respectively. All the final meshes achieved 0.6<y
+
<3 along the 

ramp. This ensured that wall functions were not required [3]. Turbulence properties at the inlet 

matched measurements where available. 

The selected mesh for the isolated ramp consisted of 3.002 million cells and a convergence study 

was undertaken using non-uniform grid-convergence-index (GCI) [4]. An average edge length ratio 

of ri≈1.2 was used in all coordinate directions. GCI calculations indicated maximum errors bounds 

of 17.8% using Cp values. Further refinement to a 4.176 million cell mesh would only lead to a 

4.63% reduction in predicted ramp drag Fd. 

A separate grid-convergence study for the VG-inclusive domain used 4 different levels of 

refinement (Fig. 2). A 3.352 million cell mesh was finally selected. Further refinement of this mesh 

would only lead to 0.03% change in the VG drag force (Fig. 2). The mesh choice maximised 

computational efficiency with minimal influence on results. 

VG-inclusive transient simulations used an optimal time step of ∆t = 0.0005 seconds with the 

Courant number ≤ 1 to satisfy the CFL criteria. All simulations reached a steady state after two flow 

cycles, mainly due to the diffusivity of Reynolds-Averaged Navier-Stokes (RANS) models. All 

normalized transport residuals fell below 10
-6

 prior to collection of results. Convergence of the flow 

field was also monitored using a point 50 mm off-the-wall at the bottom of the ramp. 

Boundary layer thickness is an important factor for the performance of a vortex-generator and 

implementation of the correct vane size. This also controls the hVG/δ ratio, which has an influence 

on vortex trajectories shown in the results which follow. A fully developed boundary layer was 

established ahead of the ramp using a 1.717 m extension (Fig. 1), giving Rex=5×10
5
 from flat plate 

approximations [3]. 
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Figure 2: Grid convergence with 60 mm VG position for β=0°. The y-axis % change was normalised 

by finest mesh Fd. The x-axis has each mesh size (ni) normalised by the coarsest mesh (n0). 

Turbulence Modelling. Results were obtained using the Shear Stress Transport (SST) k-ω 

model [5] [6]. This proved to be the most robust and accurate after comparative studies against PIV 

data (Fig. 3). Wilcox’s low-Re k-ω model, Realizable k-ε and the Shear Stress Transport (SST) k-ω 

were all compared in reaching this conclusion. For brevity, one PIV comparison is shown, but it is 

representative of other results obtained on all 3 inspection planes (Fig. 1) from Beves [1]. Velocity 

profiles at 50 mm after the trailing edge highlight that close to the surface, the low-Re k-ω model 

overpredicted the recirculation region. An ω-based Reynolds Stress Model was omitted from further 

comparisons due to lack of clear convergence and computational effort. 

The SST k-ω model was the best at matching the major trends in the flow profile. Although, the 

zonal approach includes an improved blending function [6], the transition between the viscous 

region and free-stream (45<y<40) still requires improvement  

(Fig. 3). Overall, given their computational efficiency, a RANS approach can still be used to model 

induced vortices however; it should only be used after validating at a specific Reynolds Number 

and turbulence intensity. 

Figure 3: Comparison of CFD results against existing PIV data at 50 mm (left) and 200 mm (right) 

downstream of the ramp’s trailing edge. 

Results & Discussion 

Vortex influence. Vortices were induced by vanes oriented at 0°, 5°, 10° and 15° (Fig. 4) to the 

free-stream. Triangular vanes were selected primarily due to the single point of vortex initiation and 

their popularity arising from relatively low drag penalty [2]. Aerodynamic drag is commonly used 

as a performance indicator and total drag on the ramp and VGs were both monitored here. 
 

U0=4.5m/s U0=4.5m/s 
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Figure 4: Wind-tunnel data for 17.5 m/s and CFD validation model for 60 mm position with β=11115°. 

At the 60 mm position, changing VG orientation from β=0° to 5° increased the total ramp drag 

by 5.7%, from 0.1085 to 0.1147 N. However, the drag sensitivity is reduced at higher angles-of-

attack (β). This is highlighted by a 0.04% drag decrease as the vane is altered from 10° to 15°. This 

reveals the importance of the interaction between induced vortices and coherent structures in the 

boundary layer, since the total ramp drag decreases despite an increase in the isolated VG drag. 

The VG drag force was greater for 240 mm compared to the 60 mm position, for all angles-of-

attack. For β=15°, there was a 2.8% increase in drag force corresponding to position change. VGs at 

this position also had a greater impact on the flow and the total ramp drag actually decreased by 

2.2%, on average, relative to the 60 mm position.  

Vortex development. Based on excellent correlation with wind-tunnel measurements (Fig. 4), 

the CFD model was deemed to be accurately capturing vortex behaviour. Using velocity contours 

on cross-stream planes, two distinct flow features were observed immediately after the VG-

interaction. Acting as an obstruction to the flow, these vanes induce a low-pressure wake. This leads 

to a discernable yet short-lived vortex, especially prominent for higher β values.  

In addition to this, the vanes also form a primary longitudinal vortex which increased localised 

vorticity. This was observed as a VG augmenting the rotational potential of the flow in that region. 

From time-averaged data, a stream-wise velocity deficit in the core was identified (Fig. 4) and this 

was stable in space for all β. 

Initially, the vortex strength was directly proportional to the angle-of-attack β. C-S Yao and J. C. 

Lin [7] also found that circulation (ΓP) increased with the angle-of-attack and (sin β)
1.5

 represented 

functional relationship near their rectangular VG. 

In this project, an adverse-pressure gradient established by the backward-facing ramp (Fig. 1), 

distorted the induced vortices. This is consistent with past observations by Simpson [8] in his study 

of turbulent boundary layers. This project also revealed that skewness of the primary vortex was 

proportional to β. 

From conservation of angular momentum, greater vortex distortion and skewness, also 

contributes to reduced circulation, as the core radius increases. From comparative studies of low 

and conventional VGs, Yao and Lin [7] also identified an elliptical rather than circular profile for 

the embedded vortices near the wall, confirming the observations in this study. 

Vortex core trajectory. Range of β values used here was governed by literature, since Yao and 

Lin [7] identified reduced effectiveness for β>16° with rectangular vanes. Various methods for 

vortex detection was explored however a local vorticity maxima  

(ω = ∇×V) was found to be the most reliable. Downstream inspection planes were placed at 10 mm 

increments from the tail and normalised by vane length (xVG). The tracks in the vertical, wall-
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normal direction were easier to locate than the lateral direction and might be related to mesh density 

and growth rates. As the cell sizes grow larger, the vortex core was more difficult to identify and 

hence, some unrealistic deviations were observed in z-direction, especially downstream of the ramp. 

 

Figure 5: Vertical (Y) and lateral (Z) vortex core drift for the VG located at 60 mm off the leading edge. 

 

For the 60 mm position, 38 inspection planes were required, as shown in Fig. 5. As it approaches 

the adverse pressure gradient the core became larger, with increased skewness. For the 60 mm 

position (Fig. 5) the primary vortex rose away from the wall at a high gradient for approximately 

1.167xVG distance from the tip. As the size of the core increased and interacted with the free-stream, 

the vortices reached a terminal height, with the 0° orientation having a maximum 1.52hVG elevation. 

The vortices reach a stable height and only vary between 0.053hVG and 1.52hVG for all β within 

1< x/xVG <7.8 downstream of the tip (Fig 5). For β = 10° and 15° the increased vortex strength also 

corresponds to a rapid core descent towards the wall. The pressure gradient also influences the 

vortex core trajectories and all the induced vortex trajectories tend to follow the 16° ramp beyond x 

= 8xVG and x = 2xVG for 60 mm and 240 mm charts, respectively. This was followed by rapid 

diffusion of the vortices. 

Boundary layer separation also had an influence on the primary and secondary vortices. This led 

to the above mentioned diffusion and the change in both the Y and Z gradients. For β = 0° the 

natural trajectory over the tip led to maximum elevation from the surface relative to the other 

angles. However, they generated stronger vortices with lower trajectories over the surface. 

The 240 mm location resulted in much greater lateral vortex drift (Fig. 6) and this also 

encountered the thickest boundary layer leading to hVG/δ = 0.410. The vortices induced from the 

vane at 240 mm position, had a lower profile and elevation from the surface, which might be a 

contributor to the lower overall drag mentioned. 

When VGs are placed on curved, external surfaces with an adverse gradient, they induce vortices 

which interact with the surface. Although this assists in reduction of total drag, the vortices are 

highly skewed and have greater levels of interaction with the wall, leading to relatively rapid decay. 

Hence, a compromise needs to be made between using such vortices for aerodynamic effects far 

downstream or to simply achieve a minimal drag design. 
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Figure 6: Vertical (Y) and lateral (Z) vortex core drift for the VG located at 240 mm off the leading edge. 

Summary 

Isolated, triangular vanes were mounted ahead of a 16° decline at 60 and 240 mm positions from 

a leading edge, to understand vortex generation and drift. The hVG/δ was varied and the vanes 

augmented the vorticity in the boundary layer. Skewed vortices were also formed due to the adverse 

pressure gradient, leading to rapid diffusion. 

VG position on an external surface affectshVG/δ, significantly altering the downstream vortex 

behaviour. From the 60 mm position, vortex proximity to the surface was proportional to β. Larger 

angles led to vortex trajectories closer to the wall. The h/δ ratio at 60 mm location was better at 

inducing the flow to follow the surface curvature. The 240 mm position was closest to the trailing 

edge and was effective at reducing overall drag while providing improved control in the span-wise 

direction. The 10° and 15° orientations at the 240 mm location should be capable of diverting flow 

around adjacent components and increase localised velocity and vorticity downstream. 

The VG orientation, position and influence of the pressure gradient were all used to gain an 

insight into the spatial trends of induced vortices. In the near-future, with more realistic upstream 

disturbances and velocities, this project will assist the placement of VGs for various automotive 

surfaces such as on side pods of formula racing cars. Vortex decay and surface interactions are 

currently being studied further. 
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